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A RECURRENT FUZZY NEURON FOR ON
LINE MODELLING OF NONLINEAR SYSTEMS
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Abstract: This paper presents a recurrent fuzzy neuron (RFN) which facilitates
nonlinear mapping from an input space to an output space. The synaptic junctions
are c haracterized by a set of IF-THEN rules and recurrent characteristics provide
dynamic properties to the neuron, allowing its application to on line modelling
for a variety of nonlinear systems. The effectiveness of this neuron to synthesize
complex nonlinear models, is illustrated by simulation results related to on line
prediction of chaotic behavior and modelling of time varying nonlinear systems.
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1. INTRODUCTION

Artificial Neural Netw orks, for modelling of com-
plex dynamic systems ha vethe follo wing adv an-
tages: Distributed information processing capa-
bilities, an inherent potential for parallel compu-
tation, nonlinear behavior and learning proper-
ties. Conven tional feedforvard multila yred neu-
ral netw orksfacilitates nonlinear mapping from
an input space to an output space. The netw ork
system can be established only by training and
its abilit y for complex mapping ma increase with
the n unber of layers and neural elemerts in each
layer. Most of times it is difficult to establish in
adv ance,the number of neural elements neces-
sary and sufficient to achiev ean adequate map-
ping. Since all the initial w eigh tsare assigned
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randomly and the error weight space might have
local minima, the learning error may be significant
even after a long learning period. In order to
deal with such difficulties a fuzzy neuron struc-
ture is proposed by (Yamakaw a, 1994). The con-
cept associated to this structure modify the con-
ven tional neuron model whih possesses constant
synaptic weights followed by a nonlinear activa-
tion function. Contrary to that, the fuzzy neuron
has nonlinear synapses characterized by sets of
fuzzy IF-THEN rules with singleton weights in
consequent. When it comes to system’s modelling,
a dynamic neural structure,which con tainsfeed-
bac k terms may provide more adv an tageshan
a purely feedforward neural structure. Supervised
learning algorithms for dynamic neural structures
have been developed for iden tification, control
and optimization of dynamic systems (Pineda,
1987), (Williams and Zisper, 1989), (Narendra
and Parthasarathy, 1990)and (Parlos et al., 1991).
F or some problems, a small feedback system is
equivalen tto a large and possible infinite feed-



forward system (Hush and Horn, 1993). In order
to obtain the nonlinear mapping capabilities of
the fuzzy neuron presented by (Yamakawa, 1994)
and the features of feedback systems, a fuzzy neu-
ron structure which incorporates recurrent con-
nections is proposed. Such recurrent connections
provide dynamic characteristic to the fuzzy neu-
ron behavior, making the proposed structure, a
good candidate for on line modelling of a variety
of nonlinear dynamic systems. The proposed REN
potentials are illustrated by simulation results re-
lated to on line prediction of chaotic behavior and,
modelling of time varying nonlinear systems.

2. AFUZZY NEURON MODEL

Provided a quadratic learning error, a single or-
dinary neuron model guarantees to find a global
minimum. The neuron output and the learning
error are represented by

y= f(Z w;i;) (1)

Z (yr — yi)’ (2)

l\:)lr—\

respectively, where x;, is the input signal to the
i-th synapse, w; the corresponding input weight,
yr the neuron output for k-th pattern, yg the k-
th training pattern and p the number of patterns.
Note from 1 and 2, that the error-weight space
exhibits a parabolic function. Multilayered neu-
ral networks which possesses significant general-
ization capabilities, have to be constructed with
too many neural elements where a large number
of parameters are embedded, therefore, the er-
ror surface is not parabolic with respect to the
weights causing the appearance of local minima
(Zurada, 1992) and (Hetch, 1990). In order to
avoid the local minima problem, a fuzzy neuron,
where many parameters can be embedded and
which accomplishes generalization by itself, has
been proposed in (Yamakawa, 1994).

2.1 Structure of the Fuzzy Neuron

The structure of the fuzzy neuron presented in
(Yamakawa, 1994) is shown in Figure 1

The characteristics of each synapse are repre-
sented by a nonlinear function f; and the soma
does not exhibit a sigmoidal function at all. Ag-
gregation of synaptic signals is achieved by an al-
gebraic sum. Thus the output of this fuzzy neuron
can be represented by the following equation:

m

= > (filz:) (3)
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Fig. 1. Structure of Fuzzy Neuron

The input space for x; is divided into several fuzzy
segments which are characterized by membership
function g1, fa2, -5 fij, ---5 in Within the range
between x,,;, and ,,4., as shown in Figure 2
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Fig. 2. Membership Function for Nonlinear Synap-
sis of Fuzzy Neuron

The nonlinearity f;(x;) is determined by fuzzy IF-
THEN rules and the k-th Fuzzy IF-THEN Rule in
i-th synapse output is obtained by fuzzy inference
with defuzzification,represented by:

If Input signal x; is included in the fuzzy segment
Wik, then the synapse output is wiy

Compatibilities of the input signal z; with the
antecedents.2 of these rules are obtained from the
membership function to be w;(x;) and p; g1 ()
at which the constants w;;, and w; k41 in conse-
quents should be adopted. The synapse output is
inferred by one or two rules activated by the input
signal z; and represented by one or a couple of
singletons truncated by pix(x;) and p; g41(z;) as
shown in Figure 3
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Fig. 3. Synapse Output Inference
A deterministic value of the synaptic output is

obtained by the defuzzification, so called center-
of-gravity method, defined by:
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Since the membership functions are complemen-
tary,(the summation of two neighboring member-
ship function is always unity), an input signal
x; activates only one or two rules simultaneously
for each synapse. Thus, the output of the fuzzy
neuron may be rewritten as:

filx;) = i (zi)wig + pi g1 (i) wi g1 ()

This equation implies that only activated branches
are effective for learning therefore, only one or two
weights corresponding to the activated branches
are adjusted at the time.

3. RECURRENT FUZZY NEURON MODEL

In this paper, a modified fuzzy neuron is pro-
posed, which presents the capabilities of nonlin-
ear mapping of the fuzzy neuron presented in
(Yamakawa, 1994) and the advantages that pro-
vide feedback systems. The proposed structure
incorporates recurrent connections which provide
dynamic characteristic. This properties make the
neuron a good candidate for on line modelling of
nonlinear MISO and SISO systems.

3.1 Structure of the RFN for Nonlinear Modelling
of MISO and SISO Systems

The structure of the RFN is shown in Figure 4.

Fig. 4. Structure of RFN

The feedforward and recurrent connection f;
and fr respectively, possesses nonlinear synaptic
weights which are determined by fuzzy IF-THEN
rules. The synapse output is obtained by fuzzy in-
ference with defuzzification, therefore, the output
of this RFN may be represented by:

y(k) = > filwi(k) + D frly(k =) (6)

where u;(k), i = 1..m correspond to the system
inputs at the time k, y(k —r) r = l.n, are
recurrent terms associated to the neuron output
at the time k£ — r and n is the estimated system
order. Dynamic inputs delays can be embedded in
the RFN structure but it is important to consider
an estimated of the system relative degree, to
define the appropriate number of recurrent terms.
In order to explain this fact in a better manner,
consider the following SISO system

y' (k) = Fy"(k —1),..,y" (k —n))+ (7)
G(u(k),u(k —1),...,u(k —m))

where y? is the SISO system output and u is the
SISO system input

This system may be modelled by an RFN by
defining the neuron inputs as the delays associated
to the unique system input

y(k) =Y filulk =)+ > frly(k —1)) (8)
=0 r=1

Assuming that the estimated relative degree is at
least zero, which implies causality, the number of
recurrent terms and inputs delays must be defined
such that n > m .

An extension of this representation for MISO
systems may be defined in the following way

y?(k) = Fy*(k = 1), ...,y (k —n))+
Gl(ul(k),ul(k — ].), ...,Ul(k — ml))+
oo F G (U (k) U (B — 1), o u (B — )

where y? is the MISO system output, m is the
number of inputs w1, ...., U, and myq, ...., M., cor-
respond to the input delays respectively.

The before mentioned system may be modelled by
a RFN as:

y(k) = > fh(u(k—ir)) + ..+
. i1=0 " (10)
> A (k= im)) + > Foy(k = 1))

T =0

where f" correspond to the synapse associated
to the ¢,,, — th input delay of the m — th input.

The number of recurrent terms and input delays
must be defined such that n > maz(maq,...,my,)
in order to guarantee causality with respect to
every inputs.

Each synapse output is inferred by one or two
rules activated by an input or a recurrent signal.
Similar to equation 5, two expressions may be
obtained for calculating the deterministic value
for the synaptic connections of the REN. Without



loss of generality the feedforward connections are
given by:

filui(k)) = pij(ui(k))wi ;(k)+
ui,j+1(uz(lj~c))w”+1( ]) (11)

and the recurrent connections may be expressed
as

fr(y(kN_ T')) = ﬂ’ﬂj (y(kN_ T))HN}TJ (k)+ (12)

forj+1(y(k = 1))y j 41 (k)
For nonlinear systems, output behavior may be
characterized in several zones. The number of
membership function may define the number of
zones associated to the output nonlinear behavior
respect to a specific input variable. Generally, the
number of regions or zones that characterize a
complex nonlinear system it is not completely
known, therefore, it is convenient, to start the
RFN design using a reduced number of mem-
bership functions and increase progressively this
number for each input variable, in order to im-
prove convergence. A reduced number of member-
ship functions may affect the algorithm conver-
gence but too many memberships functions make
difficult computational processing for implemen-
tation purposes.

It is important to mention that constraint propo-
sitions defined above, for m and n are valid for in-
put/output systems. Time series may be modelled
using RFN structures, for this case the constraint
is n > 1 to guarantee neuron dynamic properties.
m is normally associated to real output delays.

3.2 Learning Algorithm for the Recurrent Fuzzy
Neuron

The general learning algorithm is defined in terms
of a steepest descent method, where the change of
weights is achieved for a set of input patterns p.
The error index is given by the average squared
error for p patterns in the following way:

1 & N
—ﬁz; (K))

1 &,
= ﬁzeq(k)

g=1

where y,(k) is the RFN output, y%(k) is the
desired output, corresponding to the pattern g at
time k and e, (k) is a learning error between the
RFN and the desired output at time k.

During the learning sessions, the updating rule for
the weights is given by

Wi, j (k‘ + ].) = Wij,j (k) + Awi,j (k‘)

Aw; j(k) = —a% (14)

The derivatives of the error index E(k) with
respect to the weights of the RFN are as follows
For the feedforward connections:

p

819’(1 k)
8wm Z 8wm (k) (13)

The adjustment for weights w; ; in time £ is given
by

P ayq(k)
Aw; (k) —aé%“@‘”W (16)
Ow; (k)

where u, ; corresponds to the g —th pattern of the
i — th RFN feedforward input

M@

Aw; (k) = —a - yq k)i (ug,i(k))(17)

q:l
For the recurrent connections:
9E(k) zp: dyq(k)
2 = ek 5+
ow; ; (k) = ow; ; (k) (18)

ayq(k) ayq(k —r)
0y, (k —1r) 0w, (k)

The adjustment for weights w, ; in time & is given
by

AUNJT,J' (k) = A1’11~1T7j + AQUNJT,J' (19)

where

8yq k)
U r,j (k)

A, j = —az ——] (20)

_ - Ay, (k) Oy, (k-7
A2w’r’7j = _a;eq(k)[ayq?k(—)’l‘) gl;r7j(k))](21)

It is not difficult to understand that the first term
Ay, j, corresponds to a static partial deriva-
tive obtained from applying conventional static
steepest descent method to the error index, and
the second term Asw, j, is due to the dynamic
behavior of the RFN.

Calculation of Ay,

8?!(1( )
AW, = —« eg(k)[——="—"—
T Z Ofilya(k=1)) (99
8fz(yq( ))]
0w, ; (k)
Alwm——aZeq Vprj (yg (k= )] (23)



Calculation of Ay, j

Aoy j = —« E eq(k

8yll( ) Zr(k)] (24)

_7-) q

where

Oyg(k) = ~
Ay,(k—r) ~ Wr,j (k) py j (yq(k — 1))+

UN]r,j-i-l (k)ﬁr,j+l (yq (k - T))

(25)

Let z; be defined as

vy — QYg(k—7)
zg(k) = D (B) (26)
In order to provide dynamic characteristics to the
updating rule for recurrent connections, the term
26, is determined through the successive applica-
tion of the chain rule. Without loss of generality,
only first order terms are considered, therefore
z!'(k) may be represented by the following first

a
order time-varying linear system:

9yq(k —1)
Z;(k‘) = T (k -1+
= (yq (k- )1) (27)
0w, j (k)
zg(k) = [@rj(k = D)ty ;(yq(k = — 1))+

Wr g1 (k= Dty 1 (ye(k =7 = 1)) (28)
2g(k = 1) + fir i (yq(k — 7))

This definition for zy, is a modification of a dy-
namic updating rule for recurrent neural networks
presented in (Jin et al., 1994).

Finally A, ; may be expressed as

Ay j = —« E eq(k

ayq( ) 27
Fu(k—r) 1)

NT,J yq (k—r))+
(29)

The error- weight space for the proposed RFN
exhibits a parabolic function and has no local
mnima, because only one neural element is em-
bedded. Additionally, RFN’s dynamic character-
istics given by recurrent terms, provide higher
convergence speed than purely feedforward neural
structures.

4. ON LINE MODELLING OF NONLINEAR
SYSTEMS USING RFN

In this section, it will be illustrated the potentials
of the proposed RFN for modelling of complex
dynamic systems, through its application to on
line prediction of chaotic behavior and modelling
of time variant nonlinear systems.

4.1 Case of Simulation 1:Prediction of Chaotic
Behavior

Consider the chaotic time series generated by the
following recurrent formula:

ok +1) = 15”“”7(2"“()]{) 0.5 % a(k)—

0.5z(k — 1) + 0.5z(k — 2)

(30)

A RFN based structure used to model this system
is defined as:

Zfl

The learning rate used, a = 0.22, was obtained
empirically and the initial conditions for the
chaotic series were: z(0) = 0.7333, z(1) = 0.234
and z(2) = 0.973. The number of patterns used
for each time instant p = 2 and the membership
functions for all (RFN) inputs are shown in Figure
5.

) + fily(k = 1)) (31)
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Fig. 5. Membership Function for RFN Inputs and
Recurrents Terms. Chaotic Series

Figure 6, illustrates the effectiveness of the RFN
to predict on line the chaotic behavior of series
represented in equation 30

Prediction of Chaotic Behavior

[ 10 20 30 20 50 60 70 80 90 100
time

Fig. 6. On line Prediction of Chaotic Behavior by
(RFN)

4.2 Case of Simulation 2:Modelling of a Time
Varying Nonlinear System

Consider the following time varying nonlinear
SISO system



I1 (k)ib'z (k):l?g (k
+x

_ )
7 1)

= T+ 20 +0.5z4(k) (33)

The varying term structure is given by

Ag(k) = 0.5 xx1(k)x2(k)zs(k) (34)

This term is defined only on the interval [50, 150],
else Ag(k) is equal to zero

The (RFN) based structure used to model this
SISO system is defined as

2 3
y(k) = Z filu(k =)+ frly(k —1))(35)

The learning rate used, a = 0.17, was obtained
empirically. The number of patterns used for each
time instant p = 1.

The membership functions for RFN inputs and
recurrent terms are shown in Figures 7 and 8
respectively

Fig. 7. Membership Function for RFN Inputs.
Time-Varying Nounlinear System

Hj
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Fig. 8. Membership Function for REN Recurrent
Terms. Time-Varying Nonlinear System

Figure 9 illustrate the potentials of the RFN to
model on line the time varying nonlinear SISO
system

Real Output Vs. Estimated Output

Fig. 9. On line Modelling of time varying nonlinear
SISO System by (RFN)

5. CONCLUSION

In this paper a new recurrent fuzzy neuron is
proposed. The RFN incorporates recurrent terms
which provide dynamic characteristics to the
structure, making it a good candidate for on line
modelling of MISO and SISO systems. The ef-
fectiveness of this neuron to represent complex
nonlinear processes, is illustrated by computer
simulation results related to on line prediction of
chaotic behavior and modelling of a time varying
nonlinear system.
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