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Tranformed inputs
Briefly on pro and cons of MPC
RTO
ESC



Nonlinear feedforward, decoupling and
linearization

* Transformed inputs: Extremely simple and effective way of achieving
feedforward, decoupling and linearization



Example decoupling: Mixing of hot (u,) and cold
(u,) water

<] * Want to control
= Temperature T
u T Y1
1 > y, = total flow F
F 2
—D<]— * Inputs, u=flowrates
U, * May use two SISO Pl-controllers
TC
FC
V,=sum * Insight: Get decoupled response with transformed inputs
1 TC sets flow ratio, v, = u,/u,
v,=ratio FC sets flow sum, v,=u, +u,
* Decoupler: Need «static calculation block» to solve for

inputs

up=vy v,/ (1+vy)

u,=v,/ (1+v)



Two SISO Nonlinear Decoupler
controllers hot Process
v,=ratio
TC — M u,=v, v,/ (1+v;) T
Ju,=v, /(1+v,)
FC v,=sum
flowrate
Pairings: Note:
* T-v, * |n practice u=valve position (z)
* F-v, * So must add two flow controllers

No interactions for setpoint change * These generate inverse by feedback



In practice must add two slave flow controllers

Two SISO Nonlinear Decoupler u,
controllers
v,=ratio u
TC N U=V, VZ/(1+ vy) — T
FC J u=v,/(1+v) F
V,=sum
)
v = transformed inputs
u = flowrates
z = valve positions
V2 ( V1 — TC}

Decoupler with feedforward: I = T, — T.

dc = V2 — (qj



Feedforward (and decoupling) control

* Feedforward control relies on model
* as opposed to feedback which relies mostly on data

 Feedback control: Linear model is often OK

* Feedforward control: Much less likely that linear model is OK because
of process changes and disturbances

* Here: Nonlinear feedforward control using Input transformations
based on static process model



Input transformations



General approach: Combined Nonlinear decoupling,
feedforward and linearization using Transformed Inputs *

e Generalization: Introduce transformed input v and use Nonlinear calculation block

. d
l + v —l> W
v Calc. block
ME 7Y » Controller ¥ =f(v,d,w) Yol process s
_ (static)
Yy
Genaral Method*:
Steady-state model: y = f(u,d,w)
Select transformed input: v =f(u,d,w) («right-hand side» of model)
Calculation block: Invert for given V. u= f_l(V,d,W) (may be replaced by slave v-controller)

w=dependent variable (flow, temperature), but treated as measured disturbance
w-variables may be used to simplify model

Transformed system becomes: y=I v («decoupled, linear, indepedent of d»)
Note: To simplify often use only «parts» of f(u,d,w) as v (because of unknown parameters etc.)

*Zotica, Alsop and Skogestad. 2020 IFAC World Congress



Example: Combined nonlinear decoupling and feedforward.
Mixing of hot and cold water .

I
1
1
1
I
1
I
7Y Controller > block
1
I
1

Ths an yS Vv Calculation u
. > »| Process
.& _ (static)
T.. g, y ___________________________

\ 4

Figure 1: Mixer system
B A "’
Y ( fh)
Steady-state model written as y=f(u,d): e

T= IhThtqcTc ( T3 )
qh+qc d = T
q=4q. + qn .
Select transformed inputs as right hand side, v =f ’ ( T)
__ 4hTh+qcTc . . Y=
1= nige (1) Generalized ratio q

Vo= QC + q}} (Z)
Model from v to y (red box) is then decoupled and with perfect disturbance rejection:
T= Vi
q=V
* Can then use two single-loop PI controllers for T and q!
* These controllers are needed to correct for model errors and unmeasured disturbances
* Note that v, used to control T is a generalized ratio, but it includes also feedforward
from Tc and Th.
Implementation (calculation block) : Solve (1) and (2) with respect to u=(qc gh):
dh = v,(v; = To)
. . =
Decoupler with feedforward: T, — T,

dc = V2 — Qn




Transformed MVs for decupling, linearization and disturbance rejection

Mixing of hot and cold water (static process)

New system: T=v, and q=v,

Outer loop: Two I-controllers with 7o = 1's

C]

Temperature, [

Hot flow, [L/s]

Transformed input
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1. T,: 60->70°C
2.T,;: 30->20°C
3. T}3: 40->42 °C
4.q% 1->1.1 L/s
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Alternative B: Calculation block solved by feedback (using fast slave controller C,)

d
u=g Yv,w,y,d) \ y
y* e | . Inverse input U Process
—_— Controller C _ _ ‘ w
transformation (nonlinear)
(static) )
t
(a) Alternative A. Model-based implementation of transformed input v = g(u,w,y,d).

The physical input u = g~ ' (v, w, y, d) is generated by a static (algebraic) calculation block
which inverts the transformed input model equations. The model-based implementation
generates the exact inverse for the case with no model error.

v

III[)HB transformation

glu,w,y,d)

1
(static) J

Controller C,, ] i

—,
| Process

w

(fast) J

(nonlinear)

(b) Alternative B. Feedback implementation of transformed input v = g(u, w,y,d) using
cascade control with a slave v-controller. The computed value of v is driven to its setpoint
vs by the inner (slave) feedback controller €, which generates the physical input w. This
implementation generates an approximate inverse.

Example: Power control

5.4.2. Transformed input vy, based on parts of static model and
measured state w =T,

The second transformed variable, vg ,,, follows by using the
measured state w = T» to replace the heat transfer Eq. (68c) for
Q. We use (68a) to find

Q

T, =T+ Fon

and then we substitute Q using (68b) to get

Fycp2

y:leTP-f——F]CI(TZO—TZ) (71)
D
e
fouw(uw.d)

From (71) the corresponding ideal static transformed input be-

comes

o PGy

vow = fow(u, w, d)=T7 + ——(T; = T2) (72)
Ficp

which depends on w = T, but not on the UA-value.

In practice (Perstorp) use only part of this:



New control structure: Power control

K. Forsman, 2024-10-16, No. 72

Power controller

*. @ P"@ o

.lSP

Cooling water

[E)Perstorp



Also: Transformed outputs z

y*
— (v’ w,d)

i v U
[g/_ 1 {?;1 w, z, d)]—b Process H! J
t [h{y, w, d)J

A

(a) General implementation of transformed output z

* No fundamental advantage, but can simplify input transformation
* For example, y=T, z=H (enthalpy)



More on transformed inputs

Journal of Process Control 122 (2023) 113-133
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MPC and RTO



What about MPC?

* Firstindustrial use in the 1970s

* Became common in the refining and petrochemical industry in the 1980s

* Inthe 1990s a bright future was predicted for MPC in all process industries (chemical, thermal power, ...)
* 30 years later: We know that this did not happen

*  Why? First, the performance benefits of MPC compared to ARC are often minor (if any)

* In addition, MPC has some limitations
1. Expensive to obtain model

2. Does not easily handle integral action, cascade and ratio control
3. Normally, cannot be used at startup (so need ARC anyway)
4. Can be difficult to tune. Difficult to incorporate fast control tasks (because of centralized approach)
5. Computations can be slow
6. Robustness (e.g., gain margin) handled indirectly
* Advantages of MPC
1. Very good for interactive multivariable dynamic processes
2. Coordinates feedforward and feedback
3. Coordinates use of many inputs
4. Makes use of information about future disturbances, setpoints and prices (predictive capabilities of MPC)
5. Can handle nonlinear dynamic processes (nonlinear MPC)

*  What about constraints
* Not really a major advantage with MPC; can be handled well also with ARC

MPC = model predictive control
ARC = advanced regulatory control



7.6.7. Summary of MPC shortcomings
Some shortcomings of MPC are listed below, in the expected order
of importance as seen from the user’s point of view:

1. MPC requires a “full” dynamic model involving all variables to
be used by the controller. Obtaining and maintaining such a
model is costly.

2. MPC can handle only indirectly and with significant effort from
the control engineer (designer), the three main inventions of pro-
cess control; namely integral control, ratio control and cascade
control (see above).

3. Since a dynamic model is usually not available at the startup of
a new process plant, we need initially a simpler control system,
typically based on advanced regulatory control elements. MPC
will then only be considered if the performance of this initial
control system is not satisfactory.

4. It is often difficult to tune MPC (e.g., by choosing weights or
sometimes adjusting the model) to give the engineer the desired
response. In particular, since the control of all variables is opti-
mized simultaneously, it may be difficult to obtain a solution
that combines fast and slow control in the desired way. For
example, it may be difficult to tune MPC to have fast feedforward
control for disturbances because it may affect negatively the
robustness of the feedback part (Pawlowski et al., 2012).

5. The solution of the online optimization problem is complex and
time-consuming for large problems.

6. Robustness to model uncertainty is handled in an ad hoc manner,
for example, through the use of the input weight R. On the other
hand, with the SIMC PID rules, there is a direct relationship
between the tuning parameter r, and robustness margins, such
as the gain, phase and delay margin Grimholt and Skogestad
(2012), e.g., see (C.13) for the gain margin.

7.6.8. Summary of MPC advantages

The above limitations of MPC, for example, with respect to integral
action, cascade control and ratio control, do not imply that MPC will
not be an effective solution in many cases. On the contrary, MPC should
definitely be in the toolbox of the control engineer. First, standard ratio
and cascade control elements can be put into the fast regulatory layer
and the setpoints to these elements become the MVs for MPC. More
importantly, MPC is usually better (both in terms of performance and
simplicity) than advanced regulatory control (ARC) for:

1. Multivariable processes with (strong) dynamic interactions.

2. Pure feedforward control and coordination of feedforward and
feedback control.

3. Cases where we want to dynamically coordinate the use of many
inputs (MVs) to control one CV.

4. Cases where future information is available, for example, about
future disturbances, setpoint changes, constraints or prices.

5. Nonlinear dynamic processes (nonlinear MPC).

The handling of constraints is often claimed to be a special advantage of
MPC, but it can it most cases also be handled well by ARC (using selec-
tors, split-range control solutions, anti-windup, etc.). Actually, for the
Tennessee Eastman Challenge Process, Ricker (1996) found that ARC
(using decentralized PID control) was better than MPC. Ricker (1996)
writes in the abstract: “There appears to be little, if any, advantage to
the use of NMPC (nonlinear MPC) in this application. In particular, the
decentralized strategy does a better job of handling constraints — an
area in which NMPC is reputed to excel”. In the discussion section he
adds: “The reason is that the TE problem has too many competing goals
and special cases to be dealt with in a conventional MPC formulation”.

17



Optimal operation and constraints switching

* We have presented effective decentralized approaches for constraint
switching (MV-MV, CV-CV, MV-CV).
e Optimal in many cases, but not in general

* For example, may not be able to cover cases with more than one
unconstrained region = More than one self-optimizing variable

* An alternative is model-based RTO, usually based on static model

RTO = Real-time optimization



Economic real-time optimization(RTO)
Alternative RTO approaches:

Model-based

. Separate RTO layer (online dynamic or steady-state optimization)

Il.  Feedback-optimizing control (put optimization into control layer)

* Alt.1. (Most general): Based on dual decomposition (iterate on Lagrange multipliers 1)
« Alt.2 (Tighter constraint control): Region-based with reduced gradient

Data-based

I1l.  Hill-climbing methods = Extremum-seeking control (model free. But need to measure cost J)

Computers and Chemical Engineering 161 (2022) 107723

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Review

Real-Time optimization as a feedback control problem - A review

Dinesh Krishnamoorthy*"* Sigurd Skogestad”



|. Conventional (commercial) steady-state RTO

Fairly common in refining and
petrochemical industy.

A

O
Static RTO
Two-step approach:
l sp Parameter | 7 o
y estimator 2l
o Setpoint | (Static) 2
Step 1. “Data reconciliation”: control C2
e  Steady-state detection u Steady statel | Z
‘ detection |
. Update estimate of d: model
parameters, disturbances (feed), Process
constraints Y
Step 2. Re-optimize to find new ‘ d

optimal steady state



Steady-state wait time

* Transient measurements cannot be used = system must “settle”
e Large chunks of data discarded

» Steady state detection issues
* Erroneously accept transient data
* Non-stationary drifts

Qil Rate

|

May 02 May 03 May 04 May 05 May 06 May 07




How to avoid steady state wait time?

1. Dynamic RTO = EMPC

Dynamic d,z,0
<
RTO
sp Parameter
u estimator
Setpoint (Dynamic)

A

control |e
l u

Process




How to avoid steady state wait time?

2. Hybrid RTO o
Static |, %% 7
RTO
l sp Parameter
u estimator
Setpoint (Dynamic)

A

control |e
l u

Process




RTO problem

Steady-state RTO (used in Hybrid RTO):

s.t.:

min J(x,d, u)
x,U

0=F(x,d,u)
0 =nh(x,d,u)
glx,d,u) <0

Dynamic RTO = (Economic) nonlinear MPC :

ty
x(rtr)l'iur%t)j ](x(t),d(t),u(t)) dt

to

s.t.:
x(t) = F(x(t),d(®),u(®))
0 = h(x(t),d(t),u(t))
g(x(t),d(t),u(t)) <0
x(to) = X

Now we calculate not only an optimal
point, but an optimal trajectory!’

BUT Much more complex that static RTO,
and may not give much economic benefit



Feedback RTO

II. Feedback RTO (unconstrained case)

A
J

«Solving RTO-problem using Pl control»

Unconstrained optimization. Ju <0

Necessary condition of optimality (NCO):
* Gradient of cost function =0 TRt

U™ ou




Feedback RTO

O NTNU
I1A. Feedback RTO (unconstrained case)

Gradient estimator

|
| parameter
| [A B] estimation I Linearize the dynamic model
I Gradient ¢ pl| Linearize | g d | x = f(x,u,d) : X =flowd) o x= A Bu
. ) <€4— model from<e——— <+ | J =g(x.u) J=Cx+ Du
I Estimation y = h(x,u)
utod i WO o
I = e e —Kalr—nan—Fllt—er— [ a 8)( X=X a OU x=X
Ju=-CA™'B+D c_ 9% p_ %
Ox X=X du X=X
Feedback Trick, set x = 0,to get estimate of static gradient:
> u
(Contrgl[?; | Y 5 Process — Ymeas J = (_ CA B+ D) u
> (e.g.
J Sp — O g Tny N ~~ J
u — T M
d

Note: This is one simple way of doing the gradient estimation, but needfs dynamic model (Kalman Filter)

D Krishnamoorthy, E Jahanshahi, S Skogestad. Feedback Real-Time Optimization Strategy Using a Novel Steady-state Gradient Estimate and Transient

26
Measurements. Industrial & Engineering Chemistry Research, 2019



Here is another Static gradient estimation:

Based on self-optimizing control. Very simple and works well!

Computers and Chemical Engineering 189 (2024) 108815

Contents lists available at ScienceDirect

Computers
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Engineering

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Optimal measurement-based cost gradient estimate for feedback real-time
optimization
Lucas Ferreira Bernardino, Sigurd Skogestad

Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

ARTICLE INFO ABSTRACT

Keywords: This work presents a simple and efficient way of estimating the steady-state cost gradient J, based on available
Self-optimizing control uncertain measurements y. The main motivation is to control J, to zero in order to minimize the economic
Optimal operation cost J. For this purpose, it is shown that the optimal cost gradient estimate for unconstrained operation is
Controlled variable design simply J, = H(y, — y*) where H is a constant matrix, y, is the vector of measurements and y* is their
Gradient estimation . . 3 A . e .
nominally unconstrained optimal value. The derivation of the optimal H-matrix is based on existing methods
for self-optimizing control and therefore the result is exact for a convex quadratic economic cost J with
linear constraints and measurements. The optimality holds locally in other cases. For the constrained case,
the unconstrained gradient estimate J, should be multiplied by the nullspace of the active constraints and the
resulting “reduced gradient” controlled to zero.
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With constraints

Constrained optimization problem
‘ uy.d
mllln J (u,y.d)
s.l. g(uy.d) <0

Solution: Turn into unconstrained optimization problem using Lagrange multipliers

Cuy.d.A)=)(uy.d+Ai'g(uy)

ming, L

u = primal variables = inputs

A > 0 = dual variables = Lagrange multipliers = shadow prices
Necessary conditions of optimality (KKT-conditions)

V,L=0, 4>0, g-A=0 Lu:Ju+)\T9u:O

(complementary condition)

28



Feedback RTO with constyraints

A. Primal-dual control based on KKT conditions: reedback solution

that automatically tracks active constraints by adjusting Lagrange multipliers (= shadow prices =

dual variables) A

sp=0 —»| Constraint control
(n. slower Pl/I-controllers)

g (measured constraint)

A

0 — " MAX

A

Dual variables A

SP=0 ——

Unconstrained
optimization
(n, PID-controllers)
L,=J,+Xg,=0

A

u

Primal variables u

y

Gu

Gradient
estimation

A

g (measured constraint)

KKT: L, = J,+ Mg, =0
Inequality constraints:/l = 0

Primal-dual feedback control.

Makes use of «dual decomposition» of
KKT conditions
Selector on dual variables A
Problem: Constraint control using dual
variables is on slow time scale (upper
layer)

e Can be fixed using override at bottom of

hiearchy (Dirza)

Problem 2: Single-loop PID control in lower
layer (L,=0) may not be possible for coupled
processes so may need to use Solver.

* D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, J. Process Co..c.vi o ycvew; 1o oo,
* R.Dirza and S. Skogestad . Primal—-dual feedback-optimizing control with override for real-time optimization. J. Process Control, Vol. 138 (2024), 103208.



Feedback RTO

Alternative: Dual composition with optimization/solver for
computing u (primal variables)

g (measured constraint)

A

* May need to add filter to avoid instability SP=0 .| Constraint control
(n. slower PI/I-controllers)

0 — MAX
)\ Dual variables

Unconstrained
SP=0 — optimization < Gradient

(Alt. Use solver herever) Ju estimator
Ly=J,+Xg, =0 ;

uj Primal variables
Filter

Lm» y
g (measured constraint)



Alternative: Direct control of constraints

KKT: L, =J,+ X g,=0
Introduce N: NTg, =0

Control
1. Active constraints g, = 0.
2. Reduced gradient N,J, =0

* for the remaining inbconstrained degrees of freedom
e «self-optimizing variables»

Seems easy. But how do we handle changes in constraints?
* Because g, and N ,varies

* Originally, | thought we need a new control structure (with pairings) in each region

* Jaschke and Skogestad, «Optimal controlled variables fof’ polynomial systems». S., J. Process Control, 2012

* D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019



Feedback RTO with constraints

B. Region-based feedback solution with «direct» constraint control

sp=0 — Constraint controllers

T
g (constraints paired with ul) KKT: LU — Ju -+ A gy — 0
(fast PID-controllers)

. SPro Introduce N: NT'g, =0
MAX/ u1o PID ;JUI NT -

MIN ) J, —F
| Ju
» Selector on primal
variables (inputs) Gradient
estimation

A

A

ul u2 1‘

* Selector on primal variables (inputs)

y e Similar to selectors in ARC

* Limitation: need to pair each constraint with
an input u, may not work if many constraints

g (measured constraint)

* Jaschke and Skogestad, «Optimal controlled variables for” polynomial systems». S., J. Process Control, 2012
¢ D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019
¢ L.Bernadino and S. Skogestad, Decentralized control using selectors for optimal steady-state operation with active constraints, J. Proc. Control, 2024



Feedback RTO with constraints

Assume: Have at least as many inputs as constraints

Can them have fixed pairings between constraints and unconstrained CVs!

(with N is fixed)

Journal of Process Control 137 (2024) 103194

Contents lists available at ScienceDirect
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Decentralized control using selectors for optimal steady-state operation with %=
changing active constraints

Lucas Ferreira Bernardino, Sigurd Skogestad -

Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Scelands vei 4, Kjemiblokk 5,
101B, Trondheim, 7491, Trondelag, Norway

ARTICLE INFO ABSTRACT

Keywords: We study the optimal steady-state operation of processes where the active constraints change. The aim of this
Oprimal operation work is to eliminate or reduce the need for a real-time optimization layer, moving the optimization into the
Decentralized control

control layer by switching between appropriately selected controlled variables (CVs) in a simple way. The
challenge is that the best CVs, or more precisely the reduced cost gradients associated with the unconstrained
degrees of freedom, change with the active constraints. This work proposes a framework based on decentralized
control that operates optimally in all active constraint regions, with region switching mediated by selectors.
A key point is that the nullspace associated with the unconstrained cost gradient needs to be selected in

Selectors

accordance with the constraint directions so that selectors can be used. A main benefit is that the number
of SISO controllers that need to be designed is only equal to the number of process inputs plus constraints.
The main assumptions are that the unconstrained cost gradient is available online and that the number of
constraints does not exceed the number of process inputs. The optimality and ease of implementation are
illustrated in a simulated toy example with linear constraints and a quadratic cost function. In addition, the
proposed framework is successfully applied to the nonlinear Williams-Otto reactor case study.

L. Bernadino and S. Skogestad, Decentralized control using selectors for optimal
steady-state operation with active constraints, J. Proc. Control, 2024

CVi =g

Journal of Process Contral 137 (2024) 103194

SP=0
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SP
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=

Fig. 3. Decentralized control structure for optimal operation according to Theorem 2.
The “select”™ blocks are usually max or min selectors (see Theorem 3).
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Feedback RTO WITH CONSTRAINTS

C. Region-based MPC with switching of cost function (for general case)

Standard MPC with fixed CVs: Not optimal Proposgd: With changing cost (switched CVs)

~

-~ I -
G*, Hy T;,,g}fﬂj
\\\ ,’ J_-f-cl—————\—\—. ——————————————————
~ Real.time~ d ) R e d
_ opﬁmi?. ation. g Estimator ! ‘SLIWT- set c
- ~. | etection
Wep !
cv Region-based | alcve
! MPC | A
Supervisor | Xaue State ! i '
[ layer ’ | MPC — . .g-t ITL | MPC aug S_tate
Y | cv estimator : CVa estimator
. I
. u _____________________
U IR
| I
! Regulatory : y ' |
! control | ! Regulatory ! v
: | ! control !
l : | |
d : ! | !
— 1 Process ; PR !
: | —  Process

!

1

| I
L

Figure 1: Typical hierarchical control structure with standard setpoint-tracking

MPC in the supervisory layer. The cost function for the RTO layer is J* and Figure 2: Proposed region-based MPC structure with active set detection and

08 - aver i JMPC Wi . . o
the cost fur_u,twu fqr the MP C layer Is JEOT W‘th.m’ RTO llaycr (and thus con- change in controlled variables. The possible updates from an upper RTO layer
stant setpoints CV*?), this structure is not economically optimal when there are (y*,J* etc.) are not considered in the present work. Even with no RTO layer
changes in the active constraints. For smaller applications, the state estimator (ﬁnd :hus with constant setpoints CV"}',’ see (13) and (I3), in each active con-
may be used also as the RTO estimator. straint region), this structure is potentially economically optimal when there are

changes in the active constraints.

N 8A 8A
, CVaq= = 14
JHPE = X NICVi = CVPIG + Al A7 ea| ™ [NLHoy (14)

2
=1 |

N
MPC S 2
JHPC - Z ICVa = CVIIR, + lIAugl?, )
k=1 Ho =l Ju||G® G}

H = tu|6 (FFTY 6| 6 (P

* Bernardino and Skogestad, Optimal switching of MPC cost function for changing active constraints. J. Proc. Control, 2024



Model-free optimization:
Extremum Seeking Control (ESC) based on measuring cost

ml}n J(u,d)

Why ESC?
* Expensive to obtain model (for J): Use data-based ESC instead of model-based RTO
 May also be used on top of RTO

* «Adapt» setpoint for J, (to a nonzero bias value) to correct for model error

* Aka «modifier adaptation»

Main problems with ESC:
e Cost function J often not measured
* For chemical process J=p:F — p,P — p,Q
 need model (!) to estimate flows F, P and utility Q
* Very slow. Typically 100 times slower than process dynamics



|II

Data-based optimization: “Hill-climbing” / “Extremum seeking contro
Drive gradient J =dJ/du to zero.

Probe the Y

system
J,=0 at top of hill
Al =0

. . Observe how
Decide which AJ I

the cost
way to move

changes

V:

Estimate
Gradient Au Au
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Equivalent: Minimize cost J (go to bottom of valley)

A
J

Ju <0

e Optimal setpoint: J =0
* If Hessian J, is constant:
* J,as afunction of u is a straight line
with slope J ,
* Nice properties for feedback control of J,
* No dynamics: Pure I-controller optimal

* SIMC-rule: K, =1/(J,, T.) .,
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Classical Extremum seeking control using sinusoids

Gradient Estimation

S

JaR @QV

|

A

S+ wp,

Remove biasinJ

u Process
|-controller
_|_ - uC K| - ]u wi
) s | s + wy
Averaging
/[\
a sin wt

Multiplication trick: Draper & Li (1951)
Theory: Krstic & Wang (Automatica, 2000)

Qv

One side of optimum: Same phase
Other side: opposite phase

« Simple to implement (don’t need computer), but
« Prohibitively slow convergence for systems with slow dynamics
« Typically 100 times slower than the system dynamics ks
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More common today: Estimate Steady-state

gradient using discrete perturbations (steps)

Usually only one input. Simplest: step change in u:
fA] * Hill climbing control (Shinskey, 1967)
i * Evolutionary operation (EVOP) (1960’s)
v * NCO tracking (Francois & Bonvin, 2007)

e “Peturb and observe” = Maximum power point tracking
(MPPT) (2010’s).

N
' Au More advanced variants which may also be applied
u J to multivariable systems
* Least squares estimation
* Fast Fourier transform (Dinesh Krishnamoorthy)
A . -
I, = A_] To avoid waiting for steady state
u

 Fitting of data to ARX model (difficult to make robust)

Note: Assumes steady state ->samling (step) time > 3-10 time process time constant
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Least square Extremum seeking control

. dither ¢ Jusp —0 Extremum seeking controller : | -
| = LSE: Fit a linear mode
| Cradiont | J T -—
Ju . - \l\
: [-control [@——— estimator | J — JﬁTﬁ +m
| (LSE) < |
Buffer |
|
I N i : Using least squares fit
N Y = Ui Jeets - Jeenat I
u Controlled J
> 7ZOH—> AN (y) ol U=[u..... oy ]
Process s 0 =0 m|"
f— uq

Note: Assumes no dynamics -> samling time > 3-10 time process constant

Hunnekens et al. (2011, 2014)

f = arg min [|Y - o7 |2
to which the analytical solution is given by

0=[DTD]'dTY
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Summary extremum seeking control

Idea: Estimate the cost gradient J, from data and drive it to zero

e Common to all methods:
* Need measurement of cost J
* Must wait for steady state (except ARX method which fails frequently)
e Must assume no «fast» disturbances (while optimizing)

\j

Algorithm needs two layers on top of process:
1. Optimization layer (slowest): Drive J, to zero (may use I-controller)

2. Lower estimation layer: Estimate the local gradient J , using data
* Must wait for the process to reach steady state

* Need time scale separation between layers.
* At best this means that the optimization needs to be 10 times slower than the process.
* Often it needs to be 100 times slower.

» Useful for fast processes with settling time a few seconds

* Not useful for many chemical processes where time constant typically are several minutes
* 10 minutes * 100 = 1000 minutes = 16 hours

* Unllikely with 16 hours without disturbance
41



ARC: Research tasks

8.1. A list of specific research tasks

Here is a list of some research topics, which are important but have
received limited (or no) academic attention:

1.

o

10.

Vertical decomposition including time scale separation in hi-
erarchically decomposed systems (considering performance and
robustness)

Horizontal decomposition including decentralized control and
input/output pairing

Selection of variables that link the different layers in the control
hierarchy, for example, self-optimizing variables (CV1 in Fig. 4)
and stabilizing variables (CV2).

Selection of intermediate controlled variables (w) in a cascade
control system.’

. Tuning of cascade control systems (Figs. 9 and 10)

Structure of selector logic

. Tuning of anti-windup schemes (e.g., optimal choice of tracking

time constant, z;-) for input saturation, selectors, cascade control
and decoupling.

How to make decomposed control systems based on simple
elements easily understandable to operators and engineers

. Default tuning of PID controllers (including scaling of variables)

based on limited information
Comparison of selector on input or setpoint (cascade)

8.2. The harder problem: Control structure synthesis

The above list of research topics deals mainly with the individual
elements. A much harder research issue is the synthesis of an overal
decomposed control structure, that is, the interconnection of the simple
control elements for a particular application. This area definitely needs
some academic efforts.

One worthwhile approach is case studies. That is, to propose “good”
(= effective and simple) control strategies for specific applications, for
example, for a cooling cycle, a distillation column, or an integrated
plant with recycle. It is here suggested to design also a centralized
controller (e.g., MPC) and use this as a benchmark to quantify the per-
formance loss (or maybe the benefit in some cases) of the decomposed
ARC solution. A related issue, is to suggest new smart approaches to
solve specific problems, as mentioned in item 11 in the list above.

A second approach is mathematical optimization: Given a process
model, how to optimally combine the control elements E1-E18 to meet
the design specifications. However, even for small systems, this is a
very difficult combinatorial problem, which easily becomes prohibitive
in terms of computing power. It requires both deciding on the control
structure as well as tuning the individual PID controllers.

As a third approach, [machine learning |[may prove to be useful.
Machine learning has one of its main strength in pattern recognition,
in a similar way to how the human brain works. I have observed
over the years that some students, with only two weeks of example-
based teaching, are able to suggest good process control solutions with
feedback, cascade, and feedforward/ratio control for realistic problems,
based on only a flowsheet and some fairly general statements about
the control objectives. This is the basis for believing that machine
learning (e.g., a tool similar to ChatGPT) may provide a good initial
control structure, which may later be improved, either manually or by
optimization. It is important that such a tool has a graphical interface,
both for presenting the problem and for proposing and improving
solutions.
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I - - C I timal tralized
Present Academic control community fish pond > omplex opiimal centralize

Solution (EMPC, FL)

Simple solutions
that work (ARC, PID

FL = feedback linearization
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Future Academic control community fish pond > omplex optimal centratize

Solution (EMPC, FL)

Simple solutions
that work (SRC,PID)
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