Input-output Controllability Analysis

Idea: Find out how well the process can be controlled - without having to design a specific controller

Note: Some processes are impossible to control

Reference: S. Skogestad, "A procedure for SISO controllability analysis - with application to design of pH neutralization processes", *Comp.Chem.Engng.*, **20**, 373-386, 1996.

Example: First-order with delay process

$$
g(s) = k \frac{e^{-\theta s}}{1 + \tau s}; \quad G_d(s) = k_d \frac{e^{-\theta_d s}}{1 + \tau_d s}
$$

+ Measurement delays: θ_m , θ_{md} .

Problem: What values are desired for good controllability?

Qualitative results:

WANT TO QUANTIFY!

Example: First-order with delay process

$$
g(s) = k \frac{e^{-\theta s}}{1 + \tau s}; \quad G_d(s) = k_d \frac{e^{-\theta_d s}}{1 + \tau_d s}
$$

+ Measurement delays: θ_m , θ_{md} .

Problem: What values are desired for good controllability? **Qualitative results:**

WANT TO QUANTIFY!

Recall: Closed-loop frequency response

Performance requirement for disturbances with feedback control

- $e = y y_c$ (opposite sign compared to previous slide, doesn't matter here because we look at magnitude)
- Recall: $e = S G_d d$. S=1/(1+L); L = GC
- Performance requirement: Want $|e(t)| < e_{max}$ for worst-case disturbance: $d(t)=d_{max} sin(\omega t)$ (at any frequency)
- So want $|S G_d d_{max}| < e_{max}$ (at all frequencies)
- Or $|1+L|$ e_{max} > $|G_d|$ d_{max} (at all frequencies)
- At low frequency where |L| is large:
	- set $|1+L| \approx |L|$
		- A bit «optimistic» around |L|=1, but OK (see figure)
	- Performance requirement becomes: $|L| > |G_d| d_{max}/e_{max}$
	- so at least we need $\omega_c > \omega_d$
	- where ω_c and ω_d are defined as: $\left| \frac{\mathsf{L}(j\omega_c)}{\mathsf{L}(j\omega_c)} \right| = 1$, $\left| \frac{\mathsf{G}_d(j\omega_d)}{\mathsf{G}_m} \right| = \mathrm{e}_{\max}/\mathrm{d}_{\max}$
	- This can also be used to tune the controller: $\tau_c < 1/\omega_d$ (approx)

Normally I assume the variables (and model (G, G_d)) have been scaled such that $e_{\text{max}}=1$, $d_{\text{max}}=1$.

- ω_d is the frequency up to which control is needed to get $|e|<\epsilon_{max}$ for disturbances (faster disturbances are averaged out by the process)
- ω_c is the frequency up to which feedback is effective ($|L|>1$)
- This means we need ω_c \sim ω_d (Rule 1)

QESTION: What about example on right? Was SIMC-tuned with $\tau_c = 1$ which happens to be = $1/\omega_d$ – but resulting ω_c =0.515 is NOT larger than ω_d =1 - So does not look promising for sinusoidal disturbance

Let's check step response (which is not sinusoid)

[mag3,phase]=bode((1+L2),w); [mag4,phase]=bode(L2,w); Plot | L| and | 1+L1 figure(3), loglog(w,mag0(:),'black',w,mag3(:),'blue',w,mag4(:),'red') axis([0.01,10,0.01,100])

Check: Step disturbance

- $G = G_d = e^{-s}/s$
- SIMC PI-controller with $\tau_c=1$
	- $-$ K_c=0.5, $\tau_{I} = 8$

As expected from frequency analysis we get peak $e(t) \approx 2 > 1$ (so not OK)

• Would be OK with Gd = 0.5 e^{-s}/s which would give ω_d =0.5 < ω_c =0.515

Input usage

- $y = Gu + G_d d$
- To reject a disturbance d (and achieve y=0) we need for both feedforward and feedback

 $u = -G^{-1} G_{d} d$

- Assume $|d|=d_{max}$ and we must have $|u|$ <u_{max}
- This means that we must require to avoid input saturation $|G^{-1}|\cdot |G_{d}| \, d_{\text{max}} < u_{\text{max}}$ or: $|G|$ $U_{\text{max}} > |G_d|$ d_{max} (at all frequencies where we need control)
- Normally I assume the variables)and model (G, Gd)) have been scaled such that $e_{max}=1$, $d_{max}=1$, $u_{max}=1$.
	- The requirement to avoid input saturation then becomes:

 $|G| > |G_d|$ (at all frequencies where we need control)

Controllability rules (approximate)

Rule 1. Need $\omega_c > \omega_d$ for disturbance rejection Rule 2. Need $\omega_c < 1/\theta$ for robustness Rule 3. Need $\omega_c > p$ for stabilization (g(s)=1/(s-p)) Rule 4. Need $|g|$ ⋅ $|Au_{max}| > |g_d|$ ⋅ $|Ad|$ to avoid constraints

- **u** ω_d = frequency where $|g_d(i\omega_d)| \Delta d / \Delta e_{max} = 1$ $(|g_d(i\omega_d)|=1$ in scaled units)
- \bullet $\omega_c = 1/\tau_c$ (bandwidth frequency; frequency where |L| crosses 1 from above)
	- Note: This τ_c is close to but not idential to the τ_c used in SIMC
- Θ = effective delay
- $p =$ unstable pole
- Δe_{max} = max allowed output error
- Δu_{max} = max input change (because of input constraints)
- \triangle d = max expected disturbance
- **Combined Rules 1 & 2: Must require** $\omega_d \theta \le 1$

Rule 1 is for typical case where $|g_d|$ is highest at low frequencies
- - The more exact rule 1 is: Need $|Sg_d|\Delta d \leq \Delta e_{\text{max}}$ at all frequencies. Note that $|S| \approx 1/|L|$ at low frequencies
- Rule 4: Applies at frequencies where control is needed (up to ω_d). In scaled units the rule simplifies to $|g| > |g_d|$.
- *Scaled units:*
	- *Maximum allowed control error* $\Delta e_{\text{max}} = I$.
	- *Maximum input change,* $\Delta u_{max} = 1$ *.*
	- *Maximum expected disturbamce Δd =1*

This situation is OK according to rules 1-3:

Example: Controllability requirements for first-order process

- Assume process (g) has effective delay θ
- Assume maximum allowed output change (error) is Δy_{max}
- Consider response to disturbance, $g_d = k_d/(\tau_d s + 1)$
- Time domain analysis
	- For step Δd : Output reaches $\Delta y = (k_d \theta / \tau_d) \Delta d$ at time θ (approximately; see figure)
	- If this is larger than acceptable (Δy_{max}) then we are in trouble
	- To be controllable, we must require $(k_d \theta / \tau_d) \leq \Delta e_{\text{max}} / \Delta d$

- Check with more general Rules in frequency domain:
	- The controllability requirement is (Rule 1&2): $\omega_d \theta \le 1$
	- where $|g_d(j\omega_d)| = \Delta e_{max}/\Delta d$
	- Asymptote for g_d at $\omega > 1/\tau_d$: $|g_d(j\omega)| = k_d/\tau_d\omega$
	- So $ω_d = k_d/(\tau_d Δe_{max}/ Δd)$
	- And ω_d θ < 1 gives the expected controllability requirement: $(k_d \theta / \tau_d) \leq \Delta \epsilon_{\text{max}}/\Delta d$
- In addition we must avoid input saturation. We have: $\Delta y = g_d \Delta d + g \Delta u$
- So to get $\Delta y = 0$ without exceeding constraint Δu_{max} , we must require (Rule 4)

At all frequencies $\omega \leq \omega_d$ (where we need control):
At steady state:
 $\frac{|g(jw) \Delta u_{max}| > |g_d(jw) \Delta d|}{|k \Delta u_{max}| > |k \Delta d|}$ Initial response (approximately):

 $\frac{|\mathbf{k}|^2 |\mathbf{k}|^2}{|\mathbf{k}|^2 |\mathbf{k}|^2 |\mathbf{k}|^2 |\mathbf{k}|^2 |\mathbf{k}|^2 |\mathbf{k}|^2}$

Controllability analysis

- Use of controllability analysis
	- To avoid spending time on impossible control problem
	- To help design the process (e.g., size buffer tanks)
- Also useful for tuning.
	- $-$ τ_c = SIMC tuning parameter
	- Must for acceptable controllability have:

$$
\theta \leq \tau_c \leq \frac{1}{\omega_d}
$$

• Note

$$
-\text{ right control: } \tau_{c,min} = \theta
$$

– "Smooth" control: $\tau_{c,max} = 1/\omega_d$

 $ω_d$ is defined as frequency where $|g_d(jω_d)| = Δe_{max}/Δd$

If process is not controllable: Need to change the design

• For example, dampen disturbance by adding buffer tank:

Figure 1. Two types of buffer tanks.

Scaled model

- In all problems below, we assume that models have beed scaled such that
	- $\Delta e_{\text{max}}=1$
	- $\Delta u_{\text{max}} = 1$
	- $\Delta d = 1$
	- Define ω_d as frequency where $|G_d(j\omega_d)|=1$.
		- For first-order disturbance model (scaled units): $\omega_d = k_d / \tau_d$

$$
G(s) = \frac{2}{s+1} \quad G_d(s) = \frac{3}{5s+1}
$$

Figure 3: Magnitude of G and G_d .

$$
G(s) = \frac{3}{5s+1} \quad G_d(s) = \frac{2}{s+1}
$$

Problem 4

$$
G(s) = \frac{200}{(20s+1)(10s+1)(s+1)} \quad G_d(s) = \frac{4}{(3s+1)((s+1)^3)}
$$

No problem with constraints, |G|>|Gd| Disturbances. When does y reach 1 (ω_d) ? What is effective delay?

Disturbance: Approximate as first-order with delay with kd=4, taud=3.5 $\Rightarrow \omega_d \approx 4/3.5 = 1.14$ NOT OK with PI (Rule 1) since effective process delay is $\theta = 10/2 + 1 = 6$ so $\omega_d \theta = 6.9$ > 1 BUT OK with PID (Rule 1) since effective process delay is θ =0.5 so $\omega_d \theta$ =0.6 < 1
 $\Omega_d^2 \theta = \frac{G_d^2}{(3s+1)(s+1)^3}$

$$
G(s) = \frac{200}{(20s+1)(10s+1)(s+1)} \quad G_d(s) = \frac{4}{(3s+1)((s+1)^3)}
$$

Problem 5

$$
G(s) = \frac{2.5e^{-0.1s}(1 - 5s)}{(3s + 1)((s + 1))^3} \quad G_d(s) = \frac{2}{s + 1}
$$

NOT OK (Rule 1/2) since effective process delay is at least 5.1 (both PI and PID), so ω_d θ = 2*5.1=10.2 > 1

 $SCALED MODEL$ PROBLEM 7, $g = 500/((50*s+1)*(10*s+1))$

CHECK CONTROLLABILITY ANALYSIS WITH SIMULATIONS

Problem 7: PI control not acceptable*

*As expected since need $\omega_c > \omega_d = 0.9$, but can only achieve ω_c <1/θ = 1/5 = 0.2

Problem 7: PID control acceptable: e and u are within ±1

Exam.

- Tuesday 10 Dec. 2024. 9-13 (Physical)
- One sheet with own notes (both sides OK; printed OK)
- Simple calculator
- Note: Remember to state clearly all assumptions you make.
- General: Look through the whole exam before you start, read the questions carefully!

Q&A session: Thursday 05 Dec. 14-16, (H1)

(please send questions before by email: sigurd.skogestad@ntnu.no)