Input-output Controllability Analysis

Idea: Find out how well the process can be controlled - without having to design a specific controller

Note: Some processes are impossible to control

Reference: S. Skogestad, <u>``A procedure for SISO controllability analysis - with application to design of pH neutralization processes''</u>, *Comp.Chem.Engng.*, **20**, 373-386, 1996.

Example: First-order with delay process

$$g(s) = k \frac{e^{-\theta s}}{1 + \tau s}; \quad G_d(s) = k_d \frac{e^{-\theta_d s}}{1 + \tau_d s}$$

+ Measurement delays: θ_m , θ_{md} .

Problem: What values are desired for good controllability?

Qualitative results:

	Feedback control	l Feedforward control	
k	T	T	
τ			
θ			
$-k_d$			
$ au_d$			
$- heta_d$			
θ_m			
θ_{md}			

WANT TO QUANTIFY!

Example: First-order with delay process

$$g(s) = k \frac{e^{-\theta s}}{1 + \tau s}; \quad G_d(s) = k_d \frac{e^{-\theta_d s}}{1 + \tau_d s}$$

+ Measurement delays: θ_m , θ_{md} .

Problem: What values are desired for good controllability? **Qualitative results:**

	Feedback control	Feedforward control		
k	Large	Large	Want fast and large	
τ	Small	Small	Want slow and small response from disturbance (DV) to output (CV)	
θ	Small	Small		
$-k_d$	Small	Small		
$ au_d$	Large	Large		
$- heta_d$	No effect	Large		
θ_m	Small	No effect		
θ_{md}	No effect	Small	feedback and	
			feedforward	

WANT TO QUANTIFY!

Recall: Closed-loop frequency response

Performance requirement for disturbances with feedback control

- **e=y-y**_s (opposite sign compared to previous slide, doesn't matter here because we look at magnitude)
- Recall: $e = S G_d d$. S=1/(1+L); L = GC
- Performance requirement: Want $|e(t)| < e_{max}$ for worst-case disturbance: $d(t)=d_{max} \sin(\omega t)$ (at any frequency)
- So want $|S G_d d_{max}| < e_{max}$ (at all frequencies)
- Or |1+L| e_{max} > |G_d| d_{max} (at all frequencies)
- At low frequency where |L| is large:
 - set $|1+L| \approx |L|$
 - A bit «optimistic» around |L|=1, but OK (see figure)
 - Performance requirement becomes: $|L| > |G_d| d_{max}/e_{max}$
 - so at least we need ω_c > ω_d
 - where ω_c and ω_d are defined as: $|L(j\omega_c)|=1$, $|G_d(j\omega_d)|=e_{max}/d_{max}$
 - This can also be used to tune the controller: $\tau_c < 1/\omega_d$ (approx)

Normally I assume the variables (and model (G, G_d)) have been scaled such that e_{max}=1, d_{max}=1.

- ω_d is the frequency up to which control is needed to get |e|<e_{max} for disturbances (faster disturbances are averaged out by the process)
- ω_c is the frequency up to which feedback is effective (|L|>1)
- This means we need $\omega_c > \omega_d$ (Rule 1)

[mag3,phase]=bode((1+L2),w); [mag4,phase]=bode(L2,w); Plot |L| and |1+L1 figure(3), loglog(w,mag0(:),'black',w,mag3(:),'blue',w,mag4(:),'red') axis([0.01,10,0.01,100])

Check: Step disturbance

- $G = G_d = e^{-s}/s$
- SIMC PI-controller with $\tau_c=1$
 - K_c=0.5, $\tau_I = 8$

As expected from frequency analysis we get peak $e(t) \approx 2 > 1$ (so not OK)

• Would be OK with Gd = 0.5 e^{-s}/s which would give $\omega_d = 0.5 < \omega_c = 0.515$

Input usage

- $y = Gu + G_d d$
- To reject a disturbance d (and achieve y=0) we need for both feedforward and feedback

 $u = - G^{-1} G_d d$

- Assume $|d|=d_{max}$ and we must have $|u|<u_{max}$
- This means that we must require to avoid input saturation

 |G⁻¹|·|G_d| d_{max} < u_{max}
 or: |G| u_{max} > |G_d| d_{max} (at all frequencies where we need control)
- Normally I assume the variables)and model (G, Gd)) have been scaled such that e_{max}=1, d_{max}=1, u_{max}=1.
 - The requirement to avoid input saturation then becomes:

 $|G| > |G_d|$ (at all frequencies where we need control)

Controllability rules (approximate)

Rule 1. Need $\omega_c > \omega_d$ for disturbance rejection Rule 2. Need $\omega_c < 1/\theta$ for robustness Rule 3. Need $\omega_c > p$ for stabilization (g(s)=1/(s-p))Rule 4. Need $|g| \cdot |\Delta u_{max}| > |g_d| \cdot |\Delta d|$ to avoid constraints

- $\omega_d = \text{frequency where } |g_d(j\omega_d)| \Delta d / \Delta e_{\max} = 1$ $(|g_d(j\omega_d)| = 1 \text{ in scaled units})$
- $\omega_c = 1/\tau_c$ (bandwidth frequency; frequency where |L| crosses 1 from above) • Note: This τ_c is close to but not idential to the τ_c used in SIMC
- Θ = effective delay
- p = unstable pole
- $\Delta e_{max} = max$ allowed output error
- $\Delta u_{max} = max$ input change (because of input constraints)
- $\Delta d = \max$ expected disturbance
- Combined Rules 1 & 2: Must require $\omega_d \theta < 1$
- Rule 1 is for typical case where |g_d| is highest at low frequencies
 - The more exact rule 1 is: Need $|Sg_d| \Delta d < \Delta e_{max}$ at all frequencies. Note that $|S| \approx 1/|L|$ at low frequencies
- Rule 4: Applies at frequencies where control is needed (up to ω_d). In scaled units the rule simplifies to $|g| > |g_d|$.
- Scaled units:
 - Maximum allowed control error $\Delta e_{max} = 1$.
 - Maximum input change, $\Delta u_{max} = 1$
 - Maximum expected disturbance $\Delta d = 1$

This situation is OK according to rules 1-3:

Example: Controllability requirements for first-order process

- Assume process (g) has effective delay θ
- Assume maximum allowed output change (error) is Δy_{max}
- Consider response to disturbance, $g_d = k_d/(\tau_d s+1)$
- Time domain analysis
 - For step Δd : Output reaches $\Delta y = (k_d \theta / \tau_d) \Delta d$ at time θ (approximately; see figure)
 - If this is larger than acceptable (Δy_{max}) then we are in trouble
 - To be controllable, we must require $\frac{(k_d \theta / \tau_d) < \Delta e_{max} / \Delta d}{\Delta d}$

- Check with more general Rules in frequency domain:
 - The controllability requirement is (Rule 1&2): $\omega_d \theta < 1$
 - where $|g_d(j\omega_d)| = \Delta e_{max} / \Delta d$
 - Asymptote for g_d at $\omega > 1/\tau_d$: $|g_d(j\omega)| = k_d/\tau_d \omega$
 - So $\omega_d = k_d / (\tau_d \Delta e_{max} / \Delta d)$
 - And $\omega_d \theta < 1$ gives the expected controllability requirement: $(k_d \theta / \tau_d) < \Delta e_{max} / \Delta d$
- In addition we must avoid input saturation. We have: $\Delta y = g_d \Delta d + g \Delta u$
- So to get $\Delta y = 0$ without exceeding constraint Δu_{max} , we must require (Rule 4)

At all frequencies $\omega < \omega_d$ (where we need control): At steady state: Initial response (approximately): $\begin{array}{l} |\mathbf{g}(\mathbf{j}\mathbf{w}) \ _{\Delta}\mathbf{u}_{\max} \mid \geq |\mathbf{g}_{d}(\mathbf{j}\mathbf{w}) \ _{\Delta}\mathbf{d}| \\ |\mathbf{k} \ _{\Delta}\mathbf{u}_{\max} \mid \geq |\mathbf{k}_{d} \ _{\Delta}\mathbf{d}| \\ |\mathbf{k} \ / \tau \ _{\Delta}\mathbf{u}_{\max} \mid \geq | \ \mathbf{k}_{d} / \tau_{d} \ _{\Delta}\mathbf{d}| \end{array}$

Controllability analysis

- Use of controllability analysis
 - To avoid spending time on impossible control problem
 - To help design the process (e.g., size buffer tanks)
- Also useful for tuning.
 - $-\tau_{c}$ = SIMC tuning parameter
 - Must for acceptable controllability have:

$$\theta \le \tau_c \le \frac{1}{\omega_d}$$

• Note

- Tight control:
$$\tau_{c,min} = \theta$$

- "Smooth" control: $\tau_{c,max} = 1/\omega_d$

 ω_{d} is defined as frequency where $|g_{d}(j\omega_{d})|{=}\Delta e_{max}\!/{\Delta d}$

If process is not controllable: Need to change the design

• For example, dampen disturbance by adding buffer tank:

Figure 1. Two types of buffer tanks.

Scaled model

- In all problems below, we assume that models have beed scaled such that
 - $\Delta e_{max}=1$
 - $\Delta u_{max}=1$
 - $\Delta d = 1$
 - Define ω_d as frequency where $|G_d(j\omega_d)|=1$.

– For first-order disturbance model (scaled units): $\omega_d = k_d / \tau_d$

$$G(s) = \frac{2}{s+1}$$
 $G_d(s) = \frac{3}{5s+1}$

Figure 3: Magnitude of G and G_d .

$$G(s) = \frac{3}{5s+1}$$
 $G_d(s) = \frac{2}{s+1}$

Problem 4

$$G(s) = \frac{200}{(20s+1)(10s+1)(s+1)} \quad G_d(s) = \frac{4}{(3s+1)((s+1)^3)}$$

(a) Magnitude of G and Gd

$$G(s) = \frac{200}{(20s+1)(10s+1)(s+1)} \quad G_d(s) = \frac{4}{(3s+1)((s+1)^3)}$$

Problem 5

$$G(s) = \frac{2.5e^{-0.1s}(1 - 5s)}{(3s+1)((s+1)^3)} \quad G_d(s) = \frac{2}{s+1}$$

NOT OK (Rule 1/2) since effective process delay is at least 5.1 (both PI and PID), so $\omega_d \theta = 2*5.1=10.2 > 1$

PROBLEM 7, g = 500/((50*s+1)*(10*s+1))

CHECK CONTROLLABILITY ANALYSIS WITH SIMULATIONS

Problem 7: PI control not acceptable*

*As expected since need $\omega_c > \omega_d = 0.9$, but can only achieve $\omega_c < 1/\theta = 1/5 = 0.2$

Problem 7: PID control acceptable: e and u are within ±1

Exam.

- Tuesday 10 Dec. 2024. 9-13 (Physical)
- One sheet with own notes (both sides OK; printed OK)
- Simple calculator
- Note: Remember to state clearly all assumptions you make.
- General: Look through the whole exam before you start, read the questions carefully!

Q&A session: Thursday 05 Dec. 14-16, (H1)

(please send questions before by email: sigurd.skogestad@ntnu.no)