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Chapter  20

Model Predictive Control

In this chapter we consider model predictive control
(MPC), an important advanced control technique for

difficult multivariable control problems. The basic MPC

concept can be summarized as follows. Suppose that

we wish to control a multiple-input, multiple-output

process while satisfying inequality constraints on the

input and output variables. If a reasonably accurate

dynamic model of the process is available, model and

current measurements can be used to predict future

values of the outputs. Then the appropriate changes

in the input variables can be calculated based on 

both predictions and measurements. In essence, the

changes in the individual input variables are coordi-

nated after considering the input-output relationships

represented by the process model. In MPC applica-

tions, the output variables are also referred to as con-
trolled variables or CVs, while the input variables are

also called manipulated variables or MVs. Measured

disturbance variables are called DVs or feedforward
variables. These terms will be used interchangeably in

this chapter.

Model predictive control offers several important ad-

vantages: (1) the process model captures the dynamic

and static interactions between input, output, and dis-

turbance variables, (2) constraints on inputs and out-

puts are considered in a systematic manner, (3) the

control calculations can be coordinated with the calcu-

lation of optimum set points, and (4) accurate model

predictions can provide early warnings of potential

problems. Clearly, the success of MPC (or any other

model-based approach) depends on the accuracy of the

process model. Inaccurate predictions can make mat-

ters worse, instead of better.

First-generation MPC systems were developed in-

dependently in the 1970s by two pioneering industrial

research groups. Dynamic Matrix Control (DMC),

devised by Shell Oil (Cutler and Ramaker, 1980), 

and a related approach developed by ADERSA

(Richalet et al., 1978) have quite similar capabilities.

An adaptive MPC technique, Generalized Predictive

Control (GPC), developed by Clarke et al. (1987) has

also received considerable attention. Model predic-

tive control has had a major impact on industrial

practice. For example, an MPC survey by Qin and

Badgwell (2003) reported that there were over 4,500

applications worldwide by the end of 1999, primarily

in oil refineries and petrochemical plants. In these in-

dustries, MPC has become the method of choice for

difficult multivariable control problems that include

inequality constraints.

In view of its remarkable success, MPC has been a

popular subject for academic and industrial research.

Major extensions of the early MPC methodology have

been developed, and theoretical analysis has provided

insight into the strengths and weaknesses of MPC. In-

formative reviews of MPC theory and practice are

available in books (Camacho and Bordons, 2003; Ma-

ciejowski, 2002; Rossiter, 2003; Richalet and O’Dono-

van, 2009); tutorials (Hokanson and Gerstle, 1992;

Rawlings, 2000), and survey papers (Morari and Lee,

1999; Qin and Badgwell, 2003; Canney, 2003; Kano and

Ogawa, 2009).

20.1 OVERVIEW OF MODEL PREDICTIVE
CONTROL

The overall objectives of an MPC controller have been

summarized by Qin and Badgwell (2003):

1. Prevent violations of input and output constraints.

2. Drive some output variables to their optimal set

points, while maintaining other outputs within

specified ranges (see Section 20.4.2).

3. Prevent excessive movement of the input variables.

4. Control as many process variables as possible

when a sensor or actuator is not available.
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20.1 Overview of Model Predictive Control 415

A block diagram of a model predictive control sys-

tem is shown in Fig. 20.1. A process model is used to

predict the current values of the output variables. The

residuals, the differences between the actual and pre-

dicted outputs, serve as the feedback signal to a Predic-
tion block. The predictions are used in two types of

MPC calculations that are performed at each sampling

instant: set-point calculations and control calculations.

Inequality constraints on the input and output vari-

ables, such as upper and lower limits, can be included

in either type of calculation. Note that the MPC config-

uration is similar to both the internal model control

configuration in Chapter 11 and the Smith predictor

configuration of Chapter 15, because the model acts in

parallel with the process and the residual serves as a

feedback signal. However, the coordination of the con-

trol and set-point calculations is a unique feature of

MPC. Furthermore, MPC has had a much greater im-

pact on industrial practice than IMC or Smith predictor,

because it is more suitable for constrained MIMO con-

trol problems.

The set points for the control calculations, also called

targets, are calculated from an economic optimization

based on a steady-state model of the process, tradi-

tionally, a linear model. Typical optimization objec-

tives include maximizing a profit function, minimizing

a cost function, or maximizing a production rate. The

optimum values of set points change frequently due 

to varying process conditions, especially changes in

the inequality constraints (see Chapter 19). The 

constraint changes are due to variations in process

conditions, equipment, and instrumentation, as well 

as economic data such as prices and costs. In MPC 

the set points are typically calculated each time the 

control calculations are performed, as discussed in

Section 20.5.

The MPC calculations are based on current measure-

ments and predictions of the future values of the out-

puts. The objective of the MPC control calculations is

to determine a sequence of control moves (that is, ma-

nipulated input changes) so that the predicted response

moves to the set point in an optimal manner. The ac-

tual output y, predicted output and manipulated

input u for SISO control are shown in Fig. 20.2. At the

current sampling instant, denoted by k, the MPC strat-

egy calculates a set of M values of the input {u(k � i � 1),

yN,
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Figure 20.1 Block diagram for model predictive control.
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Figure 20.2 Basic concept for model predictive control.
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416 Chapter 20 Model Predictive Control

i � 1, 2, . . , M}. The set consists of the current input

u(k) and M � 1 future inputs. The input is held con-

stant after the M control moves. The inputs are calcu-

lated so that a set of P predicted outputs (k � i), i �
1, 2, . . . , P} reaches the set point in an optimal manner.

The control calculations are based on optimizing an ob-

jective function (cf. Section 20.4). The number of pre-

dictions P is referred to as the prediction horizon while

the number of control moves M is called the control
horizon.

A distinguishing feature of MPC is its receding
horizon approach. Although a sequence of M control

moves is calculated at each sampling instant, only the

first move is actually implemented. Then a new 

sequence is calculated at the next sampling instant,

after new measurements become available; again

only the first input move is implemented. This proce-

dure is repeated at each sampling instant. But why is

an M-step control strategy calculated if only the first

step is implemented? We will answer this question in

Section 20.4.

20.2 PREDICTIONS FOR SISO MODELS

The MPC predictions are made using a dynamic

model, typically a linear empirical model such as 

a multivariable version of the step response or 

difference equation models that were introduced in

Chapter 6. Alternatively, transfer function or state-

space models (Section 5.5) can be employed. For very

nonlinear processes, it can be advantageous to pre-

dict future output values using a nonlinear dynamic

model. Both physical models and empirical models,

such as neural networks (Section 6.3), have been used

in nonlinear MPC (Badgwell and Qin, 2001; White,

2008). Step-response models offer the advantage that

they can represent stable processes with unusual dy-

namic behavior that cannot be accurately described

by simple transfer function models (cf. Example 6.6).

Their main disadvantage is the large number of

model parameters. Although step-response models

are not suitable for unstable processes, they can be

modified to represent integrating processes, as shown

in Section 20.2.2.

Next, we demonstrate how step-response models can

be used to predict future outputs. Similar predictions

can be made using other types of linear models such as

transfer function or state-space models.

The step-response model of a stable, single-input,

single-output process can be written as

(20-1)+ SN u(k - N + 1)

y(k + 1) = y0 + a
N - 1

i = 1

 Si�u(k - i + 1)

yN

where y(k � 1) is the output variable at the (k � 1)-

sampling instant, and �u(k � i � 1) denotes the change

in the manipulated input from one sampling instant

to the next, �u(k � i � 1) � u(k � i � 1) � u(k � i).

Both y and u are deviation variables. The model 

parameters are the N step-response coefficients, S1 to

SN. Typically, N is selected so that 30 � N � 120. The

initial value, y(0), is denoted by y0. For simplicity, we

will assume that y0 � 0.

In Section 6.5 we showed that step-response models

can be obtained empirically from experimental data.

Example 20.1 illustrates that they can also be derived

analytically from transfer function models.

EXAMPLE 20.1

Consider a first-order-plus-time-delay model:

(20-2)

(a) Derive the equivalent step-response model by consider-

ing the analytical solution to a unit step change in the

input.

(b) Calculate the step-response coefficients, {Si}, for the fol-

lowing parameter values: K � 5, � � 15 min, � � 3 min,

and a sampling period of �t � 1 min. Also, calculate and

plot the response y(k) for 0 � k � 80 after a step change

in u from 0 to 3 occurs at t � 2 min.

SOLUTION

(a) The step response for a first-order model without a time

delay (� � 0) was derived in Chapter 4

(4-18)

where M is the magnitude of the step change. The corre-

sponding response for the model with a time delay is

(20-3)

The sampling instants are denoted by t � i�t where �t is

the sampling period and i � 1, 2, . . . .  Substituting t � i�t
into (20-3) gives the response for 0 � i � 80:

(20-4)

The number of step-response coefficients, N in (20-1), is

specified to be N � 80 so that N�t is slightly larger than

the process settling time of approximately 5� � �. As in-

dicated in Section 6.5, the ith step-response coefficient is

the value of the unit step response at the ith sampling in-

stant. Thus, the step-response coefficients can be deter-

mined from (20-4) after setting M � 1:

(20-5)

where i = 1, 2, . . . , 80

Si = 0

Si = K(1 - e-(i�t-�)/�) for  i�t … �
for  i�t 7 �

f

where i = 1, 2, . . . , 80

y(i¢t) = 0

y(i¢t) = KM(1 - e-(i�t-�)/�)

for i�t … �
for �t 7 �

f

y(t) = 0

y(t) = KM (1 - e-(t-�)/�) for t … �
for t 7 �

y(t) = KM(1 - e-t/�)

Y(s)

U(s)
 = Ke-�s

�s + 1
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(b) Substituting numerical values into (20-5) gives the step-

response coefficients in Table 20.1. The step response

y(k) in Fig. 20.3 can be calculated either from (20-1) 

and (20-5), or from (20-4). For � � 2 min, S1 � S2 � 0,

and the step response is zero until t � 2 min. The new

Table 20.1 Step-Response Coefficients for Example 20.1

Sampling Sampling Sampling

Instant Si Instant Si Instant Si

1 0 28 4.06 55 4.84

2 0 29 4.12 56 4.85

3 0 30 4.17 57 4.86

4 0.32 31 4.23 58 4.87

5 0.62 32 4.28 59 4.88

6 0.91 33 4.32 60 4.89

7 1.17 34 4.37 61 4.90

8 1.42 35 4.41 62 4.90

9 1.65 36 4.45 63 4.91

10 1.86 37 4.48 64 4.91

11 2.07 38 4.52 65 4.92

12 2.26 39 4.55 66 4.93

13 2.43 40 4.58 67 4.93

14 2.60 41 4.60 68 4.93

15 2.75 42 4.63 69 4.94

16 2.90 43 4.65 70 4.94

17 3.03 44 4.68 71 4.95

18 3.16 45 4.70 72 4.95

19 3.28 46 4.72 73 4.95

20 3.39 47 4.73 74 4.96

21 3.49 48 4.75 75 4.96

22 3.59 49 4.77 76 4.96

23 3.68 50 4.78 77 4.96

24 3.77 51 4.80 78 4.97

25 3.85 52 4.81 79 4.97

26 3.92 53 4.82 80 4.97

27 3.99 54 4.83
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Figure 20.3 Step response for Example 20.1.
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steady-state value is y � 15 because the steady-state gain

in (20-2) is K � 5 and the magnitude of the step change is 

M � 3. Because �t � 1 min and the step change occurs 

at t � 3 min, �u(k) � M � 3 for k � 3 and �u(k) � 0 

for all other values of k. Recall that �u(k) is defined as

For this example, the response y(k) could be calcu-

lated analytically from (20-4) because a transfer function

model was assumed. However, in many MPC applica-

tions, the transfer function model is not known, and thus

the response must be calculated from the step-response

model in (20-1).

Model predictive control is based on predictions of

future outputs over a prediction horizon, P. We now

consider the calculation of these predictions. Let k denote

the current sampling instant and (k � 1) denote the

prediction of that is made at time k. If y0 � 0,

this one-step-ahead prediction can be obtained from

Eq. (20-1) by replacing y(k � 1) with (k � 1):

(20-6)

Equation 20-6 can be expanded as

Effect of current Effect of past control actions (20-7)

control action

The first term on the right-hand side indicates the effect

of the current manipulated input u(k) because �u(k) �
u(k) � u(k � 1). The second term represents the effects

of past inputs, {u(i), i � k}. An analogous expression

for a two-step-ahead prediction can be derived in a

similar manner. Substitute k � k� � 1 into Eq. 20-6:

(20-8)

Because Eq. 20-8 is valid for all positive values of k�,
without loss of generality, we can replace k� with k and

then expand the right-hand side to identify the contri-

butions relative to the current sampling instant, k:

Effect of future Effect of current
control action control action

(20-9)

Effect of past control actions

+ a
N-1

i =3

 Si�u(k - i + 2) + SN u(k - N + 2)

yN(k + 2) = S1�u(k + 1) + S2�u(k)

yN (k¿ + 2) = a
N - 1

i = 1

 Si�u(k¿ - i + 2) + SN u(k¿ - N + 2)

S1�u(k) +  a
N-1

i =2
 Si�u(k  - i + 1) +  SN u(k  -  N +  1)

yN (k + 1) =

yN(k + 1) =a
N - 1

i = 1

 Si�u(k - i + 1) + SN u(k - N + 1)

yN

y(k + 1)

yN

¢u(k) !  u(k) -  u(k -1).
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Figure 20.4 Set-point responses for Example 20.3 and

different values of J.

418 Chapter 20 Model Predictive Control

An analogous derivation provides an expression for

a j-step-ahead prediction where j is an arbitrary positive

integer:

Effect of current and
future control actions

(20-10)

Effect of past control actions

The second and third terms on the right-hand side of

Eq. 20-10 represent the predicted response when

there are no current or future control actions, that is,

the predicted response when u(k � i) � u(k � 1) for 

i 	 0, or equivalently, �u(k � i) � 0 for i 	 0.

Because this term accounts for past control actions, it

is referred to as the predicted unforced response and

is denoted by the symbol, (k � j). Thus, we define

(k � j) as 

(20-11)

and write Eq. 20-10 as

(20-12)

Examples 20.2 and 20.3 demonstrate that Eq. 20-12 can

be used to derive a simple predictive control law based

on a single prediction.

EXAMPLE 20.2

Derive a predictive control law that is based on the following

concept. A single control move, �u(k), is calculated so that

the J-step-ahead prediction is equal to the set point, that is, 

(k � J) � ysp where integer J is a tuning parameter. This

sampling instant, , is referred to as a coincidence point.
Assume that u is held constant after the single control

move, so that �u(k � i) � 0 for i � 0.

SOLUTION

In the proposed predictive control strategy, only a single predic-

tion for J steps ahead is considered. Thus, we let j � J in 

Eq. 20-12. Similarly, because we are only interested in calculat-

ing the current control move, �u(k), the future control moves 

k + J

yN

yN (k + j) = a
j

i = 1

 Si�u(k + j - i) + yNo (k + j)

yN o(k + j) !  a
N -1

i = j + 1

 Si�u(k + j - i) + SN u(k + j - N)

yN o
yN o

+ a
N -1

i = j + 1

 Si�u(k + j - i) + SN u(k + j - N)

yN(k + j) = a

j

i = 1

 Si�u(k + j - i)

in Eq. 20-12 are set equal to zero: �u(k � J � i) � 0 for i � 1,

2, . . . , J � 1. Thus, (20-12) reduces to

(20-13)

Setting (k � J) � ysp and rearranging gives the desired

predictive controller:

(20-14)

The predicted unforced response (k � J) can be calculated

from Eq. 20-11 with j � J.

The control law in (20-14) is based on a single prediction

that is made for J steps in the future. Note that the control

law can be interpreted as the inverse of the predictive model

in (20-13).

EXAMPLE 20.3

Apply the predictive control law of Example 20.2 to a fifth-

order process:

(20-15)

Evaluate the effect of tuning parameter J on the set-point 

responses for values of J � 3, 4, 6, and 8 and �t � 5 min.

SOLUTION

The y and u responses for a unit set-point change at t � 0

are shown in Figs. 20.4 and 20.5, respectively. As J increases,

Y(s)

U(s)
 = 1

(5s + 1)5

yN o

�u(k) = 
ysp - yN o (k + J)

SJ

yN

yN(k + J) = SJ�u(k) + yN o(k + J)
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the y responses become more sluggish while the u responses

become smoother. These trends occur because larger val-

ues of J allow the predictive controller more time before

the J-step ahead prediction (k � J) must equal the set

point. Consequently, less strenuous control action is re-

quired. The Jth step-response coefficient SJ increases mo-

notonically as J increases. Consequently, the input moves

calculated from (20-14) tend to become smaller as SJ in-

creases. (The u responses for J � 4 and 8 are omitted from

Fig. 20.5.)

The previous two examples have considered a sim-

ple predictive controller based on single prediction

made J steps ahead. Now, we consider the more typi-

cal situation in which the MPC calculations are based

on multiple predictions rather than on a single predic-

tion. The notation is greatly simplified if vector-

matrix notation is employed. Consequently, we define

a vector of predicted responses for the next P sample

instants as

(20-16)

where col denotes a column vector. Similarly, a vector

of predicted unforced responses from Eq. 20-11 is de-

fined as

(20-17)

YN o(k + 1) ! col [yN o(k + 1), yNo(k + 2), . . . , yNo(k + P)]

Y 
N(k + 1) !  col [yN (k + 1), yN (k + 2), . . . , yN (k + P)]

yN

Define �U(k) to be a vector of control actions for the

next M sampling instants:

(20-18)

The control horizon M and prediction horizon P are

key design parameters, as discussed in Section 20.6. In

general, M � P and P � N � M.

The MPC control calculations are based on calculat-

ing �U(k) so that the predicted outputs move optimally

to the new set points. For the control calculations, the

model predictions in Eq. 20-12 are conveniently written

in vector-matrix notation as

(20-19)

where S is the P 
 M dynamic matrix:

(20-20)

Equations 20-19 and 20-20 can be derived from (20-12)

and (20-16) to (20-18).

20.2.1 Output Feedback and Bias Correction

The predictions in Eqs. 20-12 and 20-19 do not make

use of the latest measurement y(k). Consequently, the

cumulative effects of model inaccuracy and unmea-

sured disturbances can lead to inaccurate predictions.

However, prediction accuracy can be improved by uti-

lizing the latest measurement in the predictions. This

general strategy is referred to as output feedback (Qin

and Badgwell, 2003). A typical approach is to add a

bias correction, b(k � j), to the prediction. The corrected
prediction, (k � j), is defined as

(20-21)

We will refer to (k � j) as the uncorrected prediction.

In practice, the bias correction is often specified to be

the difference between the latest measurement y(k)

and the corresponding predicted value, (k):

(20-22)

The difference, y(k) � (k), is also referred to as a

residual or an estimated disturbance. The block diagram

for MPC in Fig. 20.1 includes the bias correction.

y
'

b(k + j) = y(k) - yN (k)

yN

yN

y
'

(k + j) ! yN(k + j) + b(k + j)

y
'

S !  F
S1

S2

o

SM
SM+1

o

SP

0

S1

o

SM-1

SM
o

SP-1

p

0

∞

p

p

∞

p

0

o

0
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o

SP-M+1

V

YN(k + 1) = S�U(k) + YN o (k + 1)

�U(k) ! col [�u(k), �u(k + 1), . . . , �u(k + M - 1)]
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Figure 20.5 Input responses for Fig. 20.4.
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In (20-22) (k) is a one-step ahead prediction made

at the previous sampling instant, . Using Eq. 20-22

is equivalent to assuming that a process disturbance is

added to the output and is constant for j � 1, 2, . . . , P.

Furthermore, the assumed value of the additive distur-

bance is the residual, y(k) � (k).

Substituting Eq. 20-22 into 20-21 gives

(20-23)

In a similar fashion, adding the bias correction to the

right side of Eq. 20-19 provides a vector of corrected

predictions,

(20-24)

where 1 is a P-dimensional column vector with each

element having a value of one. Thus the same correc-

tion is made for all P predictions. Vector (k � 1) is

defined as

(20-25)

Incorporating output feedback as a bias correction

has been widely applied, but it can result in excessively

sluggish responses for certain classes of disturbances.

Consequently, other types of output feedback and dis-

turbance estimation methods have been proposed

(Maciejowski, 2002; Qin and Badgwell, 2003).

EXAMPLE 20.4

The benefits of using corrected predictions will be illustrated by

a simple example, the first-order-plus-time-delay model:

(20-26)

Assume that the disturbance transfer function is identical 

to the process transfer function, Gd(s) � Gp(s). A unit change

in u occurs at time t � 2 min, and a step disturbance, 

d � 0.15, occurs at t � 8 min. The sampling period is 

�t � 1 min.

(a) Compare the process response y(k) with the predictions

that were made 15 steps earlier based on a step-response

model with N � 80. Consider both the corrected predic-

tion (k) and the uncorrected prediction  (k) over a

time period, .

(b) Repeat (a) for the situation where the step-response co-

efficients are calculated using an incorrect model:

(20-27)
Y(s)

U(s)
 = 4e-2s

20s + 1

0 … k … 90

yNy
'

Y(s)

U(s)
 = 5e-2s

15s + 1

Y
'

(k + 1) ! col [y
'

(k + 1), y
'

(k + 2), . . . , y
'

(k + P)]

Y
'

Y
'

(k + 1) = S�U(k) + YN o(k + 1) + [y(k) - yNk]1

y
'

(k + j) ! yN (k + j) + [y(k) - yN (k)]

y
'

k - 1

yN SOLUTION

The output response to the step changes in u and d can be

derived from (20-26) using the analytical techniques devel-

oped in Appendix A and Chapter 3. Because � � 2 min and

the step in u begins at t � 2 min, y(t) first starts to respond

at t � 5 min. The disturbance at t � 8 min begins to affect y
at t � 11 min. Thus, the response can be written as

(20-28)

The 15-step-ahead prediction, (k � 15), can be obtained

using Eq. 20-12 with and . The corrected pre-

diction, ( ), can be calculated from Eqs. 20-21 and 

20-22 with . But in order to compare actual and pre-

dicted responses, it is more convenient to write these equations

in an equivalent form:

(20-29)

(20-30)

(a) The actual and predicted responses are compared in 

Fig. 20.6. For convenience, the plots are shown as lines

rather than as discrete points. After the step change in u
at t � 2 min (or equivalently, at k � 4), the 15-step-ahead

predictions are identical to the actual response until the

step disturbance begins to affect y(k) starting at k � 11.

For k � 10, (k) � y(k) because (k) does not include 

the effect of the unknown disturbance. Note that (k) �
(k) for 10 � k � 25 because b(k) � 0 during this period.

For k � 25, b(k) � 0 and (k) converges to y(k). Thus,

the corrected prediction (k) is more accurate than the

uncorrected prediction, (k).

(b) Figure 20.7 compares the actual and predicted re-

sponses for the case of the plant-model mismatch in

yN
y
'

y
'

yN
y
'

yNyN

 b(k) = y(k - 15) - yN (k - 15)

  y
'

(k) ! yN (k) + b(k)

j = 15

k + 15yN
N = 80j = 15

yN

y(t) = 0

y(t) = 5(1)(1 - e-(t-4)/15)

y(t) = 5(1)(1 - e-(t-4)/15)  
            + 5(0.15)(1 - e-(t-10)/15) 

for t … 4 min

for 4 6 t … 10 min

for t 7 10 min

y

y
y�

y
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6

Figure 20.6 Comparison of actual (y), predicted ( ), and

corrected ( ) responses when the model is perfect.y
'

yN



Eqs. 20-26 and 20-27. The responses in Fig. 20.7 are sim-

ilar to those in Fig. 20.6, but there are a few significant

differences. Both of the predicted responses in Fig. 20.7

differ from the actual response for t � 4, as a result of

the model inaccuracy. Figure 20.7 demonstrates that the

corrected predictions are much more accurate than the

uncorrected predictions even when a significant plant-

model mismatch occurs. This improvement occurs be-

cause new information is used as soon as it becomes

available.

20.2.2 Extensions of the Basic MPC Model
Formulation

We will now consider several extensions of the basic

MPC problem formulation that are important for prac-

tical applications.

Integrating Processes

The standard step-response model in Eq. 20-6 is not

appropriate for an integrating process because its

step response is unbounded. However, because the

output rate of change, �y(k) � y(k � 1) � y(k), is

bounded, a simple modification eliminates this prob-

lem. Replacing (k � 1) in Eq. 20-6 by � (k � 1 �
(k � 1) � (k) provides an appropriate step-response

model for integrating processes (Hokanson and Gerstle,

1992):

�

(20-31)

(k + 1) = a
N -1

i = 1

 Si�u(k - i + 1) + SN u(k - N + 1)y N

yNyN
yNyN

or, equivalently,

(20-32)

Although the bias correction approach of Eq. 20-22 is

not valid for integrating processes, several modifica-

tions are available (Qin and Badgwell, 2003).

Known Disturbances

If a disturbance variable is known or can be measured,

it can be included in the step-response model. Let 

d denote a measured disturbance and its step-

response coefficients. Then the standard step-response

model in Eq. 20-6 can be modified by adding a distur-

bance term,

(20-33)

where Nd is the number of step-response coefficients

for the disturbance variable (in general, Nd � N). This

same type of modification can be made to other step-

response models such as Eq. 20-19 or 20-24. However,

predictions made more than one step ahead require an

assumption about future disturbances. If no other in-

formation is available, the usual assumption is that the

future disturbances will be equal to the current distur-

bance: d(k � j) � d(k) for j � 1, 2, . . . , P. However, if

a disturbance model is available, the prediction accu-

racy can improve.

20.3 PREDICTIONS FOR MIMO MODELS

The previous analysis for SISO systems can be general-

ized to MIMO systems by using the Principle of Super-

position. For simplicity, we first consider a process

control problem with two outputs, y1 and y2, and two

inputs, u1 and u2. The predictive model consists of two

equations and four individual step-response models,

one for each input-output pair:

(20-34)

+  a
N -1

i = 1

 S12,i�u2(k - i + 1) + S12,N u2(k - N + 1)

yN1(k + 1) = a
N -1

i = 1

 S11,i�u1(k - i + 1) + S11,N u1(k - N + 1)

+ a
Nd-1

i = 1

 Si
d�d(k - i + 1) + Sd

N d(k - Nd + 1)

yN (k + 1) = a
N -1

i = 1

 Si�u(k - i + 1) + SN u(k - N + 1)

{Si
d}

y N(k + 1) = yN (k) + a
N -1

i = 1

 Si�u(k - i + 1) + SN u(k - N + 1)

y

y
y�

y

0 10 30 50 70 9020 40

Time (min)

60 80 100
0

1

2

3

4

5

6

Figure 20.7 Comparison of actual and predicted responses

for plant-model mismatch.

20.3 Predictions for MIMO Models 421

c20ModelPredictiveControl.qxd  11/12/10  4:49 PM  Page 421



422 Chapter 20 Model Predictive Control

(20-35)

where S12,i denotes the ith step-response coefficient for

the model that relates y1 and u2. The other step-response

coefficients are defined in an analogous manner. This

MIMO model is a straightforward generalization of the

SISO model in Eq. 20-6. In general, a different model

horizon can be specified for each input-output pair.

For example, the upper limits for the summations in

Eq. 20-35 can be specified as N21 and N22, if y2 has very

different settling times for changes in u1 and u2.

Next, the analysis is generalized to MIMO models

with arbitrary numbers of inputs and outputs. Sup-

pose that there are r inputs and m outputs. In a typical

MPC application, r � 20 and m � 40, but applications

with much larger numbers of inputs and outputs

have also been reported (Qin and Badgwell, 2003;

Canney, 2003). It is useful to display the individual

step-response models graphically as shown in Fig. 20.8

(Hokanson and Gerstle, 1992), where the output vari-

ables (or CVs) are arranged as the columns and the

+ a
N -1

i = 1

 S22,i�u2(k - i + 1) + S22,N u2(k - N + 1)

yN2(k + 1) = a
N -1

i = 1

 S21,i�u1(k - i + 1) + S21,N u1(k - N + 1)
inputs and disturbances (the MVs and DVs) are arranged

as the rows.

It is convenient to express MIMO step-response

models in vector-matrix notation. Let the output vector

be y � [ y1, y2, . . . , ym]T and the input vector be u �
[u1, u2, . . . , ur]

T where superscript T denotes the trans-

pose of a vector of matrix. In analogy with the deriva-

tion of Eq. 20-24 for SISO systems, the MIMO model

for the corrected predictions can be expressed in dy-

namic matrix form:

(20-36)

where (k � 1) is the mP-dimensional vector of cor-

rected predictions over the prediction horizon P,

(20-37)

o(k � 1) is the mP-dimensional vector of predicted

unforced responses,

(20-38)

YN o(k + 1) ! col [yNo(k + 1), yNo(k + 2), . . . , yNo(k + P)]

YN

Y�(k + 1) ! col [y�(k + 1), y�(k + 2), . . . , y�(k + P)]

Y�

Y�(k + 1) = S�U(k) + YN o(k + 1) + [y(k) - yN(k)]

0

1 Overhead composition 2 Delta P 3 Lower T 4 Bottoms composition

0.4
0.008
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0.4 5.0 1.5

0.0030.12 3.0 1.5
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Kp = 0.300 Kp = 0.0072 Kp = 3.90 Kp = –1.57
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flow

2 Reflux
flow

1 Heat
input

Figure 20.8 Individual step-response models for a distillation column with three inputs and four outputs. Each

model represents the step response for 120 minutes (Hokanson and Gerstle, 1992).
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and U(k) is the rM-dimensional vector of the next M
control moves,

(20-39)

The mP 
 m matrix (in Eq. 20-36) is defined as

(20-40)

P times

where Im denotes the m 
 m identity matrix.

The dynamic matrix S is defined as

(20-41)

where Si is the m 
 r matrix of step-response coeffi-

cients for the ith time step.

(20-42)

Note that the dynamic matrix in Eq. 20-41 for MIMO

systems has the same structure as the one for SISO

systems in Eq. 20-20.

The dimensions of the vectors and matrices in

Eq. 20-36 are as follows. Both (k � 1) and o(k � 1)

are mP-dimensional vectors where m is the number of

outputs and P is the prediction horizon. Also, �U(k)

is an rM-dimensional vector where r is the number of

manipulated inputs and M is the control horizon.

Consequently, the dimensions of step-response matrix

S are mP 
 rM. The MIMO model in (20-36) through

(20-42) is the MIMO generalization of the SISO

model in (20-24). It is also possible to write MIMO

models in an alternative form, a generalization of Eqs.

20-34 and 20-35. An advantage of this alternative for-

mulation is that the new dynamic matrix is partitioned

into the individual SISO models, a convenient form

for real-time predictions.

For stable models, the predicted unforced response,
o(k � 1) in Eq. 20-38, can be calculated from a recur-

sive relation (Lundström et al., 1995) that is in the form

of a discrete-time version of a state-space model:

(20-43)

where:

(20-44)

YN o(k) = col [yNo(k), yNo(k + 1), . . . , yNo(k + P - 1)]

YN
o
(k + 1) = M YN

o
(k) + S*�u(k)

YN

Y
'

Y
'

Si ! ≥
S11,i
S21,i

o

Sm1,i

S12,i
Á

o

Á

Á

Á

o

Á

S1r,i
S2r,i

o

Smr,i

¥

S ! F
S1

S2

o

SM
SM+1

o

SP

0
S1

o

SM-1

SM
o

SP-1

Á

0
∞

Á

Á

∞

Á

0
o

0
S1

S2

o

SP-M+1

V

S ! [Im Im Á Im]T

�U(k) ! col [�u(k), �u(k + 1), . . . , �u(k + M - 1)]

¢

(20-45)

(20-46)

where M is an mP 
 mP matrix and S* is an mP 
 r
matrix. The MIMO models in Eqs. 20-36 through 20-46

can be extended to include measured disturbances and

integrating variables, in analogy to the SISO case in the

previous section.

Most of the current MPC research is based on state-

space models, because they provide an important theo-

retical advantage, namely, a unified framework for

both linear and nonlinear control problems. State-

space models are also more convenient for theoretical

analysis and facilitate a wider range of output feedback

strategies (Rawlings, 2000, Maciejowski, 2002; Qin and

Badgwell, 2003).

20.4 MODEL PREDICTIVE CONTROL
CALCULATIONS

The flowchart in Fig. 20.9 provides an overview of the

MPC calculations. The seven steps are shown in the

order they are performed at each control execution

time. For simplicity, we assume that the control exe-

cution times coincide with the measurement sampling

instants.

In MPC applications, the calculated MV moves are

usually implemented as set points for regulatory con-

trol loops at the Distributed Control System (DCS)

level, such as flow control loops. If a DCS control loop

has been disabled or placed in manual, the MV is no

longer available for control. In this situation, the con-

trol degrees of freedom are reduced by one. Even

though an MV is unavailable for control, it can serve as

a disturbance variable if it is measured.

In Step 1 of the MPC calculations, new process data

are acquired via the regulatory control system (DCS)

that is interfaced to the process. Then new output pre-

dictions are calculated in Step 2 using the process

model and the new data (see Eqs. 20-21 and 20-22, for

example).

Before each control execution, it is necessary to de-

termine which outputs (CVs), inputs (MVs), and dis-

turbance variables (DVs) are currently available for

the MPC calculations. This Step 3 activity is referred to

S* ! E S1

S2

o

SP-1

SP

U

M ! E0
0
o

0
0

Im

0
o

0
0

0
Im

o

Á

Á

Á

∞

∞

0
0

0
0
0

Im

Im

U
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424 Chapter 20 Model Predictive Control

as determining the current control structure. The vari-

ables available for the control calculations can change

from one control execution time to the next, for a vari-

ety of reasons. For example, a sensor may not be avail-

able due to routine maintenance or recalibration.

Output variables are often classified as being either

critical or noncritical. If the sensor for a critical output

is not available, the MPC calculations can be stopped

immediately or after a specified number of control exe-

cution steps. For a noncritical output, missing measure-

ments could be replaced by model predictions or the

output could be removed from the control structure

(Qin and Badgwell, 2003).

If the control structure changes from one control ex-

ecution time to another, the subsequent control calcu-

lations can become ill-conditioned. It is important to

identify and correct these situations before executing

the MPC calculations in Steps 5 and 6. Ill-conditioning

occurs when the available MVs have very similar ef-

fects on two or more outputs. For example, consider a

high-purity distillation column where the product com-

positions are controlled by manipulating the reflux flow

rate and the reboiler heat duty. Ill-conditioning occurs

because each input has approximately the same effect

on both outputs, but in different directions. As a result,

the process gain matrix is nearly singular, and large

input movements are required to control these outputs

independently. Consequently, it is important to check

for ill-conditioning (Step 4) by calculating the condition
number of the process gain matrix for the current con-

trol structure (see Chapter 16). If ill-conditioning is de-

tected, effective strategies are available for its removal

(Maciejowski, 2002; Qin and Badgwell, 2003).

In MPC applications, the major benefits result from

determining the optimal operating conditions (set-point

calculations) and from moving the process to these set

points in an optimal manner based on the control calcu-

lations. Both types of calculations optimize a specified

objective function while satisfying inequality constraints,

such as upper and lower limits on the inputs or outputs.

Set-point calculations are the subject of Section 20.5, while

control calculations are considered in the next section.

The final step, Step 7 of Fig. 20.9, is to implement the

calculated control actions, usually as set points to regu-

latory PID control loops at the DCS level.

20.4.1 Unconstrained MPC

This section considers the control calculations of Step 6

for the special case in which inequality constraints are

not included in the problem formulation. In Section

20.4.2, the analysis is extended to the more typical situ-

ation where there are inequality constraints on u, �u,

and y.
As noted earlier, the MPC control calculations are

based on both current measurements and model pre-

dictions. The control objective is to calculate a set of

control moves (MV changes) that make the corrected

predictions as close to a reference trajectory as possi-

ble. Thus, an optimization approach is employed. For

unconstrained linear control problems, an analytical

expression for the MPC control law is available.

Reference Trajectory

In MPC applications, a reference trajectory can be used

to make a gradual transition to the desired set point.

The reference trajectory yr can be specified in several

different ways (Maciejowski, 2002; Qin and Badgwell,

2003; Rossiter, 2003). We briefly introduce several typi-

cal approaches.

Let the reference trajectory over the prediction hori-

zon P be denoted as

(20-47)

where Yr is an mP-dimensional vector. A reasonable

approach is to specify the reference trajectory to be the

filtered set point,

Yr (k + 1) !  col [yr(k + 1), yr(k + 2), . . . , yr (k + P)]

5.
Calculate set points/targets

(steady-state optimization)

6.
Perform control calculations

(dynamic optimization)

7.
Send MVs to the process

4.
Check for ill-conditioning

3.
Determine control structure

2.
Update model predictions

(output feedback)

1.
Acquire new data

(CV, MV, and DV values)

Figure 20.9 Flow chart for MPC calculations (modified from

Qin and Badgwell (2003)).
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(20-48)

where yi,r is the ith element of yr, ysp denotes the set

point, and �i is a filter constant, 0 � �i � 1. For j � 1,

Eq. 20-48 reduces to the set-point filtering expression

for PID controllers that was considered in Chapter 11.

It is also equivalent to the exponential filter introduced

in Chapter 17. Note that yr � ysp for the limiting case of

�i � 0. An alternative approach is to specify the refer-

ence trajectory for the ith output as an exponential tra-

jectory from the current measurement yi(k) to the set

point, yi,sp(k):

(20-49)

In some commercial MPC products, the desired ref-

erence trajectory for each output is specified indirectly

by a performance ratio for the output. The performance

ratio is defined to be the ratio of the desired closed-

loop settling time to the open-loop settling time. Thus,

small values of the performance ratios correspond to

small values of �i in (20-48) or (20-49).

Model Predictive Control Law

The control calculations are based on minimizing the

predicted deviations from the reference trajectory. Let

k denote the current sampling instant. The predicted
error vector, (k � 1), is defined as

(20-50)

where (k � 1) was defined in (20-37). Similarly, Y
'

EN (k + 1) ! Yr(k + 1) - Y
'

(k + 1)

EN

for i = 1, 2, . . . , m and j = 1, 2, . . . , P

yi,r(k + j) = (�i) 
jyi(k) + [1 - (�i) 

j] yi,sp(k)

for i = 1, 2, . . . , m and j = 1, 2, . . . , P

yi,r (k + j) = (�i) 
jyi,r (k) + [1 - (�i) 

j] yi,sp(k) the objective function is based on minimizing some (or

all) of three types of deviations or errors (Qin and

Badgwell, 2003):

1. The predicted errors over the predicted horizon,

(k � 1)

2. The next M control moves, �U(k)

3. The deviations of u(k � i) from its desired steady-

state value usp over the control horizon

For MPC based on linear process models, both lin-

ear and quadratic objective functions can be used

(Maciejowski, 2002; Qin and Badgwell, 2003). To

demonstrate the MPC control calculations, consider a

quadratic objective function J based on the first two

types of deviations:

(20-54)

where Q is a positive-definite weighting matrix and R is

a positive semi-definite matrix. Both are usually diagonal

matrices with positive diagonal elements. The weighting

matrices are used to weight the most important elements

of (k � 1) or �U(k), as described in Section 20.6. If

diagonal weighting matrices are specified, these elements

are weighted individually.

The MPC control law that minimizes the objective

function in Eq. (20-54) can be calculated analytically.

(20-55)

This control law can be written in a more compact form,

(20-56)

where the controller gain matrix Kc is defined to be

(20-57)

Note that Kc is an rM � mP matrix that can be evalu-

ated off-line rather than on-line provided that the dy-

namic matrix S and weighting matrices, Q and R, are

constant.

The MPC control law in Eq. 20-56 can be interpreted

as a multivariable, proportional control law based on

the predicted error rather than the conventional control

error (set point–measurement). The control law utilizes

the latest measurement y(k) because it appears in the

expressions for the corrected prediction (k), and thus

also in the predicted unforced error, o( ). Fur-

thermore, the MPC control law in Eq. 20-56 implicitly

contains integral control action because u tends to

change until the unforced error o becomes zero. Thus,

offset is eliminated for set-point changes or sustained

disturbances.

Although the MPC control law calculates a set of M
input moves, �U(k), only the first control move,

EN

k + 1E
'

y
'

Kc ! (ST Q S + R)-1 ST Q

�U(k) = KcEN
o
(k + 1)

�U(k) = (STQ S + R)-1STQ EN o(k + 1)

EN

 min
¢U(k)

 J = EN (k + 1)TQEN(k + 1) + �U(k)TR�U(k)

E
'
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o(k � 1) denotes the predicted unforced error vector,

(20-51)

where the corrected prediction for the unforced case, 
o(k + 1), is defined as

(20-52)

Thus, o(k � 1) represents the predicted deviations

from the reference trajectory when no further control

action is taken, that is, the predicted deviations when

�u(k � j) � 0 for j � 0, 1, . . . , M � 1. Note that (k � 1)

and o(k � 1) are mP-dimensional vectors.

The general objective of the MPC control calcula-

tions is to determine �U(k), the control moves for the

next M time intervals,

(20-53)

The rM-dimensional vector �U(k) is calculated so that

an objective function (also called a performance index)

is minimized. Typically, either a linear or a quadratic

objective function is employed. For unconstrained MPC,

�U(k) = col [�u(k), �u(k + 1), . . . , �u(k + M - 1)

EN
EN

EN

Y
' o(k + 1) !  YN o(k + 1) + I[y(k) - yN (k)]

Y
'

EN o
(k + 1) ! Yr(k + 1) - Y

' o(k + 1)

EN
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�u(k), is actually implemented. Then at the next

sampling instant, new data are acquired and a new set

of control moves is calculated. Once again, only the

first control move is implemented. These activities are

repeated at each sampling instant, and the strategy is

referred to as a receding horizon approach. The first

control move, �u(k), can be calculated from Eqs. 20-53

and 20–56,

(20-58)

where matrix Kc1 is defined to be the first r rows of Kc.

Thus, Kc1 has dimensions of r 
 mP.

It may seem strange to calculate an M-step control

policy and then only implement the first move. The im-

portant advantage of this receding horizon approach is

that new information in the form of the most recent

measurement y(k) is utilized immediately instead of

being ignored for the next M sampling instants. Other-

wise, the multistep predictions and control moves would

be based on old information and thus be adversely af-

fected by unmeasured disturbances, as demonstrated in

Example 20.4.

The calculation of Kc requires the inversion of an

rM 
 rM matrix where r is the number of input vari-

ables and M is the control horizon. For large problems

with many inputs, the required computational effort

can be reduced by using input blocking (Maciejowski,

2002; Qin and Badgwell, 2003). In this approach, the in-

puts are not changed at every sampling instant. Instead,

�u � 0 for “blocks” of sampling instants. Input block-

ing is illustrated in Fig. 20.10 where a single input is

changed at each sampling instant for the first four sam-

pling instants (k through k � 3). Starting at k � 4, u is

blocked so that it changes every three sampling instants

until the steady-state value is reached at k � 13. The

design parameters are the block length and the time at

which blocking begins.

�u(k) = Kc1EN o(k + 1)

20.4.2 MPC with Inequality Constraints

Inequality constraints on input and output variables are

important characteristics for MPC applications. In fact,

inequality constraints were a primary motivation for

the early development of MPC. Input constraints occur

as a result of physical limitations on plant equipment

such as pumps, control valves, and heat exchangers.

For example, a manipulated flow rate might have a

lower limit of zero and an upper limit determined by

the pump, control valve, and piping characteristics. The

dynamics associated with large control valves impose

rate-of-change limits on manipulated flow rates.

Constraints on output variables are a key component

of the plant operating strategy. For example, a com-

mon distillation column control objective is to maxi-

mize the production rate while satisfying constraints on

product quality and avoiding undesirable operating

regimes such as flooding or weeping. Additional exam-

ples of inequality constraints were given in Chapter 19.

The set of inequality constraints for u and y define an

operating window for the process, as shown in Fig. 19.6.

Inequality constraints can be included in the control

calculations in many different ways (Maciejowski, 2002;

Qin and Badgwell, 2003). It is convenient to make a

distinction between hard constraints and soft con-
straints. As the name implies, a hard constraint cannot

be violated at any time. By contrast, a soft constraint

can be violated, but the amount of violation is penal-

ized by a modification of the objective function, as de-

scribed below. This approach allows small constraint

violations to be tolerated for short periods of time.

For MPC the inequality constraints for u and �u are

typically hard constraints specified as upper and lower

limits:

(20-59)

(20-60)

The analogous hard constraints for the predicted out-

puts are:

(20-61)

Unfortunately, hard output constraints can result in

infeasible solutions for the optimization problem, espe-

cially for large disturbances. Consequently, output con-

straints are usually expressed as soft constraints involving

slack variables sj (Qin and Badgwell, 2003):

(20-62)

The numerical values of the slack variables can be deter-

mined during constrained optimization if the performance

j = 1, 2, . . . . , P

y�(k + j) - sj … y
'

(k + j) … y�(k + j) + sj

y�(k + j) … y
'

 (k + j) … y�(k + j) j = 1, 2, . . . . , P

 �u�(k) … �u(k + j) … �u�(k)  j = 0, 1, . . . . , M - 1

 u�(k) … u(k + j) … u�(k)  j = 0, 1, . . . . , M - 1

k + 2 k + 4 k + 6 k + 8 k + 10

Sampling instant

k + 12 k + 14 k + 16 k + 18 k + 20k

Control horizon, M

Input blocking

Steady-state value

u

Figure 20.10 Input blocking.
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index in Eq. 20-54 is modified by adding a penalty term

for the slack variables. Thus, an mP-dimensional vector of

slack variables is defined as col [s1, s2, . . . , sP]. The

modified performance index is

(20-63)

where T is an mP 
 mP weighting matrix for the slack

variables. Note that inequality constraints in (20-61)

and (20-62) are imposed on the corrected prediction ,

rather than the actual output y, because future values

of y are not available. Consequently, y may violate a

constraint even though does not, as a result of model-

ing errors. Slack variables can also be used to weight

positive and negative errors, differently.

Range Control

An unusual feature of MPC applications is that many

output variables do not have set points. For these out-

puts, the control objective is to keep them between

upper and lower limits, an approach called range con-
trol (or zone control). The limits can vary with time, as

shown in Eq. 20-61. The advantage of range control is

that it creates additional degrees of freedom for the

control calculations. Furthermore, many output vari-

ables such as the liquid level in a surge tank do not

have to be regulated at a set point. Consequently, in

many MPC applications, range control is the rule

rather than the exception. Set points are only specified

for output variables that must be kept close to a speci-

fied value (for example, pH or a quality variable). Note

that control to a set point can be considered to be a

special case of range control that occurs when the

upper and lower limits in (20-61) are equal.

The constraint limits in Eqs. 20-59 to 20-62 can vary

with time as a result of changes in process equipment

or instrumentation. However, it can also be beneficial

to allow the limits to change in a specified manner

over the control or prediction horizons. For example,

in the limit funnel technique, the output limits in 

(20-61) or (20-62) gradually become closer together

over the prediction horizon (Maciejowski, 2002; Qin

and Badgwell, 2003).

The introduction of inequality constraints results in a

constrained optimization problem that can be solved

numerically using linear or quadratic programming

techniques (Edgar et al., 2001). As an example, consider

the addition of inequality constraints to the MPC design

problem in the previous section. Suppose that it is de-

sired to calculate the M-step control policy �U(k)

that minimizes the quadratic objective function J in

Eq. 20-54, while satisfying the constraints in Eqs. 20-59,

20-60, and 20-61. The output predictions are made

using the step-response model in Eq. 20-36. This MPC

y
'

y
'

+ �U(k)TR �U(k) + STT S

 min
¢U(k)

 J = EN (k + 1)TQ EN (k + 1)

!S

design problem can be solved numerically using the

quadratic programming technique in Chapter 19.

20.5 SET-POINT CALCULATIONS

As indicated in Section 20.1 and Fig. 20.9, the MPC cal-

culations at each control execution time are typically per-

formed in two steps. First, the optimum set points (or

targets) for the control calculations are determined.

Then, a set of M control moves are generated by the con-

trol calculations, and the first move is implemented. In

practical applications, significant economic benefits result

from both types of calculations, but the steady-state opti-

mization is usually more important. In this section, the

set-point calculations are described in more detail.

The MPC set points are calculated so that they maxi-

mize or minimize an economic objective function. The

calculations are usually based on linear steady-state

models and a simple objective function, typically a linear

or quadratic function of the MVs and CVs. The linear

model can be a linearized version of a complex nonlin-

ear model or the steady-state version of the dynamic

model that is used in the control calculations. Linear

inequality constraints for the MVs and CVs are also

included in the steady-state optimization. The set-point

calculations are repeated at each sampling instant be-

cause the active constraints can change frequently due

to disturbances, instrumentation, equipment availabil-

ity, or varying process conditions.

Because the set-point calculations are repeated as

often as every minute, the steady-state optimization

problem must be solved quickly and reliably. If the op-

timization problem is based on a linear process model,

linear inequality constraints, and either a linear or a

quadratic cost function, the linear and quadratic pro-

gramming techniques discussed in Chapter 19 can be

employed.

20.5.1 Formulation of the Set-Point
Optimization Problem

Next, we provide an overview of the set-point calcula-

tion problem. More detailed descriptions are available

elsewhere (Sorensen and Cutler, 1998; Kassman et al.,

2000; Rawlings, 2000; Maciejowski, 2002).

Consider an MIMO process with r MVs and m CVs.

Denote the current values of u and y as u(k) and y(k).

The objective is to calculate the optimum set point ysp
for the next control calculation (at k � 1) and also to

determine the corresponding steady-state value of u,

usp. This value is used as the set point for u for the next

control calculation.

A general, linear steady-state process model can be

written as

(20-64)�y = K�u
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where K is the steady-state gain matrix and �y and �u
denote steady-state changes in y and u. It is convenient

to define �y and �u as

(20-65)

(20-66)

In Eq. 20-65 yOL(k) represents the steady-state value

of y that would result if u were held constant at its cur-

rent value, u(k), until steady state was achieved. In

general, yOL(k) � y(k) except for the ideal situation

where the process is at steady state at time k. In order

to incorporate output feedback, the steady-state model

in Eq. 20-64 is modified as

(20-67)

A representative formulation for the set-point opti-

mization is to determine the optimum values, usp and

ysp, that minimize a quadratic objective function,

(20-68)

subject to satisfying Eq. 20-64 and inequality constraints

on the MVs and CVs:

(20-69)

(20-70)

(20-71)

where

(20-72)

(20-73)

The s vector in (20-71) denotes the slack elements. In

(20-72) and (20-73), yref and uref are the desired

steady-state values of y and u that are often deter-

mined by a higher-level optimization (for example,

Level 4 in Fig. 19.1). The weighting factors in (20-68),

c, d, Qsp, Rsp, and Tsp, are selected based on economic

considerations. Although the weighting factors are

constants in Eq. 20-68, in MPC applications they can

vary with time to accommodate process changes or

changes in economic conditions such as product prices

or raw material costs. Similarly, it can be advantageous

to allow the limits in Eqs. 20-69 to 20-71 (u�, u�, etc.)

to vary from one execution time to the next, as discussed

in Section 20.4. Fortunately, new values of weighting

factors and constraint limits are easily accommodated,

because the optimum set points are recalculated at each

execution time.

It is important to make a distinction between yref and

uref, and ysp and usp. Both pairs represent desired values

of y and u, but they have different origins and are used in

different ways. Reference values, yref and uref, are often

 eu ! usp - uref

 ey ! ysp - yref

 y� - s … ysp  … y� + s

 �u�
… �usp … �u�

 u�
… usp  … u�

min Js 
usp, ysp

 = cTusp + dTysp + eT
y Qspey + eT

uRspeu + STTspS

�y = K�u + [y(k) - yN(k)]

 �u ! usp - u(k)

  �y ! ysp - yOL(k)

determined infrequently by a higher-level optimization.

They are used as the desired values for the steady-state

optimization of Step 5 of Fig. 20.9. By contrast, ysp and usp
are calculated at each MPC control execution time and

serve as set points for the control calculations of Step 6.

We have emphasized that the goal of this steady-

state optimization is to determine ysp and usp, the set

points for the control calculations in Step 6 of Fig. 20.9.

But why not use yref and uref for this purpose? The rea-

son is that yref and uref are ideal values that may not be

attainable for the current plant conditions and con-

straints, which could have changed since yref and uref

were calculated. Thus, steady-state optimization (Step 5)

is necessary to calculate ysp and usp, target values that

more accurately reflect current conditions. In Eq. 20-68,

ysp and usp are shown as the independent values for the

optimization. However, ysp can be eliminated by substi-

tuting the steady-state model, ysp � Kusp.

Next, we demonstrate that the objective function Js is

quite flexible, by showing how it is defined for three

different types of applications.

Application 1: Maximize operating profit.
In Chapter 19, real-time optimization was considered

problems where the operating profit was expressed in

terms of product values and feedstock and utility costs.

If the product, feedstock, and utility flow rates are 

manipulated or disturbance variables in the MPC con-

trol structure, they can be included in objective function

Js. In order to maximize the operating profit (OP), the 

objective function is specified to be Js � �OP, because

minimizing Js is equivalent to maximizing �Js. The

weighting matrices for two quadratic terms, Qsp and Rsp,

are set equal to zero.

Application 2: Minimize deviations from the reference
values.
Suppose that the objective of the steady-state optimiza-

tion is to calculate ysp and usp so that they are as close

as possible to the reference values, yref and uref. This goal

can be achieved by setting c � 0 and d � 0 in (20-68).

Weighting matrices Qsp, Rsp, and Tsp should be chosen

according to the relative importance of the MVs, CVs,

and constraint violations.

Application 3: Maximize the production rate.
Suppose that the chief control objective is to maximize

a production rate while satisfying inequality constraints

on the inputs and the outputs. Assume that the produc-

tion rate can be adjusted via a flow control loop whose

set point is denoted as u1 sp in the MPC control struc-

ture. Thus, the optimization objective is to maximize

u1 sp, or equivalently, to minimize �u1 sp. Consequently,

the performance index in (20-68) becomes Js � �u1 sp.

This expression can be derived by setting all of the

weighting factors equal to zero except for c1, the first

element of c. It is chosen to be c1 � �1.
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The set-point optimization problem can be summa-

rized as follows. At each sampling instant, the optimum

values of u and y for the next sampling instant (usp and

ysp) are calculated by minimizing the cost function in

Eq. 20-68, subject to satisfying the model equation 20-64

and the constraints in Eqs. 20-69 to 20-71. This opti-

mization problem can be solved efficiently using the

standard LP or QP techniques of Chapter 19.

Infeasible calculations can occur if the calculations of

Steps 5 and 6 are based on constrained optimization,

because feasible solutions do not always exist (Edgar

et al., 2001). Infeasible problems can result when the

control degrees of freedom are reduced (e.g., control

valve maintenance), large disturbances occur, or the 

inequality constraints are inappropriate for current con-

ditions. For example, the allowable operating window

in Fig. 19.6 could disappear for inappropriate choices

of the y1 and y2 limits. Other modifications can be

made to ensure that the optimization problem always

has a feasible solution (Kassmann et al., 2000).

In view of the dramatic decreases in the ratio of com-

puter cost to performance in recent years, it can be 

argued that physically based, nonlinear process models

should be used in the set-point calculations, instead of

approximate linear models. However, linear models are

still widely used in MPC applications for three reasons:

First, linear models are reasonably accurate for small

changes in u and d and can easily be updated based on

current data or a physically based model. Second, some

model inaccuracy can be tolerated, because the calcula-

tions are repeated on a frequent basis and they include

output feedback from the measurements. Third, the

computational effort required for constrained, nonlinear

optimization is still relatively large, but is decreasing.

20.6 SELECTION OF DESIGN AND
TUNING PARAMETERS

A number of design parameters must be specified in

order to design an MPC system. In this section, we con-

sider key design issues and recommended values for the

parameters. Several design parameters can also be used

to tune the MPC controller. The effects of the MPC 

design parameters will be illustrated in two examples.

Sampling period �t and model horizon N. The sam-

pling period �t and model horizon N (in Eq. 20-6)

should be chosen so that N�t � ts where ts is the set-

tling time for the open-loop response. This choice 

ensures that the model reflects the full effect of a change

in an input variable over the time required to reach

steady state. Typically, 30 � N � 120. If the output vari-

ables respond on different time scales, a different value

of N can be used for each output, as noted earlier. Also,

different model horizons can be used for the MVs and

DVs, as illustrated in Eq. 20-33.

Control M and prediction P horizons. As control

horizon M increases, the MPC controller tends to 

become more aggressive and the required computa-

tional effort increases. However, the computational 

effort can be reduced by input blocking, as shown in

Fig. 20.10. Some typical rules of thumb are 5 � M � 20

and N/3 � M � N/2. A different value of M can be

specified for each input.

The prediction horizon P is often selected to be 

P � N � M so that the full effect of the last MV move

is taken into account. Decreasing the value of P tends

to make the controller more aggressive. A different

value of P can be selected for each output if their set-

tling times are quite different. An infinite prediction

horizon can also be used and has significant theoretical

advantages (Maciejowski, 2002; Rawlings, 2000).

Weighting Matrices, Q and R

The output weighting matrix Q in Eq. 20-54 allows

the output variables to be weighted according to their

relative importance. Thus, an mP 
 mP diagonal Q
matrix allows the output variables to be weighted indi-

vidually, with the most important variables having the

largest weights. For example, if a reactor temperature

is considered more important than a liquid level, the

temperature will be assigned a larger weighting factor.

The inverse of a diagonal weighting factor is some-

times referred to as an equal concern factor (Qin and

Badgwell, 2003).

It can be advantageous to adjust the output weight-

ing over the prediction horizon. For example, con-

sider an SISO model with a time delay �. Suppose

that an input change �u occurs at k � 0. Then y(k) � 0

until k�t � � due to the time delay. Consequently, it

would be reasonable to set the corresponding ele-

ments of the Q matrix equal to zero, or, equivalently,

to make the corresponding predictions zero. These

approaches tend to make the control calculations bet-

ter conditioned (see Section 20.4).

As a second example, the elements of Q that corre-

spond to predicted errors early in the prediction hori-

zon (for example, at time k� 1) can be weighted more

heavily than the predicted errors at the end of the hori-

zon, k � P, or vice versa. The use of coincidence points

is a special case of this strategy. Here, the corrected 

errors only have nonzero weights for a subset of the P
sampling instants called coincidence points. The cor-

rected errors at other times are given zero weighting. In

Example 20.2 a simple predictive control strategy was

derived based on a single coincidence point.

A time-varying Q matrix can also be used to imple-

ment soft constraints by real-time adjustment of Q. For

example, if an output variable approaches an upper or

lower limit, the corresponding elements of Q would be

temporarily increased.
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In a similar fashion, R in Eq. 20-54 allows input MVs

to be weighted according to their relative importance.

This rM 
 rM matrix is referred to as the input weight-
ing matrix or the move suppression matrix. It is usually

chosen to be a diagonal matrix with the diagonal ele-

ments rii, referred to as move suppression factors. They

provide convenient tuning parameters, because increas-

ing the value of rii tends to make the MPC controller

more conservative by reducing the magnitudes of the

MV moves.

If a reference trajectory is employed, move suppres-

sion is not required, and thus R can be set equal to

zero.

Reference Trajectory �i

In MPC applications, the desired future output behav-

ior can be specified in several different ways: as a set

point, high and low limits, a reference trajectory, or a

funnel (Qin and Badgwell, 2003). Both the reference

trajectory and the funnel approaches have a tuning

factor that can be used to adjust the desired speed of

response for each output. Consider Eq. 20-48 or 20-49,

for example. As �i increases from zero to one, the de-

sired reference trajectory becomes slower. Alterna-

tively, the performance ratio concept can be used to

specify the reference trajectories. As mentioned ear-

lier, the performance ratio is defined to be the ratio of

the desired closed-loop settling time to the open-loop

settling time.

The influence of MPC design parameters is illus-

trated by a simple example.

EXAMPLE 20.5

A process has the transfer function,

(a) Use Eq. 20-57 to calculate the controller gain matrix, Kc,

for Q � I, R � 0 two cases:

(i) P � 3, M � 1

(ii) P � 4, M � 2

Assume that N � 70, �t � 1, and that u is unconstrained

for each case.

(b) Compare the set-point responses of two MPC

controllers and a digital PID controller with �t � 0.5

and ITAE set-point tuning (Chapter 11): Kc � 2.27, �I �
16.6, and �D � 1.49. Compare both y and u responses.

(c) Repeat (b) for a unit step disturbance and a PID

controller with ITAE disturbance tuning: Kc � 3.52, 

�I � 6.98, and �D � 1.73.

Y(s)

U(s)
 = e-s

(10s + 1)(5s + 1)

SOLUTION

(a) The step-response coefficients are obtained by evaluating

the step response at the sampling instants, t � i�t � i
(because �t � 1):

The controller matrix Kc for each case is shown in

Table 20.2. Note that the dimensions of K are different for

the two cases, because Kc has dimensions of rM 
 mP, as

noted earlier. For this SISO example, r � m � 1, and the

values of M and P differ for the two cases.

(b) The unit step response can be derived analytically using

Lapace transforms:

Figure 20.11 compares the y and u responses for a unit set-

point change. The two MPC controllers provide superior

output responses with very small settling times, but their ini-

tial MV changes are larger than those for the PID con-

troller. (Note the expanded time scale for u.)

(c) For the step disturbance, the output responses for the

MPC controllers in Fig. 20.12 have relatively small maxi-

mum deviations and are nonoscillatory. By comparison,

the PID controller results in the largest maximum devia-

tion and an oscillatory response. Of the two MPC con-

trollers, the one designed using P � 3 and M � 1

provides a slightly more conservative response.

20.6.1 MPC Application: Distillation 
Column Model

In order to illustrate the effects of the MPC design pa-

rameters (M, P, Q, and R) for an MIMO problem,

consider the Wood-Berry model that was introduced in

Example 16.1:

(20-74)+ D 3.8e-8.1s

14.9s + 1

4.9e-3.4s

13.2s + 1

T  F(s)

cXD(s)

XB(s)
d  = E 12.8e-s

16.7s + 1

6.6e-7s

10.9s + 1

-18.9e-3s

21s + 1

-19.4e-3s

14.4s + 1

U  cR(s)

S(s)
d

 y(t) = 1 - 2e-0.1(t - 1) 
+

 e-0.2(t - 1) for t 7 1

 y(t) = 0  for t … 1

 Si = 1 - 2e-0.1(i - 1) + e-0.2(i - 1) for i = 2, 3, . . . , 70

 S1 = 0

Table 20.2 Feedback Matrices Kc for Example 20.5

For P � 3 and M � 1: Kc � [0 7.79 28.3]

For P � 4 and M � 2: Kc = c0
0

33.1

-71.4

48.8

-97.4

-13.4

57.3
d
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Toolbox (Bemporad et al., 2009).1 For each simulation

the sampling period was �t � 1 min, and saturation lim-

its of � 0.15 were imposed on each input. Unconstrained

MPC controllers were designed using Eq. 20-55, while

the constrained MPC controllers were based on the

input constraints in Eq. 20–59. Some constrained MPC

controllers were designed using an additional hard-output

constraint of �yi � � 1.8. In order to compare MPC and a

standard multiloop control system, two PI controllers

were simulated using the XD�R/XB�S control configu-

ration from Example 16.1 and the controller settings in

Table 20.3 reported by Lee et al. (1998).

Figures 20.13 and 20.14 compare the performance of

the MPC and multiloop control systems for a �1% set-

point change in XB at t � 0, followed by two feed flow

rate disturbances: a �30% increase at t � 50 min and a

return to the original value at t � 100 min. The input

and output variables are displayed as deviation vari-

ables. The numerical values of the integral of the ab-

solute error (IAE) performance index (Chapter 11) are

included for each output.

A comparison of Cases A and B in Fig. 20.13 indicates

that unconstrained MPC is superior to the multiloop con-

trol system, because its output variables exhibit faster set-

point responses, less oscillation, and smaller IAE values.

In addition, the changes in the input variables are
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Figure 20.11 Set-point responses for Example 20.5.

0 10 20 30 40

Time

y

50 60
–0.1

0

0.1

0.2

0.3

0 5 10 15 20

Time

u

25 30
–1.5

–0.5

–1.0

0

MPC (P = 3, M = 1)

MPC (P = 4, M = 2)

PID controller

Figure 20.12 Disturbance responses for Example 20.5.

Table 20.3 PI Controller Settings for the

Wood-Berry Model

Control Loop Kc �I (min)

XD � R 0.85 7.21

XB � S �0.089 8.86

1The code for the Wood-Berry example is available in this MATLAB

Toolbox. A modified version of the code is included with Exercise

20.9. A newer version of the MPC Toolbox is also available, but

without this example (Bemporad et al., 2009).

The controlled variables (outputs) are the distillate and

bottoms compositions (XD and XB); the manipulated

variables (inputs) are the reflux flow rate and the steam

flow rate to the reboiler (R and S); and feed flow rate F
is an unmeasured disturbance variable.

Next, we compare a variety of MPC controllers and a

multiloop control system, based on simulations per-

formed using the MATLAB Model Predictive Control
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smoother for MPC. Case B is used as a “base case” for

the comparisons in Figs. 20.13 and 20.14. Its MPC design

parameters are shown in Fig. 20.13 and were selected ac-

cording to the guidelines presented earlier.

Cases B and C in Fig. 20.13 provide a comparison of

constrained and unconstrained MPC. These responses

are very similar, with only small differences occurring,

mainly for the second disturbance. This somewhat sur-

prising result can be interpreted as follows. The re-

sponses for constrained and unconstrained MPC are

very similar because the inputs are saturated much of

the time for both controllers. When one input saturates,

the MPC controller only has a single degree of freedom

left, the other input. By contrast, for larger control
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Case B: Unconstrained MPC: Rii = 0.1, Q = diag [1 1]

P = 90, M = 30
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Case C: Constrained MPC: Rii = 0.1, Q = diag [1 1]

P = 90, M = 30, ylim = 1.8
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Case D: Unconstrained MPC: Rii = 10, Q = diag [1 1]

P = 90, M = 30
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Figure 20.13 Comparison of multiloop PI control and MPC for the Wood-Berry model.
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problems (for example, 10 
 10), constrained MPC will

have many more degrees of freedom. For these larger

problems, constrained MPC tends to provide improved

control due to the extra degrees of freedom and its

awareness of the constraints and process interactions.

The effect of a diagonal move suppression matrix R
is apparent from a comparison of Cases B and D.

When the diagonal elements, Rii, are increased from

0.1 to 10, the MPC inputs become smoother and the

output responses have larger deviations, higher IAE

values, and longer settling times.

The effect of changing control horizon, M, is

shown in Cases B, E, and F. The y responses and

IAE values are quite similar for all three values of
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Case F: Unconstrained MPC: Rii = 0.1, Q = diag [1 1]

P = 90, M = 45

Case E: Unconstrained MPC: Rii = 0.1, Q = diag [1 1]

P = 90, M = 5

IAEB = 34.5

IAED = 11.8
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Case G: Constrained MPC: Rii = 0.1, Q = diag [1 10]

P = 30, M = 5, ylim = 1.8

IAEB = 34.1

IAED = 23.8
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Case H: Constrained MPC: Rii = 0.1, Q = diag [10 1]

P = 30, M = 5, ylim = 1.8

IAEB = 50.5

IAED = 10.8

Figure 20.14 Effects of MPC design parameters for the Wood-Berry model.
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M: 5, 30, and 45. However, the u responses are

smoother for M � 5.

Cases G and H demonstrate that improved control

of a designated output variable can be achieved by ad-

justing the elements of the Q matrix in Eq. 20-54. For

Case G, xB is weighted 10 times more heavily than xD,

in contrast to Case H, where the reverse situation oc-

curs. Control of the more heavily weighted output im-

proves at the expense of the other output, as indicated

by smaller maximum deviations, IAE values, and set-

tling times. For Cases G and H, P � 30, and the results

are similar to other cases where P � 90.

20.7 IMPLEMENTATION OF MPC

This section provides an overview of the activities that

are involved in designing and implementing a model

predictive control system. For a new MPC application,

a cost/benefit analysis is usually performed prior to

project approval. Then the steps involved in the

implementation of MPC can be summarized as follows

(Hokanson and Gerstle, 1992; Qin and Badgwell, 2003):

1. Initial controller design

2. Pretest activity

3. Plant tests

4. Model development

5. Control system design and simulation

6. Operator interface design and operator training

7. Installation and commissioning

8. Measuring results and monitoring performance

Step 1: Initial Controller Design
The first step in MPC design is to select the controlled,

manipulated, and measured disturbance variables. These

choices determine the structure of the MPC control sys-

tem and should be based on process knowledge and

control objectives. In typical applications the number of

controlled variables is less than or equal to 40, and the

number of manipulated (input) variables is less than or

equal to 20. These preliminary selections are reviewed

in Step 5 and revised, if necessary. The input and mea-

sured disturbance variables that are varied during the

plant tests of Step 3 should be chosen carefully. For

example, if it is decided to add a new input variable

later during Step 5, additional plant tests would be re-

quired, a nontrivial task. By contrast, additional output

variables can be added to the MPC control structure

later, if necessary, provided that these measurements

were recorded during the plant tests.

Step 2: Pretest Activity
During the pretest activity (or pretest, for short), the

plant instrumentation is checked to ensure that it is

working properly. Remedial action may be required for

faulty sensors, sticking control valves, and the like.

Also, a decision may be made to install sensors for

some process variables that are not currently mea-

sured. The pretest also includes preliminary experi-

mental tests to estimate the steady-state gains and

approximate settling times for each input-output pair.

This information is used to plan the full plant tests of

Step 3.

As mentioned earlier, the results of the MPC control

calculations are input moves that are implemented as

set points for regulatory control loops. For example, if

a cooling water flow rate is an MPC input variable, the

MPC controller calculates the set point for the corre-

sponding DCS control loop. Consequently, it is impor-

tant to thoroughly check the performance of the DCS

control system during the pretest, and to retune or re-

configure control loops if necessary.

These evaluation and maintenance activities are

very important. If the basic instrumentation and DCS

control system do not function properly, the MPC

strategy will be ineffective, and the success of the MPC

application will be jeopardized.

In the pretest experiments, each manipulated vari-

able (MV) is bumped at least once by making a small

step change. Steady-state gains and settling times are

estimated from the step-response data using the tech-

niques described in Chapter 6. Each measured distur-

bance variable (DV) should also be bumped, if

possible. If not, the gains and settling times can be esti-

mated from historical data for periods during which the

disturbance variables changed significantly. During

these bump tests, any existing DCS control loops for the

output variables should be placed in manual. Thus, the

pretest experiments are open-loop step tests (see Chap-

ter 11). However, the MV and DV moves are usually

implemented as set-point changes to the DCS loops for

the DVs and MVs.

As part of the pretest, it is desirable to benchmark

the performance of the existing control system for later

comparison with MPC performance (Step 8). For exam-

ple, the closed-loop responses for representative set-

point changes and measured disturbances could be

characterized using the performance criteria of Chapter

11. A baseline for the economic performance of the

control system should also be established, although it is

not always easy to do so.

Step 3: Plant Tests
The dynamic model for the MPC calculations is devel-

oped from data collected during special plant tests. The

plant testing can be very time-consuming, typically re-

quiring days, or even weeks, of around-the-clock exper-

iments. The required test duration depends on the

settling times of the outputs and the numbers of MVs

and DVs. The excitation for the plant tests usually con-

sists of changing an input variable or a disturbance

variable (if possible) from one value to another, using

either a series of step changes with different durations
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or the pseudorandom-binary sequence (PRBS) that

was introduced in Chapter 6. The plant test experi-

ments are implemented in the same manner as the

pretest experiments of Step 2.

It is traditional industrial practice to move each MV

and DV individually. The magnitudes of the moves

should be carefully chosen, because too small a move

may result in the step responses being obscured by nor-

mal process fluctuations and measurement noise. On

the other hand, too large a change may result in an out-

put constraint violation or nonlinear process behavior

that cannot be accurately described by a linear model.

The magnitude of the maximum allowable input

changes can be estimated from knowledge of the out-

put constraints and the estimated steady-state gains

from the pretest. For example, suppose that (�uj)max

denotes the maximum change that can be made in uj
without violating a constraint for yi. It can be estimated

from the expression,

(20-75)

where (�yi)max is the maximum allowable change in yi
and is the estimated steady-state gain between yi
and uj. However, this steady-state analysis does not

guarantee that each yi satisfies its constraints during

transient responses.

The duration of the longest step test is equal to tmax,

the longest settling time that was observed during the

pretest. Shorter step changes are also made, with the

durations typically varying from tmax/8 to tmax/2. In

order to ensure that sufficient data are obtained for

model identification, each input variable is typically

moved 8–15 times (Qin and Badgwell, 2003).

Some MPC vendors recommend a total plant testing

period of ttest � 6(r � p)tmax where r is the number of

input variables and p is the number of measured distur-

bance variables. In principle, ttest can be reduced by

making simultaneous changes to several input (or distur-

bance) variables rather than the traditional sequential

(“one-at-a-time”) approach. Also, it can be very difficult

to identify poorly conditioned process models using the

sequential approach. However, because of a number of

practical considerations, input moves are traditionally

made sequentially. In particular, simultaneous input

moves tend to complicate the test management and

make it more difficult to identify periods of abnormal

operation by visual inspection of the test data. It is also

more difficult to ensure that output constraints will not

be violated. Because of similar practical considerations,

step changes have been traditionally preferred over the

pseudorandom binary sequence (PRBS) of Chapter 6.

Step 4: Model Development
The dynamic model is developed from the plant test data

by selecting a model form (for example, a step-response

KN ij

(¢uj)max = 
(¢yi)max

KNij

model) and then estimating the model parameters.

However, first it is important to eliminate periods of

test data during which plant upsets or other abnormal

situations have occurred, such as control valve satura-

tion or a DCS control loop having been placed in

manual. Decisions to omit portions of the test data are

based on visual inspection of the data, knowledge of

the process, and experience. Parameter estimation is

usually based on least-squares estimation (Chapter 6).

As part of the model development step, the model

accuracy should be characterized, because this infor-

mation is useful for subsequent system design and

tuning. The characterization can include confidence

intervals for the model predictions and/or model pa-

rameters. The confidence intervals can be calculated

using standard statistical techniques (Ljung, 1999).

Step 5: Control System Design and Simulation
The MPC design is based on the control and optimiza-

tion objectives, process constraints, and the dynamic

model of the process. The preliminary control system

design from Step 1 is critically evaluated and modi-

fied, if necessary. Then the MPC design parameters in

Section 20.6 are selected, including the sampling peri-

ods, weighting factors, and control and prediction

horizons. Next, the closed-loop system is simulated

using the identified process model and a wide variety

of process conditions to evaluate control system per-

formance. The MPC design parameters are adjusted,

if necessary, to obtain satisfactory control system per-

formance and robustness over the specified range of

operating conditions.

Step 6: Operator Interface Design and Operator Training
Because plant operators play a key role in manufactur-

ing plants, it is important that the MPC operator inter-

face meet their needs. Operator training is also

important, because MPC concepts such as predictive

control, multivariable interactions, and constraint han-

dling are very different from conventional regulatory

control concepts. For a standard multiloop control sys-

tem, each input is adjusted based on measurements of a

single output. By contrast, in MPC each input depends

on all of the outputs. Thus, understanding why the

MPC system responds the way that it does, especially in

unusual operating conditions, can be very challenging

for both operators and engineers.

Step 7: Installation and Commissioning
After a MPC control system is installed, it is first evalu-

ated in a “prediction mode.” Model predictions are

compared with measurements, but the process contin-

ues to be controlled by the existing control system

(e.g., DCS). After the output predictions are judged to

be satisfactory, the calculated MPC control moves

are evaluated to see if they are reasonable. Finally,

the MPC software is evaluated during closed-loop
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operation with the calculated control moves imple-

mented as set points to the DCS control loops. The

MPC design parameters are tuned, if necessary. The

commissioning period typically requires some trou-

bleshooting and can take as long as, or even longer

than, the plant tests of Step 3.

Step 8: Measuring Results and Monitoring Performance
The evaluation of MPC system performance is not

easy, and widely accepted metrics and monitoring

strategies are not available. However, useful diagnostic

information is provided by basic statistics, such as the

means and standard deviations for both measured vari-

ables, and calculated quantities, such as control errors

and model residuals. Another useful statistic is the rela-

tive amount of time that an input is saturated or a con-

straint is violated, expressed as a percentage of the

total time the MPC system is in service. These types of

routine monitoring activities are considered in more

detail in Chapter 21.

In Chapter 11, we considered a number of classical

metrics for characterizing control system performance,

such as the IAE index, overshoot, settling time, and

degree of oscillation. Though helpful, these metrics

provide an incomplete picture of overall MPC perfor-

mance. An important motivation for MPC is that it fa-

cilitates process operation closer to targets and limiting

constraints. Thus, an evaluation of MPC performance

should include measures of whether these objectives

have been realized. If so, a noticeable improvement in

process operation should be reflected in economically

meaningful measures such as product quality, through-

put, or energy costs. The various performance metrics

should be calculated before and after the MPC system

is installed.

MPC system performance should be monitored on a

regular basis to ensure that performance does not de-

grade owing to changes in the process, instrumentation,

or process conditions, including disturbances. If perfor-

mance becomes significantly worse, retuning the con-

troller or reidentifying all (or part) of the process model

may be required. The development of MPC monitoring

strategies is an active research area (Kozub, 2002, Jelali,

2006; McIntosh and Canney, 2008; Badwe et al., 2009).

SUMMARY

Model predictive control is an important model-based

control strategy devised for large multiple-input, multiple-

output control problems with inequality constraints on

the inputs and/or outputs. This chapter has considered

both the theoretical and practical aspects of MPC.

Applications typically involve two types of calculations:

(1) a steady-state optimization to determine the optimum

set points for the control calculations, and (2) control

calculations to determine the MV changes that will

drive the process to the set points. The success of

model-based control strategies such as MPC depends

strongly on the availability of a reasonably accurate

process model. Consequently, model development is

the most critical step in applying MPC. As Rawlings

(2000) has noted, “feedback can overcome some effects

of poor models, but starting with a poor process 

model is akin to driving a car at night without head-

lights.” Finally, the MPC design parameters should 

be chosen carefully, as illustrated by two simulation 

examples.

Model predictive control has had a major impact on

industrial practice, with thousands of applications world-

wide. MPC has become the method of choice for

difficult control problems in the oil refining and petro-

chemical industries. However, it is not a panacea for all

difficult control problems (Shinskey, 1994; Hugo, 2000;

McIntosh and Canney, 2008). Furthermore, MPC has

had much less impact in the other process industries.

Performance monitoring of MPC systems is an impor-

tant topic of current research interest.
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EXERCISES

20.1 For the transfer functions

(a) Derive an analytical expression for the step response to a

unit step change. Evaluate the step-response coefficients, {Si},

for a sampling period of �t � 1.

(b) What value of model horizon N should be specified in

order to ensure that the step-response model covers a 

period of at least 99% of the open-loop settling time? (That is,

we require that N�t 	 t99 where t99 is the 99% settling time.)

20.2 A process (including sensor and control valve) can be

modeled by the transfer function,

(a) Derive an analytical expression for the response to a unit

step change in the input.

(b) Suppose that the maximum allowable value for the model

horizon is N � 30. What value of the sampling period �t
should be specified to ensure that the step-response model

covers a period of at least 99% of the open-loop settling time?

(That is, we require that N�t 	 t99 where t99 is the 99% set-

tling time.)

Use the analytical solution and this value of �t to obtain a

step-response model in the form of Eq. 20-1.

20.3 Control calculations for a control horizon of M � 1 can be

performed either analytically or numerically. For the process

model in Exercise 20.1, derive for �t � 1, N � 50, and P � 5,

Q � I and R � 0, using Eq. 20-57. Compare your answer with

the analytical result reported by Maurath et al. (1988).

Kc1 = 1

a
P

i=1

Si
2

 [S1 S2 S3 . . . SP]

Kc1

G(s) = 
2(1 - 9s)

(15s + 1)(3s + 1)

GP(s) = 2e-s

(10s + 1)(5s + 1)
  Gv = Gm = 1

20.4 Consider the transfer function model of Exercise 20.1.

For each of the four sets of design parameters shown below,

design a model predictive controller. Then do the following:

(a) Compare the controllers for a unit step change in set

point. Consider both the y and u responses.

(b) Repeat the comparison of (a) for a unit step change in dis-

turbance, assuming that Gd(s) � G(s).

(c) Which controller provides the best performance? Justify

your answer.

Exercises 437

Set No. �t N M P R

(i) 2 40 1 5 0

(ii) 2 40 20 20 0

(iii) 2 40 3 10 0.01

(iv) 2 40 3 10 0.1

20.5 For Exercise 20.1, suppose that a constraint is placed

on the manipulated variable, uk�j � 0.2 for j �
1, 2, . . . , M � 1. Let �t � 2 and N � 40. Select values

of M, P, and R so that these constraints are not vio-

lated after a unit step disturbance occurs.

20.6 For Exercise 20.1, consider two sets of design parame-

ters and simulate unit step changes in both the disturbance

and the set point. Assume that the disturbance model is iden-

tical to the process model. The design parameters are

(a) M � 7 P � 10 R � 0
(b) M � 3 P � 10 R � 0

Which controller provides the best control? Justify your

answer.

20.7 Consider the unconstrained, SISO version of MPC in

Eq. 20-57. Suppose that the controller is designed so that the

control horizon is M � 1 and the weighting matrices are Q � I
and R � 1. The prediction horizon P can be chosen arbitrarily.
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Demonstrate that the resulting MPC controller has a simple

analytical form.

20.8 A theoretical advantage of MPC for ideal conditions is

that it guarantees that both controlled and manipulated

variables satisfy specified inequality constraints. Briefly dis-

cuss why this theoretical advantage may not be realized in

practical applications.

20.9 In Section 20.6.1, MPC was applied to the Wood-Berry

distillation column model. A MATLAB program for this

example and constrained MPC is shown in Table E20.9.

The design parameters have the base case values (Case B

in Fig. 20.13) except for P � 10 and M � 5. The input constraints

are the saturation limits for each input (�0.15 and �0.15). Eval-

uate the effects of control horizon M and input weighting matrix

R by simulating the set-point change and the first disturbance of

Section 20.6.1 for the following parameter values:

(a) Control horizon, M � 2 and M � 5

(b) Input weighting matrix, R � 0.1I and R � I

Consider plots of both inputs and outputs. Which choices of

M and R provide the best control? Do any of these MPC

controllers provide significantly better control than the

controllers shown in Figs. 20.13 and 20.14? Justify your 

answer.

20.10 Design a model predictive controller for the process

Select a value of N based on 95% completion of the step re-

sponse and �t � 2. Simulate the closed-loop response for a

set-point change using the following design parameters:

(a) M � 1 P � 7 R � 0
(b) M � 1 P � 5 R � 0
(c) M � 4 P � 30 R � 0

20.11 Repeat Exercise 20.9 for the situation where the input

constraints have been changed to �0.3 and �0.3.

20.12 Consider the PCM furnace module of Appendix E with

the following variables (HC denotes hydrocarbon):

CVs: HC exit temperature THC and oxygen exit concen-

tration cO2

MVs: fuel gas flow rate FFG and air flow rate FA

DV: HC flow rate FHC

Do the following, using the transfer function models given

below:

(a) Design an MPC system using the following design para-

meters: �t � 1 min, Q � diagonal [0.1, 1], R � diagonal [0.1,

0.1], P � 20, and M � 1.

(b) Repeat part (a) for the same design parameters, but

where R � diagonal [0.5, 0.5].

(c) Simulate the two MPC controllers for a step change in

the cO2
set point to 1.0143 mol/m3 at t � 10 min. 

(d) Repeat part (c) for a step change in FHC at t � 10 min to

0.035 m3/min.

(e) Based on your results for parts (c) and (d), which MPC

controller is superior? Justify your answer.

Process transfer function matrix:

FFG FA

THC

co2

20.13 Repeat Exercise 20.12 for R � diagonal [0.1, 0.1] and:

(i) M � 1 and (ii) M � 4. 

0.14 e-4s

4.2 s + 1

-2.0 e-4s

3.8 s + 1

-13 e-2s

6.2 s + 1

220 e-2s

6.5 s + 1

Gp(s) = e-6s

10s + 1
  Gv = Gm = 1

Table E20.9 MATLAB Program (Based on a program by

Morari and Ricker (1994))

g11�poly2tfd(12.8,[16.7 1],0,1); % model

g21�poly2tfd(6.6,[10.9 1],0,7);

g12�poly2tfd(�18.9,[21.0 1],0,3);

g22�poly2tfd(�19.4,[14.4 1],0,3);

gd1�poly2tfd(3.8,[14.9 1],0,8.1);

gd2�poly2tfd(4.9,[13.2 1],0,3.4);

tfinal�120; % Model horizon, N

delt�1; % Sampling period

ny�2; % Number of outputs

model�tfd2step(tfinal,delt,ny,g11,g21,g12,g22)

plant�model; % No plant/model mismatch

dmodel�[] % Default disturbance model

dplant�tfd2step(tfinal,delt,ny,gd1,gd2)

P�10; M�5; % Horizons

ywt�[1 1]; uwt�[0.1 0.1]; % Q and R
tend�120; % Final time for simulation

r�[0 1]; % Set-point change in XB

a�zeros([1,tend]);

for i�51:tend

a(i)�0.3*2.45; % 30 % step in F at t�50 min.

end

dstep�[a
];
ulim�[�.15 �.15 .15 .15 1000 1000]; % u limits

ylim�[]; % No y limits

tfilter�[ ];

[y1,u1]�cmpc(plant,model,ywt,uwt,M,P,tend,r,

ulim,ylim, tfilter,dplant,dmodel,dstep);

figure(1)

subplot(211)

plot(y1)

legend(
XD
,
XB
)
xlabel(
Time (min)
)
subplot(212)

stairs(u1) % Plot inputs as staircase functions

legend(
R
,
S
)
xlabel(
Time (min)
)
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E U

c20ModelPredictiveControl.qxd  11/12/10  4:49 PM  Page 438




