
Input-output Controllability 
Analysis

Idea: Find out how well the process can be 
controlled - without having to design a specific 

controller
Note: Some processes are impossible to control

Reference: S. Skogestad, ``A procedure for SISO controllability analysis - with application to design of pH neutralization processes'',
Comp.Chem.Engng., 20, 373-386, 1996. 

http://www.nt.ntnu.no/users/skoge/publications/1996/Skogestad96a/


WANT TO QUANTIFY!



WANT TO QUANTIFY!

Want slow and small 
response from 
disturbance (DV) to 
output (CV)

Want fast and large 
response from input 
(MV) to output (CV)

Opposite for 
feedback and 
feedforward



Recall: Closed-loop frequency response
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s=tf('s')
g = exp(-s)/s; 
Kc=0.707;  taui=3.33; c = Kc*(1+1/(taui*s)); L1 = g*c;  % ZN
Kc=0.5; taui=8; c = Kc*(1+1/(taui*s)); L2 = g*c;   % SIMC
w = logspace(-2,1,1000);
[mag1,phase]=bode(1/(1+L1),w);
[mag2,phase]=bode(1/(1+L2),w);
L0=1*exp(-s); [mag0,phase]=bode(L0,w); % Trick to make a line for 1
figure(1), loglog(w,mag1(:),'red',w,mag2(:),'blue',w,mag0(:),'black') 
axis([0.01,10,0.001,10])

!

SIMC: Ms=1.70
ZN:     Ms = 2.93

Control:    GOOD BAD NO EFFECT

e

|S|



Performance requirement for disturbances 
with feedback control

• e=y-ys (opposite sign compared to previous slide, doesn’t matter here because we look at magnitude)

• Recall:  e = S Gd d .   S=1/(1+L); L = GC
• Performance requirement: Want |e(t)|<emax for worst-case disturbance: 

d(t)=dmax sin(ωt) (at any frequency)
• So want |S Gd dmax| < emax (at all frequencies)
• Or |1+L| emax > |Gd| dmax (at all frequencies)
• At low frequency where |L| is large:

–  set |1+L| ≈ |L|  
• A bit «optimistic» around |L|=1, but OK (see figure)

– Performance requirement becomes: |L| >|Gd| dmax/emax 
– so at least we need ωc > ωd
– where ωc and ωd are defined as: |L(jωc)|=1,   |Gd(jωd)|= emax/dmax
–  This can also be used to tune the controller: τc < 1/ωd (approx)

• Normally I assume the variables (and model (G, Gd)) have been scaled such that emax=1, dmax=1. 
[mag3,phase]=bode((1+L2),w);
[mag4,phase]=bode(L2,w);
Plot |L| and |1+L1
figure(3), loglog(w,mag0(:),'black',w,mag3(:),'blue',w,mag4(:),'red’) 
axis([0.01,10,0.01,100])

|L|

|1+L|ωc=0.515

ωd=1 (assume emax=dmax=1)

|Gd|

QESTION: What about example on right? 
Was SIMC-tuned with τc = 1 which happens to be = 1/ωd 
              – but resulting ωc=0.515 is NOT larger than ωd=1 
- So does not look promising for sinusoidal disturbance
- Let’s check step response (which is not sinusoid)

gd= exp(-s)/s;
[mag5,phase]=bode(gd,w);
figure(4), loglog(w,mag0(:),'black',w,mag5(:),'blue')  
axis([0.01,10,0.01,100])

• ωd is the frequency up to which control is needed to get |e|<emax for 
disturbances (faster disturbances are averaged out by the process)

• ωc is the frequency up to which feedback is effective (|L|>1)
• This means we need ωc> ωd (Rule 1)



Check: Step disturbance
• G = Gd = e-s/s
• SIMC PI-controller with τc=1 

– Kc=0.5, τI = 8 

s=tf('s');
g = exp(-s)/s; gd=g; % Input disturbance
Kc=0.5; taui=8; c = Kc*(1+1/(taui*s)); 
L2 = g*c; S2=1/(1+L2);
step(S2*gd,30) 

As expected from frequency analysis we get peak 𝑒𝑒 𝑡𝑡 ≈ 2 > 1 (𝑠𝑠𝑠𝑠 𝑛𝑛𝑠𝑠𝑡𝑡 𝑂𝑂𝑂𝑂)
• Would be OK with Gd = 0.5 e-s/s which would give ωd=0.5 < ωc=0.515 



Input usage
• y = Gu + Gd d
• To reject a disturbance d (and achieve y=0) we need for both feedforward and 

feedback
     u = - G-1 Gd d

• Assume |d|=dmax and we must have |u|<umax
• This means that we must require to avoid input saturation

  |G-1|⋅|Gd| dmax < umax 
or: |G| umax > |Gd| dmax (at all frequencies where we need control)

• Normally I assume the variables )and model (G, Gd)) have been scaled such that emax=1, 
dmax=1, umax=1.
– The requirement to avoid input saturation then becomes:
         |G| > |Gd| (at all frequencies where we need control)



Controllability rules (approximate)
Rule 1. Need ωc > ωd for disturbance rejection
Rule 2. Need ωc < 1/θ for robustness
Rule 3. Need ωc > p for stabilization (g(s)=1/(s-p))

Rule 4. Need |g|⋅|Δumax| > |gd|⋅|Δd| to avoid constraints
 ωd = frequency where |gd(jωd)| Δd /Δemax = 1         (|gd(jωd )|=1 in scaled units)
 ωc = 1/ τc  (bandwidth frequency; frequency where |L| crosses 1 from above) 

 Note: This τc  is close to but not idential to the τc  used in SIMC 
 Θ = effective delay
 p = unstable pole
 Δemax = max allowed output error
 Δumax = max input change (because of input constraints)
 Δd = max expected disturbance

 Combined Rules 1 & 2: Must require  ωd θ < 1
 Rule 1 is for typical case where |gd| is highest at low frequencies

 The more exact rule 1 is: Need |Sgd|Δd < Δemax at all frequencies. Note that |S|≈ 1/|L| at low frequencies
 Rule 4: Applies at frequencies where control is needed (up to ωd). In scaled units the rule simplifies to |g| > |gd|.
 Scaled units: 

 Maximum allowed control error Δemax = 1.
 Maximum input change, Δumax = 1.
 Maximum expected disturbamce Δd =1

This situation is OK according to rules 1-3:
1/ θ

ω

ω dp

ω c must be in this range



Example: Controllability requirements 
for first-order process

• Assume process (g) has effective delay θ
• Assume maximum allowed output change (error) is Δymax
• Consider response to disturbance, gd = kd/(τd s+1)

• Time domain analysis

– For step Δd : Output reaches Δy = (kd θ /τd) Δd at time θ (approximately; see figure)
– If this is larger than acceptable (Δymax) then we are in trouble  
– To be controllable, we must require

(kd θ /τd) < Δemax/ Δd

• Check with more general Rules in frequency domain: 
– The controllability requirement is (Rule 1&2): ωd θ < 1
– where |gd(jωd)|=Δemax/Δd 
– Asymptote for gd at ω > 1/τd: |gd|(jω)|= kd/τdω
– So ωd = kd/(τd Δemax/ Δd)
– And ωd θ < 1 gives the expected controllability requirement:  (kd θ /τd) < Δemax/ Δd

• In addition we must avoid input saturation. We have: Δy = gd Δd  + g Δu
• So to get Δy =0 without exceeding constraint Δumax, we must require (Rule 4)

At all frequencies ω<ωd (where we need control) :   |g(jw) Δumax | > |gd(jw) Δd|
At steady state: |k Δumax | > |kd Δd|
Initial response (approximately): |k /τ Δumax | > | kd/τd Δd|



Controllability analysis

• Use of controllability analysis 
– To avoid spending time on impossible control problem
– To help design the process (e.g., size buffer tanks)

• Also useful for tuning. 
– τc = SIMC tuning parameter 
– Must for acceptable controllability have: 

• Note
– Tight control: τc,min = θ
– “Smooth” control: τc,max = 1/ωd

ωd is defined as frequency where |gd(jωd)|=Δemax/Δd 



If process is not controllable: Need to change the 
design

• For example, dampen disturbance by adding buffer tank:
Level control unimportant,
but need good mixing

Level control is NOT tight
-> level varies

Integral action is not recommended for averaging level control



Scaled model

• In all problems below, we assume that models have beed 
scaled such that

• Δemax=1
• Δumax=1
• Δd =1
• Define ωd as frequency where |Gd(jωd)|=1.

– For first-order disturbance model (scaled units): ωd = kd/τd



Problem 1
SCALED MODEL

NOT OK with constraints. (Rule 4 at steady state)



Problem 2
SCALED MODEL

NOT OK with constraints. (Rule 4 for ω from about 0.25 to 2)



Problem 3
-

SCALED MODEL

OK. 
Rule 1 (performance) is Ok since effective delay in G is zero, 
Rule 4 (constraints) is OK since |G|>|Gd| up to frequency ωd where |Gd|=1
(Note: Gd has an effective delay of 0.8+0.1=0.9 (half rule), but the delay in Gd does not matter)



Problem 4
SCALED MODEL

NDisturbance: Approximate as first-order with delay with kd=4, taud=3.5 ⇒ 𝜔𝜔𝑑𝑑 ≈ 4/3.5 = 1.14
NOT OK with PI (Rule 1) since effective process delay is θ=10/2+1=6 so ωd θ =6.9     > 1 
BUT OK with PID (Rule 1) since effective process delay is θ=0.5 so ωd θ =0.6 < 1 

No problem with constraints, |G|>|Gd|
Disturbances. When does y reach 1 (ωd)?
What is effective delay?



Problem 4
SCALED MODEL

Check simulation PID:
%PID (w/o D-action on setpoint)
g = 200/((20*s+1)*(10*s+1)*(s+1))
gd = 4/((3*s+1)*(s+1)^3)
Kc=(1/200)*20/1,taui=20,taud=10.5

y

u

d=1

OK!
Control error e=y-ys alwys
less that emax=1

ys=1



Problem 5
-

SCALED MODEL

NOT OK  (Rule 1/2) since effective process delay is at least 5.1 (both PI and PID), 
so ωd θ = 2*5.1=10.2     > 1 

|Gd|

ωd =kd/τd=2

YOU CAN TRY FOREVER TO DESIGN A CONTROLLER WHICH IS OK BUT IT’S IMPOSSIBLE
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s=tf('s')
g = 500/((50*s+1)*(10*s+1))
gd = 9/(10*s+1)
w = logspace(-3,1,1000);
[mag,phase]=bode(g,w);
[magd,phased]=bode(gd,w);
loglog(w,mag(:),'blue',w,magd(:),'red',w,1,'black'), grid on

SCALED MODEL PROBLEM 7, g = 500/((50*s+1)*(10*s+1))

ωd=0.9

|G|

|Gd|gd = 9/(10*s+1)

PI- control: θeff = 5 (from half rule):
ωd θ =kd θ /τd = 9*5/10=4.5     > 1
NOT CONTROLLABLE WITH PI!

PID-control : θeff = 0. Controllable!



CHECK CONTROLLABILITY ANALYSIS WITH SIMULATIONS



Problem 7: PI control not acceptable*
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s=tf('s')
g = 500/((50*s+1)*(10*s+1))
gd = 9/(10*s+1)
% SIMC-PI with tauc=theta=5
Kc=(1/500)*(55/(5+5)); taui=55; taud=0;

SCALED MODEL

*As expected since need ωc > ω d= 0.9, but can only achieve ω c<1/θ = 1/5 = 0.2 

Ooops!  e = y-ys>1

ys=1



Problem 7: PID control acceptable: e and u are within ±1
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g = 500/((50*s+1)*(10*s+1))
gd = 9/(10*s+1)
%SIMC-PID (cascade form) with tauc=1/wd=1:
Kc=(1/500)*(50/(1+0)); taui=50; taud=10;

SCALED MODEL



Exam. 
• Tuesday 10 Dec. 2024. 9-13 (Physical)
• One sheet with own notes (both sides OK; printed OK)
• Simple calculator
• Note: Remember to state clearly all assumptions you 

make. 
• General: Look through the whole exam before you start, 

read the questions carefully!

Q&A session: Thursday 05 Dec. 14-16, (H1)
(please send questions before by email: sigurd.skogestad@ntnu.no) 


	Input-output Controllability Analysis
	Slide Number 2
	Slide Number 3
	Recall: Closed-loop frequency response
	Performance requirement for disturbances with feedback control
	Check: Step disturbance
	Input usage
	Controllability rules (approximate)
	Example: Controllability requirements for first-order process
	Controllability analysis
	If process is not controllable: Need to change the design
	Scaled model
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 4
	Problem 5
	Slide Number 21
	Slide Number 22
	Problem 7: PI control not acceptable*
	Problem 7: PID control acceptable: e and u are within ±1
	Exam. 

