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Tranformed inputs

Briefly on pro and cons of MPC
RTO 
ESC
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Nonlinear feedforward, decoupling and 
linearization
• Transformed inputs: Extremely simple and effective way of achieving

feedforward, decoupling and linearization
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Example decoupling: Mixing of hot (u1) and cold
(u2) water

• Want to control
y1 = Temperature T
y2 = total flow F

• Inputs, u=flowrates
• May use two SISO PI-controllers

TC
FC

• Insight: Get decoupled response with transformed inputs
TC sets flow ratio, v1 = u1/u2

FC sets flow sum, v2 = u1 + u2

• Decoupler: Need «static calculation block» to solve for 
inputs
  u1 = v1 v2 / (1+ v1)  

  u2 = v2 / (1 + v1)

T
F

u1

u2

v2=sum

v1=ratio



TCys

u1=hot
flowrate

y=
v1=ratio

u1 = v1 v2 / (1+ v1)  

u2 = v2 / (1 + v1)

y

Two SISO
controllers

Nonlinear Decoupler Process

T
F

Pairings:  
• T – v1
• F – v2

No interactions for setpoint change

v2=sum

Ts-T

Fs-F FC

Note:
• In practice u=valve position (z) 
• So must add two flow controllers

• These generate inverse by feedback

u2=cold
flowrate



TCys y=
v1=ratio

u1 = v1 v2 / (1+ v1)  

u2 = v2 / (1 + v1)

y

Two SISO
controllers

T
F

v = transformed inputs
u = flowrates
z = valve positions

In practice must add two slave flow controllers

v2=sum

Ts-T

Fs-F FC FC

FC

u2s

u2

z2

z1u1s

u1Nonlinear Decoupler 



Feedforward (and decoupling) control

• Feedforward control relies on model
• as opposed to feedback which relies mostly on data

• Feedback control: Linear model is often OK
• Feedforward control: Much less likely that linear model is OK because

of process changes and disturbances
• Here: Nonlinear feedforward control using Input transformations

based on static process model
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Input transformations



General approach: Combined Nonlinear decoupling, 
feedforward and linearization using Transformed Inputs *

• Generalization: Introduce transformed input v and use Nonlinear calculation block

Controller
Calc. block
= f-1(v,d,w) 

(static)
Process

ys

y

V

d

u y

Genaral Method*: 
Steady-state model:  y = f(u,d,w)
Select transformed input:    v = f(u,d,w)  («right-hand side» of model)
Calculation block:  Invert for given v:  u = f-1(v,d,w)  (may be replaced by slave v-controller)

w=dependent variable (flow, temperature), but treated as measured disturbance
w-variables may be used to simplify model

Transformed system becomes: y=I v («decoupled, linear, indepedent of d»)
Note: To simplify often use only «parts» of f(u,d,w) as v (because of unknown parameters etc.)

*Zotica, Alsop and Skogestad. 2020 IFAC World Congress
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Controller
Calculation

block
(static)

Process
ys

y

V

d
u y

Example: Combined nonlinear decoupling and feedforward.
Mixing of hot and cold water

Generalized ratio

Decoupler with feedforward: 



1. Th:  60->70 °C       at t = 50 s
2. Tc:  30->20 °C        at t = 100 s
3. Th

s: 40->42 °C       at t = 150 s
4. qs:  1->1.1  L/s       at t = 200 s
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Transformed MVs for decupling, linearization and disturbance rejection
Mixing of hot and cold water (static process) 
New system: T=v1 and q=v2



Alternative B: Calculation block solved by feedback (using fast slave controller Cv)

Example: Power control 

In practice (Perstorp) use only part of this: 
v=F2(T2

0 – T2) 
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(slave)



Also: Transformed outputs z

• No fundamental advantage, but can simplify input transformation
• For example, y=T, z=H (enthalpy)
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More on transformed inputs 
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MPC and RTO
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What about MPC?
• First industrial use in the 1970s
• Became common in the refining and petrochemical industry in the 1980s
• In the 1990s a bright future was predicted for MPC in all process industries (chemical, thermal power, …)
• 30 years later: We know that this did not happen
• Why? First, the performance benefits of MPC compared to ARC are often minor (if any)
• In addition, MPC has some limitations

1. Expensive to obtain model
2. Does not easily handle integral action, cascade and ratio control
3. Normally, cannot be used at startup (so need ARC anyway)
4. Can be difficult to tune. Difficult to incorporate fast control tasks (because of centralized approach)
5. Computations can be slow
6. Robustness (e.g., gain margin) handled indirectly

• Advantages of MPC
1. Very good for interactive multivariable dynamic processes
2. Coordinates feedforward and feedback
3. Coordinates use of many inputs
4. Makes use of information about future disturbances, setpoints and prices (predictive capabilities of MPC)
5. Can handle nonlinear dynamic processes (nonlinear MPC)

• What about constraints
• Not really a major advantage with MPC; can be handled well also with ARC

16
MPC = model predictive control
ARC = advanced regulatory control
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Optimal operation and constraints switching

• We have presented effective decentralized approaches for constraint
switching (MV-MV, CV-CV, MV-CV). 

• Optimal in many cases, but not in general 
• For example, may not be able to cover cases with more than one

unconstrained region ⇒ More than one self-optimizing variable

• An alternative is model-based RTO, usually based on static model

18RTO = Real-time optimization



Economic real-time optimization(RTO)
Alternative RTO approaches:

Model-based
I. Separate RTO layer (online dynamic or steady-state optimization)  

II. Feedback-optimizing control (put optimization into control layer)
• Alt.1. (Most general): Based on dual decomposition (iterate on Lagrange multipliers λ)
• Alt.2 (Tighter constraint control): Region-based with reduced gradient

Data-based
III. Hill-climbing methods = Extremum-seeking control (model free. But need to measure cost J)
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I. Conventional (commercial) steady-state RTO

Fairly common in refining and 
petrochemical industy.

Two-step approach:

Step 1. “Data reconciliation”:
• Steady-state detection
• Update estimate of d: model 

parameters, disturbances (feed), 
constraints 

Step 2. Re-optimize to find new 
optimal steady state

Data reconciliation

𝑑𝑑



Steady-state wait time

• Transient measurements cannot be used  system must “settle”

• Large chunks of data discarded

• Steady state detection issues
• Erroneously accept transient data
• Non-stationary drifts



How to avoid steady state wait time?

1. Dynamic RTO = EMPC



How to avoid steady state wait time?

2. Hybrid RTO 
Static



RTO problem

Steady-state RTO (used in Hybrid RTO):

min
𝑥𝑥,𝑢𝑢

𝐽𝐽 𝑥𝑥,𝑑𝑑,𝑢𝑢

s.t.:
0 = 𝐹𝐹 𝑥𝑥,𝑑𝑑,𝑢𝑢
0 = ℎ 𝑥𝑥,𝑑𝑑,𝑢𝑢
𝑔𝑔 𝑥𝑥,𝑑𝑑,𝑢𝑢 ≤ 0

Dynamic RTO ≡ (Economic) nonlinear MPC :

min
𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡

�
𝑡𝑡0

𝑡𝑡𝑓𝑓
𝐽𝐽 𝑥𝑥 𝑡𝑡 ,𝑑𝑑 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 𝑑𝑑𝑡𝑡

s.t.:
�̇�𝑥 𝑡𝑡 = 𝐹𝐹 𝑥𝑥 𝑡𝑡 ,𝑑𝑑 𝑡𝑡 ,𝑢𝑢 𝑡𝑡

0 = ℎ 𝑥𝑥 𝑡𝑡 ,𝑑𝑑 𝑡𝑡 ,𝑢𝑢 𝑡𝑡
𝑔𝑔 𝑥𝑥 𝑡𝑡 ,𝑑𝑑 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 ≤ 0

𝑥𝑥 𝑡𝑡0 = �𝑥𝑥0

Now we calculate not only an optimal 
point, but an optimal trajectory!’

BUT Much more complex that static RTO, 
and may not give much economic benefit



«Solving RTO-problem using PI control»

Unconstrained optimization. 
Necessary condition of optimality (NCO):

• Gradient of cost function = 0

• Ju ≡
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢
≡ ∇𝑢𝑢𝐽𝐽 = 0

II. Feedback RTO (unconstrained case)

25

Feedback RTO



IIA. Feedback RTO (unconstrained case)

D Krishnamoorthy, E Jahanshahi, S Skogestad. Feedback Real-Time Optimization Strategy Using a Novel Steady-state Gradient Estimate and Transient
Measurements. Industrial & Engineering Chemistry Research, 2019

Linearize the dynamic model

Trick, set �̇�𝑥 = 0, 𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑡𝑡 𝑔𝑔𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑔𝑔 𝑡𝑡𝑜𝑜 𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑒𝑒𝑠𝑠 𝑔𝑔𝑔𝑔𝑒𝑒𝑑𝑑𝑒𝑒𝑔𝑔𝑔𝑔𝑡𝑡:

26

Gradient estimator

Note: This is one simple way of doing the gradient estimation, but needfs dynamic model (Kalman Filter)

Kalman Filter

Feedback RTO



Here is another Static gradient estimation:
Based on self-optimizing control. Very simple and works well!

From «exact local method» of self-optimizing control:

• Bernardino and Skogestad, Optimal measurement-based cost gradient estimate for real-time optimization, Comp. Chem. Engng., 2024  



Constrained optimization problem

Solution: Turn into unconstrained optimization problem  using Lagrange multipliers

minu,λ L 
u = primal variables = inputs
λ ≥ 0 = dual variables = Lagrange multipliers = shadow prices

Necessary conditions of optimality (KKT-conditions)

J

(complementary condition)

28

J

With constraints



A. Primal-dual control based on KKT conditions: Feedback solution
that automatically tracks active constraints by adjusting Lagrange multipliers (= shadow prices = 
dual variables) λ

• D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, J. Process Control 97 (2021) 72–83,
• R. Dirza and S. Skogestad . Primal–dual feedback-optimizing control with override for real-time optimization. J. Process Control, Vol. 138 (2024), 103208.

Process

Unconstrained
optimization

(nu PID-controllers)
Gradient 

estimation

Constraint control
(nc slower PI/I-controllers)

MAX0

y

g (measured constraint)

g (measured constraint)
SP=0

SP=0

u

d

Primal-dual feedback control.
• Makes use of «dual decomposition» of 

KKT conditions
• Selector on dual variables λ
• Problem: Constraint control using dual 

variables is on slow time scale (upper
layer)

• Can be fixed using override at bottom of 
hiearchy (Dirza)

• Problem 2: Single-loop PID control in lower
layer (Lu=0) may not be possible for coupled
processes so may need to use Solver.

Dual variables λ

Primal variables u

Inequality constraints: 𝜆𝜆 ≥ 0

Feedback RTO with constyraints

KKT:



Alternative: Dual composition with optimization/solver for 
computing u (primal variables) 

Process

Unconstrained
optimization

(nu PID-controllers or solver)
Gradient 
estimator

Constraint control
(nc slower PI/I-controllers)

MAX0

y

g (measured constraint)

g (measured constraint)
SP=0

SP=0

u

d

Dual variables

Primal variables

Alt. Use solver here

Filter

Feedback RTO

• May need to add filter to avoid instability



Alternative: Direct control of constraints

31

Introduce 𝑁𝑁:  𝑁𝑁𝑇𝑇𝑔𝑔𝑢𝑢 = 0
KKT:

Control
1. Active constraints gA = 0.
2. Reduced gradient  𝑁𝑁𝐴𝐴

𝑇𝑇𝐽𝐽𝑢𝑢 = 0
• for the remaining inbconstrained degrees of freedom
• «self-optimizing variables»

• Jaschke and Skogestad, «Optimal controlled variables for ̈ polynomial systems». S., J. Process Control, 2012
• D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019

Seems easy. But how do we handle changes in constraints?
• Because gA and 𝑁𝑁𝐴𝐴 varies
• Originally, I thought we need a new control structure (with pairings) in each region



B. Region-based feedback solution with «direct» constraint control

Process

Gradient 
estimation

Constraint controllers
(fast PID-controllers)

MAX/
MIN

y

g (measured constraint)

g (constraints paired with u1)
SP=0

u1

d

u2

Ju1
u1

(see next slide)

Ju2
PID

u1o
SP=0

• Jaschke and Skogestad, «Optimal controlled variables for ̈ polynomial systems». S., J. Process Control, 2012
• D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019
• L. Bernadino and S. Skogestad, Decentralized control using selectors for optimal steady-state operation with active constraints, J. Proc. Control, 2024

• Selector on primal
variables (inputs)

Introduce 𝑁𝑁:  𝑁𝑁𝑇𝑇𝑔𝑔𝑢𝑢 = 0
KKT:

Feedback RTO with constraints

• Selector on primal variables (inputs)
• Similar to selectors in ARC
• Limitation: need to pair each constraint with

an input u, may not work if many constraints



L. Bernadino and S. Skogestad, Decentralized control using selectors for optimal 
steady-state operation with active constraints, J. Proc. Control, 2024

33

Feedback RTO with constraints

Assume: Have at least as many inputs as constraints
Can them have fixed pairings between constraints and unconstrained CVs!
(with N is fixed)



C. Region-based MPC with switching of cost function (for general case)

Standard MPC with fixed CVs: Not optimal Proposed: With changing cost (switched CVs)

• Bernardino and Skogestad, Optimal switching of MPC cost function for changing active constraints. J. Proc. Control, 2024  

Feedback RTO WITH CONSTRAINTS



Model-free optimization:
Extremum Seeking Control (ESC) based on measuring cost J 

Why ESC? 
• Expensive to obtain model (for J): Use data-based ESC instead of model-based RTO
• May also be used on top of RTO 

• «Adapt» setpoint for Ju (to a nonzero bias value) to correct for model error
• Aka «modifier adaptation»

Main problems with ESC:
• Cost function J often not measured

• For chemical process J=pFF – pPP – pQQ
• need model (!) to estimate flows F, P and utility Q

• Very slow. Typically 100 times slower than process dynamics

35

min
𝑢𝑢
𝐽𝐽(𝑢𝑢,𝑑𝑑)



Data-based optimization: “Hill-climbing” / “Extremum seeking control”
Drive gradient Ju=dJ/du to zero.

Probe the
system

Observe how 
the cost 
changes

Estimate 
Gradient

Decide which 
way to move

∆𝐽𝐽 = 0

∆𝐽𝐽

∆𝑢𝑢 ∆𝑢𝑢
𝑢𝑢

𝐽𝐽

Ju=0 at top of hill

36



Equivalent: Minimize cost J (go to bottom of valley)

uopt

Ju

0

• Optimal setpoint: Ju=0
• If Hessian Juu is constant: 

• Ju as a function of u is a straight line 
with slope Juu

• Nice properties for feedback control of Ju
• No dynamics: Pure I-controller optimal

• SIMC-rule: KI = 1/(Juu τc) 37



Classical Extremum seeking control using sinusoids

Gradient EstimationI-controller

Multiplication trick: Draper & Li (1951)
Theory: Krstic & Wang (Automatica, 2000)

Processu

uc

J

• Simple to implement (don’t need computer), but
• Prohibitively slow convergence for systems with slow dynamics
• Typically 100 times slower than the system dynamics !

KI

Averaging Remove bias in J

One side of optimum: Same phase
Other side: opposite phase

38



More common today: Estimate Steady-state
gradient using discrete perturbations (steps)

J

u ∆𝑢𝑢

∆𝐽𝐽

𝐽𝐽𝑢𝑢 =
Δ𝐽𝐽
Δ𝑢𝑢

Usually only one input. Simplest: step change in u:
• Hill climbing control (Shinskey, 1967)
• Evolutionary operation (EVOP) (1960’s)
• NCO tracking (Francois & Bonvin, 2007)
• “Peturb and observe” = Maximum power point tracking 

(MPPT) (2010’s).

More advanced variants which may also be applied 
to multivariable systems

• Least squares estimation
• Fast Fourier transform (Dinesh Krishnamoorthy)

To avoid waiting for steady state 
• Fitting of data to ARX model (difficult to make robust)

Note: Assumes steady state -> samling (step) time > 3-10 time process time constant
39



Least square Extremum seeking control

LSE: Fit a linear model

Using least squares fit

Hunnekens et al. (2011, 2014)

Note: Assumes no dynamics -> samling time > 3-10 time process constant

40



Summary extremum seeking control
Idea: Estimate the cost gradient Ju from data and drive it to zero

• Common to all methods: 
• Need measurement of cost J
• Must wait for steady state (except ARX method which fails frequently)
• Must assume no «fast» disturbances (while optimizing) 

Algorithm needs two layers on top of process:
1. Optimization layer (slowest): Drive Ju to zero (may use I-controller)
2. Lower estimation layer: Estimate the local gradient Ju using data 

• Must wait for the process to reach steady state

• Need time scale separation between layers. 
• At best this means that the optimization needs to be 10 times slower than the process. 
• Often it needs to be 100 times slower.

• Useful for fast processes with settling time a few seconds
• Not useful for many chemical processes where time constant typically are several minutes

• 10 minutes * 100 = 1000 minutes = 16 hours
• Unllikely with 16 hours without disturbance

41



42

ARC: Research tasks



Complex optimal centralized 
Solution (EMPC, FL)

Sigurd

Present Academic control community fish pond

Simple solutions
that work (ARC, PID)

43
FL = feedback linearization



Complex optimal centralized 
Solution (EMPC, FL)Future Academic control community fish pond

Simple solutions
that work (SRC,PID)
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