15th Triennial World Congress of the International Federation of Automatic Control
  Barcelona, 21–26 July 2002 
A RECURRENT FUZZY NEURON FOR ON LINE MODELLING OF NONLINEAR SYSTEMS
Edmary Altamiranda*,1 Eliezer Colina**,2
* Gerencia Técnic a, Automatización, PDVSA PEQUIVEN.
El Tablazo, Zulia - Venezuela
** Departamento de Sistemas de Control
Escuela de Ingeniería de Sistemas. Universidad de Los
Andes, Mérida Venezuela

This paper presents a recurrent fuzzy neuron (RFN) which facilitates nonlinear mapping from an input space to an output space. The synaptic junctions are characterized by a set of IF-THEN rules and recurrent characteristics provide dynamic properties to the neuron, allowing its application to on line modelling for a variety of nonlinear systems. The effectiveness of this neuron to synthesize complex nonlinear models, is illustrated by simulation results related to on line prediction of chaotic behavior and modelling of time varying nonlinear systems.
Keywords: Fuzzy Systems, Neural Dynamics, Nonlinear Models, Dynamic Modelling

1Corresponding Author: Puertos de Altagracia PDVSA PEQUIVEN, Automatización, Gerencia Técnica. E-mail: edmaryal@telcel.net.va

2Corresponding Author: ecolina@ing.ula.ve

E-mail: ALTAMIRANDAE@pdvsa.com
Session slot T-Th-A04: Neuro fuzzy systems and control/Area code 3e : Fuzzy and Neural Systems