Part 1. Plantwide process control «Control architectures» Pa**rt 1.
Piantwide
«Control
Sigurd Skogestad**

Plantwide control

Introduction

- Objective: Put controllers on flow sheet (make P&ID)
- Two main objectives for control: Longer-term economics (CV1) and shorterterm stability (CV2)
- Regulatory (basic) and supervisory (advanced) control layer

Optimal operation (economics)

- Define cost J and constraints
- Active constraints (as a function of disturbances)
- Selection of economic controlled variables (CV1). Self-optimizing variables.

How can we design a control system for a complete chemical plant?

Where do we start?

What should we control? And why?

How we design a control system for a complete chemical plant?

- Where do we start?
- What should we control? and why?
- etc.
- etc.

Control system structure*

Alan Foss ("Critique of chemical process control theory", AIChE Journal,1973):

The central issue to be resolved ... is the determination of control system structure. Which variables should be measured, which inputs should be manipulated and which links should be made between the two sets?*

*Current terminology: Control system architecture

Plantwide control = Control structure design

- *Not* the tuning and behavior of each control loop…
- But rather the *control philosophy* of the overall plant with emphasis on the *structural decisions:*
	- Selection of controlled variables ("outputs")
	- Selection of manipulated variables ("inputs")
	- Selection of (extra) measurements
	- Selection of control **configuration** (structure of overall controller that interconnects the controlled, manipulated and measured variables)
	- Selection of controller type (LQG, H-infinity, PID, decoupler, MPC etc.)

QUIZ

What are the three most important inventions of process control?

- Hint 1: According to Sigurd Skogestad
- Hint 2: All were in use around 1940

SOLUTION

- 1. PID controller, in particular, I-action
- 2. Cascade control
- 3. Ratio control

Main objectives of a control system

1. Economics: Implementation of acceptable (near-optimal) operation

2. Regulation: Stable operation

ARE THESE OBJECTIVES CONFLICTING?

- Usually NOT
	- Different time scales
		- Stabilization \rightarrow fast time scale
	- Stabilization doesn't "use up" any degrees of freedom
		- Reference value (setpoint) available for layer above
		- But it "uses up" part of the time window (frequency range)

How to put optimization into the control layer?

Optimal operation

General approach: minimize cost / maximize profit, subject to satisfying constraints (product quality, environment, resources)

Mathematically,

$$
\min_{u} J(x, u, d)
$$

s.t. $\dot{x} = f(x, u, d)$,
 $h(x, u, d) = 0$,
 $g(x, u, d) \le 0$.

Optimal operation (in theory)

Procedure:

- Obtain model of overall system
- Estimate present state
- Optimize all degrees of freedom

Problems:

- Model not available
- Optimization is complex
- Not robust (difficult to handle uncertainty)
- Slow response time

Engineering systems

- Most (all?) large-scale engineering systems are controlled using hierarchies of quite simple controllers
	- Large-scale chemical plant (refinery)
	- Commercial aircraft
- 100's of loops
- Simple components:

on-off + PI-control + nonlinear fixes + some feedforward

Two fundamental ways of decomposing the controller

- Vertical (hierarchical; cascade)
- Based on time scale **separation**
- Decision: Selection of CVs that connect layers

- Horizontal (decentralized)
- Usually based on distance
- Decision: Pairing of MVs and CVs within layers

In addition: Decomposition of controller into smaller elements (blocks): Feedforward element, nonlinear element, estimators (soft sensors), switching elements

Time scale separation: Control* layers

Two objectives for control: Stabilization and economics

• **Supervisory ("advanced") control layer**

Tasks:

- Follow set points for CV1 from economic optimization layer
- Switch between active constraints (change CV1)
- Look after regulatory layer (avoid that MVs saturate, etc.)
- **Regulatory control (PID layer):**
	- Stable operation (CV2)

*My definition of «control» is that the objective is to track setpoints **PROCESS**

«Advanced» control

- Advanced: This is a relative term
- Usually used for anything than comes in addition to (or in top of) basic PID loops
- Mainly used in the «supervisory» control layer
- Two main options
	- **Standard «Advanced regulatory control» (ARC) elements**
		- Based on decomposing the control system
			- Cascade, feedforward, selectors, etc.
		- This option is preferred if it gives acceptable performance
	- **Model predictive control (MPC)**
		- Requires a lot more effort to implement and maintain
		- Use for interactive processes
		- Use with known information about future (use predictive capanulities) PROCESS

Combine control and optimization into one layer? EMPC: Economic model predictive "control"

 $J_{EMPC} = J + J_{control}$ Penalize input usage, $\mathsf{J}_\mathsf{control} = \Sigma \Delta u_i^2$

NO, combining layers is generally not a good idea! (the good idea is to separate them!)

One layer (EMPC) is optimal theoreretically, but

- Need detailed dynamic model of everything
- Tuning difficult and indirect
- Slow! (or at least difficult to speed up parts of the control)
- Robustness poor
- Implementation and maintainance costly and time consuming

Typical economic cost function:

 $J [\frac{6}{s}] = \text{cost feed} + \text{cost energy} - \text{value products}$

What about «conventional» RTO and MPC?

- Yes, it's OK
- Both has been around for more than 50 years (since 1970s)
	- but the expected growth never came
- MPC is still used mostly in large-scale plants (petrochemical and refineries).
- MPC is far from replacing PID as some expected in the 1990s.
- But plants need to be run optimally:

⇒ Need something else than conventional RTO/MPC!

Alternative solutions for advanced control

- Would like: Feedback solutions that can be implemented with minimum need for models
- **Machine learning?**
	- Requires a lot of data, not realistic for process control
	- And: Can only be implemented after the process has been in operation
- **"Classical advanced regulatory control" (ARC) based on single-loop PIDs?**

– YES!

- Extensively used by industry
- Problem for engineers: Lack of design methods
	- Has been around since 1930's
	- But almost completely neglected by academic researchers
- Main fundamental limitation: Based on single-loop (need to choose pairing)

ARC = Advanced regulatory control

Optimal operation and control objectives: What should we control?

Outline

Skogestad procedure for control structure design:

- I. Top Down (analysis)
	- Step S1: Define operational objective (cost) and constraints
	- Step S2: Identify degrees of freedom and optimize operation for disturbances
	- Step S3: Implementation of optimal operation
		- $-$ What to control? ($CV1$) (self-optimizing control)
	- Step S4: Where set the production rate (TPM)? (Inventory control)
- II. Bottom Up (design)
	- Step S5: Regulatory control: What more to control (CV2)?
	- Step S6: Supervisory control
	- Step S7: Real-time optimization

Step S1. Define optimal operation (economics)

- What are the ultimate goals of the operation?
- Typical cost function*:

J = cost feed + cost energy – value products

*No need to include fixed costs (capital costs, operators, maintainance) at "our" time scale (hours) Note: J=-P where P= Operational profit

Example: distillation column

- Distillation at steady state with given p and $F: N=2$ DOFs, e.g. L and V (u)
- **Cost to be minimized (economics)**

• Optimal operation: Minimize J with respect to steady-state DOFs (u)

Outline

Skogestad procedure for control structure design:

- I. Top Down
	- Step S1: Define operational objective (cost) and constraints
	- Step S2: Identify degrees of freedom and optimize operation for disturbances
	- Step S3: Implementation of optimal operation
		- ‒ What to control? (primary CV's) (self-optimizing control)
	- Step S4: Where set the production rate? (Inventory control)
- II. Bottom Up
	- Step S5: Regulatory control: What more to control (secondary CV's)?
	- Step S6: Supervisory control
	- Step S7: Real-time optimization

Step S2. Optimize

(a) Identify degrees of freedom (b) Optimize for expected disturbances

- Need good model, usually steady-state
- Optimization is time consuming! But it is offline
- Main goal: Identify ACTIVE CONSTRAINTS
- A good engineer can often guess the active constraints

Step S2a: Degrees of freedom (DOFs) for operation

NOT as simple as one may think!

To find all operational (dynamic) degrees of freedom:

- Count valves! (N_{values})
- "Valves" also includes adjustable compressor power, etc. Anything we can manipulate!

BUT: not all these have a (steady-state) effect on the economics

Steady-state degrees of freedom (DOFs)

IMPORTANT!

DETERMINES THE NUMBER OF VARIABLES TO CONTROL!

• **No. of primary CVs = No. of steady-state DOFs**

Methods to obtain no. of steady-state degrees of freedom (N_{ss}) :

- 1. Equation-counting
	- N_{ss} = no. of variables no. of equations/specifications
	- Very difficult in practice
- **2. Valve-counting (easier!)**
	- $N_{ss} = N_{values} N_{0ss} N_{species}$
	- **N**_{valves}: include also variable speed for compressor/pump/turbine
	- **N**_{specs}: Fixed variables (which are not later included in constraints)
	- N_{0ss} = variables with no steady-state effect
		- **Inputs/MVs with no steady-state effect (e.g. extra bypass)**
		- **Outputs/CVs with no steady-state effect that need to be controlled (e.g., liquid levels**)
- 3. Potential number for some units (useful for checking!)
- 4. Correct answer: Will eventually find it when we perform optimization

CV = controlled variable

Example: typical distillation column

***N_{0v}** : no. controlled variables (liquid levels) with no steady-state effect

Step S2b: Optimize for expected disturbances

• What are the optimal values for our degrees of freedom u (MVs)?

 $J = cost feed + cost energy - value products$

• Minimize J with respect to u for given disturbance d (usually steady-state): $\min_{\mathcal{U}} f(x, u, d)$ $\mathfrak u$

subject to:

Model equations : $\dot{x} = f(x, u, d) = 0$ Operational constraints: $g(x, u, d) \leq 0$

OFTEN VERY TIME CONSUMING

- Commercial simulators (Aspen, Unisim/Hysys) are set up in "design mode" and often work poorly in "operation (rating) mode".
- Optimization methods in commercial simulators often poor
	- We can use Matlab or even Excel "on top"

…. BUT A GOOD ENGINEER CAN OFTEN GUESS THE SOLUTION (active constraints)

Outline

Skogestad procedure for control structure design:

- I. Top Down
	- Step S1: Define operational objective (cost) and constraints
	- Step S2: Identify degrees of freedom and optimize operation for disturbances
	- Step S3: Implementation of optimal operation
		- ‒ What to control? (primary CV's) (self-optimizing control)
	- Step S4: Where set the production rate? (Inventory control)
- II. Bottom Up
	- Step S5: Regulatory control: What more to control (secondary CV's)?
	- Step S6: Supervisory control
	- Step S7: Real-time optimization

Step S3. Implementation of optimal operation

- Now we have found the optimal way of operation. How should it be implemented?
- **What to control?** (primary CV's)
	- 1. Active constraints
	- 2. Self-optimizing variables (for unconstrained degrees of freedom)

Optimal operation of runner

- Cost to be minimized: $J = T$ (total time)
- One degree of freedom: $u = power$
- What should we control?

1. Sprinter case

- 100 meters run. $J = T$
- Active constraint control:
	- Maximum speed ("no thinking required")
	- $-$ CV = power (at max)

2. Marathon runner case

- 40 km run. $J = T$ (total time)
- What should we control? $CV = ?$
- Unconstrained optimum:

Self-optimizing control: Marathon

- Any self-optimizing variable (to control at constant setpoint)?
	- $-c_1$ = distance to leader of race
	- c_2 = speed
	- c_3 = heart rate
	- $-c_4$ = level of lactate in muscles

Conclusion Marathon runner

- CV = heart rate is good "self-optimizing" variable
- Simple and robust implementation
- Disturbances are indirectly handled by keeping a constant heart rate
- May have infrequent adjustment of setpoint (c_s)

Step S3: What should we control (c)?

(primary controlled variables $y_1 = c$)

Selection of controlled variables c :

1. Control active constraints!

2. Unconstrained degrees of freedom: find and control selfoptimizing variables!

Sigurd's rules for CV selection

- 1. Always control active constraints! (almost always)
- 2. Purity constraint on expensive product always active (no overpurification): (a) "Avoid product give away" (e.g., sell water as expensive product)
	- (b) Save energy (costs energy to overpurify)
- **3. Unconstrained optimum: NEVER try to control a variable that reaches max or min at the optimum**
	- In particular, never try to control directly the cost J
	- Assume we want to minimize J (e.g., $J = V =$ energy) and we make the stupid choice os selecting $CV = V = J$ - Then setting $J < J_{min}$: Gives infeasible operation (cannot meet constraints) - and setting $J > J_{min}$: Forces us to be nonoptimal (which may require strange operation; see Exercise on recycle process)

Distillation: expected active constraints

- **Both products (D, B) generally have purity specs**
- **Valuable product: Purity spec. always active**
	- Reason: Amount of valuable product (D or B) should always be maximized
		- Avoid product "give-away" ("Sell water as methanol")
		- Also saves energy

Control implications:

- 1. ALWAYS Control valuable product at spec. (active constraint)
- 2. May overpurify (not control) cheap product

QUIZ 1

Operation of distillation columns in series

With given feed and pressures (disturbances): 4 steady-state DOFs (e.g., L and V in each column)

Energy price: $p_v=0$ -0.2 \$/mol (varies)

DOF = Degree Of Freedom Ref.: M.G. Jacobsen and S. Skogestad (2011) QUIZ: What are the expected active constraints? 1. Always. 2. For low energy prices.

Operation of distillation columns in series

With given feed and pressures (disturbances): 4 steady-state DOFs (e.g., L and V in each column)

Energy price: $p_y=0$ -0.2 \$/mol (varies)

DOF = Degree Of Freedom Ref.: M.G. Jacobsen and S. Skogestad (2011) QUIZ: What are the expected active constraints? 1. Always. 2. For low energy prices.

Control of distillation columns in series

QUIZ. Assume low energy prices $(p_v=0.01 \text{ \$/mol})$. How should we control the columns? Red: Basic regulatory loops HINT: CONTROL ACTIVE CONSTRAINTS

Control of distillation columns in series

QUIZ. Assume low energy prices $(p_v=0.01 \text{ \$/mol})$. How should we control the columns? Red: Basic regulatory loops HINT: CONTROL ACTIVE CONSTRAINTS

Distillation example: Not so simple

Active constraint regions for Active Constraint regions for Algebra distillation columns in series Q.

 $\begin{picture}(120,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

 $\overrightarrow{B_2}$

How many active constraints regions?

• Maximum: 2^{n_c} where n_c = number of constraints

BUT there are usually fewer in practice

- Certain constraints are always active (reduces effective n_c)
- Only n_{u} can be active at a given time
	- $n_{\rm u}$ = number of MVs (inputs)

Distillation $n_c = 5$ $2⁵ = 32$

x_B always active 2^4 = 16

-1 = 15

- Certain constraints combinations are not possibe
	- For example, max and min on the same variable (e.g. flow)
- Certain regions are not reached by the assumed disturbance set **In practice = 8**

More on: Optimal operation

min $J = \text{cost feed} + \text{cost energy} - \text{value products}$

Two main cases (modes) depending on market conditions:

Mode 1. Given feed rate Mode 2. Maximum production (more constrained)

Comment: Depending on prices, Mode 1 may include many subcases (active constraints regions)

Mode 1. Given feedrate

Amount of products is then usually indirectly given and

Mode 2. Maximum production

 $J = \text{cost feed} + \text{cost energy} - \text{value products}$

- Assume feed rate is degree of freedom
- Assume products much more valuable than feed
- Optimal operation is then to maximize product rate
- **"max. constrained", prices do not matter**

More on: Active output constraints

Need back-off

The backoff is the "safety margin" from the active constraint and is defined as the difference between the constraint value and the chosen setpoint Backoff = | Constraint – Setpoint |

- a) If constraint can be violated dynamically (only average matters)
	- Required Back-off = "measurement bias" (steady-state measurement error for *c)*
- b) If constraint cannot be violated dynamically ("hard constraint")
	- Required Back-off = "measurement bias" + maximum dynamic control error

Want tight control of hard output constraints to reduce the back-off. "Squeeze and shift"-rule

Motivation for better control: Squeeze and shift rule

Figure 8: Squeeze and shift rule: Squeeze the variance by improving control and shift the setpoint closer to the constraint (i.e., reduce the backoff) to optimize the economics (Richalet et al., $|1978\rangle$.

Example: max. throughput.

Want tight bottleneck control to reduce backoff!

Example: purity on distillate

 x_B = purity of product > 95% (min.)

- D_2 directly to customer (hard constraint)
	- Measurement error (bias): 1%
	- Control error (variation due to poor control): 2%
	- $-$ Backoff = 1% + 2% = 3%
	- Setpoint x_{Bs} = 95 + 3% = 98% (to be safe)
	- Can reduce backoff with better control ("squeeze and shift")
- D_2 to <u>large</u> mixing tank (soft constraint)
	- Measurement error (bias): 1%
	- $-$ Backoff = 1%
	- Setpoint x_{Bs} = 95 + 1% = 96% (to be safe)

 D_2

 $\overline{\mathsf{x}_\mathsf{B}}$

Unconstrained optimum

Control "self-optimizing" variable!

- Which variable is best?
- Often not obvious (marathon runner)

What are good self-optimizing variables?

- 1. Optimal value of CV is constant
- 2. CV is "sensitive" to MV (large gain)

Conclusion optimal operation

ALWAYS:

1. Control active constraints and control them tightly!!

– Good times: Maximize throughput \rightarrow tight control of bottleneck

2. Identify "self-optimizing" CVs for remaining unconstrained degrees of freedom

- Use offline analysis to find expected operating regions and prepare control system for this!
	- One control policy when prices are low (nominal, unconstrained optimum)
	- Another when prices are high (constrained optimum = bottleneck)

ONLY if necessary: consider RTO on top of this