Part 1. Plantwide process control «Control architectures»

Sigurd Skogestad

Plantwide control

Introduction

- Objective: Put controllers on flow sheet (make P&ID)
- Two main objectives for control: Longer-term economics (CV1) and shorterterm stability (CV2)
- Regulatory (basic) and supervisory (advanced) control layer

Optimal operation (economics)

- Define cost J and constraints
- Active constraints (as a function of disturbances)
- Selection of economic controlled variables (CV1). Self-optimizing variables.

How can we design a control system for a complete chemical plant?

Where do we start?

What should we control? And why?

How we design a control system for a complete chemical plant?

- Where do we start?
- What should we control? and why?
- etc.
- etc.

Control system structure*

Alan Foss ("Critique of chemical process control theory", AIChE Journal, 1973):

The central issue to be resolved ... is the determination of control system structure*. Which variables should be measured, which inputs should be manipulated and which links should be made between the two sets?

*Current terminology: Control system architecture

Plantwide control = Control structure design

- *Not* the tuning and behavior of each control loop...
- But rather the *control philosophy* of the overall plant with emphasis on the *structural decisions*:
 - Selection of controlled variables ("outputs")
 - Selection of manipulated variables ("inputs")
 - Selection of (extra) measurements
 - Selection of control configuration (structure of overall controller that interconnects the controlled, manipulated and measured variables)
 - Selection of controller type (LQG, H-infinity, PID, decoupler, MPC etc.)

QUIZ

What are the three most important inventions of process control?

- Hint 1: According to Sigurd Skogestad
- Hint 2: All were in use around 1940

SOLUTION

- 1. PID controller, in particular, I-action
- 2. Cascade control
- 3. Ratio control

Main objectives of a control system

1. Economics: Implementation of acceptable (near-optimal) operation

2. Regulation: Stable operation

ARE THESE OBJECTIVES CONFLICTING?

- Usually NOT
 - Different time scales
 - Stabilization \rightarrow fast time scale
 - Stabilization doesn't "use up" any degrees of freedom
 - Reference value (setpoint) available for layer above
 - But it "uses up" part of the time window (frequency range)

How to put optimization into the control layer?

Optimal operation

General approach: minimize cost / maximize profit, subject to satisfying constraints (product quality, environment, resources)

Mathematically,

$$\min_{u} J(x, u, d)$$

s.t. $\dot{x} = f(x, u, d)$,
 $h(x, u, d) = 0$,
 $g(x, u, d) \le 0$.

Optimal operation (in theory)

Procedure:

- Obtain model of overall system
- Estimate present state
- Optimize all degrees of freedom

Problems:

- Model not available
- Optimization is complex
- Not robust (difficult to handle uncertainty)
- Slow response time

Engineering systems

- Most (all?) large-scale engineering systems are controlled using hierarchies of quite simple controllers
 - Large-scale chemical plant (refinery)
 - Commercial aircraft
- 100's of loops
- Simple components:

on-off + PI-control + nonlinear fixes + some feedforward

Two fundamental ways of decomposing the controller

- Vertical (hierarchical; cascade)
- Based on time scale separation
- Decision: Selection of CVs that connect layers

- Horizontal (decentralized)
- Usually based on distance
- Decision: Pairing of MVs and CVs within layers

In addition: Decomposition of controller into smaller elements (blocks): Feedforward element, nonlinear element, estimators (soft sensors), switching elements

Time scale separation: Control* layers

Two objectives for control: Stabilization and economics

Supervisory ("advanced") control layer

Tasks:

- Follow set points for CV1 from economic optimization layer
- Switch between active constraints (change CV1)
- Look after regulatory layer (avoid that MVs saturate, etc.)
- Regulatory control (PID layer):
 - Stable operation (CV2)

*My definition of «control» is that the objective is to track setpoints

«Advanced» control

- Advanced: This is a relative term
- Usually used for anything than comes in addition to (or in top of) basic PID loops
- Mainly used in the «supervisory» control layer
- Two main options
 - Standard «Advanced regulatory control» (ARC) elements
 - Based on decomposing the control system
 - Cascade, feedforward, selectors, etc.
 - This option is preferred if it gives acceptable performance

- Model predictive control (MPC)

- Requires a lot more effort to implement and maintain
- Use for interactive processes
- Use with known information about future (use predictive capanulities)

Combine control and optimization into one layer? EMPC: Economic model predictive "control"

 $J_{EMPC} = J + J_{control}$ Penalize input usage, $J_{control} = \Sigma \Delta u_i^2$

NO, combining layers is generally not a good idea! (the good idea is to separate them!)

One layer (EMPC) is optimal theoreretically, but

- Need detailed dynamic model of everything
- Tuning difficult and indirect
- Slow! (or at least difficult to speed up parts of the control)
- Robustness poor
- Implementation and maintainance costly and time consuming

Typical economic cost function:

J [\$/s] = cost feed + cost energy – value products

What about «conventional» RTO and MPC?

- Yes, it's OK
- Both has been around for more than 50 years (since 1970s)
 - but the expected growth never came
- MPC is still used mostly in large-scale plants (petrochemical and refineries).
- MPC is far from replacing PID as some expected in the 1990s.
- But plants need to be run optimally:

 \Rightarrow Need something else than conventional RTO/MPC!

Alternative solutions for advanced control

- Would like: Feedback solutions that can be implemented with minimum need for models
- Machine learning?
 - Requires a lot of data, not realistic for process control
 - And: Can only be implemented after the process has been in operation
- "Classical advanced regulatory control" (ARC) based on single-loop PIDs?

– <mark>YES!</mark>

- Extensively used by industry
- Problem for engineers: Lack of design methods
 - Has been around since 1930's
 - But almost completely neglected by academic researchers
- Main fundamental limitation: Based on single-loop (need to choose pairing)

ARC = Advanced regulatory control

Optimal operation and control objectives: What should we control?

Outline

Skogestad procedure for control structure design:

- I. Top Down (analysis)
 - <u>Step S1</u>: Define operational objective (cost) and constraints
 - <u>Step S2:</u> Identify degrees of freedom and optimize operation for disturbances
 - <u>Step S3</u>: Implementation of optimal operation
 - What to control? (CV1) (self-optimizing control)
 - <u>Step S4:</u> Where set the production rate (TPM)? (Inventory control)
- II. Bottom Up (design)
 - <u>Step S5</u>: Regulatory control: What more to control (CV2)?
 - <u>Step S6</u>: Supervisory control
 - <u>Step S7:</u> Real-time optimization

Step S1. Define optimal operation (economics)

- What are the ultimate goals of the operation?
- Typical cost function*:

J = cost feed + cost energy – value products

*No need to include fixed costs (capital costs, operators, maintainance) at "our" time scale (hours) Note: J=-P where P= Operational profit

Example: distillation column

- Distillation at steady state with given p and F: N=2 DOFs, e.g. L and V (u)
- Cost to be minimized (economics)

• Optimal operation: Minimize J with respect to steady-state DOFs (u)

Outline

Skogestad procedure for control structure design:

- I. Top Down
 - <u>Step S1</u>: Define operational objective (cost) and constraints
 - <u>Step S2:</u> Identify degrees of freedom and optimize operation for disturbances
 - <u>Step S3</u>: Implementation of optimal operation
 - What to control? (primary CV's) (self-optimizing control)
 - <u>Step S4:</u> Where set the production rate? (Inventory control)
- II. Bottom Up
 - <u>Step S5</u>: Regulatory control: What more to control (secondary CV's)?
 - <u>Step S6</u>: Supervisory control
 - <u>Step S7:</u> Real-time optimization

Step S2. Optimize

(a) Identify degrees of freedom(b) Optimize for expected disturbances

- Need good model, usually steady-state
- Optimization is time consuming! But it is offline
- Main goal: Identify ACTIVE CONSTRAINTS
- A good engineer can often guess the active constraints

Step S2a: Degrees of freedom (DOFs) for operation

NOT as simple as one may think!

To find all operational (dynamic) degrees of freedom:

- Count valves! (N_{valves})
- "Valves" also includes adjustable compressor power, etc. Anything we can manipulate!

BUT: not all these have a (steady-state) effect on the economics

Steady-state degrees of freedom (DOFs)

IMPORTANT!

DETERMINES THE NUMBER OF VARIABLES TO CONTROL!

• No. of primary CVs = No. of steady-state DOFs

Methods to obtain no. of steady-state degrees of freedom (N_{ss}) :

- 1. Equation-counting
 - $N_{ss} = no. of variables no. of equations/specifications$
 - Very difficult in practice
- 2. Valve-counting (easier!)
 - $N_{ss} = N_{valves} N_{0ss} N_{specs}$
 - N_{valves}: include also variable speed for compressor/pump/turbine
 - N_{specs}: Fixed variables (which are not later included in constraints)
 - N_{0ss} = variables with no steady-state effect
 - Inputs/MVs with no steady-state effect (e.g. extra bypass)
 - Outputs/CVs with no steady-state effect that need to be controlled (e.g., liquid levels)
- 3. Potential number for some units (useful for checking!)
- 4. Correct answer: Will eventually find it when we perform optimization

CV = controlled variable

Example: typical distillation column

Step S2b: Optimize for expected disturbances

• What are the optimal values for our degrees of freedom u (MVs)?

J = cost feed + cost energy - value products

• Minimize J with respect to u for given disturbance d (usually steady-state): $\min_{u \in I} J(x, u, d)$

subject to:

-Model equations : $\dot{x} = f(x, u, d) = 0$ -Operational constraints: $g(x, u, d) \leq 0$

OFTEN VERY TIME CONSUMING

- Commercial simulators (Aspen, Unisim/Hysys) are set up in "design mode" and often work poorly in "operation (rating) mode".
- Optimization methods in commercial simulators often poor
 - We can use Matlab or even Excel "on top"

.... BUT A GOOD ENGINEER CAN OFTEN GUESS THE SOLUTION (active constraints)

Outline

Skogestad procedure for control structure design:

- I. Top Down
 - <u>Step S1</u>: Define operational objective (cost) and constraints
 - <u>Step S2:</u> Identify degrees of freedom and optimize operation for disturbances
 - <u>Step S3</u>: Implementation of optimal operation
 - What to control? (primary CV's) (self-optimizing control)
 - <u>Step S4:</u> Where set the production rate? (Inventory control)
- II. Bottom Up
 - <u>Step S5</u>: Regulatory control: What more to control (secondary CV's)?
 - <u>Step S6</u>: Supervisory control
 - <u>Step S7:</u> Real-time optimization

Step S3. Implementation of optimal operation

- Now we have found the optimal way of operation. How should it be implemented?
- What to control? (primary CV's)
 - 1. Active constraints
 - 2. Self-optimizing variables (for unconstrained degrees of freedom)

Optimal operation of runner

- Cost to be minimized: J = T (total time)
- One degree of freedom: u = power
- What should we control?

1. Sprinter case

- 100 meters run. J = T
- Active constraint control:
 - Maximum speed ("no thinking required")
 - CV = power (at max)

2. Marathon runner case

- 40 km run. J = T (total time)
- What should we control? CV = ?
- Unconstrained optimum:

Self-optimizing control: Marathon

- Any self-optimizing variable (to control at constant setpoint)?
 - c₁ = distance to leader of race
 - $c_2 = speed$
 - $c_3 = heart rate$
 - $c_4 = level of lactate in muscles$

Conclusion Marathon runner

- CV = heart rate is good "self-optimizing" variable
- Simple and robust implementation
- Disturbances are indirectly handled by keeping a constant heart rate
- <u>May</u> have infrequent adjustment of setpoint (c_s)

Step S3: What should we control (c)?

(primary controlled variables $y_1 = c$)

Selection of controlled variables *c*:

1. Control active constraints!

2. Unconstrained degrees of freedom: find and control selfoptimizing variables!

Sigurd's rules for CV selection

- 1. Always control active constraints! (almost always)
- 2. Purity constraint on expensive product always active (no overpurification):
 (a) "Avoid product give away" (e.g., sell water as expensive product)
 (b) Save energy (costs energy to overpurify)
- 3. Unconstrained optimum: NEVER try to control a variable that reaches max or min at the optimum
 - In particular, never try to control directly the cost J
 - Assume we want to minimize J (e.g., J = V = energy) and we make the stupid choice os selecting CV = V = J Then setting J < J_{min}: Gives infeasible operation (cannot meet constraints) and setting J > J_{min}: Forces us to be nonoptimal (which may require strange operation; see Exercise on recycle process)

Distillation: expected active constraints

- Both products (D, B) generally have purity specs
- Valuable product: Purity spec. always active
 - Reason: Amount of valuable product (D or B) should always be maximized
 - Avoid product "give-away" ("Sell water as methanol")
 - Also saves energy

Control implications:

- 1. ALWAYS Control valuable product at spec. (active constraint)
- 2. May overpurify (not control) cheap product

Operation of distillation columns in series

With given feed and pressures (disturbances): 4 steady-state DOFs (e.g., L and V in each column)

Energy price: p_V =0-0.2 \$/mol (varies)

DOF = Degree Of Freedom Ref.: M.G. Jacobsen and S. Skogestad (2011) QUIZ: What are the expected active constraints? 1. Always. 2. For low energy prices.

Operation of distillation columns in series

With given feed and pressures (disturbances): 4 steady-state DOFs (e.g., L and V in each column)

Energy price: p_V=0-0.2 \$/mol (varies)

DOF = Degree Of Freedom Ref.: M.G. Jacobsen and S. Skogestad (2011) QUIZ: What are the expected active constraints? 1. Always. 2. For low energy prices.

Control of distillation columns in series

QUIZ. Assume low energy prices (p_V=0.01 \$/mol). How should we control the columns? HINT: CONTROL ACTIVE CONSTRAINTS

Red: Basic regulatory loops

Control of distillation columns in series

QUIZ. Assume low energy prices (p_V=0.01 \$/mol). How should we control the columns? HINT: CONTROL ACTIVE CONSTRAINTS

Red: Basic regulatory loops

Distillation example: Not so simple

Active constraint regions for distillation columns in series

D2, xB

B2, xC

How many active constraints regions?

• Maximum: 2^{n_c} where n_c = number of constraints

BUT there are usually fewer in practice

- Certain constraints are always active (reduces effective n_c)
- Only n_u can be active at a given time
 - n_u = number of MVs (inputs)

Distillation $n_c = 5$ $2^5 = 32$

x_B always active 2⁴ = 16

- -1 = 15
- Certain constraints combinations are not possibe
 - For example, max and min on the same variable (e.g. flow)
- Certain regions are not reached by the assumed In practice = 8 disturbance set

More on: Optimal operation

min J = cost feed + cost energy – value products

Two main cases (modes) depending on market conditions:

Mode 1. Given feed rate Mode 2. Maximum production (more constrained)

Comment: Depending on prices, Mode 1 may include many subcases (active constraints regions)

Mode 1. Given feedrate

Amount of products is then usually indirectly given and

Mode 2. Maximum production

J = cost feed + cost energy – value products

- Assume feed rate is degree of freedom
- Assume products much more valuable than feed
- Optimal operation is then to maximize product rate
- "max. constrained", prices do not matter

More on: Active output constraints

Need back-off

The backoff is the "safety margin" from the active constraint and is defined as the difference between the constraint value and the chosen setpoint Backoff = | Constraint – Setpoint |

- a) If constraint can be violated dynamically (only average matters)
 - **Required Back-off =** "measurement bias" (steady-state measurement error for *c*)
- b) If constraint <u>cannot</u> be violated dynamically ("hard constraint")
 - **Required Back-off =** "measurement bias" + maximum dynamic control error

Want tight control of hard output constraints to reduce the back-off. "Squeeze and shift"-rule

Motivation for better control: Squeeze and shift rule

Figure 8: Squeeze and shift rule: Squeeze the variance by improving control and shift the setpoint closer to the constraint (i.e., reduce the backoff) to optimize the economics (Richalet et al., 1978).

Example: max. throughput.

Want tight bottleneck control to reduce backoff!

Example: purity on distillate

 x_B = purity of product > 95% (min.)

- D₂ directly to customer (hard constraint)
 - Measurement error (bias): 1%
 - Control error (variation due to poor control): 2%
 - Backoff = 1% + 2% = 3%
 - Setpoint $x_{Bs} = 95 + 3\% = 98\%$ (to be safe)
 - Can reduce backoff with better control ("squeeze and shift")
- D₂ to <u>large</u> mixing tank (soft constraint)
 - Measurement error (bias): 1%
 - Backoff = 1%
 - Setpoint $x_{Bs} = 95 + 1\% = 96\%$ (to be safe)

 D_2

Unconstrained optimum

Control "self-optimizing" variable!

- Which variable is best?
- Often not obvious (marathon runner)

What are good self-optimizing variables?

- 1. Optimal value of CV is constant
- 2. CV is "sensitive" to MV (large gain)

Conclusion optimal operation

ALWAYS:

1. Control active constraints and control them tightly!!

- Good times: Maximize throughput \rightarrow tight control of bottleneck

2. Identify "self-optimizing" CVs for remaining unconstrained degrees of freedom

- Use offline analysis to find expected operating regions and prepare control system for this!
 - One control policy when prices are low (nominal, unconstrained optimum)
 - Another when prices are high (constrained optimum = bottleneck)

ONLY if necessary: consider RTO on top of this