2. Self-optimizing control Theory



Outline

Skogestad procedure for control structure design:

|.  Top Down
« Step S1: Define operational objective (cost) and constraints
» Step S2: Identify degrees of freedom and optimize operation for disturbances

« Step S3: Implementation of optimal operation
— Control active constraints
— Control self-optimizing variables for unconstrained, c=Hy

« Step S4: Where set the production rate? (Inventory control)
[I. Bottom Up
« Step S5: Regulatory control: What more to control (secondary CV'’s)?
« Step S6: Supervisory control
» Step S7: Real-time optimization



Step S3: Implementation of optimal operation

« Optimal operation for given d:

min J(u, x, d)
u

subject to:

: . — uopt(d)
Model equations: fu,x,d) =0
Operational constraints: gu,x,d) <0

Problem: Usally cannot keep u,,; constant because disturbances d change

How should we adjust the degrees of freedom (u)?
What should we control?




“Optimizing Control”
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“Self-Optimizing Control”

Self-optimizing control:

Constant setpoints _ £

give acceptable loss

What should we control?
(What is ¢c? What is H?)

o —m=

Measurement y
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c=Hy
H: Nonsquare matrix
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* Usually selection matrix of 0’s and some 1’s (measurement selection)
« Can also be full matrix (measurement combinations)



Self-optimizing control

Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values for the
controlled variables

C, = constant
OPsiprzer
1 Cost J
c CL_\: constant
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(b) Flat optimum: Imple- (c) Sharp optimum: Sensi-

mentation easy tive to implementation erros



Optimal operation - Runner

Recap: marathon runner

ODsinrer select one measurement
T ON /
Cs
J=T
Measurement
Feedback c = heart rate combination
Controller [¢ [:H;I
1
u ) ! 4>
Yin C.., c=heart rate
[ Opt
d S5 | <
ﬁﬁ y n

« CV = heart rate is good “self-optimizing” variable
« Simple and robust implementation
» Disturbances are indirectly handled by keeping a constant heart rate

« May have infrequent adjustment of setpoint (c)



Optimal operation

Cost J

opt

>

opt Controlled variable ¢



Unconstrained degrees of freedom

The ideal “self-optimizing” variable
Is the gradient, J,
c = AJ/Au = Ju
— Keep gradient at zero for all disturbances (c = J ,=0)

— Problem: Usually no measurement of gradient

cost J

<0 Y

*1.J. Halvorsen, S. Skogestad, Indirect on-line optimization through setpoint control, in: AIChE 1997 Annual Meeting, Los Angeles; paper 194h.
*|.J. Halvorsen, S. Skogestad, J.C. Morud, V. Alstad, Optimal selection of controlled variables, Industrial & Engineering Chemistry Research 42 (14) (2003) 3273-3284



min

A
J \
J>J :

min

J<J

min

Unconstrained optimum: NEVER try to
control a variable that reaches max or min at
the optimum

— In particular, never try to control directly the cost J
— Assume we want to minimize J (e.g., J =V = energy) - and we
make the stupid choice os selectingCV =V =J

* Then setting J < J,,;;,: Gives infeasible operation (cannot meet
constraints)

« and setting J > J,;.: Forces us to be nonoptimal (two steady
states: may require strange operation)



Measurements or mesurement combinations

Ideally: c = J,
In practice: ¢ = Hy
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Optimal measurement combination

AN

Ac=h1Ay; + hpAys +--- = HAy

« Candidate measurements (y): Include also inputs u
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No measurement noise (nY=0)

Nullspace method

Theorem
Given a sufficient number of measurements (n, > n, + ny) and no measurement

noise, select H such that
HF =0
where
Yo"
od
Controlling ¢ = Hy to zero yields locally zero loss from optimal operation.

F:

Proof: Given dy°Pt = F dd, and ¢ = Hy:
dc°Pt = H 9y°Pt = HF dd

To make dc¢°Pt = 0 for any dd, we must have HF = 0.

V. Alstad, S. Skogestad, Null space method for selecting optimal measurement combinations as controlled variables,
Industrial & Engineering Chemistry Research 46 (2007) 846-853.
Jaschke, J., Cao, Y., & Kariwala, V. (2017). Self-optimizing control-A survey. Annual Reviews in Control, 43, 199-223.



Nullspace method gives J =0

Proof:
Ju = JuuAu + JygAd = []uu]ud] [2;]
by =16 61yl = G [l = [aal =G5

Formula for F:

PP = Lo DuOPE + [ gAd = 0 = Au®Pt = —J1] 1 Ad

5 opt
AvOPt = G Au =G [ ]uu]ud] Ad
Y Y| ad '

> F =G, [_]J?ljud]

Let H = [Ju JualG, . We can verify that HF = 0. Therefore, J,, =
[Juw JualGy Ay = HAy = Ac, and thus controlling ¢ (Ac = 0) leads
toJ, =0.

Proof. Appendix B in: Jaschke and Skogestad, "NCO tracking and self-optimizing control in the context of
real-time optimization”, Journal of Process Control, 1407-1416 (2011)



Nullspace method (HF=0) gives J, =0

Proof (constant d):

Ju(ua d) = Ju(uopt(d): d)J"‘Juu - (u — Uopt)
=0

U — Uopt = (HGy)il(C - Copt)

Here: ¢ — copr = Ac — Acypt

where we have introduced deviation variables
around a nominal optimal point (¢*,d*) (where
ct = Copt(d‘*))

Assume perfect control of ¢ (no noise): Ac =20
Optimal change: Acoy = HAyopr = HFAd
Gives: Jy = —Juu(HGY) " YHF Ad

= HF = 0 gives J, = 0 for any disturbance
Ad

Proof. Appendix B in:  Jaschke and Skogestad, "NCO tracking and self-optimizing control in the context of real-time
optimization”, Journal of Process Control, 1407-1416 (2011)



Example. Nullspace Method for
Marathon runner

u = power, d = slope [degrees]
y4 = hr [beat/min], y, = v [m/s]

F = dyopddd = |
H=[hy hj]
HF=0 - h,f,+h,f,=0.25h,-0.2h,=0
Choose h; =1 - h,=0.25/0.2=1.25

iy

Conclusion: c = hr+1.25 v
Control ¢ = constant - hr increases when v decreases (OK uphill!)



Marathon runner: Exact local method

F =205l wa= 1wy <[y 3l =[]

025 1 0
V= [FWa Wyl =25 o 0

H=6"xY"D15H=[0989 1.009]

Normalized H1 =D*H= [1 1.02]
Conclusion: c=hr+1.02 v

» Before (nullspace method): c =hr+1.25v
* Note: Gives same as nullspace when W, is small



Extension: "Exact local method"
(with measurement noise)

ming || Jot2(HGY) " H [FWy W] |5

Y

» General analytical solution (“full” H):

H=ag¥!(yyT)-1

* Nodisturbances (W4=[]) + same noise for all measurements (W,,=Y = I):
Optimal is H=GYT (“control sensitive measurements”)
Proof: Use analytic expression
*  No noise (W, =0): Cannot use analytic expression, but optimal is clearly
HF = 0 (Nullspace method)

Assumes enough measurements: #y > #u + #d
If “extra” measurements (>) then solution is not unique

V. Alstad, S. Skogestad, E.S. Hori, Optimal measurement combinations as controlled variables, Journal of Process Control 19 (1) (2009) 138-148.
Jaschke, J., Cao, Y., & Kariwala, V. (2017). Self-optimizing control-A survey. Annual Reviews in Control, 43, 199-223.



p: HF=0 -> copt=0 (Nullspace method)




Obtaining F

F is defined as the gain matrix from the disturbances to the optimal
measurements - Ay°Pt = F Ad

Brute force method:

 Foreverydisturbance d;, i =1, ...,n4:
— Perturb the system with d; = d; + Ad;, Ad; small
— Reoptimize the system = obtain change in measurements Ay°Pt!
— Obtain i-th column of F: F; = Ay°Ptt /A4,

 Return F



Linearization method for F

F can also be obtained through a linearized state-space model:
Ay = GYAu + Gy Ad

]u(u* + Ay, d” + Ad) = u t Juubu + Juqgdd =0
= Au®Pt = —J i uaAd

Ay°Pt = GYAuPt + Gy Ad = (—GY ]t ]ua + G ) Ad

F=-G"3 ua+G)




Toy Example.

J = (u— d)?
ny = 1 unconstrained degrees of freedom Single measurements
Ly = E O__(M)Z
Alternative measurements: % (HG)!
M=]J2 (HGY)''HY
=0.1(u—d uu =
) ( ) Y = [FWd Wny]'F = _Gy]m}]ud + Gg
yo = 20u
y3 = 10u — 5d . Exact evaluation of loss:
Yg = u Lwc,l =100
Scaled such that: Lrpe,2 = 1.0025
. , Lye3 =0.26
|d| <1, |n;| < 1|, i.e. all y;'s are +1 I
. . . 4= .
Nominal operating point: e
d=0= Uopt = 0, Yopt = 0] Here: Wy = 1, Wy, = 1, Jyy = 2,Jyq = —2,
H ory;: HGY = 0.1, HG) = —0.1,F = 0,HY = LM =+2-10- vwc:%i 2 =
What variable ¢ should we control? o a0 = 201G~ 01 = 20V 2 0 T /30T = 0025

Fory, HGY = 10,HGY = —5,F = —=15,HY =[5 1, M =VZ =[5 1], Lyc =+ & (M)? = 0.26
Y3 a 10 2

Reference: I. J. Halvorsen, S. Skogestad, J. Morud and V. Alstad, “Optimal selection of controlled
variables”, Industrial & Engineering Chemistry Research, 42 (14), 3273-3284 (2003).



Toy Example. Exact local method.
Combine all measurements

J = (u—d)?

_ . Y = [FWy Wy,
nqy = 1 unconstrained degrees of freedom

F=—-G"pt)ua + G

Uopt — d
P H=(YY' )1 Gy
Alternative measurements:
y1 = 0.1(u — d) Here: Wy = 1, Wy, =1 (4x4), Juu = 2,Jua = —2,
Yo = 20u G¥=10.12010 1], 6}=[-010 —5 0],
F=1[02051],
y3 = 10u — 5d 0 1000
_ y— |200100
Yys =u “|50010
Scaled such that: (yy;)o-?:m
ld| <1, |n;| <1, i.e. all y;'s are £1
. . . 1.0000 0 0 0
Nominal operating point: 0 00632 -0.2342 -0.0468
— — — 0 -0.2342 09415 -0.0117
d=0= uODt - anODt =0 0 -0.0468 -0.0117 0.9977

What variable ¢ should we control?
H=(YY')1 Gy = [0.1000 -1.1241 47190 -0.0562]

Normalized to have 2-norm = 1.

H= [00206 -02317 09725 -0.0116]

Reference: V. Alstad et al. , Journal of Process Control 19 (2009) 138-148



Toy Example: Nullspace method (not
unique)

Y1

c=Hy=(h h bhs h4)(y2) = h1y1 + hoyo + h3ayz + hayas

Y3
Ya
B1l. Nullspace method
Neglect measurement error (n = 0):
HF =0
Sensitivity matrix
Ayopt = FAd;F=(0 20 5 1)
To find H that satisfies HF' = 0 must combine
at least two measurements:
ny>nyt+ng=1+1=2



Toy Example. Nullspace method with 2
measurements

C. Optimal combination
Need two measurements. Best combination is

Y2 and Y3

(2)=(2 %)(2): o=ses

Optimal sensitivity:

Optimal combination:

20
5

Select hy = 1. Get ho = —20hy1/5 = —4, so

HF=OZ>(h1 h2)< >=O:>20h1—|—5h2=0

Copt = Y2 — 4y3

Check: ¢ = yo — 4ys = 20u — 40u + 20d = —20(u — d)
(OK!)



Example where nullspace method «fails»

u= reflux
d=feed rate F =[00.2]
Wd=1*eye(1)
Wn=1*eye(2)
_ 2 Gy =[0.01 1]
‘J - (U-d) ] HO=null(F'); HO=HO'/HO(1) % nullspace method
y1=0.01(u-d) % temperature product (very small gain!) Y = [F*Wd Wn],
y2 = u-0.8d % tempereture inside column HT=Gy "inv(¥ °Y)
H=H1/H1(1) % exact local method
uopt =d
ylopt=0
y2opt =0.2d

Nullspace: HO=[1 0] % Not good! Use only y1
Exact local method: H=[1 96] % Use y2 instead



Conclusion: GOOD “SELF-OPTIMIZING” CV =c

1. Optimal value c,,; is constant (independent of disturbance d):

- Want small optimal sensitivity: F. = AZ‘Z” = HF

2. cis “sensitive” to input u (MV) (to reduce effect of measurement noise)
> Want large gain G = HGY = 25

Au

(Equivalently: Optimum should be flat!)

Good BAD

L[V

C [}

(b) Flat optimum: Imple- (c) Sharp optimum: Sensi-
mentation easy tive to implementation erros



New 2024: Optimal steady-state operation using gradient estimate

min, J(u,d)

s.t. g(u,d) = 0 (constraints)
« J = economic cost [$/s]
* Unconstrained case: Optimal to keep gradient J, = 6J/ou =0

cost J

 Constrained case: KKT-conditions: Lu = Ju + A gy —



Want tight control of active constraints for economic reasons

— Active constraint: g,=0
— Tight control of g, minimizes «back-off»

« How can we identify and control active constraints?
« How can we switch constraints?
« How do find the correct gradient when the constraints change?



l. Primal-dual control based on KKT conditions: Feedback
solution that automatically tracks active constraints by adjusting Lagrange
multipliers (= shadow prices = dual variables) A

Ly,=J,+Xg,=0

Constraint control g (measured constraint)

SP=0 (n, slower F’I)/l- Inequality constraints: A = 0
controllers
0 MAX
)\ Dual variables A
Uncgn§tra!ned 7 Primal-dual feedback control.
SP=0 optimization v Gradient « Makes use of «dual
(n, P|D'00f}:fr0”er3) Yu estimation decomposition» of KKT conditions
Ly=Jy+ X g.=0 « Selector on dual variables A

* Problem: Constraint control using
dual variables is on slow time
d y scale

u' Primal variables u

g (measured constraint)

e D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, , Primal-dual feedback-optimizing control with override for real-time
* R.Dirza andS. Skogestad . Primal—dual feedback-optimizing control with override for real-time optimization. J. Process Control, Vol. 138 (2024), 103208. ﬁ?ffmiZ*‘f‘Z’_" N



ll. Region-based feedback solution with «direct» constraint
control (for case with more inputs than constraints)

SP=0 Constraint controllers

. T
g (constraints paired with u1) KKT L’u — Ju + A gy, = 0
(fast PID-controllers)

SP=0 ] T _

% P J Introduce N: N'g, =0
MAX/ Pl | NT | (changes!

MIN D |y, ( ges) Control

Ju 1. Reduced gradient N7J, =0
* «self-optimizing variables»

 Selector on primal

variables (inputs) Gradient _ .
estimation 2. Active constrints g, = 0.
u’ u2
d y
g (measured constraint) & [

» Jaschke and Skogestad, «Optimal controlled variables for“polynomial systems». S., J. Process Control, 2012 -
* D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019 T g SSleclot OTOPHRE steayista opstet fonwith 1
» Bernardino and Skogestad, Decentralized control using selectors for optimal steady-state operation with changing active constraints, J. Process Control, Vol. 137, 2024



Static gradient estimation:
Very simple and works well!

d

Lucas Ferreira Bernardino

Optimal operation with changing : K G’ N\ - N
control objectives

Cm

fu = H(_\‘m - _'1"*) -

Doctoral thesis

From «exact local method» of self-optimizing control:

Trondheim, May 2024

Norwegian University of Science and Technology

— I
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Optimal measurement-based cost gradient estimate for feedback real-time
optimization
Lucas Bernardino, Sigurd Skogestad

o ant Te

Department of Cheical Enginering, Norwegian

» Bernardino and Skogestad, Optimal measurement-based cost gradient estimate for real-time optimization, Comp. Chem. Engng., 2024

Uniersy of Scence and Technology (NTNU), Trondheim, Norway



lll. Region-based MPC with switching of cost function (for general case)

Standard MPC with fixed CVs: Not optimal Proposed: With changing cost (switched
CVs)--

Gg,\m) .:':\ %\*575
S ~ - N _ J‘_ﬂ—*{i 77777 e
Real-timte” d ) - - d
_l apfimization] Estimator ! ALUVC. set ¢
- S~ | detection
cye® . |
Region-based sp
| A, | CV,
: MPC : A
SUPIL-TY !\:nry ! NP Xaug Smlc ; MPC Kaug State
ayer | cv estimator | CVa estimator
! |
5 i e SR
u
A D
| | |
] Regulatory ! y ‘ !
| control | } Regulatory ! y
! J } } control .
| [ , :
o | : | J !
— 1 Process ‘ 4 !
: : — = Process

Figure 1: Typical hierarchical control structure with standard setpoint-tracking
MPC in the supervisory layer. The cost function for the RTO layer is J° and

. . v SMPC sk Figure 2: Proposed region-based MPC structure with active set detection and
the cost function for the MPC layer is J . With no RTO layer (and thus con-

change in controlled variables. The possible updates from an upper RTO layer

stant setpoints CV*P), this structure is not economically optimal when there are (v*,J* etc.) are not considered in the present work. Even with no RTO layer
. . . . . . S N " h "

changes in the active constraints. For smaller applications, the state estimator (and thus with constant setpoints CV':{,' see (@) and (13), in each active con-

may be used also as the RTO estimator. straint region), this structure is potentially economically optimal when there are

changes in the active constraints.

JMPC = § ICVi = CVPI2, + | Aull . ; Clea|  |NgH
241 o 1Rkl TP = N ICVA - CVRIR,, + A, Al IAalioy

k=1 Hy = IJuu Judl |va

ot

Journal of Process Control
» Bernardino and Skogestad, Optimal switching of MPC cost function for changing active constraints. J. Proc. Control, 2024 c E




