15th Triennial World Congress of the International Federation of Automatic Control
  Barcelona, 21–26 July 2002 
A NEURAL POWER SYSTEM STABILIZER FROM LOCAL LINEAR CONTROLLERS
José A. L. Barreiros*, André M. D. Ferreira**, Carlos Tavares da Costa Jr.*
* Departamento de Engenharia Elétrica, Universidade Federal do Pará (UFPA), Belém–Brazil
Campus Universitário do Guamá - CEP: 66075-900 - Belém-PA, Brazil
Phone Number: +55 91 211 1680 Fax: +55 91 211 1634
** Centro Federal de Educação Tecnológica do Pará (CEFET-PA), Belém - Brazil
Coordenação do Curso de Eletrotécnica
Av. Almirante Barroso, 1155 (Marco) - CEP: 66093-020 - Belém-PA, Brazil
E-mails: barreiro@ufpa.br, andre@amazon.com.br, cartav@ufpa.br

This paper presents the design of a Power System Stabilizer synthesized using an Artificial Neural Network. The patterns used in the network training are sets of controller parameters, previously calculated for several system operation points using the pole-placement method. The trained network presents, as its main characteristic, uniform values for all the stabilizers parameters when the system synchronous machine is generating reactive power, but these same parameters suffer great variations when reactive power is being absorbed by the machine. Simulation tests show very good performance for the proposed Neural PSS, when compared with a fixed-parameter stabilizer.
Keywords: Power System Stabilizers, Neural Networks, Power System Control, Dynamic Stability, Excitation Control.
Session slot T-We-A09: Tools and concepts in power system control and -planning/Area code 7c : Power Plants and Power Systems