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INTRODUCTION

I.1 Scope of note

This note originates from course notes for the course ’Design og vedlikehold av regu-
leringsfunksjoner’,given in cooperation between Cyberlab.Org AS and the Engineer-
ing Cybernetics Department of the Norwegian University of Science and Technology
(NTNU). Parts of this note has later been used in the course Advanced Process Con-
trol, which has been offered by the Engineering Cybernetics Department in coopera-
tion with the Chemical Engineering Department at NTNU. The most recent version
is further adapted for the course Advanced Control of Industrial Processes, offered
by the Engineering Cybernetics Department.

The target audience is students in the fourth year of the 5-year MSc programme
in Engineering Cybernetics. Thus, the note is written for people with a relatively
broad background in control engineering, who are familiar with both frequency re-
sponse and time domain analysis. Whereas frequency response (or Laplace domain)
analysis is used predominantly for single-loop control, time domain description (in
discrete time) is used extensively in the description of multivariable Model Predictive
Control.

xxxi
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Concepts from systems theory such as (state) controllability and (state) observ-
ability are also used without introduction1.

It is this authors intent to keep the focus on issues of importance for industrial
applications. Frequently, results are presented and discussed, without presenting
formal proofs. Readers interested in mathematical proofs will have to consult the
references.

Readers are also assumed to be familiar with finite dimensional linear algebra, i.e.,
have a working knowledge of matrices and vectors. Although the subject matter is
by necessity of a mathematical nature, mathematical elegance is often sacrificed for
clarity. In addition to students of control engineering, students with a Process Sys-
tems Engineering specialization within Chemical Engineering should also be able to
read and benefit from this note.

I.2 Why is process control needed?

Many texts on process control implicitly assume that it is obvious when and why
control is needed. It seems obvious that even a moderately complex process plant
will be very difficult to operate without the aid of process control. Nevertheless, it
can be worthwhile to spend a few minutes thought on why process control is needed.
In the following, a short and probably incomplete list of reasons for the need of
process control is provided, but the list should illustrate the importance of process
control in a process plant.

1. Stabilizing the process. Many processes have integrating or unstable modes.
These have to be stabilized by feedback control, otherwise the plant will (sooner
or later) drift into unacceptable operating conditions. In the vast majority of
cases, this stabilization is provided by automatic feedback control2. Note that
in practice, ”feedback stabilization” of some process variable may be necessary
even though the variable in question is asymptotically stable according to the
control engineering definition of stability. This happens whenever disturbances
have sufficiently large effect on a process variable to cause unacceptably large
variations in the process variable value. Plant operators therefore often use
the term ”stability” in a much less exact way than how the term is defined in
control engineering. A control engineer may very well be told that e.g., ”this
temperature is not sufficiently stable”, even though the temperature in question
is asymptotically stable.

2. Regularity. Even if a process is stable, control is needed to avoid shutdowns due
to unacceptable operating conditions. Such shutdowns may be initiated auto-

1Although the importance of these concepts are not exaggerated in this work.
2However, some industries still use very large buffer tanks between different sections in the process. For
such tanks it may be sufficient with infrequent operator intervention to stop the buffer tank from overfilling
or emptying.
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matically by a shutdown system, but may also be caused by outright equipment
failure.

3. Minimizing effects on the environment. In addition to maintaining safe and sta-
ble production, the control system should also ensure that any harmful effects
on the environment are minimized. This is done by optimizing the conversion
of raw materials3, and by maintaining conditions which minimize the produc-
tion of any harmful by-products.

4. Obtaining the right product quality. Control is often needed both for achieving
the right product quality, and for reducing quality variations.

5. Achieving the right production rate. Control is used for achieving the right
production rate in a plant. Ideally, it should be possible to adjust the production
rate at one point in the process, and the control system should automatically
adjust the throughput of up- or downstream units accordingly.

6. Optimize process operation. When a process achieves safe and stable opera-
tion, with little down-time, and produces the right quality of product at the de-
sired production rate, the next task is to optimize the production. The objective
of the optimization is normally to achieve the most cost-effective production.
This involves identifying, tracking and maintaining the optimal operating con-
ditions in the face of disturbances in production rate, raw material composition
and ambient conditions(e.g., atmospheric temperature). Process optimization
often involves close coordination of several process units, and operation close
to process constraints.

The list above should illustrate that process control is vital for the operation of
process plants. Even plants of quite moderate complexity would be virtually im-
possible to operate without process control. Even where totally manual operation is
physically feasible, it is unlikely to be economically feasible due to product quality
variations and high personnel costs, since a high number of operators will be required
to perform the many (often tedious) tasks that the process control system normally
handles.

Usually many more variables are controlled than what is directly implied by the
list above, there are often control loops for variables which have no specification
associated with them. There are often good reasons for such control loops - two
possible reasons are

1. To stop disturbances from propagating downstream. Even when there are no
direct specification on a process variable, variations in the process variable may
cause variations in more important variables downstream. In such cases, it
makes sense to remove the disturbance at its source.

3Optimizing the conversion of raw materials usually means maximizing the conversion, unless this causes
unacceptably high production of undesired by-products, or requires large energy inputs.



xxxiv INTRODUCTION

2. Local removal of uncertainty. By measuring and controlling a process variable,
it may be possible to reduce the effect of uncertainty with respect to equipment
behaviour or disturbances. Examples of such control loops are valve position-
ers used to minimize the effect of valve stiction, or local flow control loops
which may be used to counteract the effects of pressure disturbances up- or
downstream of a valve, changes in fluid properties, or inaccuracies in the valve
characteristics.

I.3 What knowledge does a process control engineer need?

The list on page xxxii also indicates what kind of knowledge is required for a process
control engineer. The process control engineer needs to have a thorough understand-
ing of the process. Most stabilizing control loops involve only one process unit
(e.g., a tank or a reactor), and most equipment limitations are also determined by the
individual units. Process understanding on the scale of the individual units is there-
fore required. Understanding what phenomena affect product quality also require
an understanding of the individual process units. On the other hand, ensuring that
the specified production rate propagates throughout the plant, how the effect of dis-
turbances propagate, and optimizing the process operation, require an understanding
of how the different process units interact, i.e., an understanding of the process on a
larger scale.

Most basic control functions are performed by single loops, i.e., control loops
with one controlled variable and one manipulated variable. Thus, when it is under-
stood why a particular process variable needs to be controlled, and what manipulated
variable should be used to control it4, the controller design itself can be performed us-
ing traditional single-loop control theory (if any theoretical considerations are made
at all). Often a standard type of controller, such as a PID controller, is tuned on-line,
and there is little need for a process model. Other control tasks are multivariable in
nature, either because it is necessary to resolve interactions between different con-
trol loops, or because the control task requires coordination between different pro-
cess units. Process models are often very useful for these types of control problem.
The models may either be linear models obtained from experiments on the plant, or
possibly non-linear models derived from physical and chemical principles. Some
understanding of mathematical modelling and system identification techniques are
then required. Non-linear system identification from plant experiments are not in
standard use in the process industries.

Optimizing process operation requires some understanding of plant economics,
involving the costs of raw materials and utilities, the effect of product quality on
product price, the cost of reprocessing off-spec product, etc. Although it is rare

4Determining what variables are to be controlled, what manipulated variables should be used for control,
and the structure of interconnections between manipulated and controlled variables, are quite critical
tasks in the design of a process control system. This part of the controller design is often not described
in textbooks on ”pure” control engineering, but will be covered in some detail in later sections.
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that economics is optimized by feedback controllers5, an understanding of plant eco-
nomics will help understanding where efforts to improve control should be focused,
and will help when discussing the need for improved control with plant management.

A process control engineer must thus have knowledge both of process and control
engineering. However, it is not reasonable to expect the same level of expertise
in either of these disciplines from the process control engineer as for ”specialist”
process or control engineers. There appears to be a ”cultural gap” between process
and control engineers, and the process control engineer should attempt to bridge this
gap. This means that the process control engineer should be able to communicate
meaningfully with both process and control engineers, and thereby also be able to
obtain any missing knowledge by discussing with the ”specialists”. However, at
a production plant there will seldom be specialists in control theory, but there will
always be process engineers. At best, large companies may have control theory
specialists at some central research or engineering division. This indicates that a
process control engineer should have a fairly comprehensive background in control
engineering, while the process engineering background should at least be sufficient
to communicate effectively with the process engineers.

In the same way as for other branches of engineering, success at work will not
come from technological competence alone. A successful engineer will need the
ability to work effectively in multi-disciplinary project teams, as well skills in com-
municating with management and operators. Such non-technical issues will not be
discussed further here.

I.4 The structure of control systems in the process industries.

When studying control systems in the process industries, one may observe that they
often share a common structure. This structure is illustrated in Fig. I.1.

The lower level in the control system is the Regulatory control layer. The struc-
ture of the individual controllers in the regulatory control layer is normally very
simple. Standard single-loop controllers, typically of PI/PID type are the most
common, but other simple control functions like feed forward control, ratio con-
trol, or cascaded control loops may also be found. Truly multivariable controllers
are rare at this level. The regulatory control system typically controls basic process
variables such as temperatures, pressures, flowrates, speeds or concentrations, but
in some cases the controlled variable may be calculated based on several measure-
ments, e.g., a component flowrate based on measurements of both concentration and
overall flowrate or a ratio of two flowrates. Usually a controller in the regulatory
control layer manipulates a process variable directly (e.g., a valve opening), but in
some cases the manipulated variable may be a setpoint of a cascaded control loop.
Most control functions that are essential to the stability and integrity of the process

5It is more common that economic criteria are used in the problem formulation for socalled Real Time
Optimization (RTO) problems, or for plant production planning and scheduling, see Fig. I.1.
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Supervisory control

Regulatory control

Real time optimization

Production planning/
scheduling

To manipulated variables From measurements

Process

Figure I.1: Typical structure of the control system for a large plant in the process
industries.

are executed in this layer, such as stabilizing the process and maintaining acceptable
equipment operating conditions.

The Supervisory control layer coordinates the control of a process unit or a few
closely connected process units. It coordinates the action of several control loops,
and tries to maintain the process conditions close to the optimal while ensuring that
operating constraints are not violated. The variables that are controlled by super-
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visory controllers may be process measurements, variables calculated or estimated
from process measurements, or the output from a regulatory controller. The ma-
nipulated variables are often setpoints to regulatory controllers, but process variables
may also be manipulated directly. Whereas regulatory controllers are often designed
and implemented without ever formulating any process model explicitly, supervisory
controllers usually contain an explicitly formulated process model. The model is
dynamic and often linear, and obtained from experiments on the plant. Typically,
supervisory controllers use some variant of Model Predictive Control (MPC).

The optimal conditions that the supervisory controllers try to maintain, may be
calculated by a Real Time Optimization (RTO) control layer. The RTO layer identi-
fies the optimal conditions by solving an optimization problem involving models of
the production cost, value of product (possibly dependent on quality), and the pro-
cess itself. The process model is often non-linear and derived from fundamental
physical and chemical relationships, but they are usually static.

The higher control level shown in Fig. I.1 is the Production planning and schedul-
ing layer. This layer determines what products should be produced and when they
should be produced. This layer requires information from the sales department about
the quantities of the different products that should be produced, the deadlines for de-
livery, and possibly product prices. From the purchasing department information
about the availability and price of raw materials are obtained. Information from
the plant describes what products can be made in the different operating modes, and
what production rates can be achieved.

In addition to the layers in Fig. I.1, there should also be a separate safety system
that will shut the process down in a safe and controlled manner when potentially
dangerous conditions occur. There are also higher levels of decision making which
are not shown, such as sales and purchasing, construction of new plants, etc. These
levels are considered to be of little relevance to process control, and will not be
discussed further.

Note that there is a difference in time scale of execution for the different lay-
ers. The regulatory control system typically have sampling intervals on the scale of
one second (or faster for some types of equipment), supervisory controllers usually
operate on the time scale of minutes, the RTO layer on a scale of hours, and the
planning/scheduling layer on a scale of days (or weeks). The control bandwidths
achieved by the different layers differ in the same way as sampling intervals dif-
fer. This difference in control bandwidths can simplify the required modelling in
the higher levels; if a variable is controlled by the regulatory control layer, and the
bandwidth for the control loop is well beyond what is achieved in the supervisory
control layer, a static model for this variable (usually the model would simply be
variable value = setpoint) will often suffice for the supervisory control.

It is not meaningful to say that one layer is more important than another, since
they are interdependent. The objective of the lower layers are not well defined
without information from the higher layers (e.g., the regulatory control layer needs
to know the setpoints that are determined by the supervisory control layer), whereas
the higher layers need the lower layers to implement the control actions. However,
in many plants human operators perform the tasks of some the layers shown in Fig.
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I.1, it is only the regulatory control layer that is present (and highly automated) in
virtually all industrial plants.

Why has this multi-layered structure for industrial control systems evolved? It is
clear that this structure imposes limitations in achievable control performance com-
pared to a hypothetical optimal centralized controller which perfectly coordinates all
available manipulated variables in order to achieve the control objectives. In the
past, the lack of computing power would have made such a centralized controller
virtually impossible to implement, but the continued increase in available computing
power could make such a controller feasible in the not too distant future. Is this the
direction industrial control systems are heading? This appears not to be the case.
In the last two of decades development has instead moved in the opposite direction,
as increased availability of computing power has made the Supervisory control and
Real Time Optimization layers much more common. Some reasons for using such
a multi-layered structure are:

Economics. Optimal control performance - defined in normal control engi-
neering terms (using e.g., the H2− or H∞norm) - does not necessarily imply
optimal economic performance. To be more specific, an optimal controller
synthesis problem does not take into account the cost of developing and main-
taining the required process (or possibly plant economic) models. An optimal
centralized controller would require a dynamic model of most aspects of the
process behaviour. The required model would therefore be quite complex, and
difficult to develop and maintain. In contrast, the higher layers in a structured
control system can take advantage of the model simplifications made possible
by the presence of the lower layers. The regulatory control level needs little
model information to operate, since it derives most process information from
feedback from process measurements6.

Redesign and retuning. The behaviour of a process plant changes with time, for
a number of reasons such as equipment wear, changes in raw materials, changes
in operating conditions in order to change product qualities or what products are
produced, and plant modifications. Due to the sheer complexity of a centralized
controller, it would be difficult and time-consuming to update the controller to
account for all such changes. With a structured control system, it is easier to
see what modifications need to be made, and the modifications themselves will
normally be less involved.

Start-up and shutdown. Common operating practice during start-up is that
many of the controls are put in manual. Parts of the regulatory control layer
may be in automatic, but rarely will any higher layer controls be in operation.
The loops of the regulatory control layer that are initially in manual are put in

6A good process model may be of good use when designing control structures for regulatory control.
However, after the regulatory controllers are implemented, they normally do not make any explicit use of
a process model.
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automatic when the equipment that they control are approaching normal oper-
ating conditions. When the regulatory control layer for a process section is
in service, the supervisory control system may be put in operation, and so on.
Shutdown is performed in the reverse sequence. Thus, there may be scope for
significant improvement of the start-up and shutdown procedures of a plant, as
quicker start-up and shutdown can reduce plant downtime. However, a model
which in addition to normal operating conditions also is able to describe start-up
and shutdown, is necessarily much more complex than a model which covers
only the range of conditions that are encountered in normal operation. Building
such a model would be difficult and costly. Start-up and shutdown of a plant
with an optimal centralized control system which does not cover start-up and
shutdown, may well be more difficult than with a traditional control system,
because it may not be difficult to put an optimal control system gradually into
or out of service.

Operator acceptance and understanding. Control systems that are not accepted
by the operators are likely to be taken out of service. An optimal centralized
control system will often be complex and difficult to understand. Operator
understanding obviously makes acceptance easier, and a traditional control sys-
tem, being easier to understand, often has an advantage in this respect. Plant
shutdowns may be caused by operators with insufficient understanding of the
control system. Such shutdowns should actually be blamed on the control
system (or the people who designed and installed the control system), since op-
erators are an integral part of the plant operation, and their understanding of the
control system must therefore be ensured.

Failure of computer hardware and software. In traditional control systems the
operators retain the help of the regulatory control system in keeping the process
in operation if a hardware or software failure occurs in higher levels of the
control system. A hardware backup for the regulatory control system is much
cheaper than for the higher levels in the control system, as the regulatory control
system can be decomposed into simple control tasks (mainly single loops). In
contrast, an optimal centralized controller would require a powerful computer
and it is therefore more costly to provide a backup system. However, with the
continued decrease in computer cost this argument may weaken.

Robustness. The complexity of an optimal centralized control system will make
it difficult to analyze whether the system is robust with respect to model uncer-
tainty and numerical inaccuracies. Analyzing robustness need not be trivial
even for traditional control systems. The ultimate test of robustness will be
in the operation of the plant. A traditional control system may be applied
gradually, first the regulatory control system, then section by section of the su-
pervisory control system, etc. When problem arise, it will therefore be easier
to analyze the cause of the problem with a traditional control system than with
a centralized control system.
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Local removal of uncertainty. It has been noted earlier that one effect of the
lower layer control functions is to remove model uncertainty as seen from the
higher layers. Thus, the existence of the lower layers allow for simpler models
in the higher layers, and make the models more accurate. The more complex
computations in the higher layers are therefore performed by simpler, yet more
accurate models. A centralized control system will not have this advantage.

Existing traditional control systems. Where existing control systems perform
reasonably well, it makes sense to put effort into improving the existing system
rather than to take the risky decision to design a new control system. This
argument applies also to many new plants, as many chemical processes are not
well understood. For such processes it will therefore be necessary to carry out
model identification and validation on the actual process. During this period
some minimum amount of control will be needed. The regulatory control layer
of a traditional control system requires little information about the process, and
can therefore be in operation in this period.

It should be clear from the above that this author believes that control systems in
the future will continue to have a number of distinct layers. Two prerequisites appear
to be necessary for a traditional control system to be replaced with a centralized one:

1. The traditional control system must give unacceptable performance.

2. The process must be sufficiently well understood to be able to develop a process
model which describes all relevant process behaviour.

Since it is quite rare that a traditional control system is unable to control a process
for which detailed process understanding is available (provided sufficient effort and
expertise have been put into the design of the control system), it should follow that
majority of control systems will continue to be of the traditional structured type.

In short, the layered control system is consistent with the common approach of
breaking down big problems into smaller, more manageable parts, and as such agrees
with the KISS principle (Keep It Simple, Stupid).

I.5 Notation

x Vector of system states.

ẋ The time derivative of the state vector (for continuous time systems).

u The vector of manipulated variables (the variables manipulated by the control
system to control the plant), sometimes also referred to as inputs. In some
literature, the vector u is also called the control variables.

y The controlled variables (the variables that the control system attempts to control).
Often, the vector y is also identical to the vector of measured variables.
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d The vector of disturbance variables.

vk The vector v time step k (for discrete time systems).

vi, vj Elements i and j of the vector v

M Capital letters are used for matrices

Mij Element (i, j) of the matrix M .

For the linear(ized) system in continuous time

ẋ = Ax+Bu+ Ed

y = Cx+Du+ Fd

A,B,C,D,E, F are matrices of appropriate dimension, and

G(s) = C (sI −A)
−1
B +D

Gd(s) = C (sI −A)
−1
E + F

are the corresponding plant and disturbance transfer function matrices, respectively.
An alternative notation which is often used for complex state space expressions, is

G(s) =

[
A B

C D

]
That is, matrices in square brackets with a vertical and a horizontal line contain
expressions for the state space representation of some transfer function matrix.

Matrices A,B,C,D,E, F are used also to define dynamical linear(ized) models
in discrete time

xk+1 = Axk +Buk + Edk

yk = Cxk +Duk + Fdk

where the subscript (k or k+1) defines the discrete sampling instant in question. For
simplicity of notation, the same notation is used often for continuous and discrete
time models, and it should be clear from context whether continuous or discrete time
is used. Note, however, that the model matrices will be different for discrete and
continuous time, i.e., converting from continuous to discrete time (or vice versa) will
change the matrices A,B,E7.

7Whereas the matrices C,D, F describe instantaneous effects (not affected by the passing of time) and
will be the same for continuous and discrete time models.





CHAPTER 1

MATHEMATICAL AND CONTROL
THEORY BASICS

1.1 Introduction

This section will review some mathematical and control theory basics, that in actual
fact is assumed covered by previous control courses. Both the coverage of topics and
their presentation will therefore be sketchy and incomplete, aimed at

correcting what is this author’s impression of what are the most common mis-
conceptions among students who follow this course, as well as

to establish some basic concepts and introduce some notation.

1.2 Models for dynamical systems

Many different model representations are used for dynamical systems, and a few of
the more common ones will be introduced here.

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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2 MATHEMATICAL AND CONTROL THEORY BASICS

1.2.1 Dynamical systems in continuous time

A rather general way of representing a dynamical system in continuous time is via a
set of ordinary differential equations:

ẋ = f(x, u, d) (1.1)

where the variables x are termed the system states and ẋ = dx
dt is the time deriva-

tive of the state. The variables u and d are both external variables that affect the
system. In the context of control, it is common to distinguish between the manipu-
lated variables or (control) inputs u that can be manipulated by a controller, and the
disturbances d that are external variables that affect the system but which cannot be
set by the controller.

The system states x are generally only a set of variables that are used to describe
the system’s behaviour over time. Whether the individual components of the state
vector can be assigned any particular physical interpretation will depend on how
the model is derived. For models derived from fundamental physical and chemical
relationships (often termed ’rigorous models’), the states will often be quantities like
temperatures, concentrations, velocities, etc. If, on the other hand, the model is an
empirical model identified from observed data, it will often not be possible to assign
any particular interpretation to the states.

Along with the state equation (1.1), one typically also needs a measurement equa-
tion such as

y = g(x, u, d) (1.2)

where the vector y is a vector of system outputs, which often correspond to available
physical measurements from the systems. Control design is usually at its most simple
when all states can be measured, i.e., when y = x.

Disturbances need not be included in all control problems. If no disturbances are
included in the problem formulation, equations (1.1) and (1.2) trivially simplify to
ẋ = f(x, u) and y = g(x, u), respectively.

Since we are dealing with dynamical systems, it is hopefully obvious that the
variables x, y, u, d may all vary with time t. In this section time is considered as a
continuous variable - in accordance with our usual notion of time.

Together, equations (1.1) and (1.2) define a system model in continuous time.
This type of model is rather general, and can deal with any system where it suffices
to consider system properties at specific points in space, or where it is acceptable
to average/lump system properties over space. Such models where properties are
averaged over space are often called lumped models.

For some applications, it may be necessary to consider also spatial distribution of
properties. Rigorous modelling of such systems typically result with a set of partial
differential equations (instead of the ordinary differential equations of (1.1)). In
addition to derivatives with respect to time, such models also contain derivatives with
respect to one or more spatial dimensions. Models described by partial differential
equations will not be considered any further in these notes. Although control design
based on partial differential equations is an active research area (in the area of flow
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control, in particular), the more common industrial practice is to convert the set
of partial differential equations to a (larger) set of ordinary differential equations
through some sort of spatial discretization.

1.2.2 Dynamical systems in discrete time

Although time in the ’real world’ as we know it is a continuous variable, control
systems are typically implemented in computer systems, which cyclically execute
a set of instructions. Measurements and control actions are therefore executed at
discrete points in time, and to describe system progression from one time instant
to subsequent instants we will need a discrete time model. Such models may be
represented as

xk+1 = f(xk, uk, dk) (1.3)
yk = g(xk, uk, dk) (1.4)

where xk, yk, uk and dk are the discrete-time counterparts to the system states, out-
puts, inputs and disturbances introduced above for continuous-time systems. Note
that although the same letter f is used to represent the system dynamics for both
continuous- and discrete-time systems, these functions will be different for the two
different model types. The measurement equation, on the other hand, will often be
identical for the two model types.

1.2.3 Linear models and linearization

Many control design methods are based on linear models. It is therefore necessary
to be able to convert from a nonlinear model to a linear model which is (hopefully)
a close approximation to the nonlinear model. This is called linearization of the
nonlinear model.

A systems is linear if to functions f and g (in (1.1) and (1.2) for the case of
continuous time models, or in (1.3) and (1.4) for the case of discrete time models)
are linear in all the variables x, u and d. Thus, a linear continuous-time model may
be expressed as

ẋ = Ax+Bu+ Ed (1.5)
y = Cx+Du+ Fd (1.6)

where A,B,C,D,E, F are matrices of appropriate dimensions, and the matrix el-
ements are independent of the values of x, u, d. Linear models for discrete-time
systems follow similarly.

Linearization is based on the Taylor series expansion of a function. Consider a
function h(a). We want to approximate the value of h(a) in the vicinity of a = a∗.
The Taylor series expansion then provides the approximation

h(a) = h(a∗ + δa) ≈ h(a∗) +
∂h

∂a
|a∗δa+

1

2
δaT

∂2h

∂a2
|a=a∗δa+ ... (1.7)
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where the notation |a=a∗ indicates that the value a = a∗ is used when evaluating the
derivatives.

1.2.3.1 Linearization at a given point When linearizing a dynamical system
model we terminate the Taylor series expansion after the first order term. The un-
derlying non-linear system is therefore naturally assumed to be continuous and have
continuous first order derivatives. Assume that the linearization is performed at the
point

a =

xu
d

 =

x
∗

u∗

d∗

 = a∗ (1.8)

The terminated Taylor series expansion of (1.1) then becomes

dx

dt
=
dδx

dt
≈ f(a∗) +

∂f

∂x

∣∣∣∣
a=a∗

δx+
∂f

∂u

∣∣∣∣
a=a∗

δu+
∂f

∂d

∣∣∣∣
a=a∗

δd (1.9)

Similarly, we get for (1.2)

y = y∗ + δy ≈ g(a∗) +
∂g

∂x

∣∣∣∣
a=a∗

δx+
∂g

∂u

∣∣∣∣
a=a∗

δu
∂g

∂d

∣∣∣∣
a=a∗

δd (1.10)

where it is understood that y∗ = g(a∗).
Next, define A = ∂f

∂x |a=a∗ , B = ∂f
∂u |a=a∗ , E = ∂f

∂d |a=a∗ , C = ∂g
∂x |a=a∗ , D =

∂g
∂u |a=a∗ , F = ∂d

∂x |a=a∗

Linearizing at an equilibrium point The point a∗ used in the linearization is usually
an equilibrium point. This means that

f(a∗) = 0 (1.11)
g(a∗) = y∗ (1.12)

Thus, we get

dx

dt
= Aδx+Bδu+ Eδd (1.13)

δy = Cδx+Dδu+ Fδd (1.14)

Linearizing a discrete-time model is done in the same way as for continuous-time
models. The only slight difference to keep in mind is that for a discrete-time model
at steady state xk+1 = xk, and therefore f(a∗) = xk when linearizing at a steady
state.

Deviation variables It is common to express the system variables (x, u, d and y)
in terms of their deviation from the linearization point a∗. When doing so the δ’s
are typically suppressed for ease of notation - as will be done in the remainder of
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this note. It is, however, important to beware that when converting from deviation
variables to ’real’ variables, the linearization point has to be accounted for.

To illustrate: A model for a chemical reactor is linearized at steady state con-
ditions corresponding to a reactor temperature of 435K. If the linearized model,
expressed in deviation variables, indicates a temperature of −1, the corresponding
’real’ temperature would be 434K.

Linear controllers are not linear! It appears that many students, even after intro-
ductory control courses, do not appreciate that our socalled ’linear’ controllers are
only linear when expressed in deviation variables. In ’natural’ variables, the typical
’linear’ controller is in fact affine, i.e., they have a constant term in addition to the
linear term. This can lead to many frustrations, until the misunderstanding has been
clarified - which might actually take some time, because the importance of this is-
sue will depend on both controller structure and controller type. Consider a simple
feedback loop, with a (linear) controller K controlling a system G, as illustrated in
Fig. 1.1.

K G
r u

u*

ye +

-

Figure 1.1: A simple feedback loop with a one degree of freedom controller and
possible ’output bias’.

This type of controller is called a ’one degree of freedom controller’, since it has
only one input, the control offset e = r−y. We can make the following observations:

Clearly, it does not matter whether the reference r and measurement y are ex-
pressed in ’physical’ variables or deviation variables, as long as the same scale
is used for both. This is because the controller input is the difference between
these to variables.

Consider the case when the controller K is a pure proportional controller, i.e.,
u = K(r − y) with K constant. It is then necessary to add u∗ as an ’output
bias’1 to the controller output, as indicated by the dashed arrow in the figure.

Consider next the case when the controller K contains integral action. In this
case the ’output bias’ is not strictly necessary, since the value of the integrat-

1Some system vendors may use different terminology.
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ing state will adjust for this when the system reaches steady state. However,
an output bias may improve transient response significantly when putting the
controller into operation.2

Consider next a loop where the controller has separate entry port for the reference
and the measurement, as shown in Fig. 1.2. This type of controller is used when one
wants to treat the measurement and reference signals differently in the controller. We

K G

r

u

u*

y
+

y* -

-

Figure 1.2: A simple feedback loop with a two degree of freedom controller and
possible ’bias’ on both controller inputs and controller output.

note that

In this case we need to subtract the value of the measurement at the linearization
point, y∗, from both the reference and the measurement.

Whether to add u∗ to the controller output is determined by the same consider-
ations as for the one degree of freedom controller.

Linearizing around a trajectory. It was noted above that it is most common to
linearize around a steady state. However, in some cases, one may want to linearize
around a trajectory, i.e., around a series of consistent future values of x, u and d.
This most commonly occurs in non-linear model predictive control (MPC). Each
time an MPC controller executes, it solves an optimization problem that optimizes
system behaviour over a ’prediction horizon’. However, for some strongly non-linear
problems, using the same linearized model for the entire prediction horizon may
not give sufficient accuracy. In such cases, one may choose to linearize around a
trajectory instead.

Given the present state, a prediction of the future manipulated variables (typically
obtained from the previous execution of the MPC), and predicted values for future
disturbances, the nonlinear model can be used to simulate the system in the future.
This gives predicted future states that are consistent with the present state and the
predicted future manipulated variables and disturbances.

For each timestep in the future, the linearization is performed around the predicted
state, manipulated variable and disturbance values. This will give different matrices

2See also the chapter on Bumpless Transfer.
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A,B,CD,E, F for each timestep. In this way, a non-linear system is approximated
by a linear, time-varying model.

Linearizing around a trajectory clearly complicates the model. In addition to the
added complexity of having to ensure that the right model matrices are used at the
right timestep in the future, one also has to remember that the linearization point
varies from timestep to timestep (resulting from f(a∗) 6= xk in the discrete-time
equivalent of (1.9)). This adds additional complexity when converting between phys-
ical variables and deviation variables.

1.2.4 Converting between continuous- and discrete-time models

It will often be necessary to convert from continuous- to discrete-time models (and
less frequently necessary to convert the other way). Process models based on first
principles modelling will typically result in continuous-time models. Often, control
design is performed with a continuous-time model. The continuous-time controller
is thereafter converted to a discrete-time controller for implementation in a computer.
There are also controller types that are more conveniently designed using discrete-
time models. The most notable example of such controllers are the socalled Model
Predictive Control (MPC) controllers, which will be described in some detail later in
these notes.

To convert from continuous to discrete time, we need to

choose a numerical integration method for the system dynamics, and

determine (assume) how the external variables (u and d) change between the
time instants for the discrete-time model.

It is common to assume socalled ’zero order hold’3, i.e., that the external variables
are constant at the value of the previous time instant until the next time instant is
reached. This agrees with what is common practice for control inputs in control
systems.

Most control design software will have functions for converting between continuous-
and discrete-time linear models. It is also included in most basic control textbooks.
We will nevertheless give a short introduction here, primarily in order to discuss the
handling of time delay when converting from a continuous to a discrete time model.
The presentation is inspired by that of Åström and Wittenmark [ÅW84].

Consider a continuous-time linear model

ẋ = Acx(t) +Bcu(t) (1.15)

Assuming zero order hold and a timestep of length h, integration over one timestep
(from t = kh to t = kh+ h) gives

x(kh+ h) = eAchx(kh) +

∫ kh+h

kh

eAc(kh+h−r)Bcu(r)dr (1.16)

3An nth order hold means that the nth time derivative is held constant between the sample instants of the
discrete time model
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This is commonly expressed as the discrete-time model

xk+1 = Adxk +Bduk (1.17)

where the sampling interval h is assumed known and therefore not explicitly stated4.
The matrices Ad and Bd are given by

Ad = eAch

Bd =

∫ kh+h

kh

eAc(kh+h−r)Bcu(r)dr = A−1
c

(
eAch − I

)
Bc

1.2.4.1 Time delay in the manipulated variables Consider next the case when
the manipulated variables u do not affect the state derivative ẋ directly, but only after
a time delay τ . The model (1.15) thus becomes

ẋ = Acx(t) +Bcu(t− τ) (1.18)

Note that there is no exact representation of a pure time delay using ordinary dif-
ferential equations - this would require an infinite number of states. Therefore, the
time delay is instead introduced explicitly in the argument when representing the
manipulated variable u as a function of time.

Multiple timestep time delays If the time delay is an integer number of sampling
intervals, this is easily captured in a discrete-time model. Let u∆(k) = u(k − n).
This can be expressed as

x∆(k + 1) = A∆x∆(k) +B∆u(k)

=



0 I 0 · · · 0

0 0 I
... 0

0
...

...
... 0

0
...

... 0 I

0 . . . . . . . . . 0


x∆(k) +



0

0
...
0

I


u(k) (1.19)

u∆(k) = C∆x∆(k) =

I 0 0 · · · 0︸ ︷︷ ︸
n

x∆(k)

The overall model then results from the series interconnection of the delay-free
model and the model for the time delay above.

4Note also that the subscript d refers to discrete time rather than ’disturbance’. Elsewhere in this note Bd
is sometimes used as ’the B-matrix for the disturbance’.
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Fractional timestep time delays If the time delay τ is only a fraction of the sam-
pling interval h, we must account for the fact that the value of the manipulated vari-
able which affects ẋ in (1.15) from time kh to time kh + τ is actually u(kh − h).
Thus, the integral in (1.16) must be split in two, and we get

x(kh+ h) = eAchx(kh) +

∫ kh+τ

kh

eAc(kh+h−r)Bcdru(kh− h) +

∫ kh+h

kh+τ

eAc(kh+h−r)Bcdru(kh)

= Adx(kh) +Bd0u(kh) +Bd1u(kh− h) (1.20)

Bd1 = eAc(h−τ)A−1
c

[
eAcτ − I

]
Bc = eAc(h−τ)

∫ τ

0

eAcrdrBc

Bd0 = A−1
c

[
eAc(h−τ) − I

]
Bc =

∫ h−τ

0

eAcrdrBc

This can be expressed in state space form as

[
x(kh+ h)

u(kh)

]
=

[
Ad Bd1

0 0

][
x(kh)

u(kh− h)

]
+

[
Bd0

I

]
u(kh) (1.21)

For time delays lasting more than one timestep, but a non-integer number of timesteps,
the overall model is found by the series interconnection of the multiple timestep de-
lay model in (1.19) and the system dynamics + fractional timestep delay model in
(1.21).

Some modern control techniques like MPC are computationally intensive, and
may induce a computational time delay. If the computational time is significant
compared to the sampling interval, it may be necessary to include a fractional time
delay in the model even for plants that by itself have no time delay.

Time delay in the measurement. Time delays in measurements may occur both
due to the characteristics of the sensor equipment (e.g., delays in analyzers such as
on-line gas chromatographs) or due to transportation delays (long pipes or conveyor
belts from the plant to the sensor).

For linear, time invariant systems, it does not matter whether the time delay is
modelled at the input or the output of the plant. However, for multivariable systems,
the time delay may be different for different measurements. In such cases, the time
delay must be modelled at the output, since it cannot be moved to the input.

Also, a measurement is often dependent on multiple states. The number of discrete-
time states used to model the time delay can then be reduced by delaying the mea-
surement in the model instead of delaying the states and calculating the measurement
from the delayed states [BM88].

Time delays in the measurements can be handled in much the same way as that
explained above for time delay in the manipulated variables. The details are therefore
left to the reader.
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1.2.5 Laplace transform

The Laplace transform should be familiar to all readers from introductory control
courses, and no attempt is made here at providing a complete or self-contained in-
troduction to the topic. It is merely introduced here as a minimal introduction to its
use later in this note.

Restating first the linear(ized) ordinary differential equation model, we have

ẋ = Ax+Bu+ Ed (1.22)
y = Cx+Du+ Fd (1.23)

where the δ’s are suppressed for notational simplicity. We should nevertheless keep
in mind that the linear model is expressed in deviation variables. The model de-
scribed by (1.22) and (1.23) is called a (linear) state space model of a system.

Using standard rules for the Laplace transformation (available in standard under-
graduate mathematics textbooks), we have

sx(s) + x(t = 0) = Ax(s) +Bu(s) + Ed(s) (1.24)
y(s) = Cx(s) +Du(s) + Fd(s) (1.25)

where s is a complex-valued scalar. The effect of the initial conditions (the term
x(t = 0) above) is usually ignored, since stability and common measures of perfor-
mance do not depend on initial conditions (for linear systems). Nevertheless, one
should be aware that the initial response will depend on initial conditions. If the
closed loop system contain modes that are poorly damped, the effects of the initial
conditions may be felt for a significant time.

Ignoring the term involving the initial conditions (or assuming the initial condi-
tions equal to zero in deviation variables) we obtain by simple manipulations

y(s) =
[
C(sI −A)−1B +D

]
u(s) +

[
C(sI −A)−1E + F

]
d(s) (1.26)

= G(s)u(s) +Gd(s)d(s)

where G(s) and Gd(s) are the (monovariable or multivariable) transfer functions
from the manipulated variable and the disturbance, respectively, to the system output.

1.2.6 Similarity transformations

Whereas the transfer function is unique for a given input-output behaviour, there is
an infinite number of different state space models that describe the same dynamics.

Given a state space model such as (1.22) - (1.23), and consider the case where we
instead of the original states x want to use the alternative states x̃. The state vectors
x and x̃ must be related through

x = T x̃ (1.27)

where T is an invertible matrix. This ensures that when specifying the state in one
set of state variables, we also uniquely specify the states in the other set of state
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variables. Trivial manipulations then yield

˙̃x = T−1ATx̃+ T−1Bu+ T−1Ed (1.28)
y = CTx̃+Du+ Fd (1.29)

from which the state space matrices for the transformed state space model are easily
identifiable. This reveals the fact that the state space representation of a dynami-
cal system is not unique - via similarity transforms the exact same dynamics can be
represented by ’different’ state space models. In addition, a state space model may
contain ’redundant’ states, as discussed next. In contrast, the frequency response of
a model in the Laplace domain (such as (1.26)) is unique. Furthermore, the trans-
fer function model G(s) itself is unique provided any redundant states have been
removed, i.e., provided cancelation of common terms in the numerator and denom-
inator has been performed, or it is obtained from the Laplace transformation of a
minimal model.

1.2.7 Minimal representation

A state space model may contain states that either cannot be affected by the inputs
(an uncontrollable state) or cannot affect any of the outputs of the system (an un-
observable state). Such states do not contribute to the input-output behaviour of the
system. The model then contains more states than the minimal number of states re-
quired to represent the input-output behaviour of the system. Therefore, such models
are called non-minimal.

Many control calculations assume that the model supplied is minimal, and nu-
merical problems may occur if this is not the case. It is therefore common practice
to remove uncontrollable or unobservable states, and standard control software have
functions for doing this (such as minreal in Matlab).

However, one should bear in mind that the uncontrollable or unobservable system
states may represent important quantities for the overall system. Whether it is advis-
able to remove uncontrollable or unobservable states can depend on several factors:

How was the model obtained? If the model is the result of rigorous modelling
based on physical and chemical principles, the states will typically represent
physical/chemical quantities in the system.

Empirical models identified from experiments will typically result in models
containing only observable and controllable states - although not all states need
to be recognizable as a distinct physical quantity in the system.

When assembling a system model from models of parts of the system, states
representing the same physical quantity may be represented in several of the
smaller models. This can easily lead to a non-minimal model when assembling
the overall system model. Such ’duplicate states’ can safely be removed.

It is usually considered safe to delete stable uncontrollable and unobservable
modes.
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1. If a stable mode is uncontrollable, its effect on the output will die out over
time - unless it is excited by some disturbance. A state may be ’control-
lable’ from a disturbance even if it is uncontrollable from the manipulated
variables. This is the situation in many disturbance attenuation problems.
Although such states may be removed from the plant model (from manip-
ulated to controlled variables), it cannot be removed from the disturbance
model (from disturbances to controlled variables).

2. A controllable but unobservable mode will be excited by the manipulated
variables, and even if it is stable will not necessarily decay to zero if the
state is continuously excited by the manipulated variables or disturbances. If
the state represents some quantity of little importance, this situation would
appear acceptable. It may, however, be the case that the state represents
some important quantity, and the fact that it is unobservable merely reflects
an inappropriate set of measurements.

When discovering unobservable or uncontrollable states, the engineer should there-
fore reflect on how and why these states are introduced in the model. It may be that
such states can safely be removed from the model. It may also be the case that one
should install new measurements or new actuators to make the states observable and
controllable.

For diagonalizable systems, i.e., systems for which the A-matrix has a full rank
eigenvector matrix, it is straight forward to perform a similarity transform to identify
the uncontrollable or unobservable states. Let M be the eigenvector matrix of the
matrix A in (1.22), and Λ the corresponding (diagonal) eigenvalue matrix. Choosing
T = M−1 in (1.27) then yields

˙̃x = Λx̃+MBu+MEd (1.30)
y = CM−1x̃+Du+ Fd (1.31)

Uncontrollable states (in terms of the states x̃) can then be identified from rows that
are equal to zero in MB, whereas unobservable states are identified from columns
in CM−1 equal to zero.

1.2.8 Scaling

An appropriate scaling of inputs and outputs will greatly simplify the interpretation
of many of the analyses described in this book. For the system

y(s) = G(s)u(s) +Gdd(s)

we will assume throughout the book that:

y(s) is scaled such that the largest acceptable deviation from the reference value is
equal to 1 in the scaled variable. If the largest acceptable deviation from the
reference value is different in the positive and negative direction, the smaller of
the two (in magnitude) is used.
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u(s) is scaled such that the the value 1 (in the scaled variable) corresponds to the
largest available input value. If the largest available u(s) is different in the
positive and negative direction, the smaller of the two (in magnitude) is used.

d(s) is scaled such that the value of 1 (in the scaled variable) corresponds to the
largest expected disturbance. If the largest available d(s) is different in the
positive and negative direction, the larger of the two (in magnitude) is used.

Note that the description above refers to y(s), u(s) and d(s) as deviation variables.
The scaling is easily performed using diagonal matrices Sy, Su, and Sd with positive
elements along the diagonal. That is,

Sy = diag{syi} (1.32)

where syi is the largest acceptable deviation from the reference value for output i.
The matrices Su and Sd are defined similarly. Using the subscript s to denote the
scaled variable, we then get

Syys(s) = G(s)Suus(s) +Gd(s)Sdds(s)

m
ys(s) = S−1

y G(s)Suus(s) + S−1
y GdSdds(s)

where the scaled G(s) is easily identifiable as S−1
y G(s)Su and the scaled Gd(s) as

S−1
y GdSd. Unless otherwise stated, we will throughout this book assume that the

transfer function matrices G(s) and Gd(s) have been thus scaled, and we will not
use the subscript s on the input and output variables (even though the variables are
assumed to be scaled).

1.3 Analyzing linear dynamical systems

1.3.1 Transfer functions of composite systems

In this section, simple rules for finding transfer functions of composite systems will
be provided, and thereafter some closed loop transfer functions that will be defined
that are frequently encountered in this book. The presentation in this section assumes
all transfer functions to be multivariable i.e., described by transfer function matrices.
For monovariable systems the transfer functions are scalar, which simplifies their
calculation, since scalars do commute.

1.3.1.1 Series interconnection Consider the series interconnection of two trans-
fer function matrices, as illustrated in Fig. 1.3. The transfer function L(s) from r(s)
to y(s) can be found by starting at the output y(s), and writing down the transfer
function matrices as we trace the path back to the input r(s). Thus, we find

y(s) = L(s)r(s) = G(s)K(s)r(s)

This technique is readily applied also to more than two transfer function matrices in
series. We emphasize once again that the order of the transfer function matrices is
important, GK 6= KG.
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K(s) G(s)r(s)
u(s)

y(s)

L(s)

Figure 1.3: Series interconnection of two transfer function matrices.

1.3.1.2 Parallel systems For systems in parallel, the overall transfer function
from input to output is obtained by simply adding the transfer functions of the indi-
vidual paths.

G1(s)

G2(s)

u(s) y(s)

G(s)

Figure 1.4: Two transfer function matrices in parallel.

Thus, in Fig. 1.4, the transfer function G(s) from u(s) to y(s) is given by

y(s) = G(s)u(s) = (G1(s) +G2(s))u(s)

1.3.1.3 Feedback connection When finding transfer functions involving feed-
back loops, we start as before at the output, go towards the input, and apply as
appropriate the rules for series and parallel interconnections above. Then, at the
point of leaving the feedback loop, multiply by (I−L(s))−1, where L(s) is the loop
gain at the point of exiting the loop, going ’countercurrent’ to the direction of signal
transmission around the loop.

Applying this to the system in Fig. 1.5, we start at y(s), and have notedG(s)K(s)
when we arrive at the point of exciting the feedback loop (in front ofK(s)). The loop
gain as seen from that point, going ’countercurrent’ around the loop, is−F (s)G(s)K(s),
remembering to account for the negative feedback. The overall transfer function
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K(s) G(s)

F(s)

-

r(s) y(s)

Figure 1.5: Feedback interconnection of systems.

from r(s) to y(s) is therefore given by

y(s) = G(s)K(s)(I + F (s)G(s)K(s))−1r(s)

1.3.1.4 Commonly used closed loop transfer functions A simple feedback
loop excited by disturbances d, reference changes r, and measurement noise n is
illustrated in Fig. 1.6.

GK
-

y

n+

Gd

ur

d

Figure 1.6: Basic feedback loop excited by disturbances d, reference changes r, and
measurement noise n.

Applying the rules for finding transfer functions above, we get

y = (I +GK)−1Gdd+GK(I +GK)−1r −GK(I +GK)−1n (1.33)

u = −K(I +GK)−1Gdd+K(I +GK)−1r −K(I +GK)−1n (1.34)

Two terms that appear repeatedly above, are

(I +GK)−1 = S the sensitivity function

GK(I +GK)−1 = T the complementary sensitivity function

We will frequently refer to S and T , both by symbol and by name, but the origin of
the names will be of little importance for our use of the terms.
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1.3.1.5 The push-through rule The push-through rule says that

(I +M1M2)−1M1 = M1(I +M2M1)−1 (1.35)

The proof is left for the reader as an exercise. Note that the push-through rule holds
also if M1 and M2 do not commute. If M1 and M2 are not square (but of compatible
dimension), the identity matrices on each side of the equality above will have to be
different. Note also that the order of occurrence of M1 and M2 is the same on both
sides of the equality sign above (ignoring all other symbols, we haveM1−M2−M1

on both sides). The push-through rule is sometimes a useful tool for simplifying
transfer functions. Note that it implies

GK(I +GK)−1 = G(I +KG)−1K = (I +GK)−1GK

The matrix SI = (I + KG)−1 is sometimes called the sensitivity function at the
plant input, and correspondingly TI = KG(I + KG)−1 is sometimes called the
complementary sensitivity function at the plant input. SI and TI will not be used
extensively in this book, but it is worth noting that for multivariable systems, the
properties of a feedback loop depends on the location in the feedback loop.

1.3.2 Poles and zeros of transfer functions

Consider a scalar transfer function, that can be factored as

G(s) = k
(s+ z1)(s+ z2) · · · (s+ zn)e−Ts

(s+ p1)(s+ p2) · · · (s+ pm)
(1.36)

where m ≥ n, as otherwise there would be no state space model that represent the
transfer function dynamics. The parameters zi are known as the zeros of the transfer
function, whereas the pi are termed poles. The term e−Ts represents a pure time
delay (transportation delay) of T time units. Zeros and poles can be either strictly
real or complex valued. However, complex-valued zeros or poles always appear in
complex conjugate pairs, since both the numerator and denominator of the transfer
function has only real-valued coefficients (for transfer functions corresponding to a
model described by ordinary differential equations). Remember that the time delay
term e−Ts cannot be described (exactly) by ordinary differential equations.

For a minimal representation of a system, the poles may also be defined as the
roots of the characteristic polynomial (also called the pole polynomial)

φ(s) = det(sI −A) (1.37)

Zeros and poles are often classified according to whether their real parts are pos-
itive or negative. Poles and zeros whose real part are strictly negative are called left
half plane (LHP) poles and zeros, respectively. Similarly, poles and zeros whose
real parts are positive are called right half plane (RHP) poles and zeros. RHP poles
(for continuous time systems) means that the system is unstable. If the open loop
system has an RHP pole, it will therefore be necessary to stabilize the system using
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feedback control. RHP poles for the closed loop system is unacceptable. Poles in the
LHP cause no fundamental problem5. LHP zeros also pose no particular problem
for linear systems - although zeros close to the imaginary axis may indicate that the
effect of the input is weak in the corresponding frequency range, and therefore there
is a risk that the input magnitude required is larger than what is available6.

The problem with RHP zeros is that for high loop gain (corresponding to fast
control), the closed loop poles approach the open loop zeros. Consider a simple
feedback loop, such as Fig. 1.9, and let the (open) loop transfer function be composed
of a controller7 k and the plant transfer function g(s) = n(s)/d(s). Thus L(s) =

k n(s)
d(s) . The closed loop transfer function from r to y is given by

L(s)/(1 + L(s)) =
n(s)

(d(s)
k + n(s))

We see that the closed loop transfer function approaches 1 (the measurement tracks
the reference signal) as k → ∞. The closed loop poles are given by the roots of
the denominator polynomial of the closed loop transfer function, and as k → ∞
the denominator polynomial approaches the open loop numerator polynomial. This
means that the closed loop poles will approach the open loop zeros - resulting in
poles in the RHP if the open loop numerator polynomial has zeros in the RHP. Thus,
open loop zeros in the RHP are inconsistent with perfect control. The performance
limitations arising from RHP zeros will be further elaborated in subsequent chapters.

1.3.2.1 Poles of multivariable systems For multivariable systems, the pole poly-
nomial can be found from (1.37) just as for monovariable system. The pole polyno-
mial can also be calculated from the transfer function matrix. All multivariable poles
will appear as a pole of one or more transfer function elements, the only difficulty
arises in knowing how many poles are needed, i.e., it is easy to find out that the sys-
tem has a pole at pi, but less obvious how many poles are at pi. That issue is resolved
by the following result from [MK76]:

Theorem 1.1 The pole polynomial φ(s) for a system with transfer function G(s)
is the least common denominator of all not-identically-zero minors of all orders of
G(s).

Recall that a minor ofG(s) is the determinant of a submatrix obtained by deleting
rows and columns of G(s). Minors of all orders include the individual elements, as
well as the determinant of the overall matrix (or of the largest possible sub-matrixes,
if G(s) is not square). When calculating the minors, pole-zero cancellations of com-
mon terms in the numerator and denominator should be carried out whenever possi-
ble.

5Although they may also need to be moved by feedback if they result in too slow responses for the
application at hand.
6Note that this problem does not show up in linear analysis, since magnitude bounds on inputs is a non-
linear effect.
7A static controller is used for simplicity of exposition.
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1.3.2.2 Pole directions The input and output pole directions, denoted upi and
ypi, respectively, capture the input direction with infinite gain and the corresponding
output direction, for the systemG(s) evaluated at the pole s = pi. That is, with some
abuse of notation we may say that

G(pi)upi = ∞ (1.38)
yHpiG(pi) = ∞ (1.39)

The input and output pole directions could conceptually be found from the input and
output singular vectors corresponding to the infinite singular value of G(pi). How-
ever, this is a numerically ill-conditioned calculation. Instead, the pole directions can
be found starting from the right and left eigenvalue decomposition of the matrix A:

Ati = piti

qHi A = piq
H
i

upi = BHqi

ypi Cti

We will throughout this note assume that the input and output pole directions have
been normalized to have unit length. For SISO transfer functions, we trivially have
upi = ypi = 1.

1.3.2.3 Zeros of multivariable systems We will first address multivariable zeros
by considering a simple 2× 2 example. Consider the plant

y(s) = G(s)u(s) =
1

s+ 1

[
1 s+ 1

2 s+ 4

]
u(s) (1.40)

The system is open loop stable. None of the elements of G(s) have zeros in the
right half plane. Controlling output y1 with the controller u1(s) = k1(r1(s)−y1(s)),
we get

y1 =
g11k1

1 + g11k1
r1 +

g12

1 + g11k1
u2

y2 =
g21k1

1 + g11k1
r1 +

(
g22 +

g21g12k1

1 + g11k1

)
u2

where the term inside the brackets is the transfer function from u2 to y2 when
y1 is controlled by u1, in the following this is denoted g̃2. Assume that a simple
proportional controller is used, i.e., k1(s) = k (constant). Some tedious but straight
forward algebra then results in

g̃2(s) =
1

(s+ 1)(s+ 1 + k)
[(s+ 4)(s+ 1 + k)− 2k(s+ 1)]

We can then easily see that the system is stable provided k > −1 (clearly, a positive
value for k would be used). For small values of k, g̃2 has two real zeros in the left
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half plane. For k = 9 − 3
√

8, the zeros become a complex conjugate pair, and the
zeros move into the right half plane for k > 5. For k = 9 + 3

√
8, both zeros again

become real (but positive), and if k is increased further, one zero approaches +∞
whereas the other zero approaces +2. Now, a zero of g̃2(s) far into the right half
plane will not significantly affect the achievable bandwidth for loop 2, but the zero
which at high values of k approaches +2 certainly will.

Note that it will not be possible to avoid the zero in g̃2(s) by using a more complex
controller in loop 1. The transfer function g̃2(s) will have a zero in the vicinity of
s = 2 whenever high bandwidth control is used in loop 1.

If we instead were to close loop 2 first, we would get similar problems with loop 1
as we have just seen with loop 2. That is, if loop 2 were controlled fast, the transfer
function from u1 to y1 would have a zero in the vicinity of s = 2.

We therefore conclude that it is a property of the plant that all directions cannot
be controlled fast, as we saw above that high gain control of a system with an RHP
zero leads to instability.

Looking at the term inside the square bracket in (1.40), we see that the determinant
of G(s) looses rank at s = 2 (its normal rank is 2, but at s = 2 it has rank 1). In
terms of systems theory, the plant G(s) has a multivariable (transmission) zero at
s = 2.

There is no direct relationship between monovariable and multivariable zeros, a
zero in an individual transfer function element may be at the same location as a
multivariable zero, but often that will not be the case. However, as we have seen
above, if a multivariable system with n outputs has a zero, and n − 1 outputs are
perfectly controlled using feedback, the zero will appear in any transfer function
from the remaining manipulated variable to the remaining controlled variable (if the
transfer function takes account of the fact that the other outputs are controlled).

Right half plane zeros in individual elements of a transfer function matrix need
not imply a control performance limitation (they may become serious limitations,
however, if parts of the control system is taken out of service, leaving only the loop
with the monovariable RHP zero in service).

There are several definitions of zeros in multivariable systems, we will be con-
cerned with the so-called transmission zeros8 of multivariable systems, which oc-
ccur when competing transmission paths within the system combine to give zero
effect on the output, even though the inputs and states are non-zero. As for mono-
variable zeros, implicatons on achievable control performance arise mainly when the
(transmission) zero is in the RHP.

As alluded to above, zeros of the system G(s) are defined [MK76] as points zi
in the complex plane where the rank of G(s) is lower than its normal rank. The
corresponding zero polynomial is defined as

Θ(s) =

nz∏
i=1

(s− zi) (1.41)

8The term transmission will frequently be dropped
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Where nz is the number of zeros9.
Zeros may be calculated from the transfer function matrix G(s) according to

Thm. 1.2 below. Note that the G(s) will only contain zeros corresponding to a min-
imal state space realization of the system.

Theorem 1.2 [MK76] Let r be the normal rank of G(s). Calculate all order-r mi-
nors of G(s), and adjust these minors to have the pole polynomial φ(s) in the de-
nominator. Then the zero polynomial Θ(s) is the greatest common divisor of the
numerators of all these order-r minors.

It is worth reflecting a little over the definition of a zero as a point where G(s)
loses rank, and the way zeros are calculated from Thm. 1.2. Consider a non-square
system G(s) of dimension n×m:

If m < n, zeros are relatively rare, because it is somewhat unlikely that all
order-n minors will share the same zero. The exception is when there is a zero
associated with a specific sensor, in which case all elements of the correspond-
ing row of G(s) will share the same zero, which will therefore also appear in
all order-n minors.

If n > m, it is also somewhat unlikely that all order-m minors will share the
same zero, unless the zero is associated with a specific input, in which case all
elements of the corresponding column of G(s)will share the same zero. How-
ever, if there is a zero associated with a specific sensor10, there will still be a
limitation to achievable control performance for the corresponding output - it
just will not appear in the zero polynomial.

More commonly than using Thm. 1.2, multivariable zeros are calculated from the
state space description, solving the following generalized eigenvalue problem

(ziIg −M)

[
xzi

uzi

]
= 0

M =

[
A B

C D

]
(1.42)

Ig =

[
I 0

0 0

]

The solution to the above problem will give the zero zi, the initial condition xzi for
the “transmission blocking” property, and the input direction uzi for the transmission
blocking.

Multivariable zeros, like monovariable ones, are invariant to feedback and to in-
put/output scaling.

9Disregarding any zeros at infinity, which have no particular implication for control performance.
10Or otherwise it occurs that all order-m minors containing a specific row of G(s) share a zero.
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1.3.2.4 Zero directions Zero input and output directions (denoted uzi and yzi,
respectively) corresponding to a multivariable zero at s = zi, contain information on
the input and output directions with zero gain for G(zi). THat is,

G(zi)uzi = 0 (1.43)
yHziG(zi) = 0 (1.44)

With knowledge of a multivariable zero of G(s) at s = zi, may be calculated
from a singular value decomposition of G(z). Alternatively, the input direction uzi
is found from (1.42) above. Likewise, a zero output direction can be calculated by
solving (1.42) using MT .

Whichever way uzi and yzi are calculated, we will assume that they have been
normalized to have unit length. For our uses, the output direction yzi of RHP zeros
will be of most interest, as it provides information about how severely the different
outputs are affected by the zero. Although the zero is invariant to scaling, the zero
directions are not.

1.3.3 Stability

Assuming that we have a minimal representation of a linear system in continuous
time. The system is then stable if

Re(λi(A)) < 0∀i (1.45)

where λi(A) denotes an eigenvalue of the matrix A in the state space model. It
follows from (1.26) that the eigenvalues of the A matrix also appear as poles of the
transfer function. Stable systems thus have their poles strictly in the left half plane
(as already stated above).

Control textbooks may differ somewhat on whether systems with poles on the
imaginary axis are considered stable. In some cases (as a result of a strict mathe-
matical definition of stability), systems with single poles on the imaginary axis are
classified as stable or ’marginally stable’, whereas systems with two or more poles
in the same place on the imaginary axis are called unstable.

In most practical situations systems with poles on the imaginary axis will need
to be ’stabilized’ by feedback, irrespective of whether these poles are ’single’ or
’multiple’ poles. We will therefore classify all systems with poles on the imaginary
axis as unstable.

Note that the eigenvalues of the A matrix correspond to the roots of the character-
istic polynomial, which again (for a minimal representation) correspond to the poles
of the transfer function. Clearly, these poles/roots/eigenvalues can be used equiva-
lently (under the assumption of a minimal representation) to determine stability.

For discrete-time state space models, the system is stable if

|λi| < 1∀i (1.46)
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1.3.4 Frequency analysis

In recent years, frequency analysis has been given less room in process control ed-
ucation. This seems to be a particularly prominent trend in Chemical Engineering
departments in the USA, where control seems to be squeezed by the wish to include
’newer’ topics such as materials/nano-/bio. Although many esteemed colleagues ar-
gue that control can be taught just as well entirely with time domain concepts, it is
this authors opinion that the same colleagues are making the mistake of elevating a
necessity to a virtue.

Despite this worrisome trend, the presentation of frequency analysis in this note
will be sketchy, assuming that the reader has had a basic introduction to the topic in
other courses.

This author agrees with the arguments expressed by Skogestad and Postlethwaite
[SP05] on the advantages of frequency analysis. While those arguments will not be
repeated here, but we will note that many control-relevant insights are easily avail-
able with a working understanding of frequency analysis.

In this note, the frequency response will be used to describe a systems response
to sinusoidal inputs of varying frequency. Although other interpretations of the fre-
quency response are possible (see, again, [SP05]), the chosen interpretation has the
advantage of providing a clear physical interpretation and a clear link between the
frequency and time domain.

The frequency response of a system with transfer function G(s) at the frequency
ω is obtained by evaluating G(s) at s = jω. The result is a complex-valued num-
ber (or a complex-valued matrix, for multivariable systems). It should be noted that
the frequency ω is measured in radians/time11, and thus the oscillation period corre-
sponding to the frequency ω is tp = 2π/ω.

The complex-valued frequency response is commonly presented in polar coordi-
nates in the complex plane, with the length being termed the gain and the angle being
termed the phase. Anti-clockwise rotation denotes positive phase.

That is, considerG(jω) = a+jb. The gain is then |G(jw)| =
√
a2 + b2, whereas

the phase is given by ∠G(jω) = tan−1(b/a). Thus, assume that a sinusoidal input
is applied:

u(t) = u0 sin(ωt+ α) (1.47)

Once the effect of any initial conditions have died out (or, we might make the ’techni-
cal’ assumption that the input has been applied ’forever’, since t = −∞), the output
will also oscillate sinusoidally at the same frequency:

y(t) = y0 sin(ωt+ β) (1.48)

We will then observe that |G(jω)| = y0/u0 and ∠G(jω) = β−α. For multivariable
systems, the response of each individual output can be calculated as the sum of the
responses to each of the individual inputs. This property holds for all linear systems
- both in the time domain and in the frequency domain.

11Usually time is measured in seconds, but minutes are also sometimes used for slow process units such
as large distillation towers.
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For G(s) in (1.36) we have

|G(jω)| = |k| ·
∏n
i=1 |(jω + zi)|∏m
i=1 |(jω + pi)|

· 1 (1.49)

∠G(jω) = ∠(k) +

n∑
i=1

∠(jω + zi)−
m∑
i=1

∠(jω + pi)− ωT (1.50)

The phase and gain of a single terms (s+ a) is illustrated in Fig. 1.7.

Imaginary

Real
a

|(s+a)|

(s+a)

Figure 1.7: The phase and gain of a simple term (s+ a) for a > 0.

Thus, we multiply the gains of k and the numerator terms in the transfer function,
and divide by the gains of the denominator terms. For the phase, we add the phases
of the numerator terms and the (negative) phase from the time delay, and subtract the
phase contribution from the denominator terms.

Above we have used Euler’s formula to determine the phase and gain of the time
delay term:

eja = cos a+ j sin a (1.51)

from which we find that |e−jωT | = 1∀ω and ∠e−jωT = −ωT (rad) = −ωTπ · 180◦.
Mathematically, k will have a phase of zero if k > 0 and a phase of−π = −180◦

if k < 0. However, for stability analysis this term is of no consequence - in practice,
if the plant has a negative gain we simply reverse the sign of the gain in the controller
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- see the paragraph on Steady-state phase adjustment below. That is, for stability
assessment using the Bode stability criterion (to be described below), we set the
phase contribution from k to zero.

1.3.4.1 Steady-state phase adjustment The steady state value of the transfer
function is obtained by evaluating the transfer function at s = 0. Provided there are
no poles or zeros at the origin (zi 6= 0 ∀i, pj 6= 0 ∀j in (1.36)), at s = 0 the transfer
function takes a real value, and thus must have a phase of n× 180◦, where n is some
integer.

Clearly, a purely imaginary term (for s = jω) contributes 90◦ to the phase at all
frequencies, including for s = 0. For zeros at the origin the phase contribution is
positive, and for poles the phase contribution is negative.

It is customary to adjust or ’correct’ the phase such that the phase contribution for
the constant k is zero. Similarly, the phase contribution of any RHP zero in (1.36) is
adjusted such that its phase at steady state is zero.

This phase adjustment is necessary to be able to assess closed loop stability from
the open loop frequency response. For open loop stable systems without zeros or
poles at the origin this corresponds to setting the steady state phase to zero, or as-
suming a positive steady state gain. If the real steady state gain is negative (if the
output decreases when the input increases), this in corrected for by simply reversing
the sign of the gain of the controller - often this is done by specifying that the con-
troller should be ’direct acting’. See section 2.5.4 for an explanation of direct and
reverse acting controllers.

The phase adjustment described above is done irrespective of whether the system
is stable in open loop. Note, however, that the phase of any unstable (RHP) poles
are not adjusted in this way. This may appear inconsistent, but is possibly most
easily understood by noting that one cannot ’normalize the steady state phase’ for a
RHP pole. An RHP pole represents an instability in the system, the output will grow
exponentially without bounds as a response to a change in the input, and thus there
is no (stable) steady state for an RHP pole.

After steady-state phase adjustment, the phase of G(j0) should therefore be

∠(G(j0)) = −180◦np − 90◦ni + 90◦nz0 (1.52)

where np is the number of poles in the RHP (unstable poles), and ni is the number of
poles at the origin (integrating poles)12, and nd is the number of zeros at the origin13.

1.3.5 Bode diagrams

The frequency response of a scalar system is often presented in a Bode diagram
(sometimes also called Amplitude-Phase-Frequency diagram). The Bode diagram
consists of two plots, the magnitude plot and the phase plot.

12Strictly speaking, the angle at steady state (s = j0) is not well defined if the plant has poles at the
origin. In this case, the equation above should be regarded as representing limω→0+ ∠(G(jω).
13Note that poles and zeros in the same location should be canceled in the transfer function, so that at
least one of ni and nz0 should be zero.
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In the magnitude plot, the transfer function magnitude (or gain) is plotted versus
frequency. Both the magnitude and the frequency axes are logarithmic (to the base
10).

Remark. Note that the magnitude scale used for the Bode magnitude plot in this
note is the conventional logarithmic scale (to the base 10). In some books, one can
still see the decibel (dB) scale used in the Bode magnitude plot, where

|G(jw)|(dB) = 20 log10 |G(jω)| (1.53)

We repeat that the decibel scale is not used in this note (or in this course).

In the Bode phase plot, the phase is plotted against frequency. The phase is usually
plotted in degrees using a linear scale (radians are seldom used), whereas a loga-
rithmic scale is used for the frequency axis. A Bode diagram of the simple system
g(s) = s+0.1

(s+0.01)(s+1) is shown in solid lines in Fig. 1.8.
Control software that plots Bode diagrams are now easily available, and manual

procedures for drawing Bode diagrams are therefore obsolete. One should, however,
take a little care to ensure that the steady state phase is correctly adjusted, as outlined
above. Otherwise, the steady state phase can easily be off by some multiple of 180◦.

Bode diagram asymptotes. Although procedures for manually drawing Bode di-
agrams are now obsolete, it is useful to be able to quickly visualize the phase-gain
relationships of the Bode diagram - possibly without drawing any diagram at all. For
this purpose, knowledge about the Bode diagram asymptotes are useful. This is par-
ticularly useful when considering changes to controller parameters for PI/PID con-
trollers, since it can give an intuitive understanding of the effects of such changes and
thereby simplify the search for appropriate controller parameters. These asymptotes
are rather inaccurate approximations to the exact diagram in the frequency range
near a pole or zero, but good approximations at frequencies removed from poles and
zeros.

To obtain the asymptotes for the Bode magnitude plot,

Start from the steady state gain of the system, |G(0)|. If the system has ’pure
integrators’ (poles at s = 0), evaluate the transfer function instead at some very
low frequency, several decades below any other pole or zero.

The gradient of the magnitude asymptote (in the loglog scale used in the mag-
nitude plot) at low frequencies is nz0 − ni, where nz0 is the number of zeros at
the origin and ni is the number of poles at the origin.

Increase frequency ω. Whenever ω = zi, increase the gradient of the asymptote
by 1. Whenever ω = pi, decrease the gradient of the asymptote by 1.

The asymptotes for the Bode phase plot are obtained as follows:

If the transfer function contains ni poles at the origin, they contribute a total of
−90◦ · ni of phase at (very) low frequencies. Similarly, if the transfer function
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Figure 1.8: The Bode diagram for the simple system g(s) = 10 (10s+1)
(100s+1)(s+1) =

s+0.1
(s+0.01)(s+1) .

contains nz0 zeros at the origin, these contribute a total of 90◦ · nz0 of phase at
(very) low frequencies.

Poles in the left half plane (the closed left half plane except the origin) do not
contribute to the phase at steady state. The zeros (anywhere except at s = 0)
also do not contribute the phase at steady state.

Poles in the open right half plane each contribute −180◦ to phase at steady
state.

Add the phase contributions at steady state. This gives the value of the low
frequency phase asymptote.

Gradually increase frequency ω. If ω = zi (a zero in the left half plane), in-
crease the asymptote phase by 90◦. If ω = −zi (a zero in the right half plane),
decrease the asymptote phase by 90◦. If ω = pi (a pole in the left half plane),
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decrease the asymptote phase by 90◦. If ω = −pi (a pole in the right half
plane), increase the asymptote phase by 90◦.

The phase asymptote thus changes in steps of (multiples of) 90◦. Note that this
way of finding the phase asymptote does not include the time delay. The phase
contribution of any time delay therefore has to be added separately afterwards, as
described above. With the logarithmic frequency axis used in the Bode diagram, the
time delay contributes little to the phase at ω << 1/T , but adds a lot of negative
phase at higher frequencies.

To use the above description to account for the phase and magnitude contributions
of complex-valued poles or zeros (which have to appear in complex conjugate pairs),
use the absolute value of the poles or zeros instead of the complex-valued pi or zi. In
this case the phase and gradient changes must be multiplied by a factor of two, since
the frequency corresponding to two poles/zeros are passed simultaneously. Note that
if the system has complex conjugate poles close to the imaginary axis, the magnitude
plot may have a large ’spike’ that is not captured by the asymptote.

Note from the above description that the phase contribution at low frequencies
of a zero in the right half plane is essentially the same as that of the zero’s ’mirror
image’ in the left half plane, whereas at high frequencies the phase contribution of
the two differ by 180◦.

In contrast, the phase contribution at low frequencies of a pole in the right half
plane is 180◦ different from that of its ’mirror image’ in the left half plane, but at
high frequencies the phase contribution of the two are essentially the same.

The asymptotes are shown with dashed lines in Fig. 1.8. The system g(s) =
s+0.1

(s+0.01)(s+1) has a steady state gain of 10, no pure integrators or differentiators. The
magnitude asymptote therefore starts with a gradient of 0, while the phase asymptote
starts with a phase of 0◦. The first pole is at pi = 0.01. At ω = 0.01, the gradient
of the magnitude asymptote therefore changes to −1, whereas the phase asymptote
goes to −90◦. At ω = 0.1 we encounter the (LHP) zero, and thus the gradient of the
magnitude asymptote increases to 0, and the phase asymptote goes to 0◦ again. Fi-
nally at ω = 1 we encounter the second pole, changing the gradient of the magnitude
asymptote to −1 and the phase asymptote to −90◦.

Minimum phase systems. It should be clear from the above that whether a pole
or a zero is in the right or left half plane does not affect the Bode magnitude plot,
whereas it does affect the phase plot. It turns out that for any system with a given
magnitude plot14, there is a minimum possible (negative) phase that the system can
have. This minimum possible phase can be quantified in terms of the Bode phase-
gain relationship, which from which the minimum possible phase can be calculated
from an integral over all frequencies of an expression involving the magnitude. The
precise form of this expression is of little importance in our context, the interested
reader may consult [SP05] or other textbooks on linear systems theory. One can,

14assuming that this magnitude plot makes physical sense, i.e., that it can correspond to a state-space
model
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however, find from the expression that the local phase depends strongly on the local
gradient of the magnitude in the loglog plot (the Bode magnitude plot). Thus, the
minimum possible phase is approximately given by

∠G(jω)min ≈ −90◦ · d log(|G(jω)|)
d log(ω)

(1.54)

That is, if the Bode magnitude plot has a gradient of −n, the minimum negative
phase we can expect is around−90n◦. Non-minimum phase systems have additional
negative phase. Whereas this approximation is exact at all frequencies only for a
series of integrators (G(s) = s−n), it can be a reasonable approximation for most
minimum phase systems except at frequencies where complex poles or zeros are
close to the imaginary axis. From the Bode stability criterion in section 1.3.6, it will
become clear that stability is incompatible with a transfer function magnitude that
has a steep negative gradient in the crossover region.

From the brief introduction to frequency analysis presented above, it should be
clear that a minimum-phase system has

no poles or zeros in the right half plane, and

has no time delay.

Minimum phase systems are often relatively easy to control, as the system dynamics
pose no special limitations or requirements for feedback control. In contrast, as we
will see later in this course, RHP poles imply a minimum bandwidth requirement,
whereas RHP zeros or time delays implies a bandwidth limitation.

1.3.6 Assessing closed loop stability using the open loop frequency
response

LetL(s) be the open loop transfer function matrix of a feedback system, as illustrated
in Fig. 1.9. The loop transfer function L(s) may be monovariable and multivariable,

L(s)
_

r y

Figure 1.9: A simple feedback loop.

and a feedback control setting typically results from connecting a controller K(s)
and a plant G(s) in series, i.e., L(s) = G(s)K(s). We will assume that there are
no hidden (unobservable or uncontrollable) unstable modes in L(s), and are inter-
ested in determining closed loop stability based on open loop properties of L(s).
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The Nyquist stability theorem provides such a method for determining closed loop
stability, using the socalled Principle of the Argument.

1.3.6.1 The Principle of the Argument and the Nyquist D-contour The Princi-
ple of the Argument is a result from mathematical complex analysis. Let t(s) be a
transfer function and C be a closed contour in the complex plane. Assume that the
transfer function t(s) has nZ zeros and nP poles inside the closed contour C, and
that there are no poles on C.

The Principle of the Argument. Let s follow C once in the clockwise direction.
Then, t(s) will make nZ − nP clockwise encirclements of the origin.

In this context the term ’Argument’ refers to the phase of the transfer function.
We are interested in stability of the closed loop, which clearly means that we want

to investigate whether the closed loop has any poles in the right half plane. Thus, the
contour C will in our case be the ’border’ of the entire right half plane, i.e., the
entire imaginary axis - turned into a closed loop by connecting the two ends with an
’infinitely large’ semi-circle around the right half plane15. To fulfill the requirement
that there should be no poles on the closed contour, we must make infinitesimal
’detours’ into the right half plane to go around any poles on the imaginary axis (most
commonly due to pure integrators in the plant G(s) or controller K(s)). The closed
contour described above is commonly known as the Nyquist D-contour.

1.3.6.2 The Multivariable Nyquist Theorem It can be shown (e.g., [MZ89]) that
the open and closed loop characteristic polynomials are related through

det(I + L(s)) =
φcl(s)

φol(s)
· c (1.55)

where c is a constant. The number of open loop poles in the RHP cannot be changed
by feedback. However, for closed loop stability we must ensure that there are no
closed loop poles in the RHP. Using the principle of the argument, we thus arrive at
the General or Multivariable Nyquist Theorem:

Theorem 1.3 Let the number of open loop unstable poles in L(s) be nol. The closed
loop system with negative feedback will then be stable if the plot of det(I + L(s))
does not pass through the origin, but makes −nol (clockwise) encirclements of the
origin as s traverses the Nyquist D-contour.

Note that in practice we only need to plot det(I + L(s)) for positive frequencies
only, since the plot for negative frequencies can be obtained by mirroring about the
real axis.

15A brief look at the expression for G(s) in (1.26) - while remembering that the transfer function t(s)
above can be expressed similarly - should suffice to convince the reader that the value of t(s) will remain
constant as s traveses the ’infinitely large semicircle’ around the RHP. For very large s,C(sI−A)−1B ≈
0 regardless of the direction from the origin to s.
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1.3.6.3 The monovariable Nyquist Theorem Most readers are probably more
familiar with the monovariable Nyquist theorem, which follows from the multivari-
able version by noting that for a scalar L(s) it is equivalent to count encirclements
of det(I + L(s)) around the origin and encirclements of L(s) around −1.

1.3.6.4 The Bode stability criterion The Bode stability criterion follows from
the monovariable Nyquist Theorem and thus applies only to monovariable systems.

Theorem 1.4 Let ωc denote the ’crossover frequency’, i.e., |L(jωc)| = 1, and as-
sume that |L(jω)| < 1 for ω > ωc. Then the closed loop system is stable provided
∠L(jωc) > −180◦.

The Bode stability criterion ensures that the Nyquist plot of L(s) passes between
the origin and the critical point −1 in the complex plane. For open loop stable
systems it is then straight forward to see that there can be no encirclements of the
critical point. However, the criterion may also be used for open loop unstable systems
with a single unstable pole provided the Bode phase plot starts from the correct phase
of −180◦np, where np is the number of RHP poles, and the crossover frequency ωc
is unique (i.e., that there is only one frequency ωc for which |L(jωc)| = 1).

If the assumption |L(jω)| < 1 for ω > ωc is violated, the Bode stability criterion
is easily misinterpreted, and the use of the Nyquist criterion is recommended instead.

For open loop stable systems the Bode stability criterion may equivalently be
stated in terms of ω180, defined such that ∠L(jω180) = −180◦. The closed loop
system is then stable if |L(jω)| < 1 for ω ≥ ω180. For most systems, the magnitude
|L(jω)| will decrease with increasing frequency, and it will thus suffice to check the
criterion only at ω180. However, this version of the criterion cannot be used for open
loop unstable systems, since ω180 need not be uniquely defined - and the criterion
must indeed be violated for one or more of the ω180’s.

Example. Consider the unstable system g(s) = 1
10s−1 , that we want to stabilize

with the proportional feedback controller k. The closed loop pole can be found from
the closed loop characteristic polynomial, by solving the equation 1+g(s)k = 0. We
thereby find that the closed loop pole is located at s = 1−k

10 , and the closed loop will
be stable for k > 1. We note that ω180 = 0, and that ∠L(jω) > −180◦∀ω > 0. We
can easily calculate ωc =

√
k2−1
10 . That is, for k < 1, |L(jω)| = |g(jω)k| < 1∀ω,

and there is thus no crossover frequency ωc. Thus, we find also from the Bode
stability criterion (in terms of ωc) that we need k > 1 for stability. The Bode stability
criterion in terms of ω180 would fail - but as noted above this is only valid for stable
systems.

In Fig. 1.10 the Bode diagram for the system in this example is shown for k = 2.
We find that ωc =

√
3

10 and ∠L(jωc) = −120◦, i.e., the system is stable and we have
a phase margin of 60◦.

Stability of the closed loop system can also be verified from the monovariable
Nyquist theorem. We find that the image of L(s) under the Nyquist D-contour en-
circles the critical point (−1, 0) once in the anti-clockwise direction, as shown in
Fig. 1.11.
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Figure 1.10: Bode diagram for the system L(s) = 2
10s−1 .
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Figure 1.11: The monovariable Nyquist theorem applied to the system L(s) =
2

10s−1 . The curve encircles the critical point (−1, 0) once in the anti-clockwise di-
rection, and the system is hence stable.

1.3.6.5 Some remarks on stability analysis using the frequency response Fre-
quency analysis can indeed be very useful. However, some remarks seem to be
needed to warn against misuse of frequency analysis for analyzing stability:
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The Nyquist stability theorems and the Bode stability criterion are tools to as-
sess closed loop stability based on open loop frequency response data.

Knowledge of the number of open loop unstable poles is crucial when using
Nyquist or Bode.

Nyquist or Bode should never be used to assess open loop stability!

It is utterly absurd to apply the Bode stability criterion to the individual ele-
ments of a multivariable system, the Bode stability criterion applies to mono-
variable systems only. Use the multivariable Nyquist theorem to assess closed
loop stability of multivariable systems based on the open loop frequency re-
sponse.

1.3.6.6 The small gain theorem In the Multivariable Nyquist theorem we count
the number of encirclements of det(I + L(s)) around the origin as s traverses the
Nyquist D-contour. It is therefore intuitively obvious that if the loop gain L(s) is
’smaller than 1’ (in some sense), we cannot have any encirclements of the origin,
and any open loop stable system will remain stable in closed loop. For a scalar L(s)
we may of course use the ordinary transfer function magnitude to measure the size
of L(s).

When a control loop is oscillating, operators will often ’detune’ the loop (i.e., reduce
the gain in the controller), as high gain control usually leads to instability. We shall
see that this approach will not always be successful in removing oscillations.
Consider a liquid level control problem, with the outlet flowrate being used to control
the level. In practice, a valve is used to manipulate the flowrate, and a local flow
controller is used in cascade with the level controller. The flow controller receives
a flow measurement and the setpoint (reference value) for the flow controller is the
output of the level controller (see subsequent section on controllers in cascade). The
flow control loop should be much faster than the outer level control loop, and an
approximate model of the system as seen by the level controller is then

y(s) = g(s)u(s) =
h

s
u(s)

This model is good in the frequency range for which the flow control is good, i.e.,
inside the bandwidth of the flow controller. At higher frequencies one must expect
the flow control to contribute additional negative phase. The level controller is a PI
controller

u(s) = k(s)e(s) = kp
TIs+ 1

TIs
e(s)

where e(s) = r(s) − y(s) is the control offset, r(s) is the setpoint and y(s) is
the measurement. The level control loop is observed to be oscillating - should the
controller gain kp be decreased?
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To answer this question, one should first consider the frequency of the oscillation.
This can be estimated from ωc = tp/2π, with tp being the time between subsequent
peaks in the oscillating response. The oscillations indicate that the loop transfer
function L(s) = g(s)k(s) has a phase of approximately −180◦ at ωc. Observe that
the phase asymptote for the controller k(s) is −90◦ for frequencies ω < 1/TI , and
0◦ for frequencies ω > 1/TI , while the phase of the plant transfer function g(s) is
−90◦.
We can now distinguish two cases:

1. If ωC < 1/TI , the crossover frequency ωc is in the region where the loop trans-
fer function phase asymptote is −180◦, and the oscillations are to be expected.
Furthermore, decreasing the controller gain kp will not increase the phase at the
crossover frequency - so the oscillations would persist, but at a lower frequency.
Instead, the controller gain kp should be increased to move the crossover fre-
quency beyond 1/TI . This will result in a positive gain margin at ωc, and the
oscillations will be removed.

2. If ωc > 1/TI , the loop transfer function phase asymptote should be−90◦ at ωc,
while the observed oscillations indicate that the actual phase of the loop transfer
function is close to−180◦. The additional negative phase probably comes from
unmodelled dynamics in the flow control loop. The phase contribution of this
neglected dynamics must generally be expected to increase with increasing fre-
quency. Thus, decreasing the controller gain kp will improve the phase margin
and reduce the oscillations.

Simple considerations involving the asymptotes of the Bode plot thus suffice to un-
derstand how to modify the controller tuning in this case. Of course, one may change
the integral time TI instead of the gain kp. This is left for the reader as an exercise.

Mini-tutorial 1.1: Controller adjustment based on Bode diagram asymptotes

For multivariable systems we will require a system norm to measure size. This
is denoted ‖L‖x. There are several different system norms, and the subscript x will
identify the specific norm in question. While we will not use the norm concept
much in this book, it is widely used in robustness analysis. Interested readers may
find an accessible introduction to (vector, signal and system) norms in [DFT92],
and their use in robustness analysis in [SP05]. However, it is pertinent to point
out that eigenvalues are not system norms (when evaluating the transfer function
matrix at some given value of s). The most frequently used norm in robustness
analysis is ‖L‖∞, which corresponds to the peak value along the imaginary axis of
the maximum singular value of L(s).

In its basic form the small gain theorem may not appear very useful. From single
loop control we know that we need high gain for good control performance. How-
ever, some times one can factorize the loop gain in ways which makes the small gain
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theorem very useful. Consider Fig. 1.12. The left part of the figure depicts an or-
dinary control loop, with uncertainty in the effect of the inputs modelled by the ∆
block. Assume that the loop is nominally stable, i.e., it is stable when ∆ = 0. Inputs
and outputs can be ignored with respect to stability analysis, and hence for stability
analysis the left part of the figure can be converted to the M −∆ feedback structure
in the right part, where M = −KG(I +KG)−1 = −TI . At frequencies within the
closed loop bandwidth, i.e., where the loop gain is large, we will have ‖M(jω)‖ ≈ 1
(despite the loop gain ‖LI(jω)‖ = ‖K(jω)G(jω‖ being large)16. Thus, substantial
error may be tolerated at low frequencies without jeopardizing stability - since what
the small gain theorem tells us is that we require ‖M∆‖ < 1∀ω. Even larger model
errors may be tolerated at frequencies well beyond the closed loop bandwidth, where
‖M(jω)‖ << 1. The system will be most sensitive to uncertainty in the bandwidth
region, where we may have a peak in ‖M(jω)‖.

K G

∆

_

r u y

M

∆

Figure 1.12: Feedback loop with uncertainty converted to M −∆ structure for small
gain analysis.

1.3.7 Controllability

Definition 1.5 The for the continuous time dynamical system ẋ = Ax + Bu (or,
the matrix pair (A,B)) is controllable if for any initial state x(0) there exists a
(piecewise continuous) input u(t) that brings the state to any x(t1) for any t1 > 0.

There exists a number of different criteria for testing controllability. Zhou et al.
prove that the following are equivalent:

(A,B) is controllable

The Gramian matrix

Wc(t) :=

∫ t

0

eAτBBT eA
T τdτ (1.56)

16Here the notation ‖M(jω)‖ indicates that we are evaluating the norm of M on a frequency-by-
frequency basis, and hence we are applying a matrix norm instead of a system norm.
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is positive definite for any t > 0.

The controllability matrix

C :=
[
B AB A2B · · · An−1B

]
(1.57)

has full row rank, where n is the number of states (i.e.,A is of dimension n×n).

The matrix [A− λI B] has full row rank for all values of the complex-
valued scalar λ.

For any eigenvalue λ and corresponding left eigenvector m of A (i.e., m∗A =
m∗λ), then m∗B 6= 0.

The eigenvalues of A + BF can be freely assigned - with the only restriction
that complex eigenvalues must appear in conjugate pairs - by a suitable choice
of F .

Using the Gramian Wc(t) in (1.56), an explicit expression can be found for the
input that brings the system from x(0) to x(t1)17:

u(t) = −BT eA
T (t1−t)Wc(t1)−1(eAt1x0 − x1) (1.58)

For discrete time dynamical systems xk+1 = Axk + Buk, criteria for control-
lability are very similar to those for continuous time. However, one will in general
not be able to bring the system to an arbitrary new state over an arbitrary short time
period - one must allow for n timesteps to pass before an arbitrary x(t1) can be
achieved. Similarly, the discrete time version of the Gramian matrix is calculated
using summing rather than the integration in (1.56).

1.3.8 Observability

Definition 1.6 The continuous time dynamical system ẋ = Ax+Bu, y = Cx+Du
(or the matrix pair (C,A) is termed observable if, for any t1 > 0, the initial state
x(0) can be determined from the time history of the input u(t) and the output y(t)
over the time interval t ∈ [0, t1].

Zhou et al. [ZDG96] prove that the following are equivalent:

(C,A) is observable

The Gramian matrix

Wo(t) :=

∫ t

0

eA
T τCTCeAτdτ (1.59)

17This input is not unique, there are in general infinitely many input trajectories that brings the system
from x(0) to x(t1), see [CD91]. The particular input trajectory in (1.58) minimizes the cost < u, u >=∫ t1
t0
uT (t)u(t)dt
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is positive definite for any t > 0.

The observability matrix

O :=



C

CA

CA2

...
CAn−1


(1.60)

has full column rank, where n is the number of states.

The matrix

[
A− λI
C

]
has full column rank for all values of the complex-valued

scalar λ.

For any eigenvalue λ and corresponding left eigenvector q of A (i.e., Aq = λq),
then Cq 6= 0.

The eigenvalues of A + LC can be freely assigned - with the only restriction
that complex eigenvalues must appear in conjugate pairs - by a suitable choice
of L.

For discrete time dynamical systems xk+1 = Axk+Buk, yk = Cxk+Duk, criteria
for observability are very similar to those for continuous time. However, one will in
general not be able to determine the state at t = 0 by observing inouts and outputs
over an arbitrary short time - one must in general allow for n timesteps to pass before
x(0) can be determined. Similarly, the discrete time version of the Gramian matrix
is calculated using summing rather than the integration in (1.56).

1.3.9 Some comments on controllability and observability

Although controllability and observability in general are desirable properties, their
relationship with achievable control performance is easily exaggerated. For instance,

An uncontrollable state may cause no problem in achieving acceptable control,
if that state is unrelated or only weakly related to the control objective.

If an uncontrollable state is asymptotically stable, its effect on the measured
variables will die out over time - since it is not excited by the manipulated
variables. Note that this observation does not hold if the state is ‘controllable’
from (and hence can be excited by) the disturbances.

If a state is unobservable, it does not affect the measured variables. Hence, if
the measurements reflect the control objective - and the state is stable - it is of
little relevance for control quality.
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The points above illustrate that good control can be achievable even though some
states are not controllable and/or observable. In addition, there is no guarantee that
good control can be achieved even if all states are controllable and observable:

Controllability guarantees that any state x1 can be reached at time t1 > t0.
However, what happens before or after time t1 is not specified.

1. Large excursions in the state values may happen before or after time t1.

2. It may not be possible to maintain the state at x1 at steady state.

3. Bringing the state to x1 at t1 may require excessively large inputs.

The ability to to freely assign the eigenvalues of (A+BK) does not necessarily
mean fast control is achievable

1. The state may not be known with high precision, in which case the appro-
priate feedback will be uncertain.

2. Fast control generally implies use of large manipulated variables, which
may not be possible if the manipulated variables are constrained (which, in
practice, they always are).

If state estimation becomes very fast, the estimator essentially approaches high-
order differentiation of the measured variables. This will amplify measurement
noise. Only if all states are directly measurable does it make much sense with
very fast state estimation. This might be the case for some motion control prob-
lems, but essentially never happens in process control. In practice, very fast
state estimation is therefore often not desirable.

There may be bandwidth limitations that cannot be found by studying the matrix
pairs (C,A) and (A,B) in isolation. For instance, in order to find RHP zeros the
entire state space model (or transfer function matrix) is required, and analyzing
the whether constraints are likely to cause problems requires information about
expected or allowable range of variation of different variables.

In [SP05], a simple example with four water tanks in series is presented, where the
control objective is to control the temperature in all tanks by changing the tempera-
ture of the water flowing into the first tank. The system is controllable, but displays
many of the problems indicated above. Indeed, the systems theory concept control-
lability should be used with some care when discussing with operators and control
practitioners in industry - due to the weak link between the controllability property
and the achievable quality of control. In industrial parlance, a statement like “this
plant is not controllable” will typically mean that it is not possible to achieve accept-
able control performance for the plant - or at least that the staff at the plant has been
unable to achieve this. Skogestad and Postlethwaite therefore use the terms state
controllability and state observability when referring to the system theoretic con-
cepts, and use the term controllability (alone) when referring to the ability to achieve
acceptable control performance. This use of the term controllability actually has a
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long history, see e.g., Ziegler and Nichols [ZN42]. In this note, the term controlla-
bility may be used in both meanings, but it is hopefully clear from context what is
meant.

Assuming we have a minimal model of the plant, the properties of stabilizability
and detectability are (in contrast to controllability and observability) necessary cri-
teria for stabilizing an unstable plant - and hence necessary for acceptable control
performance (however lax the performance criteria applied). These two properties
will be addressed next.

1.3.10 Stabilizability

Definition 1.7 The continuous time dynamical system ẋ = Ax+Bu (or, the matrix
pair (A,B)) is stabilizable if there exists a state feedback u = Fx such that the
resulting closed loop system is stable.

The following are equivalent criteria for stabilizability:

There exists a feedback u = Fx such that A+BF is stable.

The matrix [A− λI B] has full row rank for all values of the complex-
valued scalar λ such that Re(λ) > 0.

For any eigenvalue λ such that Re(λ) > 0 and corresponding left eigenvector
m of A, then m∗B 6= 0.

For discrete time systems, the only difference is that we have to consider abs(λ) >
1 instead of Re(λ) > 0.

Zhou et al.[ZDG96] argue that a more appropriate name for this property would
be state feedback stabilizability, since (state feedback) stabilizability is not sufficient
to guarantee that it is possible to stabilize the system using feedback from the out-
puts. However, if the system is both (state feedback) stabilizable and detectable (see
below), the system can indeed be stabilized by output feedback.

1.3.11 Detectability

Definition 1.8 The continuous time dynamical system ẋ = Ax+Bu, y = Cx+Du
(or the matrix pair (C,A) is termed detectable if there exists a matrix L such that
A+ LC is stable.

The following are equivalent criteria for detectability:

There exists a matrix L such that A+ LC is stable.

The matrix

[
A− λI
C

]
has full column rank for all values of the complex-valued

scalar λ such that Re(λ) > 0.
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For any eigenvalue λ such that Re(λ) > 0 and corresponding left eigenvector q
of A (i.e., Aq = λq), then Cq 6= 0.

For discrete time systems, the only difference is that we have to consider abs(λ) >
1 instead of Re(λ) > 0.

1.3.12 Hidden modes

When calculating the transfer function from a state space model, any unobservable
or uncontrollable modes will cancel, and will not be reflected in the transfer func-
tion. The cancelled modes are called hidden modes, as these modes do not affect
the dynamic relationship between inputs and outputs. It follows that in order to be
able to stabilize a system with feedback, any hidden modes must be stable, which
corresponds to the requirement that all unstable states must be both stabilizable and
detectable.

1.3.13 Internal stability

A system is internally stable if the injection of bounded signals anywhere in the
system leads to bounded responses everywhere. For analysing internal stability of a
simple feedback loop such as the one in Fig. 1.13, it suffices to consider injection
(addition) of a signal d1 to the signal going from K to G, and a signal d2 to the
signal going from G to K. The transfer function from d2 to y is S = (I + GK)−1,
whereas the transfer function from r (not shown in the figure) to y is T = I−S, and
verifying stability from d2 to y also verifies stability from r to y.

K G

d1

_

u y

d2

+ +

Figure 1.13: A simple feedback loop with input and output disturbances.

When verifying internal stability, it is necessary to assume that none of the in-
dividual blocks in the system (in this case K and G) contain any hidden unstable
modes - and this must be separately verified. We are here concerned with verifying
that the feedback interconnection does not result in any hidden unstable modes.

Example Consider a case with G(s) = 10(10s+1)
(5s−1) and K(s) = k(5s−1)

s(10s+1) . The
loop gainG(s)K(s) = 10k

s , and it would appear that we have 90◦ phase margin irre-
spective of the value of k, and k can thus be adjusted to give any desired bandwidth.
The transfer function from d2 to y is S(s) = s

s+10k , which is clearly stable. How-
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ever, we observe that whereas G and K together has 3 modes, S can be described
with only one mode - two modes have been cancelled. The transfer function from d1

to y is GSI = SG = 10s(10s+1)
(s+10k)(5s−1) , which is unstable (for any k)! In practice, we

must allow for disturbances entering anywhere in the system, and this closed loop
system is unacceptable since it is not internally stable even though it is stable from
d2 (or r) to y.

We note that the problems arise from cancelling a pole in the RHP, cancellation
of the pole in the LHP does not lead to any particular problem.

Assigning the following state space representations to G(s) and K(s):

G(s) =

[
A B

C D

]
; K(s) =

[
AK BK

CK DK

]
and with negative feedback as in Fig. 1.13, tedious but straight-forward manipula-
tions lead to

[
ẋG

ẋK

]
=

Ã︷ ︸︸ ︷[
A−B(I +DKD)−1DKC B(I +DKD)−1DK

−BK(I +DDK)−1 AK −BK(I +DDK)−1DCK

][
xG

xK

]

+

[
B(I +DKD)−1 −B(I +DKD)−1DK

−BK(I +DDK)−1D −BK(I +DDK)−1

][
d1

d2

]
(1.61)

where xG are the states in G(s) and xK are the states in K(s). The stability of the
overall system depends on the matrix Ã, which may be expressed as

Ã =

[
A 0

0 AK

]
+

[
B

BK

][
−D −I
I −DK

]−1 [
C CK

]
(1.62)

The internal stability of the closed loop system may thus be determined from the
eigenvalues of Ã. We note that a prerequisite for internal stability is that the matrix
Ã is well defined, i.e., that the matrix[

−D −I
I −DK

]
is invertible (full rank). This is often stated as the requirement that the closed loop
feedback system should be well posed. Note that the closed loop is always well
posed if G(s) is strictly proper, i.e., if D = 0.

Alternatively, internal stability may be checked by checking all four closed loop
transfer functions in Fig. 1.13:[

u

y

]
=

[
(I +KG)−1 −K(I +GK)−1

G(I +KG)−1 (I +GK)−1

][
d1

d2

]
(1.63)

Only if there is no pole-zero cancellation betweenG andK in the RHP does it suffice
to check the stability of only one of these transfer functions.
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1.3.14 Coprime factorizations

Coprime factorizations may at first seem a little daunting. However, the formu-
las for coprime factorizations are straight forward, and an important use is in the
parametrization of all stabilizing controllers that are presented the next section.

A right coprime factorization of G(s) is given by G = NM−1, if there exist
stable Xr and Yr such that M and N are both stable and fulfill[

Xr Yr

] [M
N

]
= I

Similarly, a left coprime factorization of G(s) is given by G = M̃−1Ñ , if there exist
stable Xl and Yl such that M̃ and Ñ are both stable and fulfill[

M̃ Ñ
] [Xl

Yl

]
= I

A coprime factorization may be found from any stabilizing state feedback gain F
and stabilizing observer gain L (such that both A + BF and A + LC are stable),
using the formulas [ZDG96]:

[
M −Yl
N Xl

]
=

A+BF B −L
F I 0

C +DF D I

 (1.64)

[
Xr Yr

−Ñ M̃

]
=

A+ LC −(B + LD) L

F I 0

C −D I

 (1.65)

We observe that M/M̃ must have as RHP zeros all RHP poles of G, whereas
N/Ñ contain all RHP zeros of G.

Clearly, the coprime factorizations are non-unique, since the stabilizing gains F
and L are not unique. Any coprime factorization (with correspondingXl, Yl, Xr, Yl)
can be used for the parametrization of all stabilizing controllers. However, there
are particular choices of coprime factorizations that have special uses. Before these
particular coprime factorizations are presented, we will need the definition of a con-
jugate system.

Definition 1.9 Conjugate system.
The conjugate system of G(s) is defined as

conj(G(s)) = G∗(s) = GT (−s) = BT (−sI −AT )−1CT +DT

The conjugate system of G(s) is sometimes also termed the para-hermitian con-
jugate of G(s).
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1.3.14.1 Inner-outer factorization

Definition 1.10 Inner function.
A transfer function matrix WI(s) is called inner if WI(s) is stable and W ∗IWI = I ,
and co-inner if WIW

∗
I = I .

Note that WI does not need to be square, and that WI is inner if WT
I is co-inner and

vice versa.

Definition 1.11 Outer function.
A transfer function matrix WO(s) is called outer if WO(s) is stable and has full row
rank in the open right half plane.

Clearly, a transfer function matrix cannot be outer if it has more rows than columns,
and in order to be an outer function it cannot have any zeros in the open right half
plane.

Inner-outer factorizations of stable transfer function matrices may be found by
factoring out RHP zeros using Blaschke products, as explained in Appendix D.

We will use the inner-outer factorization when assessing possible reduction in
input usage obtainable by using feedforward from disturbances.

1.3.14.2 Normalized coprime factorization A right coprime factorization G =
NM−1 is normalized if

M∗M +N∗N = I

i.e., if [
M

N

]
is an inner function. Similarly, a left coprime factorization is normalized if[

M̃ Ñ
]

is co-inner. Note that Xy 6= M∗, Yr 6= N∗, etc. Normalized coprime factorizations
are unique up to the multiplication by a (constant) unitary matrix U . Normalized
coprime factorizations are found from particular choices of the stabilizing gains F
and L, see [ZDG96].

Normalized coprime factorizations allow a relatively simple and yet general un-
certainty description in terms of uncertainty in the coprime factors. This uncertainty
description is the starting point for H∞ robust loopshaping design, a relatively sim-
ple robust controller design method. Readers are referred to [GM86b, MG90, SP05]
for details.

1.3.15 Parametrization of all stabilizing controllers

This section will present a parametrization of all stabilizing controller for a system
G(s). This parametrization is is commonly known as the Youla parametrization
[YJB76]. Naturally, we require not only input-output stability, but also internal sta-
bility of the closed loop system.
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1.3.15.1 Stable plants Consider an open loop asymptotically stable plant, with
plant model Gm(s), which is assumed to be a perfect model of the true plant. Then,
all feedback controllers K resulting in a stable closed loop system can be parameter-
ized as

K = Q(I −GmQ)−1 (1.66)

where Q is any asymptotically stable system. This result holds also for nonlinear
plants Gm. We see from Fig. 2.21 that the model Gm in the nominal case (no model
error) perfectly cancels the feedback signal, leading to the series interconnection of
the two stable systems Q and G. This technique is used directly in the socalled
Internal Model Control (IMC), as addressed in Section 2.5.3.6.

1.3.15.2 Unstable plants For a stabilizable and detectable plant G with state
space realization

G =

[
A B

C D

]
,

all stabilizing controllers can be represented as in Fig. 1.14 [ZDG96] where Q is
stable and I +DQ(j∞) is invertible. The dynamic interconnection J is given by

J =

A+BF + LC + LDF −L B + LD

F 0 I

−(C +DF ) I −D

 , (1.67)

whereF is a stabilizing state feedback (A+BF stable) andL is a stabilizing observer
(A+LC stable). Such stabilizing gains F and L can always be found for stabilizable
and detectable systems, as explained above. Noting that stabilizing F and L also can
be used to define a coprime factorization for G, the parametrization of all stabilizing
controllers may equivalently be presented using coprime factors, such as in [SP05].

It can be verified that (1.67) results in the controller (1.66) if one chooses F = 0
and L = 0 - which is obviously possible for open loop stable plants. Thus, as one
should expect, the parametrization of all stabilizing controllers for stable plants is a
special case of the parametrization for unstable plants.

Zhou et al. [ZDG96] show that the closed loop transfer function from an external
input w to an output z, for any internally stabilizing, proper controller, is an affine
function of the free parameter Q, i.e., that Twz = T11 + T12QT21 (where Tij can be
found by straight forward but tedious algebra). Controller design methods have been
proposed that instead of searching directly for the controller, one searches only over
stabilizing controllers, due to the simple affine relationship. The main drawback with
such an approach is the difficulty of specifying a sufficiently flexible parametrization
for Q - often an FIR description is used. One should also bear in mind that although
nominal stability is guaranteed by choosing a stable Q, there is no inherent robust-
ness guarantee.
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G

J

Q

u y

K

Figure 1.14: Representation of all stabilizing controllers.

1.3.16 Hankel norm and Hankel singular values

For open loop stable systems, the infinite time controllability Gramian (or just ’con-
trollability Gramian’, for short) in (1.56) can be obtained by setting the upper limit
of the integration to infinity. A simpler way of finding it is to solve the Lyapunov
equation

AWc +WcA
T +BBT = 0 (1.68)

Similarly, the infinite time observability Gramian is found from

ATWo +WoA+ CTC = 0 (1.69)

For discrete time models, the corresponding equations are

AWcA
T −Wc +BBT = 0 (1.70)

and

ATWoA−Wo + CTC = 0 (1.71)
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It is hopefully clear that the continuous-time state-space model is used in (1.68)
and (1.69), while the discrete-time state space model is used in (1.70) and (1.71.
Note that since the controllability and observability Gramians correspond to solu-
tions to infinite-horizon integrals18 (from (1.56) and (1.59, respectively), they are
only defined for asymptotically stable systems.

In somewhat imprecise terms, it may be stated that the controllability Gramian
measures how strongly the inputs affect the states, whereas the observability Gramian
measures how strongly the outputs are affected by the states. The Gramians are af-
fected by similarity transformations, but their product H = WcWo is not affected by
similarity transforms. For minimal models, there is a particular state representation
for which Wc = Wo, and the corresponding state space model is termed a balanzed
realization of the model. For many numerical calculations it may be an advantage to
use the balanced realization of the model, as often the results will be less sensitive to
numerical error when this realization is used.

However, although H is independent of similarity transforms, it is affected by
scaling of inputs and outputs, and for the uses we will have for H it is therefore
advisable to scale the model as described in subsection 1.2.8. The singular values of
H are known as the Hankel singular values, and the largest Hankel singular value
is the same as the Hankel norm. The Hankel norm can be seen as a measure of
how strongly past inputs affect future outputs [SP05]. The most common use of the
Hankel norm is in model reduction. However, we will be using it for selection and
pairing of inputs and outputs.

18or infinite sums in the case of discrete-time Gramians.





CHAPTER 2

CONTROL STRUCTURE SELECTION

2.1 Introduction

This section addresses the design of control structures. It starts off by describing
several common control loop configurations. Thereafter, more fundamental issues
will be discussed, such as

What variables should be controlled?

What variables should be manipulated to control the controlled variables?

What structure should be imposed on the interconnections between the con-
trolled and manipulated variables?

The focus of this note is on the lower layer in the control system, the regulatory
control layer. The main purpose of of the regulatory control layer is to keep the plant
in safe and stable operation, by keeping the controlled variable at or close to their
setpoints. The actual values of these setpoints will be determined by higher levels in
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at the beginning of your document.
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the control hierarchy1. Thus, it is the task of the higher levels to identify the optimal
operating conditions, whereas the regulatory control layer is important for obtaining
and maintaining optimal conditions.

2.2 Common control loop structures for the regulatory control layer

In this section the more common control loop structures for the regulatory control
layer are described.

2.2.1 Simple feedback loop

This is by far the more common control loop structure for the regulatory control
level, and is illustrated in Fig. 2.1. The controller acts on the difference between

ProcessController
-

Setpoint Manipulated
variable

Process
output

Measurement

Noise+

Disturbances

Figure 2.1: Simple feedback control loop.

the desired value for the process output (i.e., the setpoint or reference value) and the
measurement of the process output. In order to make the measurement equal the
setpoint, a process input is manipulated by the controller, this process input is then
known as the manipulated variable. Note that the measured value need not equal
the actual process output value, due to possible measurement noise or malfunctions.
Note also that the manipulated variable is normally one of several process inputs
which affects the value of the process output, there are normally additional process
inputs which will affect the process output. These additional process inputs which
are not manipulated by the controller are termed disturbances. The need for feed-
back of the process measurement arises from uncertainty both with respect to the

1The higher levels in the control system may be automated, but the tasks of the higher levels may also be
performed by human operators.
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value of the disturbances, and with respect to the process response. If we could
know exactly the value of all disturbances, and the response of the process to both
the disturbances and the manipulated value, the measurement would be superfluous,
since we would know the exact value of the process output for a specific value of
the manipulated variable. In practice such exact process knowledge is unrealistic,
and hence feedback of the measurement is needed if accurate control of the process
output is required.

2.2.2 Feedforward control

Feedforward control is used to counteract the effect of disturbances without first
having to wait for the disturbances to affect the process output. This is illustrated in
Fig.2.2

Process
Feedback
controller-

Setpoint Manipulated
variable

Process
output

Measurement

Noise
+

Disturbances
Feedforward

controller

+

Figure 2.2: Feedforward control from measured disturbances combined with ordi-
nary feedback control.

The ideal feedforward signal is the one which exactly cancels the effect of distur-
bances, i.e.,
u = uff + ufb
where uff is the output of the feedforward controller. The ideal value of uff is

then given by
y = Guff +Gdd = 0⇔ uff = −G−1Gdd
Clearly, in order to implement the ideal feedforward controller, G−1Gd must be

both stable and realizable, and both the process transfer function G and the distur-
bance transfer function Gd must be known with reasonable accurately. The effect of
model inaccuracy on performance of feedforward control is described in e.g. [BM88]
. Since the feedforward control cannot be expected to be perfect, the feedback con-
troller will still be needed if accurate control is required.
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A stable feedforward controller cannot by itself cause instability of the closed
loop system, and it is therefore very useful whenever there are bandwidth limitations
which limit the achieveable performance of a feedback controller, since most such
bandwidth limitations (with the exception of input constraints/ input rate of change
constraints) will not apply to the feedforward controller. On the other hand, feed-
forward cannot be used to stabilize an unstable system. However, real-life control
problems have manipulated variables with a limited range of manipulation. There-
fore, a large disturbance may drive the manipulated variable to its limit (’into satu-
ration’). When this happens, stabilizing feedback is lost, and the system can easily
go unstable. If the disturbance can be measured, a proper use of feedforward can
in some cases help avoid manipulated variable saturation, and thus be essential for
the stability of the closed loop system. The design of such non-standard feedforward
controllers is studied in Hovd and Bitmead [HB12].

2.2.3 Ratio control

Ratio control may be used whenever the controlled variable is strongly dependent of
the ratio between two inputs. Simple examples of control problems where this type
of control structure is appropriate are

Mixing of hot and cold water to get warm water at a specified temperature.

Mixing of a concentrated chemical solution with a diluent to obtain a dilute
chemical solution.

Ratio control may be considered as a special case of feedforward control. It is
particularly appropriate when one of the two inputs cannot be controlled, but vary
rapidly. Measuring the input that cannot be controlled and applying the other input
in a specific ratio to the uncontrolled one, essentially amounts to feedforward control.
Figure 2.3 illustrates a typical application of ratio control in mixing two streams.

2.2.4 Cascade control

Cascade control is used in two cases:

1. When an intermediate measurement can give an indication of what will happen
with a more important primary measurement further ”downstream”.

2. When local feedback using an intermediate measurement can effectively re-
move nonlinearity in the plant.

The use of cascaded control loops is illustrated in Fig. 2.4. Note that cascade control
is used also in Fig.2.3, since the property controller (via the multiplier) manipulates
the setpoint to the flow controller instead of the valve position itself. In Fig.2.3, the
flow controller will counteract disturbances in upstream pressure and correct for a
possibly nonlinear valve characteristic.
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Figure 2.3: Ratio control for mixing two streams to obtain some specific property for
the mixed stream. The property controller XC manipulates the multiplication factor,
and thereby also the ratio between the two streams.
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Figure 2.4: Cascaded control loops. Controller C1 controls the output of process
section P1, and can counteract disturbances entering P1. The primary process mea-
surement is controlled by controller C2, which uses the setpoint for controller C1 as
manipulated variable.

In general, there may be more than two loops in cascade. For instance, a valve
positioner can get its setpoint from a flow controller, which in turn gets its setpoint
from a level controller (i.e., three loops in cascade).

For cascade control to make sense, the inner loops must be significantly faster than
the outer loops - since the intermediate process measurements are of little interest. A
fast inner loop is required both for counteracting the effect of disturbances entering
P1 in Fig. 2.4, and for obtaining an effectively linear response in closed loop from the
secondary setpoint to the secondary process measurement. Thus, if the inner loop is
not significantly faster than the outer loop, it is not very meaningful. Fast inner loops
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will also make the tuning of the outer loops simpler, due to the linearizing effect of
the inner loop (since one then can assume that the inner loop follows its setpoint).

When tuning cascaded control loops, the inner loop is always tuned and commis-
sioned first, since the behavior of the outer loop is not defined until the inner loop is
closed.

2.2.5 Auctioneering control

Auctioneering control is a control structure where the ”worst” of a set of measure-
ments is selected for active control, i.e. ”the measurement that places the highest
bid gets the control”. This type of control structure is particularly common in some
chemical reactors with exothermal reactions, where the process fluid flows through
tubes filled with solid catalyst. If the temperature becomes too high, the catalyst
will be damaged or destroyed, therefore the tubes are cooled by a cooling medium
on the outside. On the other hand, if the temperature is too low, the reactions will
be too slow. Thus temperature control is very important. However, the tempera-
ture will vary along the length of the reactor tubes, and the position with the highest
temperature will vary with operating conditions. Therefore several temperature mea-
surements along the reactor length are used, and the value of the highest temperature
is chosen as the controlled variable. This arrangement is illustrated in Fig. 2.5.

Cooling medium

Reactants Products

TT1 TT2 TT3 TT5 TT6

>

TT4

High select

TC1

Temperature
controller

Figure 2.5: A chemical reactor with auctioneering temperature control.

For a control engineer, it might appear to be a better idea to use the temperature
measurements as inputs to an estimator which estimates the maximum temperature.
Such an estimator could estimate the maximum temperature when the maximum
does not occur at the position of a temperature measurement, and could also be made
more robust to measurement malfunction (if properly designed).However, this type
of chemical reactor is normally strongly nonlinear, and the estimator would therefore
need a nonlinear model, probably based on physical and chemical relationships. The
modelling work needed could be time consuming, and it could also be difficult to
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ascertain that the estimator performs well in all operating regions. Thus, it need not
be obvious which approach to temperature control is to be preferred.

2.2.6 Split range control

In split range control, several manipulated variables are used to control one con-
trolled variable, in such a way that when one manipulated variable saturates, the next
manipulated variable takes over. In order to obtain smooth control, there is often
overlap between the operating ranges of the different manipulated variables.

Figure 2.6: A buffer tank with split range control of tank level.

Figure 2.6 illustrates split range control for a level control problem. There is one
disturbance (one inlet flow) and two manipulated variables (another inlet flow and
the outlet flow). If the disturbance is small, the outlet flow is kept constant and the
other inlet flow is used to control the buffer tank level. However, if the disturbance
becomes too large to be counteracted by the other inlet flow, the outlet flow is also
used for level control.

It should be clear that there can be a lot of freedom in how to design the split
range arrangement. From a control perspective, it will normally be advantageous to
use this freedom to make the response in the controlled variable to changes in the
controller output as linear as possible.

However, there are also some cases where the split range arrangement can have
direct effects on optimal plant operation. For example, if there is a choice between
using a cheap resource and an expensive resource, the split range arrangement can
ensure the maximum utilization of the cheap resource before the expensive resource
is used. In such cases optimal operation will often take precedence over ease of
control, and the split range will be designed without any overlap.

2.2.7 Parallel control
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Parallel control is similar to split range control in the sense that more than one phys-
ical input is used to control a single controlled variable. However, with parallel
control, the operating ranges for the manipulated variables are divided in the fre-
quency domain rather than being based on the magnitude of the controller output. A
typical motivation for using parallel control may be that fast control is required for
the controlled variable. There are several possible manipulated variables, but all the
manipulated variable for which fast control is possible are expensive to use. Thus,
the fast control must be performed with a manipulated variable that is expensive to
use, whereas the slow control can be performed with a cheaper manipulated variable
- thus allowing the expensive manipulated variable to be reset to its optimal value.
Three different ways of implementing parallel control are shown in Fig. 2.7.

In Fig.2.7a), the overall effect of the controller is that of a PI controller, with
integral action only for the slow, cheap manipulated variable. In Fig.2.7b), there
is no integral action in the controller for the fast manipulated variable, and the fast
controller will therefore leave an offset which is removed due to the integral action
in the controller for the slow variable. In Fig.2.7c), the slow manipulated variable is
not used to control the primary process measurement, but rather to control the value
of the fast manipulated variable. Whichever of these methods for implementing
parallel control are used, one should ensure that the number of pure integrators in
parallel in the controller(s) do not exceed the number of feedback paths. Thus, both
in Fig.2.7a) and b) the integral action acts only on the slow manipulated variable. If
there are more integrators in parallel in the controllers than the number of feedback
paths, all the integrators cannot be stabilized by feedback. The result can be that the
manipulated variables start to drift, until the controller output saturates. In Fig.2.7c)
there are two independent feedback paths, and both controllers may therefore contain
integral action.

2.2.8 Selective control

To this author’s knowledge, there is no commonly accepted name for this control
structure, yet it is a structure that is seen in many plants. The term ”selective con-
trol” is coined by the author, who would welcome suggestions for a more illuminat-
ing term for this type of control structure. Selective control is sometimes used when
there are more than one candidate controlled variables for a manipulated variable.
For each of the candidate controlled variable there is then a separate controller, and
the value of the manipulated variable that is implemented is selected among the con-
troller outputs. A simple example of selective control with pressure control on both
sides of a valve is shown in Fig. 2.8. Normally one selects simply the highest or
lowest value. A few points should be made about this control structure:

Clearly, a single manipulated variable can control only one controlled variable
at the time, i.e., the only variable that is controlled at any instant is the variable
for which the corresponding controller output is implemented. It might appear
strange to point out such a triviality, but this author has been in discussions with
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Figure 2.7: Three different ways of implementing parallel control.

several otherwise sensible engineers who have difficulty comprehending this.
Thus, one should consider with some care how such a control structure will
work.

The selection of the active controller is usually based on the controller outputs,
not the controller inputs. Nevertheless the local operators and engineers often
believe that the selection is based on the controller inputs, or that ”the control
switches when the a measurement passes its setpoint”. In principle, the selec-
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Figure 2.8: Selective control of pressure of both sided of a control valve. Note that
the applied control signal is fed back to the controllers.

tion of the active controller may also be based on the controller inputs2. Some
type of scaling will then often be necessary, in order to compare different types
of physical quantities (e.g., comparing flowrates and pressures).

If the controllers contain integral action, a severe problem that is similar to ”re-
set windup” can occur unless special precautions are taken. The controllers
that are not selected, should be reset (for normal PID controller this is done by
adjusting the value of the controller integral) such that for the present controller
measurement, the presently selected manipulated variable value is obtained.
Commonly used terms for this type of functionality are ”putting the inactive
controllers in tracking mode” or ”using a feedback relay”. This functionality
should be implemented with some care, this author has seen faulty implemen-
tations which permanently lock the inactive controllers. On a digital control
system, the controllers should do the following for each sample interval:

1. Read in the process measurement.

2. Calculate new controller output.

3. The selector now selects the controller output to be implemented on the manip-
ulated variable.

4. The controllers read in the implemented manipulated variable value.

2Provided appropriate scaling of variables is used, the auctioneering control structure may be a better
alternative to using selective control with the selection based on controller inputs.
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5. If the implemented manipulated variable value is different from the controller
output, the internal variables in the controller (typically the integral value) should
be adjusted to obtain the currently implemented manipulated variable value as
controller output, for the current process measurement.

Some thought should be spent on the function that selects the controller output.
If a simple high or low select is used, there is a possibility that measurement
noise may temporarily drive the manipulated variable the wrong way. The
problem arises due to digital implementation of the controllers, and the need
for the tracking function that is explained above. It is more likely to happen
if derivative action is used, or the proportional action ”dominates” the integral
action in a PI controller. To overcome this problem, some logic may be added
to the selector function, such that a controller output can only be selected if the
corresponding measurement is on the right side of the setpoint. To illustrate,
consider a controller for which there is positive (steady state) gain from manip-
ulated variable to measurement. Then, if the selector is of a low select type,
this controller should only be selected if the process measurement is above the
setpoint.

2.2.9 Combining basic single-loop control structures

Most of the simple control structures shown above may be combined with each other.
With the exception of the feedforward control, all the control structures shown are
variants of feedback control. Feedforward control is normally combined with some
form of feedback control, but it may be somewhat complicated to combine feedfor-
ward with auctioneering or selective control.

Note that selective control should not be used for one of the manipulated vari-
ables of a split range controller. This is because the tracking function will then
constrain the output of the split range controller to be in the range where this ma-
nipulated variable is manipulated, and the other manipulated variables in the split
range arrangement will not be used (or they may be used over a minor fraction of
their operating range). On the other hand, there is nothing conceptually wrong with
the output of the selector in selective control acting on a set of manipulated variables
which operate in a split range arrangement.

2.2.10 Decoupling

The use of decouplers have long been a popular way of converting multivariable con-
trol problems into (what appears to be) a number of monovariable control problems.
This popularity of decoupling seems to continue, despite the more general and easily
applicable multivariable control design methods that have been developed over the
last several decades.
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Figure 2.9: The basic idea behind decoupling: A precompensator (W ) is used to
make the ’decoupled plant’ inside the dotted box diagonal, allowing for simple de-
sign of monovariable controllers ki.

The basic idea behind the use of a decoupler can be illustrated in Fig. 2.9. A
precompensator W (s) is used, in order to make the precompensated plant GW di-
agonal, thus allowing for simple monovariable control design of the individual loop
controllers ki. Assume that the desired precompensated plant is given by Gdes(s). It
is then simple to find the corresponding precompensator, by solving the equation

G(s)W (s) = Gdes(s). (2.1)

Note that

Typically Gdes(s) is diagonal (which will be assumed henceforth), but occa-
sionally ’one way decouplers’ are used, corresponding to Gdes(s) being upper
or lower triangular.

Gdes(s) must contain all RHP poles and (multivariable) RHP zeros of G(s) -
otherwise the system will be internally unstable.

The precompensator obviously cannot remove time delays.

A popular choice is Gdes(s) = gdes(s) · I , with gdes(s) scalar. Any multivari-
able RHP zeros in G(s) must then also be present in gdes(s). This means that
all loops for the precompensated system will be affected by the RHP zero, even
if only a few inputs or outputs in G(s) are affected by the multivariable zero.

Decouplers are prone to robustness problems, especially for highly interactive and
ill-conditioned plants - which is exactly the type of plant for which one would like to
use decoupling. This is discussed in more detail in [SP05]. The robustness problems
can be exasperated by input saturation. Anti-windup for decoupling controllers will
therefore be addressed in a subsequent section.
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2.3 Input and output selection

This section will address the selection of inputs and outputs for use in (regulatory)
control. If this task is addressed when designing a new plant, the designer may
have ’full’ freedom with respect to the number, position and type of the inputs and
outputs. In contrast, when re-designing the control system for an existing plant, it
may be very difficult to argue for new instrumentation (in particular if installing new
instrumentation would require plant shutdown and loss of production). In the latter
case, the designer may be left with having to choose from an existing set of inputs
and outputs.

Designers coming from a background in control theory may be tempted to try to
use ’all’ or ’as many as possible’ inputs and outputs. There are some valid reasons
for this:

The ability to observe a system is almost always improved with the introduction
of additional sensors.

Introducing additional inputs will normally improve the state controllability of
the system.

Failure tolerance will require redundancy in inputs and output.

While these points are valid (and to some extent relevant), it fails to account for the
structure of control systems in the process industries, as described in the Introduc-
tion. With the SISO loops dominating in the regulatory control system, there is little
scope for utilizing additional input and outputs3. Also, while defining inputs and
outputs allowing for (some) failure tolerance to be designed into the control system
might not be very difficult, the actual design and maintenance of such failure toler-
ance might be much more of a challenge - especially when considering future plant
changes. The focus here will therefore be on keeping the control system as simple
as possible. Although the previous section described some types of control loops
able to handle different numbers of inputs and outputs, keeping the control system
simple often means to identify n inputs and n outputs, for the determination of n
SISO control loops using the methods of the next section.

Below, we will describe the input and output selection using a mixture of numer-
ical tools and physical insight. While numerical tools and model analysis might be
helpful in input and output selection, there is no replacement for physical insight.
The designer will need to know what plant phenomena need to be controlled, and
have realistic expectations to the speed and accuracy of the instrumentation. Typical
process control applications may have larger scope for input and output selection
based on physical insight than is the case in some other control applications. For
instance, products and side streams typically have clear quality specifications that
can be used to guide sensor selection. In contrast, it might not be physically obvious

3Although we acknowledge that in some applications, inferential control using linear combinations of
individual measurements have found some use.



60 CONTROL STRUCTURE SELECTION

where to put (a limited number of) actuators and sensors to dampen oscillations in a
flexible space structure supporting a large antenna.

Anyway, it must be expected that the input and output selection to some extent
will be an iterative process. After first selecting inputs and outputs, one should check
for problematic limitations in control performance for the overall system, then for the
individual loops (after selecting a control configuration using the techniques in the
next section). If problematic performance limitations are found, the input and/or
output selection will have to be modified.

2.3.1 Using physical insights

Physical insight can be of great help in selecting inputs and outputs for control.
Some relevant considerations are discussed briefly below (despite the risk that the
discussion might appear trivial to the experienced engineer).

Relevance for control objectives. Selected sensors should convey information
about variables of relevance to control. Most often, this means that the sensor
should measure (or contain information about) variables that need to be con-
trolled, although some times direct measurements of significant disturbances
can also be beneficial. Similarly, the inputs should have strong effect on vari-
ables that need to be controlled. The concept of ’strong effect’ will become
more quantitative in the presentation of Gramian-based input and output selec-
tion below.

Independence. The sensors and actuators should be independent. For sen-
sors, this means that the measured quantities for different sensors should not be
closely coupled, since this will make independent control of the measurements
difficult4. For actuators, independence means that each of the actuators should
have different effects on the controlled variables. For instance, two valves in
the same pipeline obviously cannot be independent, since the flowrate has to
be the same throughout the pipeline. While independence of the sensors and
actuators is usually fairly obvious and trivial, what might require a little more
thought is to ensure that there should be independent propagation paths from
the actuators to the sensors. For a simple illustration of what is meant by this,
consider Fig. 2.10. Although valve 1 affects the temperature sensed by TT1,
and valve 2 affects the temperature sensed by TT2, independent control of TT1
and TT2 is impossible, since the mixing in the tank will cause both sensors to
measure the same temperature (if measurement bias and noise is ignored).

Simple dynamics. The sensors and actuators should be selected/placed such
that the dynamic response from actuator to sensor is simple, strong and direct,

4Multiple, independent measurements of essentially the same variable may sometimes be useful for ’av-
eraging out’ measurement noise, or for providing redundancy for achieving fault tolerance. However,
in such cases there will typically be a separate processing step for the measurement, such that a single
measurement value is presented to the controller.
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i.e., without inverse responses and significant time delay, and preferably short
time constants.

Cold stream

Hot stream

Valve 1

Valve 2
Tank

TT1

TT2

Temperature measurement 1

Temperature measurement 2

Figure 2.10: System without independent propagation paths for effects of actuators
on sensors.

2.3.2 Gramian-based input and output selection

Despite the critical points raised in Section 1.3.9 about the relevance of (state) con-
trollability and observability for the ability to achieve good control, using the con-
trollability and observability Gramians for input and output selection nevertheless
appears natural. However, it should be kept in mind that detailed models of process
systems will typically contain states that are weakly linked to the control require-
ments.

There are several alternative functions of the Gramians that one may want to max-
imize using the input/output selection, these are discussed in [SCL18]. The focus
here will be on maximising the trace of the scaled Gramian. This is particularly
simple to use, because

It is a linear function of the Gramian.

The trace of the controllability (observability) Gramian can be obtained by sim-
ply adding the traces of the controllability (observability) Gramians for each of
the inputs (outputs).

Following [SCL18], the input (output) selection proceeds by at each step adding
the input (output) among the previously unselected inputs (output) that increases the
trace of the scaled controllability (observability) Gramian the most.

However, it should be kept in mind that
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A matrix may be singular even if it has a large trace, and thus there is a pos-
sibility that some important control objective is not reflected in the Gramian
corresponding to the selected input (output) set, even if its trace is large.

Detailed models of process systems will typically contain states that are weakly
linked to the control requirements. The trace of the controllability (observabil-
ity) Gramian may therefore be large, and still not ensure good controllability
(observability) of some states that are important to control.

For these reasons, one should critically review the results of the input (output)
selection. This may lead to the conclusion that the input (output) selection has to be
modified, either by adding additional inputs (outputs), or by exchanging a previously
selected input (output) with an unselected input(output).

The product of the controllability and observability Gramians is invariant under
similarity transforms. Scaling of the states is therefore not relevant for Gramian-
based input and output selection. However, scaling of the inputs and outputs (which
is done independently) will affect the Gramians and may affect input and output
selection. In the same way as before, it is reasonable to scale the inputs according to
the available range of manipulation (giving a large column in the B matrix for inputs
with a large range of manipulation). The observability Gramian tries to capture how
easy if is to observe the states through the outputs, and therefore it is reasonable to
scale the outputs to have the same noise variance (giving a small row of the C matrix
for outputs with large noise).

Althought the Gramian based input and output selection makes the selection pro-
cedure quantitative and provides some theoretical foundation, one should keep in
mind that:

Its theoretical foundation does not reflect the decentralized control structure
(consisting of SISO loops) that is dominant in the regulatory control layer of
most process plants.

The input (output) selection procedure described above does not account for
the fact that the inputs (outputs) chosen should be physically independent, as
explained in the previous subsection.

The observability and controllability Gramians are only defined for asymptoti-
cally stable systems. Unstable modes (resulting from real physical phenomena)
will certainly have to be stabilized. It has been suggested to define Gramians (or
Hankel singular values) for unstable systems by splitting the system into stable
and unstable subsystems, and defining Gramians for the unstable subsystem in
reverse time. Here, it is instead proposed to use the pole vectors (as described
below) for selecting inputs and outputs for stabilization, and to use the Gramian
based selection only for the stable subsystem (after removing the inputs/outputs
selected for stabilization).
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2.3.3 Input/output selection for stabilization

It is argued in Section 2.5.5 below that sequential design is a common approach to
tuning controllers in multivariable systems controlled by multiple single-loop con-
trollers, i.e., the individual loops are tuned in a sequence. With such an approach,
the system should be stable after each loop is closed, as otherwise it is hard to assess
the performance obtained from tuning the controller in the loop. Thus, if the system
is open loop unstable, one is often in the situation where one wants to stabilize the
system using a single control loops (or at most only a few loops - if there is more
than one unstable mode).

Consider the stabilization of a single unstable pole p, with corresponding pole
input and output directions up and yp, respectively. In [Hav98], it is shown that
the minimum input usage for single-loop stabilization requires selecting the input
and output corresponding to the largest elements in the input and output pole direc-
tions. That is, if |up,i| ≥ |up,k| ∀k we use input i in the stabilizing loop, and if
|yp,j | ≥ |yp,k| ∀k we use output j in the stabilizing loop. Minimizing input usage
for stabilization is generally desirable, as stabilizing feedback is lost when the input
saturates. Also, selecting inputs and outputs this way, will clearly result in sets of
selected inputs and outputs such that the system is stabilizable and detectable.

Note that in order to use this approach, it is absolutely essential that the plant
model G(s) is appropriately scaled before pole directions are calculated. Thus, the
inputs should be scaled to have the same range of manipulation, and the measure-
ments should be scaled to have the same measurement noise magnitude. Further-
more, one should keep in mind that avoiding input saturation is only one of the
requirements for reliable stabilization, one should also consider the operational re-
liability of the actuator and measurement devices. Signal transmission (communi-
cation) and reliable computational implementation (hardware and software) of the
controller also play a role, but high quality control systems should be able to handle
these issues - at least for standard PI/PID controllers.

We will return to the topic of input and output selection, from a slightly different
perspective, in Sections 3.6 and 3.7.

2.4 Control configuration

In this section we will consider how to determine the control configuration, i.e., the
structure of the interconnections between the controlled and manipulated variables
via the control system. Most of this section will address the pairing of manipulated
and controlled variables to arrive at a decentralized control structure (i.e., multiple
single control loops) for regulatory control, but the analysis tool (RGA) that is in-
troduced in this section can also be used to assess the applicability of decoupling
control.
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2.4.1 The relative gain array

The relative gain array (RGA) was first introduced by Bristol[Bri66] in 1966, and
has since proved to be a useful tool both for control structure design and analysis
of proposed control structures, as well as an interaction measure and an indicator
of robustness problems. Although extensions of the RGA to non-square systems
have been proposed, we will here focus on the use of the RGA for square plants, i.e.,
plant for which the number of controlled variables equal the number of manipulated
variables. Consider a n× n plant G(s)

y(s) = G(s)u(s) (2.2)

The open loop gain from uj(s) to yi(s) is gij(s). Writing Eq.(2.2) as

u(s) = G−1(s)y(s) (2.3)

it can be seen that the gain from uj(s) to yi(s) is 1/[G−1(s)]ji when all other y’s
are perfectly controlled. The relative gain matrix consists of the ratios of these open
and closed loop gains. Thus, a matrix of relative gains can be computed from the
formula

Λ(s) = G(s)× (G−1(s))T (2.4)

Here the symbol ’×’ denotes the element-by-element product (Schur or Hadamard
product). Note that the T in (2.4) denotes the ordinary transpose, and not the complex
conjugate transpose which is more commonly used for complex-valued matrices.5

For conventional controllers such as PI or PID controller, the integral action en-
sures that of all the ”other y’s” have zero offset at s = 0, whereas for other fre-
quencies there will in general be some control offset. This has often been used as an
argument to claim that the RGA is only valid at s = 0. However, this is a miscon-
ception, as pointed out in [HK06]. Whereas it is often rightly stated that in general
”perfect control can only be achieved at steady state” i.e., when t → ∞, it is a mis-
understanding that this necessarily corresponds to ω = 0, the steady state in question
may well be a periodic oscillation. Offset-free control is easily achieved at any point
on the imaginary axis where the controller has a pole, and pole placement control is
a systematic method for designing such controllers. This argument can be applied
for any frequency within the achievable closed loop bandwidth, it would not make
much sense to design a controller for offset-free control at some frequency where we
know that this is in conflict with some bandwidth limitation.

We do not argue that pole placement control design should take over for PI and
PID controllers in the process industries6, we would just like to point out that some
commonly raised criticism of the RGA is not valid.

5In Matlab, A′ will give the complex conjugate transpose of a complex-valued matrix A, whereas A.′

will give the ordinary transpose.
6Therefore this design methodology is not presented in these course notes.
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The RGA can easily be computed also at non-zero values of s (as implied by
(2.4)) except at the zeros and poles of G(s). Although the interpretation of the
RGA as a ratio of open to closed loop gains gradually becomes less accurate as
frequency increases (when using conventional PI/PID controllers), and fails totally
in the bandwidth region and beyond, the RGA has repeatedly proven to be a useful
analysis tool at non-zero frequencies, also when PI/PID controllers are used. That
is, many of the useful features of the RGA do not depend on its interpretation as a
ratio of two gains. We will therefore consider the RGA as a function of frequency
(s = jω). The RGA as defined above has some interesting algebraic properties (see
e.g. [GMH85]):

It is scaling independent (independent of the units of measure used for u and y).
Mathematically, Λ(D1GD2) = Λ(G) where D1 and D2 are diagonal matrices.

All row and column sums equal one.

Any permutation of rows or columns of G result in the same permutation in
Λ(G).

If G is triangular (and hence also if it is diagonal) Λ(G) = I .

Relative permutations in elements of G and its inverse are related by
d[G−1]ji/[G

−1]ji = −λijdgij/gij .

These properties can be proven from the following expression for the individual
elements of the RGA:

λij(s) = (−1)i+j
gij(s) det(Gij(s))

det(G(s))
(2.5)

Here Gij(s) denotes the matrix G(s) with row i and column j removed.

2.4.2 The RGA as a general analysis tool

In this section we will consider the RGA as a general analysis tool.

The RGA and zeros in the right half plane. It has been shown [Hov92] that if

the RGA has different sign at steady state and at infinite frequency, then this is an
indication of RHP zeros in either G,gij or Gij . However, in order to evaluate the
RGA as a function of frequency, one will generally need a state space representation
of G. It would then make sense to calculate the zeros (and poles) from the state
space representation rather than looking at the RGA.
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The RGA and the optimally scaled condition number. Bristol [Bri66] pointed
out the formal resemblance between the RGA and the condition number γ(G) =
σ(G)/σ(G) = σ(G)σ(G−1). However, the condition number depends on scaling,
whereas the RGA does not. Minimizing the condition number with respect to all
input and output scalings yields the optimally scaled condition number,

γ∗(G) = min
D1,D2

γ(D1GD2) (2.6)

The optimal scaling matrices can be obtained by solving a structured singular
value problem[BM94]. However, formulating and solving this problem is quite
complicated, and there is no readily available software with a simple function call
for solving (2.6). Anyway, the main purpose for obtaining γ∗(G) would be to get an
indication of possible robustness problems - a large value of γ∗(G) would indicate
that the control performance would be sensitive to small errors in the plant model G.
However, Nett and Manousiouthakis [NM87] have proven that large elements in the
RGA matrix imply a large value of γ∗(G) :

‖Λm(G)‖ − 1

γ∗(G)
≤ γ∗(G) (2.7)

where ‖Λm‖ = 2 max {‖Λ(G)‖i1 , ‖Λ(G)‖i∞} (i.e., twice the larger of maxi
∑
j |λij(G)|

and maxj
∑
i |λij(G)|)7. There is also a conjectured (but not rigorously proven) up-

per bound on γ∗(G) based on the RGA [SM87], and it is therefore good reason to
believe that γ∗(G) cannot be large without some elements of the RGA matrix also
being large.

The RGA and individual element uncertainty. It can be shown (e.g. [Hov92]) that
a matrix G becomes singular if the ij’th element is perturbed from gij to gPij =
(1− 1

λij
)gij . Some implications of this result are:

1. Element uncertainty. If the relative uncertainty in an element of a transfer func-
tion matrix at any frequency is larger than |1/λij(jω)|, then the plant may have
zeros on the imaginary axis or in the RHP at this frequency. However, inde-
pendent, element-by-element uncertainty is often a poor uncertainty description
from a physical point of view, since the elements of the transfer function matrix
are usually coupled in some way.

2. Model identification. Models of multivariable plantsG(s) are often obtained by
identifying one element at the time, i.e., by step or impulse responses. If there
are large RGA element, such model identification is likely to give meaningless
results (e.g., wrong sign of det(G(0)) or non-existing RHP zeros) if there are
large RGA elements within the bandwidth where the model is intended to be
used. Truly multivariable identification techniques may alleviate this problem,

7The row and column sums of the RGA matrix only equal 1 if the actual (complex) values of the elements
are added, not their absoulte values.
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but physical knowledge about the process should always be used to validate and
correct identified models.

3. Uncertainty in the state matrix. Consider a plant described by a linear state
space model. If the state autotransition matrix A has large RGA elements, only
small relative changes in the elements of A can make the plant unstable8.

RGA and diagonal input uncertainty. One type of uncertainty that is alway present
is input uncertainty. This can be described by assuming that the true (perturbed)
plant GP is related to the nomminal (assumed) plant G by

GP = G(I + ∆), ∆ = diag (∆i)

where the ∆i’s represent the relative uncertainty in each of the manipulated vari-
ables. If an ”inverse-based” controller (decoupler) is used, C(s) = G−1(s)K(s),
where K(s) is a diagonal matrix, then the true open-loop gain GPC is

GPC = (I +G∆G−1)K

The diagonal elements of G∆G−1 are directly given by the RGA [SM87]:

(G∆G−1)ii =

n∑
j=1

λij(G)∆j

Since we cannot know the values of the ∆i’s during control system design, it is
risky to use an inverse-based controller for plants with large RGA elements. On the
other hand, a diagonal controller (consisting of SISO control loops) will be relatively
insensitive to the diagonal uncertainty, but will not be able to counteract the strong
interactions in the process (as indicated by the large RGA elements).

The RGA as an interaction measure. Since the elements of the RGA can be
interpreted as the ratio of the open loop process gain to the gain when all other
outputs are perfectly controlled, it seems intuitively clear that the RGA can serve
as an interaction measure (i.e., a measure of to what extent the control of output i
will be affected by the control of other outputs). If an element of the RGA differs
significantly from one, the use of the corresponding input-output pair for control
will imply that the control of that output will be affected by the control actions in the
other loops to a significant degree.

However, it should be noted that

8The result above only tells the necessary relative change in an element to make an eigenvalue equal to
zero. Even smaller perturbations in the elements may make a complex conjugate pair of eigenvalues
move from the LHP to the RHP by crossing the imaginary axis (away from the origin).
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The RGA is only a measure of two-way interaction. If there is only one-way
interaction (e.g., if the transfer function matrix is triangular), the relative gain
matrix will be Λ = I . There may be significant one-way interactions between
loops that result in performance deterioration, without this showing up in the
RGA.

If the RGA is termed an interaction measure, one may reasonably expect a clear
relationship between the value of the RGA and stability (or performance) of the
overall system. That is, if the individual loops are stable, one would expect
there to be some clear RGA-based criterion for when the overall system can be
unstable. Unfortunately, such a criterion only exists for the RGA at steady state,
as explained in the next subsection.

2.4.3 The RGA and stability

A triangular plant has Λ = I , and for triangular plants stability of individual loops
imply stability of the overall system. For this reason it was long believed that Λ = I
implies that the overall system is stable if the individual loops are stable. Unfortu-
nately, this only holds for small systems, of size no larger than 3 × 3. In [SP05] an
example of size 4× 4 is given which has Λ = I , but where stability of the individual
loops does not result in stability of the overall system.

On the whole, it does not seem possible to derive general criteria in terms of the
RGA for when stability of individual loops imply stability of the overall system. On
the other hand, the RGA can give useful necessary conditions for stability. Consider
loop 1 in a plant control system (the generalisation to loop k is trivial). Introduce
G′ = diag{g11, G

11}, whereG11 is obtained fromG by removing row 1 and column
1. Let (a minimal realization of) G′ have n′U RHP poles (note that n′U can be
different for different loops, i.e., it may depend on which loop is numbered as ’no.
1’.), and let the controller transfer function matrix be K. Assume:

The transfer function GK is strictly proper.

The controllerK is diagonal, has integral action in all channels, and is otherwise
stable.

The plant transfer function matrix G have nU RHP poles.

Then a necessary condition for simultaneously obtaining

a) Stability of the closed loop system

b) Stability of loop 1 by itself

c) Stability of the system with loop 1 removed (e.g., loop 1 in manual)

is that
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sign{λ11(0)} = sign{(−1)−nU+n′U } (2.8)

For proof, see [Hov92]. Note that for open loop stable systems we have nU =
n′U = 0, and we get the widely used criterion of pairing on positive steady state
RGA’s, see e.g. [GMH85].

2.4.3.1 The RGA and pairing of controlled and manipulated variables The

steady state RGA is a widely used criterion for pairing controlled and manipulated
variables. Equation (2.8) provides a generalisation of the traditional pairing crite-
rion based on the sign of the steady state RGA. The magnitude of the steady state
RGA is also widely used as a pairing criterion, but the magnitude of the RGA in
the bandwidth region for control is a more reliable pairing criterion. Ideally, we
would like that in the bandwidth region Λ = I (after having reordered inputs and
outputs to bring the paired elements on the main diagonal of G - resulting in the
same reordering of elements of Λ).

In [SP05], it is therefore recommended to select the pairing minimizing

RGA number = ‖Λ− I‖sum =
∑
i

∑
j

| [λ− I]ij | (2.9)

Thus, it is recommended to select a pairing which minimizes the RGA number in
the bandwidth region. Often, this corresponds to selecting a pairing corresponding
to RGA elements of magnitude close to 1 in the bandwidth region. However, for
systems with more than two inputs and outputs, there may be some special cases
where minimizing RGA number gives another pairing than selecting RGA elements
close to 1. In such cases, the minimization of the RGA number appears to be the
more reliable pairing criterion. A disadvantage of the RGA number is that it has to
be re-computed for each pairing, whereas the RGA itself need to be calculated only
once. For systems of modest size, the computations are not burdensome,

2.4.4 Summary of RGA-based input-output pairing

Summarizing the presentation in the preceding subsections we have

When using decentralized controllers with integral action, select an input-output
pairing where the sign of the steady state RGA agrees with the criterion in (2.8).
For open loop stable systems this corresponds to the well known rule of pairing
on positive steady state RGA.

Select a pairing for which the RGA number is small (Γ ≈ I) in the band-
width region. Although this rule is based primarily on experience rather than
mathematical proof 9, this reduces the chances of stability and performance

9For the related Performance Relative Gain Array (PRGA), theoretically solid relationships between sta-
bility of individual loops and overall stability may be derived, see section 2.5.6.
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problems due to interactions in the bandwidth region, and will usually result in
good performance of the overall system if good performance is achieved for the
individual loops.

Note that the second point above can also be used as an indication of where the
bandwidth frequency of the system should be. If the paired inputs and outputs are
close, the system will often naturally ’decouple’ at high frequencies. This happens,
for instance, in high-purity binary distillation. One can then design the system to
have the bandwidth region in the frequency range where λ ≈ I .

There is a continuous stream of papers which point to ’flaws’ in the RGA for
pairing selection. Almost invariably, these papers base this claim on a pairing based
on the steady state RGA, rather than selecting a pairing based on the RGA in the
bandwidth region. The authors seem to have missed the point that the RGA pro-
vides two distinct - and possibly conflicting - pieces of information about a chosen
pairing. That is, the two rules above may be in conflict, and the engineer will then
have to evaluate which consideration is most important. This should not be consid-
ered a shortcoming of the RGA, rather it reveals an inherent conflict in the desired
properties of the system.

It is also sometimes claimed that the frequency dependent RGA conveys ’too
much information’ for the engineer to handle, and therefore there have been attempts
to ’condense’ the information in the frequency dependent RGA into a constant n×n
matrix. One is lead to suspect that the authors of these works have not heard about the
Bode plot. Furthermore, condensing the frequency dependent RGA into a constant
matrix removes the information about where to put the bandwidth region.

2.4.5 Partial Relative Gains

The RGA only considers interactions between one loop and ’all the other loops’, and
thus does not necessarily give the full picture with regards to integrity to arbitrary
loop failures, nor how interactions between loops are affected by closing other loops.
Häggblom [Häg97] therefore proposes to analyse Partial Relative Gains, i.e., the
RGA of the remaining system when a subset of the control loops are closed.

Häggblom shows that there exists a controller with integral action in all loops, for
which both the overall system is stable and the remaining system when any subset
of loops are out of service is stable, provided the input - output pairing corresponds
to a positive steady state RGA, and also to positive steady state partial relative gains.
Note that the partial relative gains will have to be evaluated for all possible combina-
tions of partially controlled systems, and will have to be re-computed if the pairing
is changed.

2.4.6 The Niederlinski index

A measure closely related to the RGA is the so-called Niederlinski index [Nie71],
defined as

NI =
detG(0)∏n
i=1 gii(0)

(2.10)
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For 2×2 systems, the Niederlinski index is the inverse of the diagonal element of the
(steady state) RGA10. It can be shown that, for open loop stable systems, a pairing
corresponding to Ni < 0 will result in at least one of the following:

At least one of the individual loops will be unstable, or

the overall system will be unstable in closed loop.

This result holds when there is integral action in all loops. The relationship to the
integrity result for the RGA in Section 2.4.3 should be obvious.

2.4.7 The Rijnsdorp interaction measure

For a 2× 2 system G(s), the Rijnsdorp interaction interaction measure is defined as

κ =
g12g21

g11g22
(2.11)

Thus, for 2× 2 systems, the Rijnsdorp interaction measure is related to the RGA by

λii =
1

1− κ
.

Unlike the NI , κ is also used as a function of frequency.
The Rijnsdorp interaction measure is in a form which makes it more straight for-

ward to analyse tradeoffs between control performance in individual loops [Bal90].
The multivariable Nyquist stability criterion considers encirclements of the origin of
the image of det(I +GK), as the Laplace variable s traces the Nyquist D-contour.
We assume for simplicity of exposition that the system is open loop stable, so that
we want zero encirclements of the origin. Simple manipulations yield, for a diagonal
2× 2 controller K,

det(I +GK) = (1 + g11k1)(1 + g22k2)(1− κt1t2) (2.12)

where t1 = g11k1

1+g11k1
and t2 = g22k2

1+g22k2
are the complementary sensitivity functions

for loops 1 and 2, respectively. Stability of the individual loops require the two first
terms on the RHS above to have zero encirclements of the origin, while stability of
the overall system in addition requires the last term to have zero encirclements. Poor
performance will result if any of the terms above pass close to the origin. Balchen
[Bal90] proposes an analysis which essentially involves studying ’encirclements of
t1t2 around− 1

κ ’. While this analysis is a little unfamiliar, as the ’critical point’ itself
moves as a function of frequency, one can extract some understanding directly from
the third term of (2.12). Note that a strictly proper system, with integral action in
each loop, will have t1(0) = 1, t2(0) = 1, t1(j∞) = 0, t2(j∞) = 0. Thus, studying
the third term in (2.12), we find that

10For 2× 2 systems, λ11 = λ22 = g11g22
g11g22−g12g21

.
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it will start from (1−κ) at low frequencies, and approach 1 at high frequencies.
If κ > 1 at low frequencies, we will therefore have an encirclement of the
origin, i.e., the system will be unstable. Note that κ(0) > 1 corresponds to
λii(0) < 0. In that case the pairing of inputs and outputs should be changed.

Whereas the behaviour at low and high frequencies is given, the challenging
part (which can be affected by controller design) occurs in the bandwidth re-
gion. In the bandwidth region, the phases of t1 and t2 can change rapidly, and
they will also often have resonance peaks. If these resonance peaks occur in
the same frequency region, they will multiply each other, compounding stabil-
ity and performance issues. Thus, when stability and performance issues due to
interactions between loops occur, they should not be handled by detuning both
loops by the same amount - as making both loops slower by the same amount
will tend to move both resonance peaks equally much. Instead only one loop
should be detuned (and the other possibly made faster), thus separating the res-
onance peaks in the frequency domain.

While this analysis cannot easily be applied to systems of dimension higher than
2×2, it should be kept in mind that many destabilizing interactions in larger systems
involve only a small number of loops. It is also in general a good idea to separate
any resonance peaks if there are interactions between different loops.

2.4.8 Gramian-based input-output pairing

The somewhat heuristic nature of input-output pairing based on the RGA in the band-
width region11, has lead some researchers to seek tools for input-output pairing more
solidly founded in control theory. The more popular of such pairing tools are based
on control and observability Gramians.

While Gramian based input-output pairing certainly can be useful, one should
keep in mind the discussion about the relevance of state controllability and state
observability given earlier, as well as the comments to Gramian-based input and
output selection.

2.4.8.1 The Participation Matrix Let the linear model for the SISO subsystem
relating output j to input i be given by

ẋ = Ax+Bjuj (2.13)
yi = Cix

where Bj is column j of the overall matrix B, and Ci is row i of the overall matrix
C. Any direct term (D-term) from u to y is ignored here since it does not affect the
control and observability Gramians12

11In contrast to the solid results on integrity to loop failure based on the steady state RGA.
12This issue is addressed in [BM03].
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Denote the controllability and observability Gramians of the overall system by
Wc and Wo, respectively. Likewise, denote the controllability and observability of
the ijth subsystem by W j

c and W i
o . Conley and Salgado [CS00] then define the

Participation matrix Φ = [φij ] such that

φij =
trace(W j

cW
i
o)

trace(WcWo)
(2.14)

Note that the participation matrix Φ thus defined will have elements that sum to
one. For input-output pairing for decentralized control, the objective is to select one
element in each row and column such that the sum of the elements is maximized.
In somewhat imprecise terms, one may state that the closer the sum of elements
approach 1, the closer the pairing captures the overall input-output information in
the system.

Conley and Salgado also address not-fully-decentralized control structures, and
will consider adding additional elements to the control structure if this brings the sum
of element magnitudes significantly closer to 1. When deciding to use such more
complicated control structures, one should consider the increased control system
complexity and operator acceptance.

2.4.8.2 The Hankel Interaction Index Array In a variation to the work by Conely
and Salgado, Wittenmark and Salgado [WS02] propose instead to base the input-
output pairing on the Hankel norm. The Hankel norm of a system G is (as noted
earlier) given by

‖G‖H = σ̄(WcWo) =
√

max
k

λk(WcWo) (2.15)

Let Gij denote the system connecting input j to output i, with state space represen-
tation as given in (2.13) above. Wittenmark and Salgado then propose the Hankel
Interaction Index Array ΣH = [ΣH ]ij , where

[ΣH ]ij =
‖Gij‖H∑
i,j ‖Gij‖H

(2.16)

Similarly to the Participation matrix, the elements of the Hankel Index Interaction
Array also sum to one, and the input-output pairing is done in the same way, by
selecting one element of each row and column, to make the sum of selected elements
as large as possible.

2.4.8.3 Accounting for the closed loop bandwidth In their basic form, Φ and
ΣH will account for input-output relationships for all frequencies. In an effort to fo-
cus more on input-output relationships within the closed loop bandwidth, it is pointed
out in [CS00] and [WS02] that the system descriptions may be augmented by filters
which remove the input-output relationships at high frequency. The drawback with
this is that the filter cut-off frequencies (closed loop bandwidths) must be known a
priori. This is in contrast to the frequency-dependent RGA, which may indicate di-
rectly what would be an advantageous closed loop bandwidth from the point of view
of interactions between loops.
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2.5 Tuning of decentralized controllers

2.5.1 Introduction

In this section, we consider the case when the control configuration is fixed, and fo-
cus on fully decentralized control. That is, it is assumed that the overall controller
consists of multiple single-input, single-output controllers, and the pairing of ma-
nipulated and controlled variables has been determined. Despite the prevalence of
decentralized controllers in industry, the tuning (determination of controller param-
eters) of decentralized controllers is not a solved problem in mathematical terms.
The well established controller synthesis methodologies, like H2− or H∞−optimal
control, cannot handle a pre-specified structure for the controller. In fact, a truly
H2− or H∞−optimal decentralized controller would have an infinite number of
states[SVAS78]. This follows, since these controller synthesis procedures result
in controllers which have the same number of states as the ’plant’. When synthe-
sizing one decentralized controller element, all the other decentralized controllers
would become a part of the ’plant’ as seen from the controller to be synthesized,
and this controller element would therefore have a large number of states. Now,
with this new controller in operation, it becomes a part of the ’plant’ as seen from
the other controllers, and the other controllers may therefore be improved - thereby
introducing yet more states. Sourlas et al. have looked at l1-optimal 13 decentral-
ized control [SM95, SEM94], and have developed a method for calculating the best
achievable decentralized performance, both for decentralized control in general and
for fixed order decentralized controllers. However, the computations involved are
rather complex, and may well become hard to solve even for problems of moderate
dimension. In the absence of any decentralized controller synthesis method that has
both solid theoretical foundation and is easily applicable, a few practical approaches
have been developed:

Independent design. The individual decentralized controller elements are de-
signed independently, but bouds on the controller designs are sought which en-
sure that the overall system will behave acceptably.

Sequential design. The controller elements are designed sequentially, and the
controllers that have been designed are assumed to be in operation when the
next controller element is designed.

Simultaneous design. Optimization is used to simultaneously optimize the con-
troller parameters in all decentralized controller elements. A particular con-
troller parametrization (e.g. PI-controllers) have to be chose a priori.

In the following, these three tuning approaches will be described in some de-
tail, but first some methods for tuning conventional single-loop controllers will be
reviewed.

13In l1-optimal control, the ratio ‖y(t)‖∞ / ‖d(t)‖∞ is minimized.
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2.5.2 Loop shaping basics

Loop shaping is presented in several control textbooks, the presentation here is in-
spired by [MG90, SP05]. The term loop shaping refers to shaping the Bode mag-
nitude plot - usually for the open loop gain - in order to achieve desirable closed
loop system properties. The Bode phase plot is given relatively little attention ex-
cept for accounting for gain-phase relationships when designing the loop shape in
the crossover region. Loop shaping is presented briefly here for SISO systems, but
many of the same considerations may be addressed for MIMO systems using sin-
gular values [MG90, SP05]. There also exists tools that allow taking multivariable
considerations into account (to some extent) when shaping single-loop gains in mul-
tivariable systems, see section 2.5.6. Consider again the feedback loop in Fig. 1.6.
The loop is excited by disturbances d, reference changes r, and measurement noise
n. For all these excitations we generally with to keep the control offset e = y − r
small14. In the following, we will assume that the transfer functions are appropriately
scaled, i.e.,

the output of G and Gd is scaled such that the largest tolerable control offset is
of magnitude 1,

the input to G is scaled such that the largest available range of manipulation (in
deviation variables) for the input is of magnitude 1, and

the input to Gd is scaled such that an input of magnitude 1 corresponds to the
largest expected disturbance.

We find that the closed loop relationship between e and {d, r, n} is

e = (I +GK)−1Gdd− (I +GK)−1r − (I +GK)−1GKn = SGdd− Sr − Tn
(2.17)

When designing a control loop, one needs to accept that the achievable bandwidth
will be finite, for reasons previously explained. Equation 2.17 provides a lot of
information about the desired open loop gain ‖GK‖ at frequencies

well below the closed loop bandwidth, where ‖GK‖ >> 1, or

well beyond the closed loop bandwidth, where ‖GK‖ << 1.

From (2.17), we thus conclude:

For disturbance rejection, we want ‖GK‖ >> ‖Gd‖, applicable to frequencies
below the bandwidth region.

For reference following, we want ‖GK‖ >> ‖r‖, applicable to frequencies
below the bandwidth region.

14Note that we here use y, the actual value of the controlled output, and not the noise corrupted measure-
ment ym = y + n.
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For low sensitivity to measurement noise, we want ‖T‖ << 1, and hence
‖GK‖ << 1 - applicable to frequencies beyond the bandwidth region.

However, we also need to consider input usage, both because it may be costly in
itself, and because real-life control problems have inputs with limited range of ac-
tuation, and hence large input usage will typically cause the input to saturate. The
closed loop transfer functions from {d, r, n} to u was stated in (1.34), and is restated
here for accessibility:

u = −K(I +GK)−1Gdd−K(I +GK)−1r −K(I +GK)−1n

As expected, we generally find that low input usage generally is achieved by having
a low controller gain ‖K‖ << 1. Naturally, that often also implies a low loop gain,
and hence a low closed loop bandwidth.

In addition, one also should consider robustness to modeling errors (i.e., that the
model on which we base our controller design will have errors). The implications for
the desired loop gain does depend on what kind of model error we are considering,
but

for ’stable model errors’, such as errors in gain, (stable) time constants, and
deadtime, prefer a low gain at frequencies where the uncertainty inG(jω)K(jω)
(with respect to either magnitude or phase) is significant.

for ’unstable model errors’, such as errors in the location of an unstable pole or
when there is uncertainty with respect to whether a pole is in the LHP or RHP,
prefer a high loop gain at frequencies where the uncertainty in G(jω)K(jω) is
significant.

The full justification for these latter claims is omitted for brevity, interested readers
may consult [SP05] for details.

We also need to keep in mind that S + T = I , and thus both S and T cannot
be small at the same frequency. This means, for instance, that (2.17) tells us that
we cannot have good reference following and low sensitivity to noise at the same
frequency. We may thus identify a number of other contradictory considerations
above. Luckily, we are often in the situation where the different considerations take
on different importance in various frequency ranges:

Disturbance rejection and reference following is typically more important at
low frequencies than at higher frequencies.

Noise sensitivity, input saturation, and sensitivity to ’stable model errors’ is
typically more relevant at higher frequencies.

One thus has to handle some considerations dictating high loop gain at low frequen-
cies, and another set of gains dictating low loop gains at high frequencies. Naturally,
good and robust closed loop behavior is not achievable if these frequency ranges
overlap. More than that, there needs to be a reasonable separation of these two fre-
quency ranges - since we cannot go from high gain to low gain over a short frequency
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range without having large negative phase at the crossover frequency, and thus vio-
late the Bode stability criterion. In practice, we cannot expect the magnitude plot to
roll of with a steeper gradient than around −1 (on a log-log scale).

A good control loop design will require fulfilling these considerations. High gain
at low frequencies, and low gain at high frequencies, is normally easy to achieve.
The main challenge is to combine this with stability requirements, considering the
gain-phase relationships in the crossover region.

2.5.3 Tuning of single-loop controllers

There are a number of methods for tuning single-loop controllers, and no attempt
will be made here at providing a comprehensive review of such tuning methods.
Instead, a few methods will be described, which all are based on simple experiments
or simple models.

However, first a brief exposition of controller realizations and common modifi-
cations of the standard realizations will be presented, followed by an illustration of
how frequency analysis can be used for controller tuning.

2.5.3.1 PID controller realizations and common modifications The Propor-
tional Integral Derivative (PID) controller is by far the most common controller type
in the chemical process industries - or in any other industry familiar to this author. In
the process industries, the derivative action is often omitted (giving a PI controller),
and more rarely the integral action is also omitted (P controller). Omitting only the
integral action (PD controller) is rarely used in the process industries, and tuning
rules for PD control will not be addressed in the following15.

Although PID controllers are very common, they are implemented in slightly dif-
ferent ways, as will be described briefly in the following. A more comprehensive
presentation can be found in [ÅH94].

As the name suggests, a PID controller adds three terms. The ideal (or ’non-
interacting’) PID controller may be described as

u(t) = KP

(
e(t) +

1

TI

∫ t

0

e(τ)dτ + TD
de(t)

dt

)
(2.18)

where u is the manipulated variable and e is the control error e = r−y, with r being
the reference (or setpoint) and y being the measured output. Equation (2.18) may
equivalently be written in the Laplace domain as

u(s) = KP

(
1 +

1

TIs
+ TDs

)
e(s) (2.19)

An alternative implementation of the PID controllers, is the cascade (of ’interacting’)
PID controller:

u(s) = K̃P

(
1 +

1

T̃Is

)
(1 + T̃Ds)e(s) (2.20)

15Although it is more commonly applied in motion control.
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Note that for PI and P controllers, the ideal and the cascade controllers are identical.
A cascade PID controller can always be represented as an ideal PID controller, with
coefficients given by

KP = K̃P
T̃I + T̃D

T̃I

TI = T̃I + T̃D

TD =
T̃I T̃D

T̃I + T̃D

whereas converting from ideal PID parameters to cascade PID parameters can only
be done if TI ≥ 4TD.

It should be noted that both the ideal PID in (2.19) and the cascaded PID in
(Eq:PIDcasc) have improper transfer functions, and hence cannot be implemented
exactly. To obtain a semi-proper transfer function, the derivative term is filtered,
giving

u(s) = KP

(
1 +

1

TIs
+

TDs

1 + αTDs

)
e(s) (2.21)

for the ’implementable’ ideal PID, and

u(s) = K̃P

(
1 +

1

T̃Is

)(
1 +

T̃Ds

1 + αT̃Ds

)
e(s) (2.22)

for the ’implementable’ cascade PID. Here α is a small positive scalar, often α ≈
0.1. The structures of the ideal and the cascaded PID controllers are illustrated in
Fig. 2.11.

Remark: When implementing controllers in discrete time (as has to be done for
digital computers), an alternative way of making the PIDs in (2.19) and (Eq:PIDcasc)
implementable is simply to approximate the derivative with a backwards difference.

Setpoint weighting. In(2.19) and (Eq:PIDcasc) the same error signal e = r − y is
used for all three terms of the controller. More flexibility will be obtained if we use
different error signals in the proportional and derivative terms:

eP = βr − y
eD = γr − y

This modification requires the use of the ideal PID controller (except when γ = 0,
when the cascade PID controller can also be used for β 6= 1.0). The choice of β and
γ will not affect the response to disturbances or measurement noise, but the response
to setpoint changes will be affected. The value of β is usually chosen in the range
0 ≤ β ≤ 1, with a small value giving less setpoint overshoot and smoother use
of the manipulated variable, while a larger value gives quicker response to setpoint
changes [ÅH94]. The value of γ is often set to zero, as abrupt changes in setpoint
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Figure 2.11: The structure of the PID controller. a) Ideal PID, b) Cascaded PID.

will otherwise lead to very large moves in the manipulated variable, which is usually
considered unacceptable (’derivative kick’). PID controllers with setpoint weighting
are illustrated in Fig. 2.12.

2.5.3.2 Controller tuning using frequency analysis This section will illustrate
by way of an example how controller tuning can be performed based on frequency
analysis. It is assumed that the models used are appropriately scaled, i.e., that the
largest expected disturbance is of magnitude 1 and the largest tolerable offset is of
magnitude 1. The system is a basic feedback loop with an output disturbance, as
shown in Fig. 1.6. The plant transfer and disturbance function are given by

G(s) =
(−s+ 1)

(100s+ 1)(s+ 1)

Gd(s) =
10

(100s+ 1)2

It is assumed that the models used are appropriately scaled, i.e., that the largest ex-
pected disturbance is of magnitude 1 and the largest tolerable offset is of magnitude
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Figure 2.12: PID controllers with setpoint weighting. a) Ideal PID, b) Cascaded
PID, with γ = 0.

1. Initially, a PI controller with controller tuning

K(s) =
(100s+ 1)

100s

is tried. The resulting loop gain and phase are shown in Figs. 2.13 and 2.14, respec-
tively. From the Bode stability criterion we can conclude that the system is stable,
with a comfortable phase margin. The response to a unit step in the reference is
shown in Fig. 2.15. From the figure we find that the (dominant) closed loop time
constant is approximately 1/ωc = 100s, where ωc is the frequency at which the loop
gain crosses one.

Although the response to reference changes may be acceptable, this does not guar-
antee that the response to disturbances is acceptable. The closed loop response to
a sinusoidal disturbance of unit magnitude and frequency ω = 0.002 is shown in
Fig. 2.16. Clearly the disturbance has an unacceptably large effect, even though the
frequency of the disturbance is well within the loop bandwidth.

The reason for the unacceptable closed loop response from disturbance to output
can be understood from Fig. 2.17. The closed loop frequency response from distur-
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Figure 2.13: Gain of plant, controller and open loop gain with the original tuning.
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Figure 2.14: Phase of plant, controller and open loop gain with the original tuning.

bance to output is given by y(jω) = Gd(jω)
1+G(jω)K(jω)d(jω). At ω = 0.002 we have

|G(jω)K(jω)| ≈ 5, and hence |1 + G(jω)K(jω)| ≈ |G(jω)K(jω)| (to a rough
approximation). We see from Fig 2.17 that the disturbance gain is approximately a
factor 2 larger than the loop gain with the original tuning at the frequency ω = 0.002.
Hence, a closed loop gain from disturbance to output of approximately 2 is to be ex-
pected - which agrees with what we find in Fig. 2.16. Also shown in Fig. 2.17 is the
loop gain with the new controller tuning

K(s) = 5
20s+ 1

20s

The corresponding phase plot is shown in Fig. 2.18. The system remains stable, with
an adequate phase margin, also with this new tuning. From Fig. 2.17 we see that
the loop gain with the new tuning is more than 10 times larger than the disturbance
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Figure 2.15: Response to a unit step in the reference at time t = 10, with the original
tuning.
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Figure 2.16: Response to a unit sinusoidal disturbance with frequency ω =
0.002rad/s, with the original tuning.

gain at ω = 0.002. This agrees well with the disturbance attenuation found in the
simulation shown in Fig. 2.19.

This example has hopefully illustrated that
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Figure 2.17: Disturbance gain, and open loop gains with original and new tuning.
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Figure 2.18: Open loop phase with the new tuning.

frequency analysis is a useful tool for controller tuning,

at frequencies well below the crossover frequency, the degree of disturbance
attenuation can be found easily from magnitude plots of the disturbance and the
open loop gain, and

tuning for adequate response to reference changes does not necessarily ensure
acceptable response to disturbances.

In the following, a number of controller tuning methods will be presented. Most
of these (either implicitly or explicitly) make assumptions about the system dynamics
- or rely on model approximations / model reduction when the model is not of the
required type. One may therefore encounter situations where the standard tuning
rules perform poorly, and in such circumstances it will be useful to be able to tune
the controller using frequency analysis. Frequency analysis can handle any linear
dynamics for the plant and the disturbance, all that is required is that an appropriate
scaling is used.
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Figure 2.19: Response to sinusoidal disturbance with new controller tuning.

2.5.3.3 Ziegler-Nichols closed-loop tuning method This tuning method can be
found in many introductory textbooks, and is probably the most well-known tuning
method. It is based on a simple closed loop experiment, using proportional control
only. The proportional gain is increased until a sustained oscillation of the output
occurs (which neither grows nor decays significantly with time). The proportional
gain giving the sustained oscillation, Ku, and the oscillation period (time), Tu, are
recorded. The proposed tuning parameters can then be found in Table 1. In most
cases, increasing the proportional gain will provide a sufficient disturbance to initiate
the oscillation (if bumpless transfer is not used) - measurement noise may also do the
trick. Only if the output is very close to the setpoint will it be necessary to introduce
a setpoint change after increasing the gain, in order to initiate an oscillation. Clearly,
an output oscillation in the shape of an (approximate) sinusoid can only be expected
if input saturation is avoided.

Table 1. Tuning parameters for the closed loop Ziegler-Nichols method

Controller type Gain, KP Integral time, TI Derivative time, TD
P 0.5 ·Ku

PI 0.45 ·Ku 0.85 · Tu
PID 0.6 ·Ku 0.5 · Tu 0.12 · Tu

Essentially, the tuning method works by identifying the frequency for which there
is a phase lag of 180◦. In order for the tuning method to work, the system to be con-
trolled must therefore have a phase lag of 180◦ in a reasonable frequency range, and
with a gain that is large enough such that the proportional controller is able to achieve
a loop gain of 1 (0 dB). These assumptions are fulfilled for many systems. The tun-
ing method can also lead to ambiguous results for systems with a phase lag of 180◦ at
more than one frequency. This would apply for instance to a system with one slow,
unstable time constant, and some faster, but stable time constants. Such a system
would have a phase lag of 180◦ both at steady state and at some higher frequency.
It would then be essential to find the higher of these two frequencies. Furthermore,
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the system would be unstable for low proportional gains, which could definitely lead
to practical problems in the experiment, since it is common to start the experiment
with a low gain. Despite its popularity, the Ziegler-Nicols closed loop tuning rule is
often (particularly in the rather conservative chemical processing industries) consid-
ered to give somewhat aggressive controllers, and further adjustment of the tuning
parameters are frequently needed.

2.5.3.4 Simple fitting of a step response model Many chemical processes are
stable and well damped, and for such systems the step response curve can be approx-
imated by a first-order-plus-deadtime (FOPDT) model, i.e.,

y(s) =
Ke−θs

1 + Ts
u(s) (2.23)

Some tuning rules expect the plant model to be in this form. It is relatively straight
forward to fit the model parameters to the observed step response. This is illustrated
in Figure 2.20. Assuming that the response in Fig. 2.20 is the result of a step of size

Time

Output

0

A

? T

Figure 2.20: Estimating model parameters from the process step response.

B at time 0 in the manipulated variable, the model parameters are found as follows:

1. Locate the inflection point, i.e., the point where the curve stops curving upwards
and starts to curve downwards.
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2. Draw a straight line through the inflection point, with the same gradient as the
gradient of the reaction curve at that point.

3. The point where this line crosses the initial value of the output (in Fig.2.20 this
is assumed to be zero) gives the apparent time delay θ.

4. The straight line reaches the steady state value of the output at time T + θ.

5. The gain K is given by A/B.

Note that the purpose of this method of fitting a simple mode to the reaction curve
(step response) is twofold:

to capture the bandwidth limitations of the system, by accounting for any in-
verse responses and higher order phenomena by ’artificially’ increasing the
deadtime beyond the actual deadtime.

to try to capture system behaviour in the frequency range just below the band-
width limitations. Low frequency accuracy is not important - as long as the sign
of the steady state gain is correct, integral action can provide good closed loop
control at low frequencies.

There exists slight variations on how to fit the FOPDT model to the step response
- and for plants that are truly of FOPDT form they will give the same result. For
higher order (but stable and well damped) plants, the methods may differ a little
on whether the ’gradual departure from zero’ seen in Fig. 2.20 is accounted for by
increasing the deadtime θ or by increasing the time constant T .

2.5.3.5 Ziegler-Nichols open loop tuning Ziegler and Nichols [ZN42] propose
the tuning rules in Table 2 based on the model in Eq. (2.23).

Table 2. Tuning parameters for the open loop Ziegler-Nichols method

Controller type Gain, KP Integral time, TI Derivative time, TD
P T

Kθ

PI 0.9T
Kθ

θ
0.3

PID 4T
3Kθ

θ
0.5

0.5θ

2.5.3.6 IMC-PID tuning In internal model control (IMC), the controller essen-
tially includes a process model operating in ”parallel” with the process, as illustrated
in Figure 2.21. The IMC controller Q and the corresponding conventional feedback
controller K are related by

K = Q(1−GmQ)−1 (2.24)

Note that if the model is perfect,Gm = G, IMC control essentially results in an open
loop control system. This means that it is not straight forward to use it for unstable
systems, but for stable systems (and a perfect model) any stable IMC controller Q
results in a stable closed loop system - this holds also for non-linear systems. In



TUNING OF DECENTRALIZED CONTROLLERS 87

IMC

controller, Q
Plant, G

Plant model,

Gm

_

+

_

Reference
Manipulated

variable

Controlled

variable

Corresponding

conventional controller, K

Figure 2.21: An internal model controller.

the following discussion on IMC controllers we will therefore assume the open loop
system to be stable. Another advantage with IMC control is that the transfer func-
tion from reference r to controlled variable y is simply given by y = Tr = GQr.
Designing the closed loop transfer function T (or S = 1 − T ) therefore becomes
simple. Conventional IMC controller design consists of factoring the plant G into a
minimum phase part Gm and a non-minimum phase part Gn, with Gn chosen such
that Gn(0) = 1. For example, the plant

G =
10(s− 1)

(10s+ 1)(30s+ 1)

may be factorized to

Gm =
−10(s+ 1)

(10s+ 1)(30s+ 1)
; Gn = − (s− 1)

(s+ 1)

The IMC controller Q is then chosen as Q = (Gm)−1F , where F is a low pass filter
which is used both to make Q proper16, and to make the closed loop system robust.
Normally, the filter F is chosen to be on the form

F =
1

(λs+ 1)n

Clearly, the order n of the filter must be sufficiently large to make Q proper, but
usually a low order is sufficient (i.e., n is in the range 1 to 3). This leaves only one

16A proper transfer function model has a denominator polynomial of order at least as high as the order of
the numerator polynomial. A system has to be proper in order to be physically realizable.
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free parameter, λ, which makes it feasible to tune the system on-line. A large λmake
the system slow, decreasing it increases the speed of response. It is common to use

simple, low order transfer function models of the system when designing feedback
controllers. Rivera et al. [RMS86] have shown that IMC controllers designed based
on low-order transfer function models of the plant in most cases result in overall
controllersK having the familiar PID structure, possibly with an additional lag. This
additional lag would correspond to the time constant that is commonly applied to the
derivative action in many PID controllers. In their paper, Rivera et al. list numerous
such low-order plant transfer functions, the corresponding PID parameters, including
the dependence of the PID parameters on the low pass filter time constant λ.

2.5.3.7 Simple IMC tuning Skogestad’s Simple IMC (SIMC) tuning rules [Sko03]
is a further development of the IMC-based tuning of PI and PID controllers, and in-
cludes simple model reduction rules for cases where the model order is higher than
the first or second order models required by SIMC.

First Order plus Deadtime (FOPDT) models: For models of the form

G(s) =
k

τ1s+ 1
e−θs (2.25)

the SIMC tuning rules propose the PI tunings

KP =
1

k

τ

θ + τ
, TI = min(τ, 4(τc + θ))

Second Order plus Deadtime (SOPDT) models: For models of the form

G(s) =
k

(τ1s+ 1)(τ2s+ 1)
e−θs (2.26)

the SIMC tuning rules propose the PID tunings

K̃P =
1

k

τ

θ + τ
, T̃I = min(τ1, 4(τc + θ)), T̃D = τ2

where the ˜ on the PID parameters denote that the series (or cascade) form of the
PID controller is used.

For both the PI and PID tunings, τc is the only tuning parameter that the user
has to set. Skogestad recommends τc = θ if relatively fast control is desired, while
τc = 3θ is recommended for slower, smoother control.

Model reduction for SIMC. When detailed modelling has resulted in more complex
models than FOPDT or SOPDT, [Sko03] provides guidelines on how to perform
model reduction in order to be able to use the SIMC tuning rules. Consider a model
of the form

G(s) =
Πl(Tl0 + 1)Πj(−Tj0 + 1)

Πi(τi0 + 1)
(2.27)
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The model reduction proceeds in two steps:

1. First, the zeros in the left half plane of the complex plane (LHP zeros, terms
in (Tl0 + 1)) are cancelled against ’close’ terms in the denominator, and are
replaced with constants. The following substitutions are recommended17

(Tl0 + 1)

(τi0 + 1)
≈



Tl0
τi0

for Tl0 ≥ τi0 ≥ τc
Tl0
τc

for Tl0 ≥ τc ≥ τi0
1 for τc ≥ Tl0 ≥ τi0
Tl0
τi0

for τi0 ≥ Tl0 ≥ 5τc
˜tau0
τi0

(τ̃0−Tl0)s+1 for τ̃0
def
= min(τi0, 5τc) ≥ Tl0

(2.28)

2. Then, the right half plane zeros (RHP zeros, terms in (−Tj0 + 1) are accounted
for by modifying the denominator time constants and the time delay in the
model. Assume (with slight abuse of notation) that after step 1 above we are
left with the model

G(s) =
Πj(−Tj0 + 1)

Πi(τi0 + 1)
e−θ0s (2.29)

For a FOPDT model, we then select

τ1 = τ10 +
τ20

2
, θ = θ0 +

τ20

2
+
∑
i≥3

τi0 +
∑
j

Tj0 +
h

2
(2.30)

where h is the sampling interval for the discrete-time implementation of the
controller. For an SOPDT model, we select

τ1 = τ10, τ2 = τ20 +
τ30

2
, θ = θ0 +

τ30

2
+
∑
i≥4

τi0 +
∑
j

Tj0 +
h

2
(2.31)

2.5.3.8 The setpoint overshoot method The authors of [SS10] propose a tuning
method aiming to give similar closed loop behavior as the SIMC tuning method,
but without requiring the knowledge of a plant model a priori. Instead, the aim is
to extract the information required for controller tuning from a simple closed-loop
plant experiment - but without bringing the plant to the brink of instability as in the
Ziegler-Nichols closed loop method.

The setpoint overshoot model assumes the plant to be of FOPDT form (2.25), and
hence the resulting controller is of PI form. The following experiment is performed:

1. Start from a steady state. Note the current output value y0 and current reference
r0. If the controller has integral action, one would normally have y0 = r0.

17These expressions include modifications by Skogestad after publication of [Sko03], as found on
http://www.nt.ntnu.no/users/skoge/publications/2003/tuningPID/, accessed
on 12.08.2016
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Figure 2.22: The setpoint overshoot method

2. Switch the controller to proportional-only control. Bumpless transfer should
preferably be used, to avoid disturbing the plant at this point.

3. Make a setpoint change for the proportional-only control. The response should
preferably show damped oscillations with an overshoot of between 10% and
60%. Note that these are much milder conditions on the response than what is
required from the Ziegler Nichols closed loop method.

4. Note the following values (see Fig. 2.22):

The new value of the setpoint r.

The controller gain KP0.

The peak value of the output, yp.

The time from the setpoint change to the peak value, tp.

The steady state output value y∞.

The value of the first minimum in the response after yp, denoted yu.

Next, calculate the following values:

The setpoint change ∆r = r − r0

The peak output change ∆yp = yp − y0.

The steady state output change ∆y∞ = y∞ − y0.

The change from y0 to yu, ∆yu = yu − y0.
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The latter quantity is required only if the oscillations are so slow and/or weakly
damped that observing the true y∞ would take an excessively long time. In this case,
the steady state output change is approximated as

∆y∞ ≈ 0.45(∆yp + ∆yu) (2.32)

Calculate also

The overshoot: yO = (∆yp −∆y∞)/∆y∞.

The relative steady state output change: b = ∆y∞/∆ys.

The setpoint overshoot tuning method is based on a parameter A and a tuning factor
F :

A = 1.152y2
O − 1.607yO + 1.0 (2.33)

F =
τc + θ

2θ
(2.34)

Selecting τc = θ gives F = 1 and corresponds to the ’fast and robust’ SIMC settings
above. To detune and get a more robust tuning (for open loop stable systems) use
F > 1, while F < 1 should be used with care. The final tuning parameters are then

KP =
KP0A

F
(2.35)

TI = min

(
0.86A

∣∣∣∣ b

(1− b)

∣∣∣∣ tp, 2.44tpF

)
(2.36)

2.5.3.9 Autotuning Many industrial PID controllers include some self-tuning or
autotuning function, allowing the controller to find controller tuning parameters ”by
itself”. In order to find tuning parameters, some sort of automated identification
experiment is necessary. Although many different types of experiments and iden-
tification procedures in principle are possible, most autotuners use relay feedback,
i.e., the ordinary controller is replaced by a relay, as shown in Fig. 2.23. Whith the

use of relay feedback, most systems which are stable or integrating in open loop will
enter a stable limit cycle, with a (dominant) oscillation frequency of ωu = 2π/Tu.

Similarly, Ku can be found from Ku = 4d/πa, where d is the relay amplitude and
a is the amplitude of oscillation of the output. The tuning of the controller can then
be based on the Ziegler-Nichols closed-loop tuning, or modifications thereof. The
relay based autotuning in its simplest form thus works by identifying the frequency
at which the process has a phase lag of 180◦, and the corresponding gain. Other
points on the Nyquist curve may be identified by connecting a linear system in series
with the relay. A more comprehensive treatment of relay-based autotuning can be
found in articles by Åström and Hägglund [ÅH84, ÅH94], or by Schei [Sch92].
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Figure 2.23: Block diagram showing controller with relay-based autotuner.

2.5.3.10 When should derivative action be used? It is noted above that PI con-
trollers are the most common in the process industries, and that relatively few con-
trollers have derivative action in these industries. One should keep in mind that
although the derivative action provides positive phase (which is good), it also in-
creases the magnitude and thereby shifts the crossover frequency to higher frequen-
cies. Thus, if the phase of the plant decreases rapidly with increasing frequency
(e.g., when time delay limits achievable bandwidth), derivative action may have a
destabilizing effect. On the other hand, if the changes in the phase of the plant in the
bandwidth region is dominated by a single lag (typically the second largest time con-
stant), derivative action may counteract this and enable significantly faster control.

In addition, one needs to remember that derivative action will tend to amplify
measurement noise.

2.5.3.11 Effects of internal controller scaling In the days when controllers were
implemented in analogue electronics, signals were commonly scaled from 0% to
100% relative to some signal range - often a 4-20mA instrumentation signal. Thus,
the controller did not bother about engineering units, neither would the engineer
tuning the controller. With modern digital control systems, engineers often find it
natural and convenient to think in engineering units - while many controllers are
still implemented with scaling of input and output. It is therefore advisable to check
the internal controller scaling and adjust the proportional gain accordingly. This is
illustrated in Fig. 2.24.

The controller proportional gain that has to be specified when tuning the controller
is the internal (scaled) gain KPint, which is related to the actual gain KP from
controller input to output by

KP = KPint
umax − umin
ymax − ymin

(2.37)
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Figure 2.24: Illustrating the internal scaling in controller implementations.

The scaling factor (umax − umin)/(ymax − ymin) can be found by studying the
controller documentation and parameter settings. Alternatively, a simple experiment
can be performed, starting from conditions close to steady state:

1. Set the controller in pure proportional mode:

Set the integral time TI to a very large value (for some controllers, setting it
to zero will also work).

Set the derivative time TD to zero.

Turn off any setpoint weighting (set β = 1.0 and γ = 0 in Fig. 2.12).

2. Enter a reasonable change in the setpoint, and record the immediate change
in controller output. The term ’reasonable’ here means that the change in the
setpoint should be large enough for random measurement noise to have little
effect on the change in controller output, while at the same time avoiding any
unacceptably large changes in controller output.

Comparing the specified controller gain to the ratio change in controller output/setpoint
change, the internal scaling factor is easily determined.

2.5.4 Reverse acting controllers

Frequently, the plant transfer function will have negative steady state gain, i.e., the
output decreases when the input increases. To preserve negative feedback, the sign
of the gain in the controller will then have to be changed. A controller is said to
be direct acting if an increase in the controlled variable should cause an increase in
the manipulated variable (corresponding to a negative plant gain). If an increase in
the controlled variable should result in a decrease in the manipulated variable, the
controller is termed reverse acting.
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Usually, industrial controllers are parametrized such that the proportional gain has
to be positive. For a direct acting controller (corresponding to a negative plant gain),
the actual input implemented is

u = 100%− ũ (2.38)

where ũ is the output of the ordinary controller calculations (for a positive plant gain
/ reverse acting controller).

2.5.5 Multiloop controller tuning

The term ’multiloop controller’ is often used for decentralized controllers. Below,
we will briefly discuss the three different tuning approaches listed in the Introduction.
In addition to fulfilling the overall performance criteria (whatever they may be), a
desireable property of multiloop controllers is that they exhibit integrity, i.e. that
they remain stable when one or more of the loops are taken out of service. Ideally,
they should also show a modest and predictable performance degradation when loops
are taken out of service. One must clearly accept poor performance in the loops that
are out of service, but preferably control quality will not be much affected in the
loops that remain on-line. Whether such predictable performance degradation is
achieved, may depend on both the system itself, the control structure chosen, and the
tuning parameters.

2.5.5.1 Independent design One may group independent design techniques into
two categories:

Naive independent design, where the individual loops are design without par-
ticular regard for the fact that hey have to operate in a multivariable control
system. If it turns out that the overall system is unacceptable, there is hopefully
some method for improving an initial design.

Rigorous independent design. In this group of approaches, explicit bounds are
derived for the behaviour of each individual loop. If these bounds are fulfilled
when each individual loop is designed, it is guaranteed that the overall system
will fulfill the performance criteria.

Naive independent design The most well known of tuning methods in this cate-
gory, is the so-called ’BLT tuning’. It essentially consists of tuning each loop indi-
vidually (typically with the Ziegler-Nichols closed loop tuning), and then to check
the infinity norm of the multivariable complementary sensitivity function (the trans-
fer function from reference to controlled variable), T = GK(I + GK)−1. If the
’peak value’ of this transfer function is too large, a common detuning factor is ap-
plied to the proportional gain for all loops. Typically, this peak value should be less
than 2, possibly in the range 1.2-1.5. The term ’peak value’ here refers to the infinity
norm, i.e., the maximum value of the largest singular value over all frequencies.

‖T‖∞ = max
ω

σ(T (jω))
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Some problems with this tuning procedure are:

Applying a common detuning factor to all loops is often not desireable, and the
result may be that the loops are detuned more than necessary. This is typically
the case when several loops have similar bandwidths, and there is unacceptable
interaction in the bandwidth region. In such cases, it is often sufficient to detune
only one of the interacting loops.

Detuning can produce stability problems for loops that have a phase lag close to
or more than 180◦ at low frequencies, which will occur for instance for unstable
systems or for integrating processes controlled by an integrating controller.

The tuning procedure does not address issues related to integrity or tuning mod-
ifications made by operators.

The main advantage of this tuning procedure is its simplicity. Despite its short-
comings, it is frequently used in the process control literature as a comparison against
which other tuning procedures are compared. It should not be a surprise that most
authors are able to find examples for which their proposed tuning procedure outper-
forms the BLT tuning.

Rigorous independent design Rigorous independent design was introduced by
Skogestad and Morari[SM89]. They approach the tuning problem from a robust
control viewpoint, using the structured singular value (µ) framework. Two differ-
ent robust stability problems are formulated, in which the controller is replaced by
a diagonal, complex-valued ’uncertainty’. The largest magnitudes for these ’uncer-
tainties’ for which the robust stability/performance can be guaranteed are then found
(solving ’skewed-µ’ problems). Robust stability/performance will then be guaran-
teed provided all individual loops at all frequencies fulfill the derived magnitude
bounds. Some advantages of this approach include

It can handle robustness issues rigorously.

It places no unnecessary constraint on the controller type, only on the sensitivity
and complementary sensitivity functions. Thus the design freedom for the
individual loops is not compromised.

Explicit bounds are derived for the individual loops, which could be used to
indicate how much plant operators (or engineers) should be allowed to modify
the controller tuning parameters.

Disadvantages include

The theoretical and numerical complexity inherent in using the structured singu-
lar value framework, which makes the method inaccessible to many practising
engineers.
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It provides the same bounds for all loops, and thus cannot take advantage of
using different bandwidths in different loops. Differences between individual
loops may be entered explicitly into the structured singular value problem, but
the method itself provides no indication on what differences between the loops
to use.

It is inherently conservative, since it can only specify a magnitude bound for
the uncertainties corresponding to the closed loop transfer functions. This is
related to the fact that the method does not specify any particular controller
type.

It does not cover integrity issues explicitly, they have to be explored after de-
signing the controllers.

In order to minimize the inherent conservatism in the rigorous independent design
procedure of [SM89], Hovd and Skogestad [HS93a] introduced independent design
for Internal Model Controllers. In this work, bounds are found for the IMC filter time
constant and its inverse. Thus, the uncertainty associated with the controller tuning
can be assumed to be real-valued, leading to less conservative bounds. Clearly, this
comes at the cost of numerically even more complex calculation, and the à priori
determination of controller parametrization.

2.5.5.2 Sequential design This is probably the most common design approach
in industry for designing decentralized controllers. The controllers are designed and
put into operation one at the time, and the controllers that have been designed are
kept in operation when new controllers are designed. Thus, ’sequential design’ does
not necessarily imply any specific method for designing the individual controller
elements, but merely that they are designed in a sequence. It therefore also allows
controller design methods that does not require any explicitly formulated system
model. Methods based on experimentation/feedback alone, like Ziegler-Nichols or
autotuning, are also accommodated. More complex controller synthesis methods
that do require a system model are also possible. Sequential design provides a limited
extent of system integrity. Normally, one design requirement for the controller in
each loop would be that the system should be stable after closing that loop. The
system will therefore remain stable if loops are taken out of service in the reverse of
the order in which they were designed. It is not uncommon that the controllers in
some loops have to be re-designed when new controllers are put into service, due to
unacceptable interactions between different control loops. In such cases, the limited
integrity guarantee of sequential design no longer holds. The very term ’sequential
design’ begs the question ’In what sequence should the individual controllers be
designed?’ The conventional rule of thumb is to close the fast loops first. This is
intuitively reasonable, as it is often the case that the faster loops are comparatively
unaffected by the tuning in slower loops. However, in some cases there may be
strong one-way interactions causing even slow loops to significantly disturb faster



TUNING OF DECENTRALIZED CONTROLLERS 97

loops. This conventional rule also requires the engineer to have a good idea of what
speed of control can be expected in the individual loops. Note that closing the fast
loops first normally implies that the inner loops in a cascade shouild be designed
first, which clearly makes sense.

2.5.5.3 Simultaneous design Simultaneous design implies that the tuning pa-
rameters for all loops are determined simultaneously. Since formal controller syn-
thesis methods will not lead to decentralized controllers, simultaneous design is done
by choosing a particular controller parametrization (e.g., decentralized PID control),
and using optimization to find the controller parameters which optimizes some mea-
sure of system performance. Although such simultaneous design often works rea-
sonably well, the optimization problems are typically non-convex, and convergence
to a global optimum can not be guaranteed. If the optimization fails to find ac-
ceptable controller parameters, it need not be obvious whether this is because no
acceptable parameters exist (for the perticular choice of controller parametrization),
or whether it is simply due to an unfortunate initial guess of parameter values. Simul-
taneous design typically provides no integrity guarantee. Integrity may be enforced
by introducing additional constraints in the formulation of the optimization prob-
lem. However, such constraints are typically non-linear, and the required number of
additional constraints will grow quickly with system size.

2.5.6 Tools for multivariable loop-shaping

Section 2.5.2 discussed considerations involved in determining a desirable loop shape.
Basically, these considerations carry over from monovariable to multivariable sys-
tem, with the proviso that

Requirements for low gain applies to the large gain direction (or larger singular
value) of GK.

Requirements for large gain applies to the low gain direction (or smaller singu-
lar value) of GK.

In section 2.5.3.2, it was shown how the magnitudes of the plant transfer func-
tion g(s) and the disturbance transfer function gd(s) can be used in a loop shaping
approach to tune SISO controllers. In the following, loop gain requirements for in-
dividual loops in multivariable systems will be presented. In the same way as for
the SISO case above, these loop gain requirements are reasonable accurate at low
frequencies (well below the bandwidths of the individual loops), but the underlying
approximation breaks down in the bandwidth region.

In the following, we will (as always) assume that the transfer function matrices
are appropriately scaled, and that inputs and outputs have been rearranged such that
the transfer function elements corresponding to paired inputs and outputs are brought
to the main diagonal of the plant transfer function matrix G(s).
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2.5.6.1 The Performance Relative Gain Array The relative gain array, RGA, is
a useful measure of two-way (i.e., potentially de-stabilizing) interactions, but severe
one-way interactions can exist even if the RGA matrix Λ = I . The Performance
Relative Gain Array, PRGA, is able to capture both one-way and two-way interac-
tions. To arrive at the PRGA, we introduce the matrix G̃(s), which is a diagonal
matrix consisting of the elements on the diagonal of G(s), i.e., the elements corre-
sponding to the individual control loops. Then, the matrix of sensitivity functions
for the individual loops is given by S̃ = (I + G̃K)−1, which is a diagonal matrix
(since K is diagonal). Note that the diagonal elements of S̃ are not the same as the
diagonal elements of the sensitivity function S = (I + GK)−1. The relationship
between S and S̃ by

S = (I + S̃(Γ− I))−1S̃Γ

where Γ = G̃G−1 is the Performance Relative Gain Array (PRGA) matrix. At
frequencies where the loop gains of the individual loops is large, S̃ is small, and
hence S ≈ S̃Γ. Thus, the effect of reference changes on control offset is given by

e = r − y = SRr ≈ S̃ΓRr

where R is just a diagonal scaling matrix which is chosen such that the (scaled)
reference changes |rj | ≤ 1∀j. Thus, the effect of a change in reference j on control
offset i is given by

ei = [SR]ijrj ≈ [S̃ΓR]ijrj = s̃iγijRjrj ≈
γij
giiki

Rjrj

where s̃i = 1/(1 + giiki) is the sensitivity function for loop i, γij is element
ij of Γ, and Rj is element j on the diagonal of R. The second approximation in
the above equation holds provided |giiki| >> 1, and thus holds whenever the first
approximation holds. Consequently, if the effect of reference change j on control
offset i should be less than α at frequency ωα, we require |giiki| > α |γijRj | at
frequency ωα. The PRGA (and our performance requirements) thus provide us with
estimated loop gain requirements for achieving acceptable performance with respect
to reference tracking.

2.5.6.2 The Closed Loop Disturbance Gain The Closed Loop Disturbance Gain
(CLDG) is similar to the PRGA, with the difference that it looks at the effect of
disturbances on control offset. The closed loop transfer function from disturbances
to control offset is given by

e = −SGdd ≈ −S̃ΓGdd

where, as before, the approximation holds where the loop gains are large. The
matrix ∆ = ΓGd is the Closed Loop Disturbance Gain. We get
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ei = − [SGd]ij dj ≈
δij
giiki

dj

where δij is element ij of ∆.

The CLDG’s thus provide estimates of loop gain requirements for disturbance
rejection in much the same way as the PRGA’s do for reference changes.

2.5.6.3 Example A simplified model of a distillation column may be given by

[
y1

y2

]
=

1

75s+ 1

[
87.8 −86.4

108.2 −109.6

][
u1

u2

]

+
1

75s+ 1

[
7.88 8.81

11.72 11.19

][
d1

d2

]
where y1 is the composition of the top product, y2 is the composition of the bot-

tom product, u1 is the reflux flowrate, u2 is the boilup rate, d1 is a feed flowrate
disturbance, and d2 is a feed composition disturbance.

Assuming that the variables are reasonably scaled, it is clear from looking at the
disturbance model that control will be necessary, since the disturbances can cause
composition offsets larger than 1 in magnitude. It would appear that both distur-
bances are approximately equally severe, and that output 2 is somewhat more af-
fected by the disturbances than output 1. However, this only holds for open loop
operation. The CLDG’s and PRGA’s for this example are shown in Figs. 2.25 and
2.26. The figures also show the loop gains resulting from using the PI controller
ui(s) = 75s+1

75s (yi(s) − ri(s)) in both loops (for loop 2, a negative controller gain
must be used, since the process gain is negative). The vertical distance between
the loop gain and the CLDG’s is an estimate of the degree of disturbance attenuation
(inside the loop bandwidth). The figures indicate that the simple PI controllers are
able to provide acceptable response to disturbances, but that disturbance 1 is much
more difficult to reject than disturbance 2.

The predictions based on the CLDG’s are shown to hold up reasonably well in
Figs. 2.27 and 2.28. Disturbance 2 causes control offsets that are insignificant,
whereas disturbance 1 causes larger - although still acceptable - control offsets. Not
only are the control offsets caused by disturbance 1 significant, they also last for a
significant time. This corresponds to the CLDG and the loop gain being of compa-
rable magnitude down to fairly low frequencies (significantly below the loop band-
width).
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Figure 2.25: CLDG’s and loop gain for loop 1.

2.5.6.4 Unachievable loop gain requirements The PRGA and CLDG presented

above provide us with approximate loop gain requirements for acceptable control
(provided the variables are properly scaled). It may happen that it is impossible to
fulfill these loop gain requirements, if there are significant bandwidth limitations in
the system. One then has to choose between three alternatives

1. Use more advanced controllers. This may help, at the cost of using more com-
plex design and implementation. However, one should realize that even the
most advanced controller cannot remove fundamental bandwidth limitations,
like e.g. multivariable RHP transmission zeros.

2. Modify your performance requirements. The PRGA and CLDG, when ana-
lyzed together with relevant performance limitations, can indicate how much
the performance requirements will need to be relaxed. The PRGA can indicate
to what extent setpoint changes have to be filtered - which typically results in
slower setpoint following, but also less interactions between loops.

3. Modify your system. The system may be modified to make control easier. Such
modifications may include faster actuators, new and improved measurements
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Figure 2.26: CLDG’s and loop gain for loop 2.

(e.g., with less deadtime), or installing buffer tanks to filter disturbances. The
CLDG can be used to estimate the required size for such buffer tanks.
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Figure 2.27: Response to a step in disturbance 1 of unit magnitude.



TUNING OF DECENTRALIZED CONTROLLERS 103

0 10 20 30 40 50 60 70 80 90 100
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
Response to unit step in disturbance 2

C
on

tr
ol

le
d 

va
ria

bl
e

Time

Controlled variable 1

Controlled variable 2

Figure 2.28: Response to a step in disturbance 2 of unit magnitude.





CHAPTER 3

CONTROL STRUCTURE SELECTION
AND PLANTWIDE CONTROL

3.1 Introduction

The term control structure design refers to the structural decisions involved in control
system design:

1. Selection of controlled variables c (’controlled outputs’, with setpoints cs).

2. Selection of manipulated variables u (’control inputs’).

3. Selection of measurements y.

4. Selection of control configuration (the structure of the interconnections between
the variables cs, u, and y).

5. Selection of the controller type (PID, decoupler, MPC, ...)

The term plantwide control is commonly used only in the process control com-
munity. Although the term is generally well understood within that community, it
has lacked a clear, generally accepted definition. We will here (attempt to) adhere to
the definition of Larsson and Skogestad [LS00]: plantwide control are the structural

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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and strategic decisions involved in the control system design of a complete chemical
plant.

The distinction between plantwide control and control structure design is thus
somewhat vague. Larsson and Skogestad state that control structure design is the
systematic (mathematical) approach to solving the plantwide control problem.

Like the other areas addressed by this note, the area of plantwide control is very
large, worthy of a book on its own. This chapter is therefore by necessity incomplete.
Larsson and Skogestad [LS00] provide a nice review of the area up to the year 2000,
with a large number of references to relevant previous work. Other key sources for
this chapter include [AS07], [ASH09], [Sko00], [HSCV03], [Als05] and [Ask09].

3.2 General approach and problem decomposition

Considering the multi-layered control hierarchy described in section I.4, one quickly
realizes that when designing plantwide control structures one is faced with a ’hen-
and-egg’ type of paradox.

The system, as seen from the top layers, is not well defined until the lower layers
of the control hierarchy have been designed. On the other hand, the objectives of the
lower layers are not clearly defined until the higher layers of the control hierarchy
have been designed.

It is clearly necessary to break this deadlock. Often, this is done by starting with
a ’bottom-up’ design, where the lower layers are designed first, with experience and
process insight substituting for a clear objective formulation for the lower layers.

Although experience and process insight will give useful guidance, this bottom-up
approach can easily result in design decisions with unfortunate consequences for the
capabilities of the overall system. Larsson and Skogestad instead propose an initial
top-down analysis, followed by a subsequent bottom-up design.

3.2.1 Top-down analysis

The top-down analysis seeks to clarify two issues:

1. What constitutes optimal operation, and what variables should be controlled in
order to achieve (close to) optimal operation?

2. Where should the throughput (production rate) be set?

3.2.1.1 Defining and exploring optimal operation In most cases, the objective
of the overall plant is to achieve economically optimal operation, subject to environ-
mental and safety constraints, and accommodating relevant disturbances (whether
caused by market conditions or physical conditions).
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It is assumed that this optimal operation is quantified in terms of a cost function
J which should be minimized1, and that the relevant constraints can be expressed
mathematically as equality or inequality constraints.

It is further assumed that a plant model is available. Although detailed dynamical
models often are not available, steady state models typically are. For most continu-
ous chemical production plants, economics is dominated by steady state operation,
and restricting the analysis to steady state is therefore usually acceptable.

The equality constraints should include the plant model, since the plant model
must be fulfilled at any steady state operating point in order to ensure feasible op-
eration. The inequality constraints will typically include operational constraints on
variables such as temperature and pressure, product quality constraints, purity con-
straints on effluents, etc.

At this initial stage, major disturbances should also be identified. The number
of steady-state degrees of freedom should also be identified. This determines how
many variables can be specified (at steady state) in order to optimize operation.

The goal of this analysis is to determine how many and which variables should be
selected as controlled variables, in order to achieve close to optimal operation. This
is further discussed in sections 3.4 and 3.5 below.

The focus here is on specifying the controlled variables for the Supervisory con-
trol layer of the control hierarchy, see Fig. I.1. The objectives of the Regulatory
control layer are often linked to economics only in an indirect way, and at this layer
there are typically many more variables that are controlled.

3.2.1.2 Determining where to set the throughput The position of the through-
put manipulator will greatly affect the structure of the remaining inventory control
system. This issue is addressed further in section 3.8.

3.2.2 Bottom-up design

The bottom-up design starts with the lower layer of the control hierarchy, the regu-
latory control layer, and then works its way up the layers of the control hierarchy.

Whereas the top-down analysis attempts to keep the overall picture in focus to de-
termine the throughput manipulator and controlled variables for optimal economic
operation of the entire plant, further decomposition and a more local focus will fre-
quently be necessary in the bottom-up design, especially at the lower layers of the
control hierarchy.

In section I.4 a hierarchical (’vertical’) decomposition of the control system is
presented. This decomposition is based on the observation that each layer has a dif-
ferent purpose - and that there is a corresponding timescale on which the individual
layers operate.

One may also decompose the design problem ’horizontally’, i.e., divide the design
task at each layer into a set of smaller subtasks. Ideally the design of each such
subtask will depend only weakly on each other.

1Maximizing profit P may be formulated as minimizing the cost J = −P .
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The process structure or layout is often utilized to perform such ’horizontal’ de-
composition. The decomposition may be based on individual process units or small
sets of closely connected units. However, one should be aware that process units
that seem far apart may actually affect each other through plant recycles or utility
systems (such as heating or cooling medium systems).

This horizontal decomposition is used more extensively at the lower layers of the
control hierarchy. It is simply not practical (and hardly possible with foreseeable
computing power) to account rigorously for the interactions between hundreds or
thousands of control loops at the regulatory control layer. The purpose of the higher
layers is to coordinate and optimize wider sections of the lower layers, and hence the
extent of horizontal decomposition will decrease for the higher layers.

The design of the regulatory control layer is addressed next, in section 3.3. Sec-
tions 3.4 - 3.7 will address issues of more relevance to the higher layers of the control
hierarchy, in particular the supervisory and RTO layers. The chapter closes with a
closer loop at inventory control in section 3.8.

3.3 Regulatory control

The top-down analysis should define the throughput manipulator as well as a (typi-
cally rather low) number of controlled variables used for keeping the plant close to
optimal operation.

The number of variables that are controlled at the regulatory control layer will,
however, be substantially higher. The purpose of the regulatory control layer may be
said to be twofold:

1. To enable the operators to keep the plant in operation without the higher layers
of the control hierarchy. The regulatory control layer uses simple algorithms
and very reliable hardware, and will therefore be relatively reliable.

2. To make the design task at the higher layers simpler, by reducing the effects of
uncertainty and nonlinearity.

The tasks of the regulatory control system may alternatively be described as

Stabilization. In addition to stabilizing variables that are unstable in a strict
system theoretic sense, this task will also include ’stabilizing’ any variable that
drifts over a wide operating range or otherwise shows unacceptably large varia-
tion.

Local rejection of disturbances. Local control loops are used to reject distur-
bances before they can affect wider sections of the plant.

Linearization by feedback. Feedback (when successful) typically has the effect
of reducing the effect of nonlinearity within the loop. This is utilized in many
circumstances, e.g., valve positioners to achieve the desired valve position, flow
controllers to counteract valve nonlinearities, temperature controllers on heat
exchangers, etc.



REGULATORY CONTROL 109

Reduction of uncertainty. There will always be uncertainties and imperfections
in out knowledge of the plant. Within the bandwidth of the feedback loop,
feedback can reduce the effect of such uncertainty by moving its effect from an
important controlled variable to a less important manipulated variable.

The tasks of the regulatory control layer are typically achieved using single loop
controllers (PI/PID-controllers), with the occasional use of cascaded loops or feed-
forward. The other loop configurations of section 2.2 are used in more special cases.

Understanding of the tasks of the regulatory control layer, when combined with
knowledge of how the plant works and is operated, will be of great help when select-
ing controlled and manipulated variables for regulatory control. The RGA and pole
vectors introduced in section 2.4 will be of further help.

It should be noted that closing loops in the regulatory control layer (or in any other
layer), although it ’uses up’ manipulated variables, does not reduce the number of
degrees of freedom available to the higher layers of the control system. Although the
manipulated variable in a loop will be unavailable to the higher layers, the setpoint of
the loop will be introduced as a new variable that may be used by the higher layers.

3.3.0.1 Example: Regulatory control of liquid level in a deaeration tower De-
sign of a regulatory control layer will here be illustrated on the example of a deaerator
tower used in petroleum production. The aim is to illustrate how understanding of
the tasks of the regulatory control layer and plant operation can be used in designing
the regulatory control layer.

Plant description. It is common to inject water into petroleum reservoirs in or-
der to maintain reservoir pressure and enhance oil production. Oxygen needs to be
removed from the water before injection, as oxygen in the reservoir can result in bac-
terial growth and the production of acids that will corrode the production equipment.

The plant and a rudimentary control system is shown in Fig. 3.1. Vacuum is
applied to the water in the deaerator tower, to liberate dissolved oxygen from the
water. In the top of the deaerator tower, there is a packing which both increases the
surface area and the retention time of the water, thereby improving oxygen removal.
The deaerated water is collected in the ’sump’ at the bottom of the tower.

High pressure is needed to inject the water in the reservoir. However, due to the
low pressure in the deaerator tower, a specially designed booster pump is required
to raise pressure up to an acceptable suction pressure for the main water injection
pump.

The pumps run on constant speed, and require a minimum flowrate. There is
therefore a minimum flow recycle control, which will open a recycle valve routing
water from the pump outlet back to the deaerator tower sump in case of low flow.

The water level in the deaerator needs to be controlled. In case of low level, the
suction pressure to the booster pump may become too low, causing cavitation, which
may lead to excessive vibration and abrasion. Too high level can mean that the water
covers part of the packing, reducing the deaeration efficiency and making the tower
very heavy. A rudimentary regulatory control system is shown in Fig. 3.1. This
rudimentary control system achieves stabilization of the liquid level, by controlling
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the liquid level by manipulating directly the feed water valve. In addition, there is
the minimum flow recycle control mentioned above.

Plant dynamics and disturbances. Without control, the liquid level will have an
almost purely integrating dynamics. This is easily stabilized by feedback, as indi-
cated in Fig. 3.1. However, due to the residence time in the packing, there is a signif-
icant time delay from the feed water valve to the liquid level, limiting the achievable
bandwidth for level control. At the same time there are significant disturbances both
up- and downstream:

On the upstream side, changing flowrates at other water consumers leads to
disturbances in the inlet pressure, and hence disturbances in the feed water
flowrate.

On the downstream side, production engineers can change the openings of
the injection water chokes, leading to large and fast disturbances to the outlet
flowrate2.

Deaerator 

tower

Packing

Sump

Vacuum

Booster 

pump

Main water

injection pump

Water 

injection 

choke

valves

Water injection wells

FC

FT

Minimum flow recycle

LT LC

Feed

water

Figure 3.1: Deaerator tower with rudimentary regulatory control.

Improvements to the regulatory control. There is a conflict between the level con-
trol loop bandwidth required for disturbance rejection, and the bandwidth limitation

2In order to mantain reservoir pressure, it would be sufficient to adjust the water injection rate very slowly.
From the control point of view, the obvious solution would be to reduce the flowrate disturbance by slow
flowrate control on the water injection chokes. For what appears to be mainly psychological reasons, this
appears to be unacceptable to production engineers, who insist on setting the injection choke opening
directly. The production engineer ’makes the real money’, and therefore decides on how the plant is
operated.
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resulting from the deadtime. The regulatory control system’s ability to handle dis-
turbances should therefore be improved. Two such improvements are relatively easy
to achieve:

1. The disturbances in the upstream pressure may be rejected locally by using
flow control on the feed water valve. Furthermore, this flow control loop will
counteract any nonlinearity or uncertainty in the valve characteristic. This flow
control loop is the inner loop in a cascade with the level control loop.

2. Feedforward from the outlet flowrate may be used to quickly counteract dis-
turbances in the outlet flowrate, without being limited by the bandwidth of the
level control loop. The feedforward signal is added to the output of the level
controller, and changes the setpoint for the feed flowrate controller.

With these improvements in handling disturbances, significantly lower bandwidth
can be used in the level control loop, thus removing the conflict between the required
bandwidth for disturbance rejection and the bandwidth limitation from the deadtime.
The modified regulatory control structure is shown in Fig. 3.2.
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Figure 3.2: Deaerator tower with improved regulatory control.

Concluding remarks on the example. This example illustrates how understand-
ing of the tasks of the regulatory control layer, combined with plant understanding,
can help in designing the control structure for the regulatory control layer. A few
additional comments may be in order:

1. The improvements in the regulatory control require two new flowrate sensors
and a new controller. In general there is a cost issue as well as a maintenance
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issue with increasing instrumentation. In this case, avoiding a single shutdown
due to improved control should more than justify the costs involved.

2. A mass balance on the deaerator sump yields

ρAdh

dt
= ρFin(t− T )− ρFout(t) (3.1)

where ρ is the water density, A is the tower cross-sectional area, h is the liquid
level, Fin is the flowrate through the feed water valve, T is the time delay, and
Fout is the outlet flowrate. Thus, the time derivative of the level depends on the
outlet flowrate. A commonly held misconception is therefore that feedforward
from the outlet flowrate is equivalent to derivative action in the level controller.
However, (3.1) shows that the derivative of the level depends on two compo-
nents, the outlet flowrate and the time-delayed inlet flowrate. Even with deriva-
tive action, the level controller is therefore limited in bandwidth by the time
delay - and derivative action is seldom recommended for loops with significant
time delay. No such bandwidth limitation arises for feedforward control.

3. Some readers may find it puzzling that the feedforward signal actually is trans-
mitted against the direction of flow, i.e., ’the feedforward signal is transmitted
backwards’. Drawing the control structure using ordinary control block dia-
grams (rather than a process flow diagram) may clarify this matter.

4. The improved control structure is simple to understand and to tune, and is a
good alternative to more advanced controllers for this problem. Little would
here be gained from using e.g. deadtime compensation or MPC.

Newer process designs for oxygen removal from injection water has replaced the
deaerator tower in modern offshore platforms. This is due to the lower space re-
quirements for the newer designs, rather than control problems.

3.4 Determining degrees of freedom

In order to obtain a well-defined operating point, all degrees of freedom have to be
fixed. A simple and straight forward way to determine the degrees of freedom is to
simply count the number of variables that may be freely set in the plant: the valve
positions, pump and compressor speeds, heat inputs, etc. Let the resulting number
of degrees of freedom be NF .

However, some variables (or combinations thereof) will have no steady state ef-
fect. These must be removed to find the number of steady state degrees of freedom.
I.e., we have

NF = NFs +NFd (3.2)

where NFs is the number of degrees of freedom which have a steady state effect,
whileNFd is the number of degrees of freedom with only dynamic effect. Following
[LS00] we have

NFd = Nm0 +Ny0 (3.3)
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whereNm0 is the number of manipulated variables, or combinations thereof, with no
steady state effect, and Ny0 is the number of manipulated variables used to control
variables with no steady state effect.

Typical cases when combinations of manipulated variables have no steady state
effect include

When there are multiple valves in the same pipeline. The steady-state mass
flowrate must be the same everywhere along the pipeline.

If a heat exchange has a bypass on both the hot and the cold side. Clearly, there
will nevertheless be only one heat transfer rate, even though one may have two
manipulated variables with which one may affect the heat transfer rate.

Identifying such (combinations of) manipulated variables will establish Nm0.
Control of variables with no steady state effect is usually associated with control

of liquid levels. Most liquid levels will have to be stabilized by feedback3, and each
such level control will ’consume’ a manipulated variable. Sometimes a little thought
is required to determine which levels do have a steady state effect.

Most commonly, liquid levels have no steady state effect. This is the case for
buffer tanks, etc.

One example where the liquid level will have steady state effect is when the
level affects available heat transfer area, such as in flooded condensers.

In liquid-phase chemical reactors the liquid level will affect the effective reactor
volume, and will thus have steady state effect.

This list is not exhaustive, but with proper understanding of the plant it should be
clear what liquid levels have steady state effect, and determining Ny0 therefore
should not be difficult. Thus, NFs can be found, and we will know the number
of variables which must be determined in order to achieve optimal (steady state)
operation.

3.5 Selection of controlled variables

In section 3.3 we discussed the considerations behind selection of controlled and
manipulated variables in the regulatory control layer. Consisting mainly of mono-
variable control loops, the measured variables and controlled variables are more or

3Detailed modelling may well show that liquid levels are weakly self-regulating, and hence ’stable’ in a
strict system theoretic sense. This self-regulating effect comes from the effect of the liquid level on the
outlet pressure. However, this self-regulating effect is very often to weak for the level to be considered
’stable’ in a more practical sense - the level will vary too widely in response to common disturbances.
The more common exception is when the level is ’controlled’ by overflow over a weir. In such cases the
level is typically strongly self-regulating, but on the other hand there is no way of manipulating the outlet
flowrate anyway.
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less the same in the regulatory control layer. In the higher layers of the control hi-
erarchy the focus shifts towards economically (or otherwise) optimal operation, and
more complex controllers are more often found. This also opens the possiblity that
the controlled variables may differ from the variables that are actually measured.

Having determined the number of steady state degrees of freedom above, we have
established the number of variables that need to be set in order to achieve optimal
operation.

Basic insight into optimization will reveal that the optimal operating point can be
equivalently specified in terms of different sets of variables, as long as the chosen
variables can be set independently and the total number of variables specified equals
the number of available degrees of freedom. This may lead to the belief that it does
not matter what variables we control, provided the correct number of variables are
controlled. This is a serious misunderstanding.

Consider again the control structure hierarchy in section I.4, and the supervisory
control layer receiving its specifications from the layer above. Ideally, achieving
these specifications would be sufficient to achieve optimal operation. There are three
reasons why this ideal situation rarely is achieved:

1. Model errors, or an ill-chosen optimality criterion in the higher layer, may result
in errors in the specifications. Model errors will always be present. Engineering
insight will hopefully guard against erroneous formulation of the optimization
criterion in the higher layer, but inaccuracies such as inaccurate price data may
occur. Models even for fairly simple systems will neglect some physical effects,
and have uncertainties in parameter values.

2. The timescale separation between the layers may mean that the specifications
received from the higher layer are outdated, based on old values of disturbances,
etc.

3. There may be (most likely will be) an implementation error, i.e., the lower
layer does not perfectly achieve the specifications of set by the higher layer.
Even if integral action is used, which in the absence of active constraints should
ensure that the specifications (setpoints) are achieved without steady state error,
measurement bias will cause implementation error.

Each of these three errors will result in optimal operation not being achieved, and
a loss is incurred. It turns out that the size of the loss can be highly dependent on
what variables are used to specify the operating point4.

It is therefore important to specify the desired operating point in terms of vari-
ables such that the loss will be small despite the three sources of error listed above.
This is the main idea behind self-optimizing control, which will be presented next
following the ideas in [Sko00], which addresses points 2 and 3 above. Point 1 is not

4There is no contradiction between this statement and the statement above that the optimal operating
point may be equivalently specified in terms of different sets of variables. The optimal point is identical
for different sets of variables - but the cost of deviating from the optimal point can be strongly dependent
on what variables are used to specify the optimal operating point.
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directly addressed, but uncertainty/variations in the parameters of the plant model
or the optimality criterion may be handled in much the same way as the changes in
disturbances that are covered by the proposed approach.

3.5.1 Problem formulation

It is assumed that

1. Optimal operation can be addressed using a steady state consideration, neglect-
ing plant dynamics. This is reasonable for most continuous processes, but will
not hold for batch processes.

2. The overall objective can be quantified in terms of a scalar objective J0(x, u, d),
equality constraints ge(x, u, d) = 0, and inequality constraints gi0(u, d) ≤ 0.
The objective J0(x, u, d) typically represents production cost or profit. Model
equations lead to equality constraints, whereas the inequality constraints typi-
cally represents product quality and operational constraints.

3. The reference values r for the controlled variables z are kept constant for signif-
icant periods, i.e., between ’re-optimization’ at the higher layer the references r
are independent of the disturbances d.

4. For any disturbance d, there are corresponding optimal values for the states
x = xopt(d), manipulated variables u = uopt(d) and controlled variables z =
zopt(d).

For a given disturbance d = d∗, the task of identifying the optimal operating point
can thus be formulated as

{xopt(d∗), uopt(d∗)} = arg min
x,u

J0(x, u, d∗) (3.4)

ge(x, u, d
∗) = 0

gi0(x, u, d∗) ≤ 0

The model equations (in the equality constraints) may be used to eliminate the
state variables x from the problem formulation. The resulting expressions for the
objective function and inequality constraints may be rather complex, and in imple-
mentation we may choose not to perform this elimination. However, here we will
assume that the state variables x are eliminated from the formulation - mainly for
notational convenience. This gives the following optimization problem formulation,
equivalent to (3.4):

uopt(d
∗) = arg min

u
J(u, d∗) (3.5)

gi(u, d
∗) ≤ 0

where the relationships between J and gi in (3.5) and J0 and gi0 in (3.4) should be
clear from context.
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Ideally, we want always to keep u = uopt(d) whenever d changes. However, we
will not in practice manage to achieve this, and we get the loss

L(u, d) = J(u, d)− J(uopt(d), d) (3.6)

Instead of keeping manipulated variables u constant, we may use the manipulated
variables to counteract changes in a chosen set of controlled variables z. In this case,
the manipulated variables will change when disturbances change. Skogestad [Sko00]
defines self-optimizing control as follows:
Self-optimizing control is when we can achieve an acceptable loss with constant
setpoint values for the controlled variables without the need to reoptimize when dis-
turbances occur.

3.5.2 Selecting controlled variables by direct evaluation of loss

Using direct evaluation of loss, we account rigorously for the nonlinearity in the
problem formulation. The procedure is as follows:

1. List all possible sets of controlled variables. Note that we may choose to hold
manipulated variables constant, and thus the manipulated variables should be
included (in addition to measured variables) among the candidate controlled
variables.

2. For each set of controlled variables in the list, evaluate the loss using (3.6).

3. Select the set of controlled variables that gives the smallest loss.

Step 2 above requires further explanation. We are faced with several design choices
in this step:

Whether to minimize the worst case loss or the expected loss. Minimizing the
worst case loss may be the more ’robust’ choice, but the worst case may seldom
or never occur in practice.

How to select the disturbances that are used in the loss evaluation. If we min-
imize the worst case loss, it is natural to include all extreme combinations of
disturbance values5. Minimizing the average or expected value for the distur-
bance would imply including more of the disturbance combinations that are
more likely to occur.

Often, the loss evaluation is performed by keeping the reference values r con-
stant at the optimal values for the optimal operating point. However, the optimal
references may also be a result of the optimization, i.e., we wish to find the ’ro-
bust references’ that minimize the loss.

5Although, since the optimization problem is nonlinear, we cannot really be sure that the worst case loss
occurs at an extreme combination of disturbance values.
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Regardless of design choices, the direct evaluation of loss is often very demanding
computationally. Certain design choices will further add to the computational load,
in particular the calculation of robust references6. We will therefore in the following
present controlled variable selection based on local analysis. This can be much less
computationally intensive, and will also give insight into the desired characteristics
of the controlled variables.

3.5.3 Controlled variable selection based on local analysis

When using local analysis, we explore how the loss depends on the choice of con-
trolled variables in the vicinity of the nominal operating point. In addition to the
assumptions made above, we further assume

The optimization problem is unconstrained. If a variable is at a constraint at
the optimum, it is natural to use control to keep the variable at the constraint.
The constrained variable is therefore assumed to be ’pre-selected’ among the
controlled variables, and the controlled variable selection problem can be ad-
dressed in the ’reduced space’ with the constrained variable eliminated from
the problem. Note, however, that the manipulated variable used to control the
constrained variable should be included as a potential controlled variable in the
remaining analysis.

The cost function J(u, d) is twice differentiable.

We select as many controlled variables as the available degrees of freedom, and
it is assumed that the selected controlled variables are independent (as seen from
the manipulated variables).

We may then perform a Taylor series expansion of the cost function around the
operating point (u∗, d∗), where u∗ = uopt(d

∗). Thus

J(u, d∗) = J(u∗, d∗) +JTu (u− u∗) +
1

2
(u− u∗)TJuu(u− u∗) + · · ·(3.7)

where

Ju =

(
∂J

∂u

)∣∣∣∣
u∗,d∗

Juu =

(
∂∂J

∂u2

)∣∣∣∣
u∗,d∗

Note that since we are addressing an unconstrained optimization problem, Ju = 0,
and the loss related to non-optimal u therefore depends only on Juu. To relate the
loss due to non-optimal manipulated variables u to the output selection problem, we

6On the other hand, references calculated for the nominal operating point need not allow a feasible solution
for all disturbance values.



118 CONTROL STRUCTURE SELECTION AND PLANTWIDE CONTROL

assume a linear (steady state) model relating disturbances, manipulated variables and
controlled variables:

z = Gu+Gdd (3.8)

The assumption on the number and independence of the selected controlled variables
implies that G is invertible, and for a constant d we thus get

(u− u∗) = G−1(z − z∗) (3.9)

where z∗ = zopt(d
∗). Substituting this equation into to Taylor series expansion for

the cost, we obtain

L = J(u, d∗)− J(u∗, d∗) ≈ 1

2
(z − z∗)TG−TJuuG−1(z − z∗) (3.10)

Clearly, we would like z = z∗, but as explained at the top of section 3.5 this will
not be achieved in practice. Two important sources of error are addressed here

Optimization error r − z∗. We get r 6= z∗ because the disturbance is not per-
fectly known, or because the disturbance has changed since the optimal refer-
ences were calculated by the higher layer.

Implementation error z − r. The controlled variables do not achieve their
reference values. Although integral action removes steady state offset in the
controlled variable, measurement bias will cause a difference between the true
value and the value read by the control system.

These two sources of error are normally independent of each other.
Equation (3.10) provides a criterion for selecting controlled variables. However,

to use this equation we must estimate the expected magnitude of z − z∗. Thus, we
scale G such that the scaled ‖z − z∗‖2 ≤ 1. Halvorsen et al. [HSCV03] argue for
scaling based on the vector 2-norm rather than the vector ∞ norm. This may be
somewhat surprising, since assuming ‖z− z∗‖2 ≤ 1 only allows one vector element
at the time reaching its extreme value. The argument in [HSCV03] is partly based on
mathematical convenience, but it is also supported by the reasonable assertion that
multiple elements of the vector z − z∗ reaching their extreme values simultaneously
is unlikely or rare.

Anyway, to perform the scaling, estimates of both the optimization error and the
implementation error for each control variable must be obtained.

The implementation error estimate should reflect the quality of the measurement
of the given variable (or the expected quality of the estimate of the controlled
variable, should it not be directly measurable). Maintenance quality may also
be a consideration, even high quality sensors can become inaccurate if poorly
maintained and poorly calibrated.

The optimization error can be estimated by re-optimizing the cost function for
a number of different disturbance values. The changes in disturbances used in
this optimization should reflect the expected changes in disturbances between
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each time the higher layer re-optimizes reference values, it should not reflect
the extreme range of disturbances over the lifetime of the plant.

For each element of the controlled variable vector, the sum of these two error
components should be used in the scaling.

This gives the following procedure for selecting controlled variables:

Scale all candidate controlled variables as outlined above.

List all candidate sets of controlled variables. The number of controlled vari-
ables in each set should equal the number of steady state degrees of freedom,
and the individual controlled variables in each set should be independent. Let k
be the index identifying the candidate controlled variable set.

For each candidate controlled variable set, evaluate sk = σ̄
(
G−Tk JuuG

−1
k

)
(or,

equivalently, s̃k = σ̄
(
J

1/2
uu G

−1
k

)
.

Select the controlled variable set k corresponding to the smallest sk.

In practice, one may wish to retain a few candidate sets with small sk for further
investigation using non-linear simulation.

3.5.3.1 The minimum singular value rule With the appropriate scaling of the
manipulated variables (in addition to the scaling of the controlled variables described
above), one may base the controlled variable selection on Gk alone, without involv-
ing Juu.

The ideal manipulated variable scaling in this context is such that Juu = αU ,
where U is a unitary matrix7. This scaling means that the effect of non-optimal
manipulated variables (u 6= u∗) only depends on ‖u − u∗‖2, but is independent of
the direction of u− u∗.

Due to the fact that σ̄(G−1) = 1/σ(G), we get [SP05]

max
‖z−z∗‖2≤1

L =
α

2σ2(G)
(3.11)

Thus, the controlled variable selection can be based on σ(G), which should be large.
Efficient numerical procedures for selecting controlled variables to maximize σ(G)
is investigated in [KS06].

Comment. We also prefer large σ(G) to avoid input saturation in the face of distur-
bances and reference changes. Note, however, that these two reasons for preferring a
large σ2(G) are not related, and that different scaling are used in these two settings.

7Note: i) A unitary matrix has all singular values equal to 1, ii) This manipulated variable scaling differs
from the scaling used elsewhere in this note, iii) Whereas Juu determines the optimal scaling, it is the
effect of the scaling on G that is of interest when using the minimum singular value rule.
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3.5.3.2 Desirable characteristics of the controlled variables At this point we
are able to summarize some desirable characteristics for the controlled variable sets:

1. There should be a large gain from the manipulated to the controlled variables,
it should be easy to control the chosen controlled variables independently. This
will ensure that σ(G) is large.

2. The optimization error r − z∗ should be small. That is, the optimal values of
the controlled variables should depend only weakly on the disturbances d.

3. The implementation error z − r should be small. In addition to the desired
’ease of control’ mentioned in point 1 above, this also implies that it should be
possible to determine the value of the controlled variables with good accuracy,
i.e., measurement error/bias should be small.

3.5.4 An exact local method for controlled variable selection

The minimum singular value rule for controlled variable selection is based on two
critical assumptions:

Scaling of the manipulated variables such that Juu = αU , where U is a unitary
matrix. Finding the appropriate scaling may be hard or even impossible. How-
ever, avoiding this assumption can easily be done by basing the measurement
selection on σ̄

(
J

1/2
uu G

−1
k

)
(which should be small)instead of σ (Gk) (which

should be large).

The assumption that any combination of controlled variable errors such that
‖z − z∗‖2 ≤ 1 may occur in practice.

The second assumption may not hold in practice. In Halvorsen et al. [HSCV03],
an alternative local method is proposed. The method is based on a Taylor series
expansion in terms of both u and d around the nominal operating point (u′, d′),
where u′ = uopt(d

′). Thus, here u′ and d′ are fixed, whereas in (3.7) d∗ could vary
and u∗ changed with changes in d∗.

The Taylor series expansion in terms of both u and d gives

J(u, d) = J(u′, d′) +

[
J ′u

J ′d

]T [
(u− u′)
(d− d′)

]
+

1

2

[
(u− u′)
(d− d′)

]T
H

[
(u− u′)
(d− d′)

]
+O3

(3.12)
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where

J ′u =
∂J

∂u

∣∣∣∣
(u′,d′)

J ′d =
∂J

∂d

∣∣∣∣
(u′,d′)

H =

[
J ′uu J ′ud
J ′du J ′dd

]

J ′uu =
∂2J

∂u2

∣∣∣∣
(u′,d′)

J ′dd =
∂2J

∂d2

∣∣∣∣
(u′,d′)

J ′ud =
∂2J

∂u∂d

∣∣∣∣
(u′,d′)

J ′du =
∂2J

∂d∂u

∣∣∣∣
(u′,d′)

= (J ′ud)
T

In [HSCV03] it is shown that the loss can be written as

L =
1

2
‖z‖22 (3.13)

where
z = (J ′uu)

1/2 [(
(J ′uu)−1J ′ud −G−1Gd

)
(d− d′) +G−1n

]
(3.14)

where n is the implementation error. Introduce the diagonal scaling matrices Wd

and Wn, where Wd represents the expected magnitudes of the disturbances and Wn

represents the expected magnitude of the implementation error, such that

(d− d′) = Wdd̃

n = Wnñ

where d̃ and ñ are scaled to be less than 1 in magnitude. For reasons mentioned
briefly above, and further explained in [HSCV03], it is in the following assumed that∣∣∣∣∣

∣∣∣∣∣
[
d̃

ñ

]∣∣∣∣∣
∣∣∣∣∣
2

≤ 1 (3.15)

This assumption leads to the following expression for the worst case loss:

L =
1

2
σ̄2(M) (3.16)
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where

M =
[
Md Mn

]
Md = (J ′uu)

1/2
[
(J ′uu)

−1
Jud −G−1Gd

]
Wd

Mn = (J ′uu)
1/2

G−1Wn

3.5.5 Measurement combinations as controlled variables

It was concluded above that we would like the optimal value for our controlled vari-
ables to be insensitive to the value of disturbances. Previously, we have (implicitly)
assumed that the controlled variables are selected among available measurements
and manipulated variables8. In general, we may also consider combinations of vari-
ables as controlled variables. The nullspace method of Alstad and Skogestad [AS07]
provides a method for finding controlled variables that are linear combinations of
the candidate variables, such that the optimal values for the controlled variables are
insensitive to changes in disturbances.

3.5.5.1 The nullspace method for selecting controlled variables Neglecting
measurement bias (implementation error) n, we see from (3.14) that the loss resulting
from changes in disturbances will be zero provided (J ′uu)−1Jud − G−1Gd = 0, or,
equivalently, if G(J ′uu)−1Jud − Gd = 0. Let G and Gd be factorized, respectively,
as

G = HGy, Gd = HGyd

where Gy is the steady state transfer function from the manipulated variables to all
candidate controlled variables, and Gyd is the steady state transfer function from the
disturbances to candidate controlled variables. The matrix H is a matrix containing
the linear relationships between the candidate controlled variables and the controlled
variables actually used9. Thus, the optimal values of the controlled variables are
insensitive to changes in disturbances provided

H
(
Gy(J ′uu)−1J ′ud −G

y
d

)
= HF = 0 (3.17)

and we see immediately that the optimal values of the controlled variables are insen-
sitive to changes in disturbances if H lies in the left nullspace of F . That is, the rows
of H can be chosen as any linearly independent combination of the output singular
vectors of F corresponding to singular values equal to zero.

It has been noted before that the number of controlled variables will equal the
number of steady state degrees of freedom, i.e., nc = nu. The dimensions of F will

8It may well turn out that it is optimal to keep a manipulated variable at a constant value - e.g., maximizing
a flowrate - and the manipulated variables themselves should therefore be included among the candidate
controlled variables.
9If individual variables are selected as controlled variables, the matrix H would be a selection matrix
consisting mostly of zeros, but with exactly one 1 in each row and at most one 1 in any column.
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be ny × nd, where ny is the number of candidate controlled variables and nd is the
number of disturbances. A sufficient condition for the existence of nu controlled
variables to exist, whose optimal values are independent of changes in disturbances,
is therefore that ny ≥ nu + nd. If F has full column rank (which is normally the
case), this sufficient condition is also necessary.

3.5.5.2 Extending the nullspace method to account for implementation error
A shortcoming of the nullspace method is that it ignores implementation error. Kari-
wala and coworkers [KCJ08] extends the method to account for implementation er-
ror, and also addresses the problem of minimizing the average loss, not only the
worst-case loss. Interestingly, they find that when combinations of measurements are
selected to minimize the average loss, the worst-case loss is also minimized (whereas
minimizing the worst-case loss does not necessarily minimize the average loss).

The solution in [KCJ08] is reformulated by Alstad et al. in [ASH09], and it is
shown that an optimal H that minimizes (both average and worst-case) loss in the
face of both implementation error and changes in disturbances is given by

HT = (F̃ F̃T )−1Gy(GyT (F̃ F̃T )−1Gy)−1(J ′uu)1/2 (3.18)

Here F̃ = [FWd Wn], and is assumed to be of full rank. However, since H defines
measurement combinations c = Hy, which are later to be controlled to zero, we
may equivalently control c̃ = H̃y = DHy to zero, where D is any invertible (full
rank) matrix. We may use this to simplify the expression for H in (3.18). From the
relationship (BA)T = ATBT , we see that a valid choice of D allows us to choose

H̃T = (F̃ F̃T )−1Gy. (3.19)

3.5.6 The validity of the local analysis for controlled variable selection

The exact local method presented above, including the use of measurement com-
binations as controlled variables, is based on a Taylor series expansion around the
nominal operating point. A relevant question is then whether the conclusions will
hold also for non-optimal operating points, i.e., will changes in the disturbances in-
validate the choice of controlled variables?

This issue is studied by Alstad [Als05], who found that the effect of a non-optimal
operating point on the average cost is independent of the choice of controlled vari-
ables. That is, a non-optimal operating point will increase the average cost, but this
increase is the same independent of what controlled variables are chosen. Thus, the
ranking of sets of controlled variables based on average cost does not require the
operating point to be optimal.

The conclusion in [Als05] is found to hold provided as long as (3.12) is a good
approximation of the operating cost, and the linear plant and disturbance models are
valid.

In this context we should bear in mind that although the second-order Taylor
series expansion in (3.12) may be a good approximation to the cost function in ’the
reduced space’ over a significant operating region, this is not necessarily the same as
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it being a good approximation of the actual cost function in the same region. That is,
we have assumed that any constraints that are active at the optimum are eliminated
from the problem formulation, and the cost function is expressed in the ’reduced
space’ remaining after this elimination. When the operating point changes, the set
of active constraints may change (active constraints may become inactive, or new
constraints may become active). This will in general result in a ’break’ in the cost
function (in the ’full space’). Thus, at points where the set of active constraints
changes, the cost function will be non-differentiable, and we must expect the Taylor
series approximation to be significantly less accurate when moving beyond the region
where the set of active constraints remains unchanged.

When the set of active constraints at optimum changes within the range of distur-
bances expected in operation, self-optimizing control has little to offer beyond the
rather laborious exact evaluation of cost.

Another issue is what controller or controllers is used to implement the control
of the selected controlled variables. Model Predictive Control (MPC) has a partic-
ular strength compared to most other controller types when it comes to managing
constraints, in particular in accommodating changes in the set of active constraints.

3.6 Selection of manipulated variables

We revert here to the topic of manipulated variable (input) selection, and to measure-
ment (output) selection in the next section. While these topics wew also addressed in
SectionIOselection, the focus here is more qualitative compared to the more mathe-
matical approach taken previously.

The manipulated variables are the variables that are manipulated directly by the
control system. Sometimes these are referred to as ’physical’ degrees of freedom,
and typically include valve positions, electrical power inputs, etc.

With reference to the hierarchical control system structure in section I.4, however,
a somewhat more general interpretation of the term manipulated variable is often
used: For any control layer, the manipulated variables are the variables that layer
manipulates in the layer below. In this context, a setpoint to a loop in the layer below
may well be regarded as a ’manipulated variable’. In this setting, the manipulated
variables for one layer are thus not fully defined until the lower layers of the control
system have been defined.

In this section we will briefly discuss the ’fundamental’ manipulated variables
/ ’physical’ degrees of freedom. It is noted in [LS00] that the selection of these
typically is not much of an issue, as they follow as a direct consequence of the design
process itself. This is to a large extent true, as the control engineering discipline
usually gets involved after the basic process design has been determined. It has
frequently been stated that this state of affairs is unfortunate, and that control should
be considered at every stage in the design process. Nevertheless, efforts to integrate
control more tightly in the design process seems to have found very limited industrial
application.
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Although design limits the ability to choose manipulated variables for control, the
process control engineer should attempt to

verify as far as possible that the proposed manipulated variables make accept-
able control possible, and

review that the characteristics of the manipulated variables are appropriate.

In some cases, it may also be possible to provide additional manipulated variables
(not available in the original plant design) at acceptable cost. This could involve,
e.g., installing by-pass lines (with control valves) on heat exchangers.

Verifying that the proposed manipulated variables make acceptable control pos-
sible. Many plants are designed based on steady-state models only. In such cir-
cumstances, only steady state aspects of control are readily assessed. The ability to
achieve a consistent inventory control system can often be assessed using only the
Piping and Instrumentation Diagram (P&ID). Consistency of inventory control will
be addressed more thoroughly in section 3.8, here we will only illustrate using a
simple example (from an actual plant design) of how the P&ID can be used to assess
whether consistent inventory control is possible.

Example. The wellstream in petroleum production typically consists of a mixture
of gas, oil and water. These three phases have to be separated, before the oil and gas
are transported to market, and the water (usually) discharged. There are ’purity’
requirements for all these three phases. The main separation takes place in a series
of three-phase separators. To further reduce the water content in the oil, the oil from
the last separator is passed to a coalescer, where high voltage is used to force the
remaining fine water droplets in the oil to coalesce. The coalesced, hence larger,
water droplets separate easily from the oil. The final separator and coalescer, with
proposed control system, are shown in Fig. 3.3. The oil level in the separator is
controlled using a control valve in the oil export pipeline. This is OK, since the
coalescer is filled with liquid, and no control of oil level in the coalescer is necessary.
The water from the separator and coalescer are routed together to a produced water
pump, which transports the water to treatment. The water levels in both the separator
and the coalescer are measured, and the highest level signal is used for level control,
manipulating the speed of the produced water pump. A manual value on the water
pipeline from the separator is intended to adjust for different rates of water separation
in the separator and coalescer.

The water levels in both the separator and coalescer are essentially integrating,
and need to be stabilized by feedback. These integrators are in parallel, and we will
therefore need two independent feedback paths to stabilize them. Here we have only
one manipulated variable available to the control system for this stabilization task,
and no controller can achieve the stabilization. The proposed control will avoid high
water levels. However, for the vessel with the lower water level, the control provides
no protection against emptying the vessel of water - consequently sending significant
quantities of oil to the produced water treatment.

The manual valve will need to be replaced by an automatic valve to enable stabi-
lization of both water levels - or one must expect the need for continuous monitoring



126 CONTROL STRUCTURE SELECTION AND PLANTWIDE CONTROL

From upstream separator
Gas to 

compression

Oil for 

export

LT LC

Water to

water treatment

LT

LTHS

LC
Produced water

pump

Pump speed

Manual

valve

High

select

Gas

Oil

Water

Oil

Water

Three-phase separator

Coalescer

Figure 3.3: Final stage separator and coalescer with proposed (inconsistent) level
control.

and manual changes in the valve position by the operators.

Even when the need for additional manipulated variables is as blatantly obvious as
in the above example, it may be a challenge to convince that additional manipulated
variables need to be installed - in particular if the need for additional manipulated
variables is discovered during the very hectic construction phase. Typically, when
the need for additional or improved manipulated variables arise from dynamic rather
than steady-state considerations, these are much harder both to identify and to argue
convincingly for at the plant design stage - simply because a dynamic model often is
not available.

To the extent that the available model allows, the limitations on achievable per-
formance in section 4 should be assessed. This can provide clues also on how to
improve the manipulated variables.

Reviewing the characteristics of the proposed manipulated variables. Three im-
portant aspects of a manipulated variable are:

1. Size or capacity. The manipulated variable should have the capacity to con-
trol throughout the expected range of operation. This implies that some range
of manipulation should be available beyond the range of variation expected in
steady state operation. Although this is an issue that may require some attention,
typical steady-state plant designs will often fulfill this requirement. Typical ma-
nipulated variables (e.g., valves) are relatively inexpensive compared to the cost
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of major plant equipment, and therefore it is rarely economically optimal even
from steady state considerations to let a manipulated variable limit throughput.

2. Linearity of response. Ideally, the response to a manipulated variable should
be linear throughout its operating range, as this will minimize the need for
changing controller parameters (retuning the controller) depending on operat-
ing conditions. This particularly relevant for that most common of manipulated
variables, the control valve, which come in many different designs. A complete
specification of control valves is (far) beyond the scope of this note. Neverthe-
less, we mention briefly that:

A linear valve characteristic is typically appropriate when the valve pro-
vides the main resistance to flow in the pipeline in which it is installed.

When there is other equipment providing significant resistance to flow, an
equal percentage valve characteristic may be more appropriate, and may
give an overall response (from valve position to flowrate) that is more linear
than what would be achieved by a linear valve characteristic.

3. Speed of response. The control engineer should try to establish the required con-
trol bandwidth, and ensure that the manipulated variables are sufficiently fast to
allow the required bandwidth. The speed of response of major disturbances, or
the presence of unstable modes may give a clue to the required bandwidth.

Unfortunately, points 1 and 2 above may be in conflict. If there are other equipment
providing significant resistance to flow, it will be considered unfortunate if the valve
size limits maximum throughput. As a consequence , near the fully open position of
the valve there will be very little gain from valve position to flowrate.

3.7 Selection of measurements

When selecting measurements for control, one is often less restricted by the original
design than what is the case for the selection of manipulated variables. Often, more
measurements are available to choose from, and additional measurements may be
installed at acceptable cost.

The understanding of the objectives of the different layers is important when se-
lecting measurements. For example, the objectives of the regulatory control layer
are, as described in section 3.3:

Stabilization. Hence, it is important to select measurements that make the un-
stable mode(s) observable.

Linearization and removal of uncertainty by feedback. For example, uncertainty
or nonlinearity in a valve characteristic may be counteracted by flowrate control
- which clearly implies that the flowrate needs to be measured.

Local rejection of disturbances is much easier if the disturbances can be mea-
sured.
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For the supervisory control layer, the selection of measurements will be influenced
by

the ability to measure or estimate the controlled variables of that layer (which
preferably have been selected by considering plant economics, as described in
preceding sections), and

the ability to monitor important operational constraints (e.g., for constrained
control using MPC).

Input-output controllability considerations are often useful when selecting measure-
ments (at any layer).

The selection of measured variables may affect the presence and location of
(monovariable and multivariable) RHP zeros. For example, in [HS93b] it is
shown that the presence and location of multivariable RHP zeros in the FCC
process10 depend strongly on the choice of measured variables.

The RGA may be used to avoid selecting measurement giving a very interactive
system.

Strong and direct responses from the manipulated to the measured variables are
usually preferred. This typically implies having the measurements close to the
manipulated variables. For example, if temperature control is used to control
the mixing of a hot and a cold stream, positioning the measurement close to the
mixing point will minimize time delay. However, positioning the measurement
too close to the mixing point may make the measurement unreliable due to
imperfect mixing.

3.8 Mass balance control and throughput manipulation

In most process plants there are a number of inventories (in particular liquid inven-
tories, i.e., levels) that have to be stabilized by feedback. This is a major part of
the ’stabilization objective’ of the regulatory control layer. Stabilization of (liquid)
inventories is often called ’mass balance control’11.

Where the production rate or ’throughput’ is set will greatly affect the structure
of the inventory control system. There are generally three different cases:

The production rate is set at the plant inlet. This is the case when the production
is limited by raw material availability, or the plant receives its feedstock from
an upstream plant with lower capacity. Sewage / waste water treatment plants
also fall into this category.

10Fluid Catalytic Cracking (FCC) is an important process in refineries.
11A term this author actually finds somewhat inappropriate, since the dynamic mass balance necessarily
will be fulfilled at all times. The conservation of mass is a basic principle on which we base all our models
(except for nuclear reactions and speeds approaching the speed of light)
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The production rate is set at the plant outlet. This is the ’produce-to-order’
scenario, and is often the situation when product demand is weak.

The throughput is set internally in the plant.

Selection of the throughput manipulator has very direct consequences for inventory
control (also called mass balance control - typically level and pressure control loops).
The throughput manipulator becomes unavailable for inventory control, and thus the
inventory control loops have to ’radiate outwards’ from the throughput manipulator.
This is illustrated in Fig. 3.4 for a case where the throughput manipulator is located
internally in the plant.

ICIC IC IC

Throughput 

manipulator

Figure 3.4: Throughput manipulator located internally in the plant - and the inventory
control configuration ’radiating outwards’ from the throughput manipulator.

According to Skogestad [Sko04], the throughput has traditionally been set at the
plant inlet. Price at al. [PLG94] recommend using an internal stream for throughput
manipulation instead. This is further specified in [Sko04], where it is proposed to set
the throughput at the bottleneck unit (i.e., at the inlet to the unit which limits plant
capacity).

With hindsight, setting the throughput at the plant bottleneck seems the obvious
choice when the plant is operating at maximum capacity, as should imply the ability
to operate close to the capacity constraint. Setting the throughput several units away
from the capacity constraint normally implies a ’long and slow loop’ controlling the
plant to its maximum capacity - which would imply a larger safety margin (or ’back
off’) to avoid violating operational constraints.

Aske [Ask09] relates the rule of setting the throughput at the plant bottleneck
to established results in network theory, discusses how to obtain estimates of the
required back off, and how back off can be reduced.

When setting the throughput at the bottleneck unit in order to maximize produc-
tion, the throughput is typically not set directly. Instead, the throughput manipulator
is used to control some variable in the bottleneck unit to its constraint. For example,
consider a process train where the capacity is limited by the available cooling ca-
pacity in a reactor, and cooling is required to stabilize the reactor. This is illustrated
in Fig. 3.5. The stabilization is achieved by controlling reactor temperature using
the opening of the cooling medium valve. The throughput may then be set by the
feed to the reactor, but this is used to control the cooling medium valve opening to
a setpoint. This setpoint should leave some range of operation for the temperature
control, i.e., the setpoint for the cooling medium valve opening should be less than
100%, since some back off is required to avoid saturation of the temperature control
loop.
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Figure 3.5: Throughput manipulator used to control cooling capacity to a safe dis-
tance from its constraint.

Changing operating conditions may cause the bottleneck unit to move, i.e., the
constraint limiting production may change and move to another unit. With the rule
of setting the throughput at the bottleneck unit, this would imply the need for re-
configuring the inventory control, which would be very impractical. An alternative
may be to use MPC as a (multivariable) supervisory controller to handle the move-
ment of the bottleneck.

3.8.1 Consistency of inventory control

Price and Georgakis [PG93] introduce the concept of consistency of inventory con-
trol, and state that ”when an inventory control system is inconsistent, it cannot op-
erate effectively by itself without additional control loops to supplement its action”.
This interpretation is modified by Aske [Ask09]: ”An inventory control system is
consistent if the steady-state mass balances (total, components and phases) are satis-
fied for any part of the process, including the individual units and the overall plant”.

Aske [Ask09] similarly define the concept of self-consistency of inventory con-
trol: A consistent inventory control system is said to be self-consistent ... if for each
unit the local inventory control loops by themselves are sufficient to achieve steady-
state mass balance consistency for that unit. Clearly, consistency is required of any
control system, while self-consistency is desired.

Further developing the ideas on consistency and self-consistency, Aske proposes
the following self-consistency rule:

Self-consistency requires that:

1. The total inventory of any part of the process must be ”self-regulated” by its
inflows or outflows, which implies that at least one flow in or one flow out of
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that part of the process must depend on the inventory inside that part of the
process.

2. For systems with several components, the inventory of each component for any
part of the process must be ”self-regulated” by its in- or outflows or by chemical
reaction.

3. For systems with several phases, the inventory of each phase for any part of the
process must be ”self-regulated” by its in- or outflows, or by phase transition.

In this context, ”self-regulation” means that the inventory is stabilized either by
inherent feedback mechanisms in the process (the usual concept of self-regulation),
or by local control loops.

Aske further develops the idea of self-regulation for some special cases:

For units in series self-consistency implies that the inventory control must ’ra-
diate outwards’ from the throughput manipulator, as mentioned earlier.

For recycle loops, the inventory within the loop must be ”self-regulated” by the
in- or outflows to the recycle loop.

For closed systems (with no mass entering or leaving the system) one of the
inventories must be left uncontrolled.

Illustrations of consistent and inconsistent inventory control structures for recycle
loops are shoen in Fig. 3.6. For closed systems, the rule follows from noting that the
outflow of one unit must be routed to other units, and that the total inventory is fixed.

Note: Aske’s formulation of the self-consistency rule requires that at least one of
the in- or outflows must depend on the inventory in the system. While this is correct,
this still leaves room for conflicts between controllers when more than one in-or
outflow is used to control the inventory. This is illustrated in Fig. 3.7. If both LC1
and LC2 are integrating, there is a possibility for conflict between the two controllers,
leading one to increase output and the other to decrease output until a constraint is
reached (open or closed valves). The conflict between the controllers can be caused
by:

Different level setpoints in the two loops.

Different measurement noise in the two level measurements.

Even if the two controllers were to use the same level sensor, there is a potential
for differences in measurement noise if the sensor updates the measurement
between the times when the two controllers are executed.

If either LC1 or LC2 is a P or PD controller (without integral action), the inventory
control in Fig. 3.7 will be consistent.
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Figure 3.6: Illustrations of inventory control systems for recycle loops. Top: incon-
sistent inventory control, bottom: consistent inventory control.
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Figure 3.7: Inventory control which adheres to Aske’s self-consistency rule, but
where the consistency of the inventory control depends on the controllers used.





CHAPTER 4

LIMITATIONS ON ACHIEVABLE
PERFORMANCE

4.1 Performance measures

Before discussing limitations in achievable control performance, it is necessary to
define one or more relevant measures of control performance. There is a wide variety
of performance measures, both for the time and frequency domain. Here we will
discuss only a selection of these.

4.1.1 Time domain performance measures

Many time domain performance measures can be defined based on the closed loop
response to a unit step in the reference signal, assuming the system is at rest before
applying the change in the reference. A few of these are illustrated in Fig. 4.1.

Commonly used performance measures include:
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Figure 4.1: Illustration of the closed loop response to a unit step in the reference.

Overshoot. The percentage by which the response exceeds the change in the
reference, denoted δo in Fig. 4.1. This should preferably be small, overshoots
above 20%− 30% are often considered unacceptable.1

Undershoot. The percentage by which the response goes ‘in the wrong di-
rection’, denoted δu in Fig. 4.1. This should preferably be small, less than
5%− 10%.

Decay ratio. The ratio of the two first peaks in the response, δb/δo in Fig. 4.1. A
small value is desired, the maximum acceptable is often in the range 0.3− 0.5.

Rise time. The time taken before the response first reaches within some fraction
(typically 10%) of the desired final value.

Settling time. The time taken before the response stays permanently within
some small fraction (typically 5%) of the desired final value.

Steady state error. This should be as small as possible. Integral action (e.g.,
from a PI controller) will remove steady state error completely for a step in
the reference2. However, there may be applications where integral action is not
used, and a steady state error of a few percent is acceptable.

1An alternative definition, sometimes used, is the maximum value of the response divided by the reference
change. An overshoot of 20% in the first definition corresponds to an overshooot of 1.2 in the alternative
definition.
2Ramp references, requiring double integration for offset-free control, are uncommon in process control.
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Integral absolute error. The IAE is defined as

IAE =

∫ ∞
0

|y(t)− r(t)|dt

A small value is preferred.

Integral squared error. The ISE is defined as

ISE =

∫ ∞
0

(y(t)− r(t))2dt

A small value is preferred.

LQ performance measure. This is the performance measure adopted in linear
quadratic optimal control. It can be seen as a generalization of the ISE, ac-
counting also for input usage. Let u∞ denote the steady state input required
to get the output to have zero steady state error. The LQ performance measure
may then be defined as∫ ∞

0

(
(y(t)− r(t))2 + (u(t)− u∞)2

)
dt

A small value is preferred.

While small values are preferred, acceptable values of IAE, ISE and the LQ perfor-
mance measure are entirely application specific. For a step change in the reference,
these three performance measures are only defined (i.e., are finite) if there is zero
steady state error. However, these measures may also be defined for other refer-
ence signals/disturbances/initial conditions. For the LQ performance measure, it is
common to assume a zero reference/disturbance (and therefore also u∞ = 0), but a
non-zero initial condition3.

4.1.2 Frequency domain performance measures

Similarly to the situation for time domain performance measures, there are a number
of frequency domain performance measures, and we will only discuss a selection of
them here.

4.1.2.1 Bandwidth frequency The concept of system bandwidth describes the
frequency range over which the control is effective. In process control, there is com-
monly good control at low frequencies, and the frequency range of effective control

3The particular value of the initial condition is of no significance, as any non-zero x(0) will give the same
linear state feedback controller for a linear system, and the LQ performance measure will take the value
x(0)TXx(0), where X is the solution to the algebraic Riccati equation. LQ optimal control will not be
considered in any detail in this book, but any control engineer should have some familiarity with it.
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can therefore be described by the upper limit to the frequency range of effective con-
trol. Reference tracking and disturbance attenuation is good4 at frequencies where
the sensitivity function S(jω) = 1/(1 + g(jω)k(jω) is small. We follow [SP05],
and define the bandwidth frequency ωB as follows:

Definition 4.1 The bandwidth frequency of a SISO system ωB is the frequency ω at
which |S(jω)| = 1√

2
. If |S(jω) = 1√

2
at more than one frequency ω, the bandwidth

frequency ωB is the lowest such frequency.

For multivariable systems, the definition is modified as follows

Definition 4.2 The bandwidth frequency of a MIMO system ωB is the frequency ω
at which σ̄(S(jω)) = 1√

2
, where σ̄(S(jω)) denotes the largest singular value. If

σ̄(S(jω)) = 1√
2

at more than one frequency ω, the bandwidth frequency ωB is the
lowest such frequency.

Definition 4.2 reflects the fact that multivariable systems can (often will) have dif-
ferent performance in different directions. The bandwidth frequency ωB as defined
in definition 4.2 represents the frequency range up to which there is good control in
all direction. The control can be good in some directions for frequencies higher than
ωB , up to the frequency at which σ(S(jω)) = 1√

2
.

For monovariable systems, we might also consider the gain crossover frequency
ωc, i.e., the lowest frequency at which |L(jω)| = |g(jω)k(jω)| = 1. While one
generally would prefer ωc to be large, if the phase margin is poor the control will
actually not be very good at ωc.

4.1.2.2 Peaks of closed loop transfer functions If the sensitivity function S or
complementary sensitivity function T has large values a some frequency, this is a
sign if poor control at that frequency. Thus, we are interested in the performance
measures MS and MT , which are defined as

MS = maxω |S(jω)|, MT = maxω |S(jω)| for monovariable systems (4.1)
MS = maxω σ̄(S(jω)), MT = maxω σ̄(S(jω)) for multivariable systems(4.2)

Large values of Ms and MT not only indicate poor control performance5, it also
indicates robustness problems (sensitivity to model uncertainty). For strictly proper
systems we always have that MS ≥ 1, while MS ≤ 2 may be acceptable. For
systems with good control performance in some frequency range (e.g., zero steady
state offset due to integral action), we have that MT ≥ 1, while MT ≤ 1.3 may be
acceptable.

4.1.2.3 Bounds on weighted system norms There is a large body of literature
on controller synthesis minimizing some weighted system norm, see, e.g., [ZDG96]

4See also Section 2.5.2 on Loop shaping basics.
5See Section 2.5.2 for further justification
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for both the formal definition of a system norm and associated controller synthesis
methods. The synthesis formulation uses frequency-dependent weights to specify
different control requirements in different frequency ranges - and for multivariable
systems the weights may also allow for different performance requirements in differ-
ent directions. We will be concerned with the so-called infinity norm of some matrix

K(s) G(s)

Wp(s)

ep(s)

e(s)

r(s)

d(s)

y(s)

-

+

Figure 4.2: Block diagram corresponding to minimization of weighted sensitivity
norm ‖WpS‖∞.

M(s). The infinity norm measures the maximum amplification of a time-domain
signal from the input to the output, which for linear systems is also the maximum
amplification of a sinusoidal signal at the input to the resulting sinusoidal signal at
the output. Thus, MS and MT above are special cases of weighted signal norms,
with weights of 1 (or I in the multivariable case).

Figure 4.2 shows a block diagram consistent with the minimization of ‖WpS‖∞,
with is the transfer function from r(s) to ep(s), or alternatively from−d(s) to ep(s)6.
It is left as an exercise for the reader (for now) to find a block diagram consistent with
the minimization of ‖WTT‖∞.

Whatever weighted closed loop transfer function is minimized, the weights we
normally chosen such that ‖M(s)‖∞ ≤ 1 denotes an acceptable controller design.
For a monovariable systems, clearly

‖Wp(s)S(s)‖∞ ≤ 1⇔ |S(s)| ≤ 1

|Wp(s)|
∀s = jω (4.3)

The performance weight Wp(s) should therefore be large at low frequencies where
we require |S| to be small, while it should be smaller than 1 at higher frequencies (at
least in some frequency range) to allow for an unavoidable peak in |S|. Skogestad
and Postlethwaite [SP96] propose the weight

Wp(s) =
s/H + w∗B
s+ εω∗B

(4.4)

6Note that a norm only measures amplification, we may therefor multiply with −1 without changing the
system norm.
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which corresponds to a bandwidth frequency ωB ≥ ω∗B , a maximum peak in |S| ≤
H , and a steady state offset less than ε. Typical values may be H = 2, and ε = 1e−
57 While this manuscript is not concerned with controller synthesis for minimizing
weighted system norms (see instead [ZDG96] or [SP05]), we will in this chapter
be interested in what bounds can be derived for achievable performance. While the
derived bounds to some extent will be dependent on the weights used and the chosen
parametrization thereof, valuable insight can nevertheless be obtained if a sensible
weight is used.

4.1.2.4 Gain and phase margin While gain and phase margins are not really
measures of performance, undesirable values will nevertheless be reliable indicators
of poor performance. That is, it can often be possible to obtain good gain and phase
margins using very slow control, but poor gain and phase margins are clear indicators
of poor control.

Gain and phase margins are defined for monovariable systems only. Consider the
open loop transfer function l(s) = g(s)k(s) and let ωc denote the gain crossover
frequency where |l(jωc)| = 1. Assume that |l(jω)| monotonously decreases with
frequency for ω > ωc

8. Denote by ω180 the frequency at which l(jω) has a phase of
−180◦. We then have

Phase margin. The phase margin is defined as the additional negative phase that
must be added for the (monovariable) Nyquist plot of l(s) to pass through the
critical point of −1 at ω = ωc.

PM = 180◦ + ∠(l(jωc)) (4.5)

Gain margin. The gain margin is defined as the factor by which the gain must
be increased for the (monovariable) Nyquist plot of l(s) to pass through the
critical point of −1 at ω = ω180. That is,

GM =
1

|l(jω180)|
(4.6)

The definition of the phase margin takes into account that ∠(l(jωc)) < 0.
Ideally, we would like PM > 60◦ and GM > 2, but for difficult comtrol prob-

lems these specifications may be hard or impossible to achieve. Note that

The GM and PM measures how close two points on the Nyquist curve are to the
critical point. However, even when there are adequate gain and phase margins,
there may be other points on the Nyquist curve that are close to the critical
point.

The GM and PM are relevant (as defined here) only for open loop stable sys-
tems, for which encirclements of the critical point by the Nyquist curve should

7The precise value of ε is not very important as long as ε << 1.
8This assumption makes the phase and gain margins well defined.
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be avoided. For open loop unstable systems, encirclements of the critical point
will be required for closed loop stability.

A little thought should make it clear that the MS and MT will be large whenever
GM and PM are inadequate.

4.2 Algebraic limitations

4.2.1 S + T = I

It follows directly from their definition that S + T = I . This means that S and T
cannot both be small at the same value of the Laplace variable s9.

In section 2.5.2 it was discussed how some considerations leads to preferring
S to be small, while other considerations leads to a preference for t to be small.
The interpretations of these results for multivariable systems is briefly addressed in
Section 2.5.6. From S + T = I it is immediately clear that we ‘cannot have the
cake and eat it too’, but are forced to perform some trade-off between the different
considerations.

4.2.2 Interpolation constraints

4.2.2.1 Monovariable systems For a system G(s) with an RHP pole at p, we
have

T (p) = 1, S(p) = 0 (4.7)

This follows directly from the infinite gain of G(p), the definitions of T and S, and
the fact that for internal stability the RHP pole in G(s) cannot be cancelled by an
RHP zero in the controller K(s).

If G(s) has an RHP zero at z,

T (z) = 0, S(z) = 1 (4.8)

This forllows from G(z) = 0 and the fact that internal stability prohibits cancelling
the RHP zero in G(s) with an RHP pole in K(s).

4.2.2.2 Multivariable systems For multivariable systems, we have similar inter-
polation constraints as for the monovariable case, but now these depend on the pole
and zero directions. For a system G(s) with an RHP pole at p, with corresponding
output pole direction yp [Che95]:

T (p)yp = yp, S(p)yp = 0 (4.9)

9For multivariable systems, they cannot both be small in the same direction at the same time, as for any
vector v and any s we have (S + T )v = v. S and T may be small in different directions for the same
value of s
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For a system G(s) with an RHP zero at z, with corresponding output pole direction
yz

yHz T (z) = 0, yHz S(z) = yHz (4.10)

While the interpolation constraints themselves may appear not to have immediate
consequences for achievable performance, their implicatons will be made clear in
subsequent sections.

4.3 Control performance in different frequency ranges

Bode [Bod45] showed for open loop stable, monovariable systems that improved
control at some frequencies will necessarily imply poorer control at other frequencies
(under mild conditions on the plant transfer function), which can be expressed by the
following integral: ∫ ∞

0

log |S(jω)| dω = 0 (4.11)

Freudenberg and Looze extend the result in Eq. (4.11) can be to multivariable
systems: ∫ ∞

0

log |det(S(jω))| dω = 0 (4.12)

4.3.1 Sensitivity integrals and right half plane zeros

Freudenberg and Looze [FL88] have also extended Bode’s sensitivity integral to ac-
count for RHP zeros, and obtain for an open loop stable plant with a RHP zero at z
that: ∫ ∞

0

log |S(jω)|W (z, ω)dω = 0 (4.13)

where the weighting function W (z, ω) for a real RHP zero z is given by

W (z, ω) =
2z

z2 + ω2
(4.14)

For a complex RHP zero at z = x+ jy, the weight W (z, ω) becomes

W (z, ω) =
x

x2 + (y − ω)2
+

x

x2 + (y + ω)2
(4.15)

For either weight, this means that most of the sensitivity increase that is needed to
fulfill Eq. (4.13) must come at frequencies below the frequency corresponding to the
right half plane zero, and that the bandwidth of the closed loop system is effectively
constrained to be somewhat below the frequency of the RHP zero. As the bandwidth
approaches the frequency of the RHP zero, the peak value of the magnitude of the
sensitivity function will increase.
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Multivariable systems. Multivariable RHPT zeros affect the sensitivity function in

a way similar to the effect of RHP zeros of monovariable systems. However, the
available mathematical results are not as tight. Freudenberg and Looze [FL88] state
the following result: ∫ ∞

0

log σ(S(jω))W (z, ω)dω ≥ 0 (4.16)

where W (z, ω) is the same as in equations (4.14) or (4.15), as appropriate. The
implications of multivariable RHP zeros are discussed further in [SP96].

4.3.2 Sensitivity integrals and right half plane poles

Let a plant G have np poles in the open right half plane (including multiplicities),
at locations {pi; i = 1, · · · , np}. Then, if the closed loop system is stable, it must
satisfy [FL88]

∫ ∞
0

log |S(jω)| dω = π

np∑
i=1

Re(pi) (4.17)

For multivariable systems, Eq. (4.17) applies to |det(S(jω))| instead of |S(jω)|.

4.3.3 Combined effects of RHP poles and zeros

For monovariable systems with a RHP zero at z and RHP poles at {pi; i = 1, · · · , np}
(including multiplicities), we have [FL88]

∫ ∞
0

log |S(jω)| dω = π

np∏
i=1

∣∣∣∣pi + z

pi − z

∣∣∣∣ (4.18)

This tells us that if any of the RHP poles is close to the RHP zero, the integral of
the sensitivity function will be large, implying poor control performance in at least
some frequency range.

4.3.4 Implications of the sensitivity integral results

For monovariable systems, the sensitivity integrals, in their various forms, imply that
sensitivity reduction in one frequency range (giving good disturbance rejection and
reference following) must be balanced by a sensitivity increase at other frequency
ranges. Typically, the sensitivity function is small at low frequencies and |S| ≈ 1
(i.e., log |S| = 0) at high frequencies. Therefore, we must have |S| > 1 in the band-
width region, and thus get increased sensitivity to disturbances in that region. It may
appear from Eq. (4.11) that one can stretch out the area with increased sensitivity ad
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infinitum, and therefore only get an infinitesimal peak in the sensitivity function10.
However, this will only be true to some extent if a low control bandwidth is used. In
most practical cases, the loop gain will have to be reduced with increasing frequency
also at frequencies immediately above the loop bandwidth (i.e., the loop gain has
to ”roll off”). This implies that there will be a definite peak in the magnitude of
the sensitivity function, and that also the peak value has to increase if the sensitivity
function is reduced in another frequency range.

The situation becomes worse for systems with RHP poles, for which the sensi-
tivity integral has a positive value. With RHP zeros, the sensitivity increase has to
occur mainly at frequencies lower than the RHP zero (due to the weights involved),
which makes it even more clear that a peak in the sensitivity function will appear.

Assume that α describes the required sensitivity reduction in some frequency
range ω ∈ [0, ω0), i.e.,

|S(jω)| < α < 1, ∀ω ∈ [0, ω0).

Assume that the (open loop) system has a single real RHP zero at z = x, and Np
RHP poles at pi. Define

Θ = −∠
(
z − jω0

z + jω0

)
, Bp(s) =

Np∏
i=1

pi − s
p̄i + s

where p̄i denotes the complex conjugate of pi. We then have [FMS00]

max
ω>ω0

|S(jω)| >
(

1

α

) Θ
π−Θ

|B−1
p (z)|

π
π−Θ (4.19)

It is clear that the sensitivity peak

Increases with increased low frequency sensitivity reduction, i.e., asα decreases.

Increases with increased frequency range with sensitivity reduction, i.e., as ω0

increases.

Is particularly severe if the RHP zero is close to one or more RHP poles.

For multivariable systems, similar effects must be expected, although the effects
of directions in multivariable systems complicate the picture. Therefore the available
results are less clear. We will, however, return to this issue in the next subsection.

4.4 Bounds on closed loop transfer functons

In the following, we will provide several bounds on the peaks (along the frequency
axis) of closed loop transfer functions. We already know that for good control at

10Note that a linear frequency scale is used in the sensitivity integrals, different from the logarithmic
frequency scale commonly used in Bode plots.
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low frequencies T (0) ≈ I and for strictly proper systems S(j∞) = I , so both
‖T (jω)‖∞ and ‖S(jω)‖∞ are larger than or equal to 1. However, large peak values
both indicate poor control and robustness issues (sensitivity to model inaccuracies).
In addition to S and T , we will also be interested in the closed loop transfer functions
from r to u and from d to u, as these indicate whether the references or disturbance
can drive the input into saturation, with loss of feedback as a result.

4.4.1 The maximum modulus principle

Many of the results on the peaks of closed loop transfer functions can be derived
from the interpolation constraints and the maximum modulus principle, which is a
result from complex analysis in mathematics and will be stated here without proof.

The maximum modulus principle: If a transfer function f(s) is analytic inside
some domain C, then its maximum value over C will occur at the boundary of C.

We are considering rational transfer functions, possibly with the addition of a time
delay term e−θs. Such functions are analytic everywhere except at the poles of f(s).
The domain in question will be the right half plane, where we cannot tolerate any
poles - as this would mean that the system is unstable. Therefore, the maximum has
to occur on the imaginary axis. If we know the value of a stable transfer function
somewhere inside the right half plane, we therefore know this value to be a lower
bound on the infinity norm of that function (which is given by the highest value
along the imaginary axis).

4.4.2 Minimum phase and stable versions of the plant

In the sequel, we will encounter

Gs(s), the stable version of the plant, with all RHP poles mirrored into the LHP.

Gm, the minimum phase version of the plant, with all RHP zeros mirrored into
the LHP (and, when relevant, with any time delay factored out).

Gms(s), the minimum phase and stable version of the plant, with both RHP
poles and RHP zeros mirrored into the LHP.

A detailed explanation of how to factor out unstable and non-minimum phase
terms is given in Appendix D, but it is easily illustrated for a monovariable plant
G(s) = G0(s)e−sT with Nz RHP zeros zj and Np RHP poles pi:

,Gs(s)︷ ︸︸ ︷
Gms(s) ,e

−sT
Np∏
i=1

s− pi
s+ pi

G0(s)

Nz∏
j=1

s+ zj
s− zj︸ ︷︷ ︸

,Gm(s)
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We note that the terms both to the left and right ofG0(s) above are all pass, i.e., they
have magnitude = 1 everywhere along the imaginary axis.

4.4.3 Bounds on S and T

4.4.3.1 Monovariable systems For any RHP zero z of G(s) the sensitivity func-
tion must satisfy

‖wpS‖∞ ≥ |wp(z)| ·
Np∏
i=1

|z + pi|
z − pi

(4.20)

If there are no RHP poles, the product term on the right hand side of (4.20) is replaced
by 1. Equation (4.20) was originally proven by Zames [Zam81], we will follow the
simple proof in [SP05]:

We know from (4.7) that the sensitivity function S will have a RHP zero at each
pi. Hence, we can factorize S into a minimum phase part Sm and an all-pass part Sa,
such that S = SaSm, with Sa =

∏Np
i=1

s−pi
s+pi

. At any zero z, we have from (4.8) that
S(z) = 1, and hence Sm(z) = S−1

a (z). Since Sa is all-pass, |S(jω)| = Sm(jω),
and from the maximum modulus principle

max
ω

Sm(jω) ≥ max
zj

S−1
a (zj),

from which (4.20) follows.
For any RHP pole p of G(s), the complementary sensitivity function must satisfy

‖wTT‖∞ ≥ |wT (p)| ·
Nz∏
j=1

p+ zj
p− zj

· |epT | (4.21)

The proof is similar to the proof of (4.20), noting that the non-minimum phase part
of T (s) comes not only from the zeros of G(s) but also includes the time delay. If
there are no RHP zeros or time delay, the product term and time delay terms on the
right hand side of (4.21) are both replaced by 1.

From both (4.20) and (4.21) we see that the peak in the sensitivity and comple-
mentary sensitivity functions will be particularly large if any RHP zero is close to
any RHP pole.

4.4.3.2 Multivariable systems Define γS and γT as the minimum values of the
infinity norms of S and T , respectively, achievable under stabilizing output feed-
back11. As before, we assume that the (now multivariable) systemG(s) hasNz RHP
zeros and Np RHP poles. The RHP zeros zj have corresponding zero output di-
rections yzj , and the RHP poles pi have corresponding output directions ypi. Chen
[Che00] showed that

γS = γT =

√
1 + σ̄2(Q

−1/2
p QzpQ

−1/2
z ) (4.22)

11Note that output feedback also includes the combination of a state feedback controller and a state esti-
mator, as used in classical LQG control.
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where σ̄ denotes the maximum singular value, and

[Qz]ij =
yHziyzj
zi + z̄j

, [Qp]ij =
yHpiypj

p̄i + pj
, [Qzp]ij =

yHziypj
zi + pj

(4.23)

The result in (4.22) can be extended to account for frequency-dependent weights
on S and T , see [Che00] or [SP05].

For the case of a simgle RHP zero z and a single RHP pole p, (4.22) simplifies to

γS = γT =

√
sin2 φ+

|z + p|
|z − p|

cos2 φ (4.24)

where φ is the angle between the output zero and pole directions, i.e., φ = cos−1 |yHz yp|.
We see that γS and γT depend not only on the location of z and p, but also on the
angle between their output directions. If these output directions are mutually per-
pendicular, there is no interaction between the RHP zero and the RHP pole, i.e., the
consequences of the RHP pole can be evaluated without considering the RHP zero,
and vice versa.

Chen [Che00] has also derived a bound on γT for the case when there is time
delay in each plant output, i.e., when

G(s) = Θ(s)G̃(s), Θ(s) = diag
{
e−θ1s, · · · , e−θns

}
(4.25)

and G̃(s) is without any delays. We then have that

γT = λmax

(
Q
−1/2
θ (Qp +QzpQ

−1
z QHzp)Q

−1/2
θ

)
(4.26)

where λmax denotes the largest eigenvalue, and Qp, Qz and Qzp are as given in
(4.23), but using the output zero and pole directions of G̃(s), and

[Qθ]ij =
ỹHpiΘ(p̄i)Θ(pj)ỹpj

p̄i + pj

where ỹpi is the i output pole direction corresponding to the RHP pole pi of G̃(s).
With only one RHP zero z and one RHP pole p, (4.26) simplifies to

γT =
1

‖Θ(p)ỹp‖2

√
sin2 φ+

|z + p|
|z − p|

cos2 φ (4.27)

where φ now is the angle between the output zero and pole directions of G̃(s).
While there are no results for γs accounting for time delay in a manner similar

to (4.26) and (4.27), note that a large γT also implies a large γS , as the algebraic
relationship S + T = I implies

γT − 1 ≤ γS ≤ γT + 1
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4.4.4 Bounds on KS and KSGd

In addition to S and T , the transfer functions KS and KSGd are of particular inter-
est, especially for open loop unstable plants. Provided an appropriate scaling is used
(as described above), ‖KS‖∞ > 1 indicates that a reference change may drive the
control input into stauration, while ‖KSGd‖∞ > 1 indicates that a disturbance may
drive the control input into saturation. This interpretation should be used with some
caution, though, as

The scaling is usually somewhat imprecise. In particular, it is difficult to know
with precision what will be the largest disturbance that will occur in operation.

The scaling is applied to each individual input (and output) individually, whereas
the infinity norm measures the largest gain from input to output, where the gain
is measured in terms of the 2-norm of the input and output vectors.

Glover [Glo86] derived the following tight bound on the transfer function KS

‖KS‖∞ ≥ 1/σH(Us(G)) (4.28)

where Us(G) is the stable version of the antistable part of G (with the RHP poles
mirrored into the LHP), and σH denotes the smaller Hankel singular value.

A simpler lower bound can be found in [HS01], where it is shown that for any
RHP pole p with corresponding input direction up

‖KS‖∞ ≤ ‖uHp Gs(p)‖2 (4.29)

This bound is tight (i.e., there exists a controller achieving the bound) in the case of
a single RHP pole.

The bound in (4.28) is generalized by Kariwala [Kar04] to obtain

‖KSGd‖∞ ≥ 1/σH(Us(G−1
d,msG)) (4.30)

where Us(G−d,ms1G) is the stable version of the antistable part of G−1
d,msG (with the

RHP poles mirrored into the LHP), and G−1
d,ms denotes the minimum phase, stable

version of the disturbance transfer functionGd (with both RHP poles and RHP zeros
mirrored into the LHP). Again, Havre and Skogestad[HS01] have derived a simpler
bound:

‖KSGd‖∞ ≥ ‖uHp Gs(p)−1Gd,ms(p)‖2 (4.31)

which is tight in the case of a single RHP pole.
The reader should keep in mind that if both G(s) and Gd(s) are unstable, the

unstable poles (or, rather, the physical states that the poles represent) of Gd(s) must
be shared with G(s), as otherwise the RHP poles of Gd(s) cannot be stabilized by
feedback aroundG(s). This fact is to some extent obscured by the expressions above.

Equations (4.28) - (4.31) provide, as explained above, indications whether refer-
ence changes or disturbances are likely to drive the system into saturations - for any
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stabilizing feedback controller. However, the situation is quite different in the two
cases: A disturbance normally cannot be affected by plant operations12, and what-
ever disturbance occurs will have to be accommodated. Reference changes, on the
other hand, can often be modified by control and operations - in many cases a simple
low pass filter can be sufficient to allow (slow) tracking of reference changes with-
out input saturation and the resulting loss of stabilizing feedback. In most chemical
processes fast reference tracking is not crucial.

4.5 ISE optimal control

As noted earlier, the optimal ISE performance measure depends on the input signal
studied, and whether a specific value for the achieved ISE is acceptable is application
specific.

For an open loop stable system G(s) with Nz RHP poles at zj and a time delay
θ, the corresponding ISE optimal complementary sensitivity function for a unit step
in the reference (or output disturbance) is given by [MZ89]

T (s) = e−θs
Nz∏
j=1

−s+ zj
s+ z̄j

(4.32)

and the corresponding optimal ISE value is [GSY03]

ISEmin = θ + 2

Nz∑
j=1

1

zj
(4.33)

A related expression for the optimal ISE when tracking a sinusoidal input is given
by [QD93].

We see from (4.33) that large deadtimes and RHP zeros close to the origin are
particularly problematic when tracking a step reference change. Clearly, if G(s) has
a zero at the origin, the reference step cannot be tracked, and the optimal value in
(4.33) is infinite.

4.6 Bandwidth and crossover frequency limitations

This section will provide some bounds on achievable bandwidth for SISO control
loops. These bounds are derived from simplified assumptions that may not hold in
general, such as a specific performance measure, a specific performance weight, a
single ’troublesome component’ of the transfer function, a specific controller type,
etc. Nevertheless, these bounds provide substantial insight into what can be achieved
by feedback control, and if the derived bounds are not consistent with performance
requirements, modifications in the plant (including its instrumentation and control

12Although they are often affected by plant design.
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structure) is recommended rather than ’pushing’ the bounds with some advanced
control.

4.6.1 Bounds from ISE optimal control

Based on the ISE optimal complementary sensitivity function in (4.32), the following
limitation in the gain crossover frequency ωc is derived in [SP05] by considering the
low frequency asymptote of T (s)in (4.32), for the case when the time delay θ is the
only non-minimum phase component in G(s)

ωc < 1/θ (4.34)

This result coincides with a bound derived from loop shaping arguments in [SP05].
Similarly, (4.32) may be used to derive a bound on the gain crossover frequency

for the case of a single RHP zero (and no time delay), giving

ωc <
z√
3

(4.35)

4.6.2 Bandwidth bounds from weighted sensitivity minimization

Consider a performance specification of the type ‖Wp(s)S(s)‖∞ ≤ 1. From the in-
terpolation constraints we have that S(z) = 1, and hence in order to fulfill ‖Wp(s)S(s)‖∞ ≤
1 we will require |Wp(z)| ≤ 1. With Wp(s) as given in (4.4), H = 2 and ε << 1,
we get for a real RHP zero z that

ω∗B ≤
z

2
.

Thus ωB < z/2 is a reasonable upper bound on what bandwidth (in terms of S)
we can expect to achieve. Clearly, the exact value of the bound will depend on the
value used for H , but one should keep in mind that we need to use a value of H
significantly greater than 1 to accommodate a peak in the sensitivity function in the
bandwidth region (which will be unavoidable if we want to achieve fast control).
There may at first glance appear to be a discrepancy between the bound on ωB ob-
tained here and the bound on wc found in (4.35). However, one should keep in mind
that the two bounds are derived with regards to different performance specification.
In addition, ωB < ωc for designs with a phase margin less than 90◦, which includes
most practical control loops.

Making the sensitivity function small at low frequencies ensures good control at
these frequencies, and as a consequence the complementary sensitivity T (s) will
be close to 1 in the same frequency range. In contrast, one may want to put a
large weight on the complementary sensitivity function at high frequencies, to en-
sure a low loop gain at high frequencies, and thereby avoid robustness problems
due to excitation of unmodelled high-frequency dynamics or amplification of high-
frequency noise (see Section 2.5.2). To capture this with a design sepcification that
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‖WTT‖∞ ≤ 1, a reasonable weight WT may be given by

WT (s) =
1

M
+

s

ω∗BT

which allows a maximum peak in |T (jω)| ofM and a maximum bandwidth in terms
of T , ωBT , of around ω∗BT . From the interpolation constraints we conclude that we
for a real RHP pole at p need

ω∗BT ≥
pM

M − 1

For M = 2, which may be an acceptable value w.r.t. robustness (but possibly a little
large for performance), we obtain

ωBT ≥ 2p

Note that a smaller M will require a larger bandwidth in terms of T , ωBT .
Thus, we find that an RHP pole puts a lower bound on the bandwidth (the control

must be fast enough to ’capture’ the instability), while an RHP zero puts an upper
bound on the bandwidth. Designing acceptable control will be hard unless approxi-
mately

z > 4p

and in such cases it may be wiser to attempt plant modifications rather than advanced
controller design13. This provides additional insight compared to Section 4.4.3, from
which we can only conclude that RHP poles and zeros should be well separated for
acceptable values on transfer function peaks to be obtainable.

4.6.3 Bound from negative phase

Let the ultimate frequency ωu denote the (lowest) frequency at which the SISO plant
transfer function G(s) has a phase of −180◦, i.e.,

ωu = min
ω

such that∠(G(jω)) = π

It is argued in [SP05] that ωu is a reasonable upper bound on the achievable
crossover frequency with the common single-loop controllers used in industry. The
argument is based on the Bode stability criterion, and noting that a P or PI controller
cannot provide positive phase, and a cascade PID controller with derivative action
over one decade can as a maximum provide 55◦ positive phase - which is essen-
tially no more than a reasonable phase margin. Although the bound may be pushed
somewhat at the expense of designing and operating a more complex controller or
accepting a poorer phase margin, it is reasonable to regard

ωc ≤ ωu (4.36)

13This is not to say that stabilization will be impossible if this rule of thumb is violated - in theory any
pole appearing in the open loop transfer function (after cancelling common terms in the numerator and
denominator) can be stabilized. However, obtaining acceptable performance and robustness will be a
challenge for the typical scenario where good performance is required at low frequencies.
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as an approximate bound on the achievable crossover frequency.

4.7 Bounds on the step response

Trade-offs in the time responses of SISO loops with time delays and RHP poles and
zeros are addressed by Middleton[Mid91] and Seron et al. [SBG97]. Throughout
this section, it is assumed that a standard feedback (only) configuration as in Fig. 2.1
is used, and that the resulting closed loop system is stable. While the conventional
definition of undershoot (δu) and overshoot (δo) are used, a definition of rise time
somewhat different from Section 4.1.1 is used:

Rise time. The rise time tr is defined as

tr = max
T

{
T : y(t) ≤ t

T
for t ∈ [0, T ]

}
This definiton of rise time is illustrated in Fig. 4.3. Note that the rise time tr is not

found from the point where the straight line and the step response curve coincide,
but where the straight line crosses the reference.
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Figure 4.3: Illustration of the rise time tr definition used in this section.

The definition of settling time, ts, also correspond to what is used in Section 4.1.1,
but here the width of the band within which the response has to settle is specified as
2ε. That is, for a unit step in the reference,

1− ε ≤ y(t) ≤ 1 + ε ∀t > ts.
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A system with a real RHP pole at p in open loop must in closed loop fulfill

δo ≥
1

ptr

[
(ptr − 1)eptr + 1

]
≥ ptr

2
(4.37)

This result tells us that the overshoot will be large if we have slow control (tr large),
and therefore that for an open loop unstable system we need fast control in order to
achieve a small overshoot.

For systems with a real RHP pole at p and a time delay of θ must fulfill

δo ≥ epθ − 1 ≥ pθ (4.38)

Thus, if the time delay θ is large compared to the location of the RHP pole p, a large
overshoot is unavoidable.

A system with an RHP zero at z will in closed loop have to fulfill

δu ≥
1− ε
ezts − 1

(4.39)

We see that a short settling time will require a large undershoot.
Some sources define an undershoot to occur only if the initial response is in the

negative direction, and will therefore define there to be no undershoot for some sys-
tems with multiple real RHP zeros. However, for such systems the closed loop step
response will have to be negative in one or more intervals. The concept of undershoot
used here is based on the minimum of the closed loop step response, regardless of
the initial direction of the response. For plants with more than one real RHP zero,
(4.39) will apply to each of them, but the combined effects of the zeros are not taken
into account.

For a system with a real RHP zero at z, and an open loop RHP pole at p, with
p 6= z, we have

if p < z : δo ≥
p

z − p
(4.40)

if z < p : δu ≥
z

p− z
(4.41)

4.8 Bounds for disturbance rejection

Rejecting disturbances is one of the primal objectives for process control. The plant
may be affected by a single or multiple disturbances, it will then be a matter of de-
sign philosophy to decide whether to design only for single disturbances or for the
worst-case combination of several disturbances - which may be unlikely to occur in
practice. Furthermore, even if the potentially conservative approach of considering
worst-case disturbance combinations is chosen, it is useful to understand to what ex-
tent the individual disturbances contribute to problems in achieving acceptable per-
formance. One can then focus on remedial action for the most severe disturbance(s)
only. Common remedial actions include
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Install a sensor to measure the disturbance, to allow for feedforward control to
augment the feedback control.

Install larger or faster actuators to accommodate larger disturbances.

Allow larger level or pressure variations in upstream units (i.e., make better use
of buffer capacity), to reduce flow disturbances downstream.

Installing buffer tanks to filter flowrate, composition or temperature distur-
bances.

The control of temperature by either a heat exchanger or by the controlled mix-
ing of hot and cold flows.

The control of composition by the controlled mixing of dilute and concentrated
streams.

What remedial actions to undertake is entirely problem specific, and will not be
considered further here.

We will consider disturbances entering at the plant output, and denote the open
loop transfer function by gd(s) if we are considering a single disturbance, and Gd(s)
if we are considering multiple disturbances. That is, gd(s) will be an individual
column of Gd(s). As stated several times before, we will assume that both the dis-
turbance and plant transfer functions are appropriately scaled. Then, we can state
that disturbances do not impose any requirement for control if

max
ω

max
i
|gd,i(jω)| ≤ 1 for a single disturbance (4.42)

max
ω

max
i

∑
k

|Gd,ik(jω)| ≤ 1 for multiple disturbances (4.43)

where gd,i denotes element i of the vector gd, and Gd,ik is element i, k of the matrix
Gd.

4.8.1 Inputs for perfect control

From y = Gu+Gdd we find that we have sufficient input actuation range to achieve
perfect control (y = 0) if

max
ω

max
i
|
[
G−1(jω)gd(jω)

]
i
| < 1 for a single disturbance (4.44)

max
ω

max
i

∑
k

|
[
G−1(jω)Gd(jω)

]
ik
| ≤ 1 for multiple disturbances (4.45)

where [·]i and [·]ik refers to the i’th element of the vector · and the ik’th element the
matrix ·, respectively.
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4.8.2 Inputs for acceptable control

The scaling procedure specifies acceptable control as |ei| = |yi − ri| ≤ 1. For a
SISO control loop, we therefore find that we have sufficient actuation range of the
input to achieve acceptable control provided

|gd(jω)| − |g(jω)| ≤ 1 ∀ ω such that |gd(jω)| > 1 (4.46)

It is surprisingly hard to generalize (4.46) to multivariable systems. In [HK05]
a somewhat complex calculation procedure is developed. In [SP96], a rough esti-
mate based on the singular value composition (SVD) is proposed instead. At each
frequency ω, the SVD is applied to the plant G(jω) to give G = UΣV H . For each
singular value σi(G) and corresponding output singular vector ui, we must approxi-
mately have

σi(G) ≥ |uHi gd| − 1 for a single disturbance (4.47)

σi(G) ≥
∑
k

|uHi gd,k| − 1 for multiple disturbances (4.48)

where gd,k here is column k ofGd. Equations (4.47) and (4.48) should be applied for
frequencies and output directions where disturbances can cause unacceptably large
offset, i.e., where |uHi gd| > 1 for (4.47), and where

∑
k |uHi gd,k| > 1 for (4.48).

Note that (4.47) and (4.48) are only approximate, and may incur an error by a factor
of
√
m for a system with m outputs [SP96].

In (4.44) - (4.48), perfect knowledge of the disturbance is assumed - possibly
also in advance. These relationships therefore do not necessarily ensure that ac-
ceptable control can be achieved by (causal) feedback control - with a stable closed
loop. This problem is addressed in [KS07], using L1 control theory and the Youla
parametrization of all stabilizing controllers. The resulting calculation procedure is
rather complex, and to some extent limited by the parametrization used for the free
term in the Youla parametrization. The interested reader is therefore referred to the
original publication.

4.8.3 Disturbances and RHP zeros

Consider a performance specification of the form ‖WpSGd‖∞ ≤ 1 and assume for
simplicity that Wp(s) = wp(s) · I (i.e, that we have the same performance specifica-
tions for all outputs). We then get from the interpolation constraints and maximum
modulus principle that

‖WpSgd‖∞ ≥ |wp(z)yHz gd(z)| for a single disturbance (4.49)

‖WpSGd‖∞ ≥ ‖wp(z)yHz Gd(z)‖2 for multiple disturbance (4.50)

From (4.49) it is clear that the alignment of the disturbance with the zero output di-
rection is crucial. Note that if |wp(z)yHz gd(z)| > 1, acceptable performance cannot
be achieved by feedback control. One is instead forced to either reduce the per-
formance requirements, or resort to one or more of the remedial actions described
above.



156 LIMITATIONS ON ACHIEVABLE PERFORMANCE

4.8.4 Disturbances and stabilization

Equations (4.30) and (4.31) give bounds on the transfer function from disturbance
to input for any stabilizing feedback controller. If the bounds are too severe, one
must expect to encounter input saturation, with resulting loss of stabilizing feedback
- which of course is disastrous. It is well known that stabilization requires feedback,
and that feedforward has no role in stabilization. However, this holds only for linear
systems - and input saturation is definitely a nonlinear phenomenon. This will be il-
lustrated using Example 5.13 in [SP05]. The plant and disturbance transfer functions
are given by

G(s) =
5

(10s+ 1)(s− 1)
, Gd(s) =

kd
(s+ 1)(0.2s+ 1)

(4.51)

We find from (4.31) that ‖KSGd‖∞ > 1 for kd > 0.54. Thus, we have the
bizarre situation that the disturbance is so weak that it does not require control
(|gd(jω)| < 1∀ω when kd < 1), but the disturbance nevertheless leads to saturation
of the stabilizing feedback controller. This example is studied further in [HB09].
First, it is found that the feedback controller

K(s) =
(10s+ 1)2

s(0.01s+ 1)

stabilises the system with kd = 1 in the unconstrained case - but as expected will fail
to stabilize with a constrained input - as illustrated in Fig. 4.4.

In Fig. 4.5 we see the control loop with and output disturbance, including input
constraints and both feedback and feedforward control.

The conventional feedforward control will seek to minimize the effect of the dis-
turbance on the output. The corresponding ideal feedforward is Kf = −GdG−1,
which cancels the effect of the disturbance on the output. In this particular circum-
stance, we are instead interested in reducing the effect of the disturbance on the input.
This is eliminated14 by the feedforward controller

Kf = KGd

In Fig. 4.6, we compare the output response to a maximal disturbance for

Feedback control only.

Feedback control augmented with the feedforward control Kf above.

Feedback control augmented with the feedforward control Kf implemented in
series with a high pass filter.

14Some care should be taken in the implementation, to avoid an integrator or unstable term in the feedfor-
ward controller, see [HB09].
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Figure 4.5: Control loop with input constraint, output disturbance, and feedforward
and feedback control

The results when using these three controllers are shown in Fig. 4.6. As seen
previously, the feedback only becomes unstable due to input saturation. When aug-
mented with the feedforward control, the offset is acceptable (since the error never
exceeds 1), but there is a persistent offset due to the controller ’not seeing’ the dis-
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Figure 4.6: Output response with feedback only, and with two different feedforward
controllers

turbance. With the high pass filter, the controller ’sees’ the low frequency effects
of the disturbance, and quickly counteracts the disturbance. Most people will prob-
ably prefer this latter response. The high pass filter should be designed to remove
frequencies where |Gd(jω)| > |G(jω)|.

A more detailed study of the role of feedforward in stabilization for systems with
input constraints, including the case with an unstable disturbance transfer function
gd(s), can be found in [HB12].

4.9 Limitations from plant uncertainty

A famous quote[Box79] from the British statistician G.E.P. Box says that
All models are wrong but some are useful.
If we accept the message of this quote (which we should - if we interpret it as

saying that no model will be a perfect representation of reality), two natural questions
in the context of process control are

Where do the model errors come from?

What effects do model errors have on the quality of control that we can expect?
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To address the first question: model errors come from a number of different
sources, depending on how the model is obtained. Causes for errors in empirical
models (obtained from observations of system inputs and outputs) include

1. Unknown noises and disturbances affecting the plant.

2. Choosing a model structure that is not sufficiently rich to describe the actual
plant behavior. This includes the identification of linear models - even though
we know that most real plants are to some extent non-linear.

3. Insufficient excitation during the experiment (or in the historical data used for
identification).

For models based on the principles of physics and chemistry (often called ‘rigorous’
of ‘first principles’ models), common sources of errors include

1. Simplifications in modeling. Two typical examples are a) assuming immediate
and perfect mixing in stirred tank reactors, and b) assuming that a valve goes
immediately to the commanded position. An important point here is that such
simplifications often make sense - or are even necessary - in order to make the
model building economical and the resulting model of manageable complexity.
Nevertheless, they do result in model error.

2. There may be physical phenomena unknown to the modeler.

3. Missing or inaccurate physical properties. Tabulated physical properties are
themselves obtained from experiments that may contain inaccuracies. Although
the PVT properties of steam are known in great detail and accuracy, there are
compounds or mixtures of compounds that have received less attention. Phys-
ical properties may therefore have to be extrapolated from other conditions or
from similar compounds.

Both empirical and first principles models will suffer from

1. Changes in operating conditions. Since most plants are nonlinear, linear em-
pirical models must be expected to be wrong. Although good first principles
models may be able to account for non-linearity, most controllers are designed
based on linear(ized) models15.

2. Other plant changes. In addition to deliberate plant modifications, there are a
large number of other plant changes that may occur: heat exchanger fouling,
catalyst deactivation, catalyst sintering, channeling in packed beds, valve stic-
tion from lack of lubrication or tightened valve stem packing, to mention only
a few.

The main message here is that there will be model errors, and they are likely to be
significant - even though many modelers are reluctant to admit this.

15An important exception being non-linear MPC, which is briefly described later in the book
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4.9.1 Describing uncertainty

For controller design accounting explicitly for model uncertainty, such as the design
techniques based on the structured singular value[ZDG96, SP05], it is important to
describe the structure and have some reasonable estimate of the magnitude of the
uncertainty. For several of the causes of uncertainty discussed above, it is possible
to describe their effects on the model and the relationships between the errors in
different elements of the transfer function matrix. We will not pursue this issue
further here, but instead focus on simple classes of model error and how they affect
achievable performance and the choice of control structure.

Two common types of uncertainty models are the input multiplicative uncertainty
and output multiplicative uncertainty, illustrated in Fig. 4.7. For both input uncer-
tainties (representing uncertainties in the manipulated variables) and output uncer-
tainties (representing uncertainties in the measurements), the uncertainties in the dif-
ferent channels are normally mutually independent. Both ∆I and ∆O are therefore
commonly restricted to be diagonal matrices, with only a (not very precise) magni-
tude bound for the otherwise unknown diagonal elements. In any practical system,
one must expect uncertainties in the inputs and outputs to be present.

G(s)

∆I

a) Multiplicative input 

uncertainty

G(s)

∆O

u y+ + yu

Gp(s) Gp(s)

b) Multiplicative output 

uncertainty

Figure 4.7: Illustrating input and output multiplicative uncertainty

For monovariable systems, only the magnitude of the uncertainty plays a role.
Scalar multiplication is commutative, and hence it has no consequence whether the
uncertainty is modeled at the input or output. For a multivariable system with nomi-
nal model G(s), we have

For multiplicative input uncertainty Gp(s) = G(s)(I + ∆I) (4.52)
For multiplicative output uncertainty Gp(s) = (I + ∆O)G(s) (4.53)

where Gp(s) represents the ‘perturbed’ or ‘true’ system, including the uncertainty
∆I or ∆O.
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4.9.2 Feedforward control and the effects of uncertainty

Consider reference following with only a feedforward controller Kr from reference
r to input u. The transfer function from reference to control offset e = y − r is then
given by

e = (GpKr − I)r (4.54)

The ideal feedforward controller, giving y = r if the nominal model is perfect, is
given by Kr = G−1. For multiplicative output uncertainty this yields

e = ((I + ∆O)GKr − I) r = ∆Or (4.55)

whereas multiplicative input uncertainty results in

e = (G(I + ∆I)Kr − I)r = G∆IG
−1r (4.56)

We see that the multiplicative output uncertainty carries over directly to the output.
However, for the multiplicative input uncertainty the situation is much worse, since
there are situations where ‖G∆IG

−1‖ >> ‖∆I‖. Specifically, the diagonal ele-
ments of the error term G∆IG

−1 are given by [SM87]:

[
G∆iG

−1
]
ii

=

n∑
j=1

λij(G)∆jj (4.57)

where λij(G) is the ij’th element of the RGA matrix. We see that for plants G(s)
with large RGA elements, inverse-based control can dramatically amplify the effects
of input uncertainty.

4.9.3 Feedback and the effects of uncertainty

With ordinary feedback control, we have

e = −Spr = −(I +GpK)−1r (4.58)

With multiplicative output uncertainty, we obtain

Sp = S(I + ∆OT )−1 (4.59)

At low frequencies, S will be small, and therefore also Sp. At high frequencies,
T will be small, and therefore Sp ≈ S. The problems due to output uncertainty
will therefore be mainly in the bandwidth region, where neither S nor T is small,
and the effects of the uncertainty may be amplified by feedback control. With input
uncertainty, we can derive

Sp = S(I +G∆IG
−1T )−1 = (I + TK−1∆IK)−1S (4.60)

Again we see that feedback control is relatively insensitive to uncertainty both at
low and high frequencies, but we recognize from above the term G∆IG

−1 (whose
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diagonal terms are studied in (4.57)), and the corresponding K−1∆IK. However,
Sp will have to be the same regardless of how we factor it. Thus, if we for an
ill-conditioned plant (with large RGA elements λij(G)) use a well conditioned con-
troller (with small RGA elements λij(K), the effects of the input uncertainty will be
modest. A decentralized controller will have an RGA matrix Λ(K) = I , whereas
a decoupler K(s) = G(s)−1Kd(s), with Kd(s) diagonal will have Λ(K) = Λ(G).
We therefore conclude that

For plants G(s) with large RGA elements, we should not use inverse-based
control due to sensitivity to model error.

For plants G(s) with large RGA elements, decentralized control will be rela-
tively insensitive to input uncertainty. However, in such cases it will probably
be difficult to achieve good (nominal) performance with decentralized control.

The observation that feedback control is relatively insensitive to uncertainty, ex-
cept in the bandwidth region, has lead to the frequently hear claim that feedback
control has inherent robustness. Although the above analysis shows that there is
some truth to that claim, it also points to the fact that it cannot be trusted blindly, that
some care is advised in the bandwidth region.

4.9.4 Bandwidth limitations from uncertainty

In most cases, the model uncertainty will be relatively small at steady state, and
higher at high frequencies (due to,e.g., neglected high frequency dynamics). Clearly,
feedback control cannot be effective at frequencies where the multiplicative uncer-
tainty is 100% or larger. If we then define

ω∆ = max
ω

such that ‖∆‖∞ < 1

then we get the bandwidth limitation

ωB < ω∆ (4.61)

This bound applies equally to monovariable and multivariable systems, and does not
take location of the multiplicative uncertainty nor the structure of the controller into
account. The bound may therefore be rather optimistic.

Although we are not considering controller design explicitly accounting for model
uncertainty, we note that a bound such as (4.61) is easily accounted for in a loop
shaping based control design, see Section 2.5.2.



CHAPTER 5

MODEL-BASED PREDICTIVE CONTROL

5.1 Introduction

Model-based predictive control (MPC) has become the most popular advanced con-
trol technology in the chemical processing industries. There are many variants of
MPC controllers, both in academia and in industry, but they all share the common
trait that an explicitly formulated process model is used to predict and optimize future
process behaviour. Most MPC controllers are able to account for constraints both in
manipulated variables and states/controlled variables through the formulation of the
optimization problem.

When formulating the optimization problem in MPC, it is important to ensure
that it can be solved in the short time available (i.e., the sampling interval is an upper
bound on the acceptable time for performing the calculations). For that reason, the
optimization problem is typically cast into one of two standard forms:

Linear programming (LP) formulation. In an LP formulation, both the objec-
tive function and the constraints are linear.

Quadratic programming (QP) formulation. In a QP formulation, the objective
function is quadratic, whereas the constraints have to be linear. In addition, to
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ensure that there exists a unique optimal solution that can be found quickly with
effective optimization solvers, the Hessian matrix in the objective function has
to be positive definite1.

LP problems can be solved more efficiently than QP problems, and an LP formu-
lation may therefore be advantageous for very large optimization problems. How-
ever, a QP formulation generally leads to smoother control action and more intuitive
effects of changes in the tuning parameters. The connection to ’traditional advanced
control’, i.e., linear quadratic (LQ) optimal control, is also much closer for a QP
formulation than for an LP formulation. For these reasons, we will focus on a QP
formulation in the following, and describe in some detail how a QP optimization
problem in MPC may be formulated.

So-called explicit MPC will not be considered here. However, the optimization
formulations are the same in explicit and ordinary (’implicit’) MPC, what differs is
how and when the optimization problems are solved.

5.2 Formulation of a QP problem for MPC

A standard QP problem takes the form

min
v

0.5vT H̃v + cT v (5.1)

subject to the constraints
Lv ≤ b (5.2)

Here v is the vector of free variables in the optimization, whereas H̃ is the Hessian
matrix, that was mentioned above, and which has to be positive definite. The vector
c describes the linear part of the objective function, whereas the matrix L and the
vector b describe the linear constraints. Some QP solvers allow the user to specify
separate upper and lower bounds for v, whereas other solvers require such constraints
to be included in L and b. For completeness, we will assume that these constraints
have to be included in L and b.

The formulation of the MPC problem starts from a linear, discrete-time state-
space model of the type

xk+1 = Axk +Buk + Edk (5.3)
yk = Cxk + Fdk (5.4)

1The Hessian matrix defines the quadratic term in the objective function, and is a symmetric matrix.
Positive definiteness means that all eigenvalues are positive - for a monovariable optimization problem
this implies that the coefficient for the quadratic term in the objective function is positive.
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where the subscripts refer to the sampling instants. That is, subscript k+ 1 refers
to the sample instant one sample interval after sample k. Note that for discrete time
models used in control, there is normally no direct feed-through term, the measure-
ment yk does not depend on the input at time k, but it does depend on the input at
time k − 1 through the state xk. The reason for the absence of direct feed-through
is that normally the output is measured at time k before the new input at time k is
computed and implemented. One may also argue that in most physically realistic
system descriptions, inputs and disturbances affect the rate of change of states rather
than the states themselves. To illustrate: mass transfer/flowrate disturbances affect
the rate of accumulation of mass, heat transfer/temperature disturbances affect the
rate of accumulation of energy, force disturbances affect acceleration (the rate of
accumulation of momentum), etc.

In the same way as is common in control literature, the state x, input u, external
disturbance d and measurement y above should be interpreted as deviation variables.
This means that they represent the deviations from some consistent set of of variables
{xL, uL, dL, yL} around which the model is obtained2. For a continuous process,
the set {xL, uL, dL, yL} will typically represent a stationary point - often the station-
ary point we want to keep the process at.

A typical optimization problem in MPC might take the form

min
u

f(x, u) =

n−1∑
i=0

{(xi − xref,i)TQ(xi − xref,i) (5.5)

+(ui − uref,i)TP (ui − uref,i)T }
+(xn − xref,n)TS(xn − xref,n)

subject to constraints

x0 = given
Mixi +Niui ≤ Gi for 0 ≤ i ≤ n− 1

Mnxn ≤ Gn (5.6)

In the objective function Eq. (5.5) above, we penalize the deviation of the states
xi from some desired reference trajectory xref,i and the deviation of the inputs ui
from some desired trajectory uref,i. These reference trajectories are assumed to be
given to the MPC controller by some outside source. They may be constant or may
also vary with time (subscript i). The constraints on achievable inputs or acceptable
states are usually not dependent on the reference trajectories, and therefore these
reference trajectories do not appear in the constraint equations (5.6).

2We do not here specify how the model is obtained, but typically it is either the result of identification
experiments performed around the values {xL, uL, dL, yL} or the result of linearizing and discretizing
a non-linear, physical model around the values {xL, uL, dL, yL}.
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The constraints may be given for inputs ui and states xi independently or may be
expressed in terms of combinations of inputs and states. At time i = 0, we cannot
affect the states (since these are already given. The constraints at time i = 0 will
therefore consider only the inputs. At time i = 0, an input constraint of the form
−U ≤ u0 ≤ U can therefore be expressed using

M0 = 0, N0 =

[
I

−I

]
, G0 =

[
U

−U

]
.

Typically, the constraints are constant with time, but a particular set of constraints
is applied to the state vector at the end of the prediction horizon (i = n). These
terminal constraints may be stricter than the constraints imposed over the rest of
the prediction horizon. The purpose of this (possibly) stricter set of constraints is
to ensure that the constraints can be fulfilled also for future MPC problems (as the
prediction horizon ’moves forward’), and we will return to the determination of these
terminal constraints later.

In the following, this formulation of the optimization problem will be recast into
the standard QP formulation in Eqs.(5.1) and (5.2), but first a number of remarks
and explanations to the optimization problem formulation in Eqs.(5.5) to (5.6) are
needed.

In addition to the above constraints, it is naturally assumed that the process
follows the model in Eqs. (5.3) and (5.4).

The matrices Q,P, and S are all assumed to be symmetric. P and S are as-
sumed to be positive definite, whereas Q may be positive semi-definite.

In many applications it may be more natural to put a weight (or cost) on the
actual measurements rather than the states. This can easily be done by choosing
Q = CT Q̃C, where Q̃ is the weight on the measurements.

One may also put constraints on the rate of change of the inputs, giving addi-
tional constraints on the form ∆UL ≤ ui − ui−1 ≤∆UU .

The determination of the terminal constraints will require an assumption on how
the inputs ui will be used for i ≥ n. Typical choices are either that ui = uref,i,
ui = ui−1, or that (ui − uref,i) = K(xi − xref,i). The latter choice assumes
that a (stabilizing) state feedback controller is used in this time interval. Note
that this controller will never be used in practice (since the MPC calculations
are re-computed at each sample instant), but it is needed to make the constraints
well defined.

Similarly, we must predict future values for disturbances. Good predictions may
sometimes be available, due to e.g., knowledge about operation of upstream
equipment. In the absence of such information, it is common to assume that
the disturbance will keep its present (measured or estimated) value over the
prediction horizon.
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If one assumes that (ui − uref,i) = K(xi − xref,i) for n ≤ i ≤ n + j, one
should also include the input constraints in the problem formulation for the time
interval n ≤ i ≤ n + j. These input constraints then effectively become state
constraints for this time interval.

Some MPC formulations use an objective function of the form f(x, u) =
∑np
i=0(xi−

xref,i)
TQ(xi − xref,i) +

∑nu
i=0(ui − uref,i)TP (ui − uref,i), where np > nu,

and typically assume that ui = uref,i for nu < i < np. Note that this
corresponds to a particular choice for ’terminal state weight’ S, since xi for
nu + 1 < i ≤ np will then be given by xnu+1 (and the process model).

It is common to introduce integral action in MPC controllers by using the input
changes at time i as free variables in the optimization, rather than the input
itself. This follows, since the actual inputs are obtained by integrating the
changes in the input. This can be done within the same framework and model
structure as above, using the model

x̃k+1 =

[
xk+1

uk

]
= Ãx̃k + B̃∆uk +

[
E

0

]
dk

yk = C̃x̃k

where ∆uk = uk − uk−1, and

Ã =

[
A B

0 I

]
, B̃ =

[
B

I

]
, C̃ =

[
C 0

]
When combined with a model updating strategy that gives zero model error at
steady state (such as the bias update described below), this way of including
integral action into the MPC formulation will guarantee zero steady state off-
set. Alternatively, integral action may be included by including a disturbance
estimate in the model update function, and adjusting state and input references
according to the disturbance estimate. This approach provides more flexibil-
ity to account for different disturbance dynamics, the method described above
is best suited for step-like disturbance or reference changes. See section 5.8
for details on how to calculate state and input references consistent with given
output references and disturbance estimates.

To have a stable closed-loop system, it is necessary to have at least as many
feedback paths as integrators. When integral action is included in the way
described above, this means that one needs at least as many (independent)
measurements as inputs. When the number of inputs exceeds the number of
measurements, it is common to define ’ideal resting values’ for some inputs.
This essentially involves copying some inputs into the measurement vector, and
defining setpoints for these.
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In the following, we will recast the MPC optimization problem as a standard
QP problem. The state at the beginning of the prediction horizon is assumed to be
given (either from measurements or from a state estimator), and cannot be affected
by the outcome of the optimization in MPC. In the presentation below, the state
x0 will therefore be eliminated from the formulation (except where it denotes the
initial state, and not a degree of freedom in the optimization). We will assume that
ui − uref,n = K(xi − xref,n) for i ≥ n. To start off, we stack the state references
xref,i, input references uref,i, input deviations vi = ui − uref,i, state deviations
χi = xi−xref,i, and predicted disturbances di in long (column) vectors xref , uref ,
v, χdev , and δ:

uref =



uref,0

uref,1
...

uref,n−2

uref,n−1


; xref =



xref,1

xref,2
...

xref,n−1

xref,n


;

v =



v0

v1

...
vn−2

vn−1


; χ =



χ1

χ2

...
χn−1

χn


; δ =



d0

d1

...
dn−2

dn−1



Note that


u0

...
un−1

 = v + uref ;


x1

...
xn

 = χ+ xref

We introduce the matrices
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Q̂ =



Q 0 · · · 0 0

0 Q
. . .

...
...

0 0
. . . 0 0

...
...

. . . Q 0

0 0 · · · 0 S


, P̂ =



P 0 · · · 0 0

0 P
. . .

...
...

0 0
. . . 0 0

...
...

. . . P 0

0 0 · · · 0 P


(5.7)

M̂ =



0 0 · · · 0 0

M1 0 · · · 0 0

0 M2
. . .

...
...

0 0
. . . 0 0

...
...

. . . Mn−1 0

0 0 · · · 0 Mn


(5.8)

N̂ =



N0 0 · · · 0 0

0 N1
. . .

...
...

0 0
. . . 0 0

...
...

. . . Nn−2 0

0 0 · · · 0 Nn−1

0 0 · · · 0 0


(5.9)

(5.10)

and the vector

Ĝ =


G0

...
Gn

 (5.11)

Next, three nominally equivalent formulations of the QP optimization problem in
MPC will be described.

5.2.1 Future states as optimization variables

The optimization problem may be expressed as

min
χ,v

[
χT vT

] [Q̂ 0

0 P̂

][
χ

v

]
(5.12)
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Repeated use of the model equation results in

(χ+ xref ) =



0 0 0 · · · 0

A 0 0
. . .

...

0
. . . . . . . . .

...
...

. . . A
. . . 0

0 · · · 0 A 0


(χ+ xref ) +



A

0
...
...
0


x0 (5.13)

+



B 0 0 · · · 0

0 B 0
. . .

...
...

. . . . . . . . .
...

0
. . . · · · B 0

0 · · · · · · 0 B


(v + uref ) +



E 0 0 · · · 0

0 E 0
. . .

...
...

. . . . . . . . .
...

0
. . . · · · E 0

0 · · · · · · 0 E


δ

In addition, the inequality constraints (5.6) may be expressed as[
M̂ N̂

] [χ
v

]
≤
[
Ĝ− M̂xref − N̂uref

]
(5.14)

The objective function (5.12), the (model) equality constraints (5.13), and the in-
equality constraints (5.14) together specify the MPC optimization problem on a stan-
dard form. If the particular QP solver in use does not accept equality constraints,
these can always be specified using two inequalities3. Note that x0, xref , uref , and
δ all are assumed known to the QP solver. Whereas correct (or reasonable) values
for x0, xref , and uref will often easily be available, some prediction of future dis-
turbances δ will have to be made. In the absence of any relevant information (e.g.,
measurements used for feedforward from disturbances), it is commonly assumed that
the disturbance will remain constant at its present value.

In this case, the optimization variables are both the future plant inputs v and future
plant states χ. The model equations (expressed as equality constraints) guarantee that
the relationship between inputs and states are fulfilled, and the de facto maximum
number of degrees of freedom in the optimization is given by the number of inputs
times the prediction horizon n.

This formulation of the MPC problem results in a high number of optimization
variables. On the other hand, the equations are easily formulated and the resulting
matrices are highly structured and sparse (i.e., the contain many elements that are
identically zero). Provided the QP solver used can take advantage of the sparse
structure, the high number of optimization variables need not imply an increased
computational demand. Rao et al. [RWR98] study the formulation of efficient QP
solvers for MPC problems with such structure.

3I.e., ax = b⇔ {ax ≤ b and ax ≥ b} .
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5.2.2 Using the model equation to substitute for the plant states

When using a ’standard’ QP solver for dense (i.e., non-sparse, ordinary) matrices, the
computational demands generally increase rapidly with the number of optimization
variables. In such cases it is generally advisable to formulate the MPC problem with
as few degrees of freedom as possible in the optimization. To this end, the model
equality constraints (5.13) are used to eliminate the future states from the problem
formulation. To simplify notation, we express (5.13) as

IA (χ+ xref ) = A0x0 + B̃ (v + uref ) + Ẽδ

Noting that IA always is invertible, we solve for χ:

χ = I−1
A

(
A0x0 + B̃(v + uref ) + Ẽδ

)
−xref = Âx0 + B̂(v+uref )+ B̂dδ−xref

(5.15)
Next we use the superposition principle, which states that the total effect of sev-

eral inputs can be obtained simply by summing the effects of the individual inputs.
The superposition principle is always valid for linear systems, but typically does
not hold for non-linear systems. This allows us to split χ into to components,
χ = χdev + χv . Here χdev is the deviation from the desired state trajectory that
would result, given the initial state x0 and assuming that the nominal reference input
uref is followed, and that the predicted future disturbances are correct. Similarly,
χv is the effect on the future state trajectory from the future deviations from the
reference input. The model equations then give

χdev = Âx0 + B̂uref + B̂dδ − xref (5.16)

χv = B̂v (5.17)

Adding (5.16) and (5.17) we get (5.15).
The objective function can be written as

f(x, u) = f(χdev, χv, v) = (χdev + χv)
T Q̂(χdev + χv) + vT P̂ v

= χTdevQ̂χdev + 2χTdevQ̂χv + χTv Q̂χv + vT P̂ v

which should be minimized using the vector v as free variables.
Thus, the objective function is in the form of a standard QP problem as defined in

Eqs. (5.1) and (5.2) if we define

H̃ = B̂T Q̂B̂ + P̂ (5.18)
cT = χTdevQ̂B̂

It now remains to express the constraints in the MPC problem in the form of a
standard QP problem. Using (5.16) and (5.17) to substitute the model equations into
the inequality constraints, we obtain

(M̂B̂ + N̂)v ≤ Ĝ− M̂(xref + χdev)− N̂uref (5.19)
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5.2.3 Optimizing deviations from linear state feedback

The main reason for using model predictive control is usually it’s ability to handle
constraints. If constraints are not a problem, linear state feedback (using e.q. LQ-
optimal control) would often be preferred. Indeed, if no constraints are active, many
MPC formulations can be shown to be equivalent to linear state feedback. This has
lead Rossiter [Ros03] to propose an MPC formulation where the degrees of freedom
in the optimization are the deviations from linear state feedback that are necessary to
adhere to the constraints. Thus, the input is parameterized as

ui − uref,i = K(xi − xref,i) + ci (5.20)

for some given state feedback controller K. Here ci are the deviations from linear
state feedback that are to be minimized, and it is assumed that ci = 0 for i ≥ n. We
introduce the notation

K̂ = diag{K}; ĉ =
[
cT0 , c

T
1 , · · · , cTn−1

]T
Next, we use the model equations to express the future manipulated variables. When
using (5.15) one needs to keep in mind that v starts from time i = 0, whereas χ starts
from time i = 1. Thus we define

Â′ = the n first blocks of rows of

[
I

Â

]

B̂′ = the n first blocks of rows of

[
0

B̂

]

B̂′d = the n first blocks of rows of

[
0

B̂d

]

x′ref = the n first blocks of rows of

[
xref,0

xref

]

where the ′ sign should not be confused with the transposition of the matrix. Future
plant inputs may thus be expressed as

v = K̂
(
Â′x0 + B̂′(v + uref ) + B̂′dδ − x′ref

)
+ ĉ (5.21)

Rearranging, we obtain

v = (I − K̂B̂′)−1K̂
(
Â′x0 + B̂′uref + B̂′dδ − x′ref

)
+ (I − K̂B̂′)−1ĉ (5.22)

where we note that (I − K̂B̂′) is always invertible since B̂′ have all non-zero ele-
ments below the main diagonal. It is trivial (but tedious if done by hand) to substitute
(5.22) into (5.18) and (5.19) to obtain the corresponding standard QP formulation in
terms of the new optimization variables ĉ. It can be shown (e.g., [Ims07]), that if the
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controller K is chosen as the LQ-optimal regulator according to (5.98) for the state
weight Q and input weight P , then one ends up with H̃ = diag(BTSB + P ) and
c = 0 in (5.1), where S is the solution to the Riccati equation (5.98) that has to be
solved to find the controller K.

5.2.4 Constraints beyond the end of the prediction horizon

For time n to n+ j, it is relatively straight forward to use the model equation (5.3),
together with the specified input usage (usually (ui − uref,i) = K(xi − xref,i)) to
express the states for i > n and plant inputs for i ≥ n in terms of the predicted
state xn, predicted input and state references uref,i and xref,i and predicted future
disturbances di. Thus, constraints in states and inputs for i ≥ n can be expressed
as constraints on xn. Thus, all constraints specified in (5.6) are well defined, even
though the prediction horizon is of length n.

Many of these state constraints at time n representing state or input constraints in
the interval n ≤ i ≤ n + j may be redundant. One would ideally like to remove
redundant constraints to ensure that the optimization problem is as small as possible.
This can be done using the procedure described in Appendix 2. However, in appli-
cations where references (uref,i and xref,i) or disturbances di vary, one will either
have to determine redundant constraints on-line (prior to the optimization), or only
remove constraints that are always redundant, i.e., constraints that are redundant for
all conceivable values for uref,i, xref,i and di, for i ≥ n.

This is not as hopeless as it may seem. The constraints are linear, and this allows
us to check for redundancy only at the extreme values of the variables. Furthermore,
the prediction horizon is also commonly chosen sufficiently long for the plant to
reach steady state, and thus it is reasonable to assume that uref,i = uref,n, xref,i =
xref,n and di = dn, for i ≥ n. This will reduce the number of variables that need to
be considered.

Furthermore, if the control is supposed to remove offset at steady state, the ref-
erences have to be consistent, i.e., at steady state (denoted by subscript ss), input
uref,ss and disturbance dss must result in the state xref,ss. Normally, one would
consider dss and xref,ss as independent variables, and uref,ss as a dependent vari-
able. Calculating consistent steady state references for given disturbances is the task
of the target calculation, addressed in Section 5.8.

Many control problems are formulated based on the assumption that the reference
values for states and inputs are zero, and reference changes are implemented by
’shifting the origin’ for the deviation variables. However, the constraints are typically
independent of the references, and shifting the origin will result in a corresponding
shift in the constraints. Thus, shifting the origin does not remove the problem of
variable references when constraints have to be considered.

5.2.5 Finding the terminal constraint set

The purpose of the terminal constraint set is to ensure that optimizing over horizon
of n steps does not lead to future optimization problems with no feasible solution.
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Furthermore, one of the ways of ensuring closed loop stability with MPC, is to design
the MPC to correspond to a stabilizing, unconstrained state feedback controller (i.e.,
(ui−uref,i) = K(xi−xref,i, again) after the prediction horizon n. However, for the
MPC to correspond to the unconstrained state feedback controller, the state feedback
controller must not violate any constraints.

Thus, we want the predicted state at i = n to lie within a set within which the state
feedback controller does not violate any constraints, and the state feedback controller
should be able to keep the state within that set for all i > n. Ideally, we would like to
identify the largest such set in the state space, since this leads to the largest feasible
region for a given prediction horizon n.

This set is known as the maximal output admissible set, often denoted O∞. The
properties and the determination of O∞ are studied by Gilbert and Tan [GT91]. We
will assumed that the state constraints in (5.6) constitute a closed and bounded poly-
hedron in the state space, and that the origin is in the interior of this polyhedron.
Operation arbitrarily far from the origin is of no practical interest, and if the assump-
tion above is not fulfilled it is therefore possible to add very lax state constraints to
fulfill the assumption. This allows us to use the results of [GT91] for rather straight
forward determination of the terminal constraint set.

Let Ot denote the set in the state space for which the constraints are feasible over
t time steps using the state feedback controller. Obviously, O∞ ⊆ Ot+1 ⊆ Ot. We
will use the following results from [GT91]:

R1 O∞ is closed and bounded (and is convex due to the linearity of the constraints).

R2 O∞ is finitely determined if O∞ = Ot for finite t. For the cases studied here,
O∞ is finitely determined by construction.

R3 If Ot = Ot+1 then O∞ = Ot.

This leads to the following algorithm for determination of O∞:
Algorithm 1. Maximal Output Admissible Set.

1. Set t = 0, and let O0 be parameterized by (5.6) for k = n. The constraints
considered should be both the state constraints, and the constraints on the states
implied by the input constraints, due to the use of the state feedback controller.
That is, let

Mn′xn +Nn′un ≤ Gn′

represent the state and input constraints we wish to impose at the end of the pre-
diction horizon - without consideration of any additional constraints included in
the terminal constraint set in order to ensure recursive feasibility. Substituting
for the state feedback controller, this can be expressed as

(Mn′ +Nn′K)xn ≤ Gn′ +Mn′xref +Nn′Kuref

As noted above, if this set of constraints in the state space does not consti-
tute a bounded set, we can add additional lax state constraints to make the set
bounded.
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2. Increment the time index t, and express the constraints at time t in terms of xn,
using the system model (5.3) and the equation for the state feedback controller.

3. Remove any redundant constraints for time t. If all constraints for time index t
are redundant, Ot−1 = Ot, and hence O∞ = Ot−1. Stop. Otherwise, augment
the set of constraints describingOt−1 by the non-redundant constraints for time
t to define Ot. Go to Step 2.

Due to R2 above, this algorithm will terminate in finite time for the problems consid-
ered here. Checking for redundancy of constraints is also straight forward for linear
systems subject to linear inequality constraints, as explained in Appendix 2.

For problems where references or disturbances may vary, it is necessary to verify
the redundancy of the constraints for all combinations of extreme values of these
variables, as explained in the preceding subsection. The determination of O∞ for
systems with disturbances has been addressed in [KG95].

5.2.6 Feasible region and prediction horizon

It was explained above that in order to guarantee closed loop stability, we will want
the state at time xn to lie within the maximal output admissible setO∞. The feasible
region for an MPC controller is therefore the set of states from which the state can be
brought to O∞ in n steps, without violating any constraints. The feasible region for
a given n and givenO∞ can be found using Fourier-Motzkin elimination (Appendix
1), as noted in [KM00]. However, the Fourier-Motzkin procedure produces a num-
ber of redundant constraints which subsequently has to be removed. To minimize
this problem, it is recommended to start from a prediction horizon n = 0 (i.e., the
feasible region = O∞) and gradually increment the prediction horizon, and remove
redundant constraints along the way. Efficient calculation of feasible sets for MPC
is furter described in [SOH11].

5.3 Step response models

In industrial practice, process models based on step response descriptions have been
very successful. Whereas step response models have no theoretical advantages, they
have the practical advantage of being easier to understand for engineers with little
background in control theory.

With a soild understanding of the material presented above, the capable reader
should have no particular problem in developing a similar MPC formulation based
on a step response model. Descriptions of such formulations can also be found in
available publications, like Garcia and Morshedi’s [GM86a] original paper present-
ing ”Quadratic Dynamic Matrix Control”. Alternatively, step response models may
also be expressed in state space form (with a larger number of states than would be
necessary in a ”minimal” state space model), see e.g. [HLM93] for details.
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The reader should beware that step-response models have ”finite memory”, and
hence should only be used for asymptotically stable processes, that is, processes
where the effect of old inputs vanish over time. Most industrially successful MPC
controllers based on step response models are modified to handle also integrating
processes, whereas truly unstable processes cannot be handled. Handling unstable
processes using step response models would require more complex modifications to
the controllers and model description, and would thereby remove the step response
model’s advantage of being easy to understand.

Partly due to these reasons, MPC controllers are seldom used on unstable pro-
cesses. If the underlying process is unstable, it is usually first stabilised by some
control loops, and the MPC controller uses the setpoint of these loops as ”manipu-
lated variables”.

In academia, there is widespread resentment against step response models - and
in particular against their use in MPC controllers. Although there are valid argu-
ments supporting this resentment, these are usually of little practical importance for
asymptotically stable processes - although in some cases the computational burden
can be reduced by using a state space model instead. Indeed, the MPC formulation in
(5.6) and (5.6) can easily be modified such that the step response coefficients appear
in the intermediate calculations, by formulating the MPC problem using the outputs
yk and the change of inputs ∆uk = uk − uk−1 instead of the state xk and the input
uk. The step response coefficients will then occur when relating the outputs y to the
change in inputs ∆u.

Step response identification is another matter. A step input has Laplace transform
u(s) = k

s , and hence excites the process primarily at low frequencies. The resulting
model can therefore be expected to be good only for the slow dynamics (low fre-
quencies). If medium to high bandwidth control is desired for an MPC application,
one should make sure that any identification experiment excites the process over the
whole desired bandwidth range for the controller.

5.4 Updating the process model

The MPC controller essentially controls the process model, by optimizing the use
of the inputs in order to remove the predicted deviation from some desired state (or
output) trajectory. Naturally, good control of the true process will only be obtained
if the process model is able to predict the future behaviour of the true process with
reasonable accuracy. Model errors and unknown disturbances must always be ex-
pected, and therefore it will be necessary to update the process model to maintain
good quality predictions of the future process behaviour.

The design of state estimators or -observers is itself a vast area, and is the subject
of numerous books. Furthermore, this is an area that has seen a lot of interesting
developments recently. No attempt will therefore be made at giving a comprehen-
sive treatment of this subject. Instead, a short description of techniques that are
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particularly relevant for MPC applications will be given - but readers are certainly
encouraged to obtain more thorough insight elsewhere.

5.4.1 Bias update

For asymptotically stable systems, a particularly simple model updating strategy is
possible for MPC formulations that only use process inputs and measurements in the
formulation (i.e., when unmeasured states do not appear in the objective function
or in the constraints). In such cases, it would be natural to calculate the predicted
deviations from the desired output trajectory (which may be called, say, ψdev), rather
than the predicted deviations from the desired state trajectory χdev. Then, the model
can be ’updated’ by simply adding the present difference between process output and
model output to the model’s prediction of the future outputs. This is known as a ’bias
update’, and is widespread in industrial applications. Note, however, that the bias
update

is only applicable to asymptotically stable systems, and may result in poor con-
trol performance for systems with slow disturbance dynamics, and that

it may be sensitive to measurement noise. If a measurement is noisy, one
should attempt to reduce the noise (typically by a simple low-pass filter) before
calculating the measurement bias.

Note that the bias update is a simplistic way of estimating a disturbance at the output,
see Section 5.5.2.

5.4.2 Kalman filter and Extended Kalman Filters

The Kalman filter is probably the model updating technique of choice for the ’purist’,
as it is ’optimal’ in the sense of minimizing the variance of the estimation error for
linear systems subject to Gaussian noise4.

In order to present the Kalman filter equations, some nomenclature must be intro-
duced:

4The use of ’inverted commas’ around purist and optimal should not be interpreted as any disregard
of control theory. One should, however, keep in mind that most real-life systems are not linear, and
that Gaussian noise cannot capture all the observed differences between model predictions and actual
observations. Despite these reservations, the Kalman filter has proven valuable in numerous applications.
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x̂k|k−n The n step ahead prediction of the state at time k.

x̂k|k−1 The 1 step ahead prediction of the state at time k, i.e., the best

estimate of the state at time k using information available up to and

including time k − 1 (also known as the a priori estimate).

x̂k|k The estimate of the state at time k, accounting for information

available up to and including time k

(also known as the a posteriori estimate).

wk State excitation noise at time k, assumed to be normally distributed

with zero mean, and to have no correlation between values at

different times k.

vk Measurement noise at time k, also assumed to be normally

distributed with zero mean, without correlation in time.

W Variance of the state exitation noise w.

V Variance of the measurement noise v.

Πk|k−n Variance in the state estimate for time k, when accounting for

information up to and including time k − n.

Πk|k Variance in the state estimate for time k, when accounting for

information up to and including time k.

Π0 = Π0|0 Variance in initial state estimate (given or estimated).

The state

excitation noise and measurement noise are included in the plant model as follows:

xk+1 = Axk +Buk + Ewk (5.23)
yk = Cxk + vk

The Kalman filter equations are then given by (see, e.g., [AEBH69]):

x̂k+1|k = Ax̂k|k +Buk (5.24)

Πk+1|k = AΠk|kA
T + EWET (5.25)

Πk+1|k+1 = Πk+1|k −Πk+1|kC
T (CΠk+1|kC

T + V )−1CΠk+1|k (5.26)
(5.27)

When the measurement yk+1 is obtained, this is used to update the state estimate:

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − Cx̂k+1|k) (5.28)

where Kk+1 is the Kalman filter gain at time k + 1, and is given by

Kk+1 = Πk+1|k+1C
TV −1 (5.29)

From (5.25) we see that the uncertainty (represented by the variance of the state
estimate) in stable states reduces with time, and that the uncertainty for unstable
states increase. Similarly, the same equation tells us that the state excitation noise
increases uncertainty. Equation (5.26) shows that the uncertainty is reduced by taking
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new measurements, but the reduction in uncertainty is small if the measurement noise
is large. All this does of course agree with intuition.

Provided some technical assumptions are met (like detectability - all unstable
states must show up in the measurements), the variances will converge to steady
values, which may be found by setting Πk+1|k = Πk|k−1 and Πk+1|k+1 = Πk|k.
Equations (5.25, 5.26) then give

Πk+1|k = AΠk+1|kA
T +AΠk+1|kC

T (V +CΠk+1|kC
T )−1CΠk+1|kA

T +EWET

(5.30)
and the corresponding steady state value of Πk|k can be found from (5.26), and the
steady state Kalman gain from (5.29).

Although it is natural to assume that the state estimates are more uncertain ini-
tially, it is quite common to ignore the transient behaviour described by (5.25, 5.26),
and only use the steady state solution to the Kalman filter. Software for calculating
the steady state Kalman filter is readily available, (5.30) is cumbersome and difficult
to solve by hand for systems with more than one state.

5.4.2.1 Augmenting a disturbance description In many applications, assuming
disturbances (represented by the state excitation noise, w), to be a sequence of zero
mean, normally distributed, independent impulses (a ’white noise’ description) is
a poor representation of how disturbances actually enter the system. Often, there
is strong temporal correlation in how disturbances affect system states and outputs.
Such disturbances may be modelled by augmenting states representing the slow dis-
turbance dynamics to the plant model. A good representation of disturbance dynam-
ics is often a crucial element in achieving good closed-loop control performance.

A Kalman filter using an augmented disturbance description is often termed an
Augmented Kalman Filter (AKF). In section 5.5.2 an example of a state space model,
augmented with integrating states to represent disturbances both at the plant inlet
and at the plant outlet, is shown in (5.93 - 5.95). When augmenting the model with
integrating states, it is important that the augmented model is detectable. This point
is further elaborated in section 5.5.2.

5.4.2.2 The Extended Kalman Filter The Extended Kalman Filter (EKF) is an
extension of the Kalman filter to non-linear systems. Although this extension seems
quite natural and sensible, it is nevertheless somewhat ad hoc.

We start from a non-linear plant model, with additive measurement noise:

xk+1 = f(xk, uk, wk) (5.31)
yk = h(xk, uk) + vk (5.32)

Equation (5.31) is used directly (assuming wk = 0) to calculate x̂k+1|k. Similarly,
(5.32) is used to calculate ŷk+1|k (using vk+1 = 0, x̂k+1|k, and uk)5. The value of

5Normally, the state estimate is updated before a new input is calculated, and therefore the input which
is applied when the measurement yk+1 is obtained is actually uk (assuming that a ’zero order hold’ is
used).
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ŷk+1|k then enters instead of Cx̂k+1|k in (5.28). On the other hand, the propagation
of estimate variances (5.25, 5.26) and calculation of the Kalman filter gain (5.29) are
done with local linearizations of the nonlinear model. Thus, we use:

Ak =
∂f

∂x

∣∣∣∣
wk=0,x̂k|k,uk

(5.33)

Bk =
∂f

∂u

∣∣∣∣
wk=0,x̂k|k,uk

(5.34)

Ek =
∂f

∂w

∣∣∣∣
wk=0,x̂k|k,uk

(5.35)

Ck+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k,uk

(5.36)

The EKF is commonly used for state estimation for nonlinear plants, and often per-
forms well if the linearization is a fairly accurate approximation to the non-linear
system over a single time step.

5.4.2.3 The Iterated Extended Kalman Filter The Iterated Extended Kalman Fil-
ter (IEKF) is and attempt to enhance the ability of the EKF to handle non-linearity.
We note that Ck+1 in (5.36) is obtained by linearizing around the a priori state es-
timate x̂k+1|k. If the system is strongly non-linear, the resulting value of Ck+1 may
therefore be inaccurate, and a more accurate linearized measurement equation may
be obtained by linearizing around the a posteriori estimate x̂k+1|k+1 - once that
estimate is available. Further iterations would allow forther improvements in state
estimation accuracy.

To present the IEKF, we will need a second subscript on several of the matri-
ces in the EKF formulation, as well as the a posteriori state estimate. This second
subscript represents the iteration number (at time k + 1), with iteration number 0
representing the initial EKF calculations. Thus, from the initial EKF calculations we
have x̂k+1|k,0 = h(x̂k|k,N , uk) and Πk+1|k, where N is the number of iterations of
the IEKF at each timestep. For iteration i at time k + 1 the IEKF calculations then
proceed as follows:

Ck+1,i =
∂h

∂x

∣∣∣∣
x̂k+1|k+1,i−1,uk

(5.37)

Kk+1|i = Πk+1|kC
T
k+1,i

(
Ck+1,iΠk+1|kC

T
k+1,i + V

)−1
(5.38)

Πk+1|k+1,i = (I −Kk+1,iCk+1,i)Πk+1|k (5.39)
x̂k+1|k+1,i = x̂k+1|k (5.40)

+ Kk+1,i

[
yk+1 − h(x̂k+1|k+1,i−1, uk)− Ck+1,i(x̂k+1|k − x̂k+1|k+1,i−1)

]
The calculations proceed a predetermined number of iterations, or terminate when

the change in state estimate between subsequent iterations is sufficiently small. At
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that point, after N iterations, one specifies

x̂k+1|k+1 = x̂k+1|k+1,N

Πk+1|k+1 = Πk+1|k+1,N

which allows initiating the IEKF at time k+2 using the ordinary EKF. Although it is
no general rule, it is often found that most of the improvement in the state estimate is
achieved with a low number of iterations in the IEKF - often only one iteration after
the EKF calculations.

5.4.3 Unscented Kalman filter

The Unscented Kalman Filter is a more recent modification to the Kalman filter, to
better handle nonlinear models. The UKF avoids using a local linearization of the
nonlinear model, but instead uses the model directly to propagate state estimates and
(approximations of) probability distributions forward in time. Although not many
industrial applications are reported, it seem that the UKF compares well with the
more common EKF, in particular when the nonlinearities are pronounced. The pre-
sentation of the UKF in this note is based on Simon [Sim06], who gives an accessible
introduction to both traditional state estimation and more recent developments in the
area, and includes extensive references to the state estimation literature.

For simplicity of presentation, we assume that both the state excitation noise w
and the measurement noise v enter the equations linearly, i.e.

xk+1 = f(xk, uk) + wk (5.41)
yk = h(xk) + vk (5.42)

The noises w and v are both assumed to be zero mean, normally distributed, with
known covariances W and V , respectively. Let n denote the number of states in the
model (the dimension of the state vector x).

The UKF is initialized with known (or assumed) initial values for the mean value
of the state x0|0 and the state covariance Π0|0.

The UKF then proceeds as follows:

Propagate the mean state estimate from time k − 1 to time k. Instead of propa-
gating the mean value x̂k−1|k−1 directly through the system dynamics, 2n per-
turbed state values are perturbed, to better capture how the system non-linearity
affects the mean.

1. Select the perturbed states as follows:

x̂
(i)
k−1 = x̂k−1|k−1 + x̃(i) i = 1, . . . , 2n (5.43)

x̃(i) =
(√

nΠk−1|k−1

)T
i

i = 1, . . . , n (5.44)

x̃(n+i) = −
(√

nΠk−1|k−1

)T
i

i = 1, . . . , n (5.45)
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where
(√

nΠ
)
i

denotes the i’th row of the matrix square root of nΠ, de-

fined such that (
√
nΠ)T (

√
nΠ) = nΠ. The matrix square root may be

calculated by the Matlab functions sqrtm or chol6. These perturbed state
values x̂(i) are often termed sigma points.

2. Propagate each sigma point through the system dynamics:

x̂
(i)
k|k−1 = f(x̂

(i)
k−1, uk−1) (5.46)

3. Combine the points x̂(i)
k|k−1 to obtain the a priori state estimate:

xk|k−1 =
1

2n

2n∑
i=1

x̂
(i)
k|k−1 (5.47)

Calculate the a priori state covariance estimate:

Πk|k−1 =
1

2n

2n∑
i=1

(
x̂

(i)
k|k−1 − xk|k−1

)(
x̂

(i)
k|k−1 − xk|k−1

)T
+W (5.48)

Implement the measurement equation.

1. Determine new sigma points around xkk−1:7

x̂
(i)
k = xk|k−1 + x̃(i) i = 1, . . . , 2n (5.49)

x̃(i) =
(√

nΠk|k−1

)T
i

i = 1, . . . , n (5.50)

x̃(n+i) = −
(√

nΠk|k−1

)T
i

i = 1, . . . , n (5.51)

2. Pass each of the new sigma sigma points through the measurement equation:

ŷ
(i)
k = h(x̂

(i)
k ) (5.52)

3. Calculate the predicted measurement at time k:

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k (5.53)

6The matrix square root is not uniquely defined (even for the positive definite covariance matrices con-
sidered here), and the two functions may therefore give different results. This is thought to be of little
consequence here.
7This step may be omitted, and the propagated sigma points x̂(i)

k|k−1
calculated above used instead, if

reducing the computational load is essential.
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Estimate the measurement covariance:

Πy,k =
1

2n

2n∑
i=1

(
ŷ

(i)
k − ŷk

)(
ŷ

(i)
k − ŷk

)T
+ V (5.54)

Estimate the cross covariance between the state estimate x̂k|k−1 and the mea-
surement estimate ŷk:

Πxy,k =
1

2n

2n∑
i=1

(
x̂

(i)
k|k−1 − xk|k−1

)(
ŷ

(i)
k − ŷk

)T
(5.55)

The a posteriori state estimate and covariance are now obtained from

Kk = Πxy,kΠ−1
y,k (5.56)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk) (5.57)

Πk|k = Πk|k−1 −KkΠy,kK
T
k (5.58)

Remark: Note that the UKF applies also to time-varying systems. Both the
system dynamics f(·), the measurement equation h(·) and the noise covariances W
and V may be time varying (as long as they are known).

Many feedback systems are characterized by continuous-time system dynamics
and discrete-time control and estimation. For such systems, so-called ’hybrid’ EKFs
have been developed, see, e.g., Simon [Sim06]. Note that for the UKF the functions
f(·) and h(·) need not be explicitly given as discrete-time functions - they may just
as well result (implicitly) from the integration of ordinary differential equations. It is
therefore rather straight forward to apply the UKF also to continuous-time systems
with discrete-time estimation and control.

In some cases the state excitation noise and the measurement noise may enter
non-linearly, i.e., we have

xk+1 = f(xk, uk, wk) (5.59)
yk = h(xk, vk) (5.60)

In such cases, the state vector x can be augmented with the noise vectors, giving

xak =

xkwk
vk

 (5.61)

x̂a0|0 =

x̂0|0

0

0

 (5.62)

Πa
0|0 =

Π0|0 0 0

0 W 0

0 0 V

 (5.63)
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Thus the UKF procedure described above can be used. Note, however, that the state
excitation noise wk and the measurement noise vk are now accounted for when cal-
culating the sigma points. Therefore W should not be added when calculating the a
priori covariance estimate nor should V be added when calculating the measurement
covariance.

The IEKF and UKF are both modifications of the (E)KF for the purpose of im-
proved handling of nonlinearity. Another such modification is the second-order EKF
(see, e.g., [Sim06]). This author is not aware of systematic comparisons of perfor-
mance and computational requirements for these state estimation methods. Clearly,
the UKF can be computationally rather demanding, if propagating the sigma points
through (5.41) is demanding. This can occur, e.g., if f(·) in (5.41) results implicitly
from the integration of a high order, stiff continuous-time model. However, for such
problems, the rigorous propagation of the covariance matrix Π for a hybrid (contin-
uous - discrete) EKF is also likely to be demanding.

5.4.4 Receding Horizon Estimation

Receding Horizon Estimation (RHE, a.k.a. Moving Horizon Estimation, MHE) is
inspired by the success of MPC in control problems where constraints are important.

There are also many estimation problems where knowledge about the plant is
easily formulated as constraints, and where such constraints will improve on the
plant knowledge that is captured by the model alone. An opinion commonly held in
academia seems to be that a sufficiently detailed plant model will capture all relevant
constraints. Whereas this may be true (and often relatively straight forward to cap-
ture) in a simulation model, the way models are used in estimation may often destroy
such model features. Two examples:

The EKF uses a local linearization of the plant model, and the state update may
easily result in infeasible state estimates.

When propagating probability distributions for the UKF, the states are per-
turbed. These perturbed states may be infeasible.

There does exist approaches for ensuring feasible state estimates both for the EKF
and the UKF, usually involving the ’projection’ of the state estimate onto a feasible
region of the state space. However, it may be better to embed the knowledge about
what state estimates are possible directly into the state estimation. In such cases,
RHE seems to be an obvious choice.

We assume as before that the state excitation noise and measurement noise are
zero mean, independent and normally distributed, with covariances W and V , re-
spectively. We also assume that an estimate x̂0 of the initial state is available, with a
known covariance Π0.

At time k, a natural formulation of the state estimation problem would then be to
solve
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min
x̃,w,v

(
(x̂0 − x̃0)TΠ−1

0 (x̂0 − x̃0) +

k∑
i=1

vTi V
−1vi + wTi−1W

−1wi−1

)
(5.64)

subject to constraints

x̂0 given

yi given; i = 1, · · · , k
ui given; i = 0, · · · , k − 1

yi = Cx̃i + vi; i = 1, · · · , k (5.65)
x̃i+1 = Ax̃i +Bui + Ewi; i = 0, · · · , k − 1 (5.66)
XL ≤ x̃i ≤ XU ; i = 0, · · · , k (5.67)

Here

x̃ =
[
x̃T0 · · · x̃Tk

]T
w =

[
wT0 · · · wTk−1

]T
v =

[
vT1 · · · vTk

]T
(5.68)

One may also put constraints explicitly on wi and vi. Note, however, that when both
wi and vi (or x̃i and vi) are constrained, outliers in measurements, etc., may result
in an infeasible optimization problem.

The optimization problem above is called a ’Full Information’ problem, at each
step in time it accounts for all the information that is available at that time. Convert-
ing the Full Information problem to a standard QP should not be difficult, following
the lines of what was done above for the MPC formulation. However, one problem
is apparent: the size of the optimization problem grows without bounds as time pro-
gresses. The typical way of handling this problem, is to consider only a ’window’ in
the recent past in the optimization problem. The information available from the time
before the start of the current window is accounted for by a weight on the given state
estimate at the beginning of the window.

Below, the problem formulation for a fixed window length of N timesteps is pre-
sented. Following what is conventional in the literature, the time indices on the
variables are changed to reflect ’standing at time t = k and looking backwards in
time’, rather than ’standing at time t = 0 and looking forward in time’. This gives
the following problem formulation:

min
x̃,w,v

(x̂k−N − x̃k−N )TS(x̂k−N − x̃k−N ) (5.69)

+

N∑
i=1

(
vTk−N+iV

−1vk−N+i + wTk−N−1+iW
−1wk−N−1+i

)
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subject to constraints

x̂k−N given

yk−N+i given; i = 1, · · · , N
uk−N+i given; i = 0, · · · , N − 1

yk−N+i = Cx̃k−N+i + vk−N+i; i = 1, · · · , N (5.70)
x̃k−N+i+1 = Ax̃k−N+i +Buk−N+i + Ewk−N+i; i = 0, · · · , N − 1(5.71)

XL ≤ x̃k−N+i ≤ XU ; i = 0, · · · , N (5.72)

Clearly the definitions of x̃, w and v need to be modified:

x̃ =
[
x̃Tk−N · · · x̃Tk

]T
(5.73)

w =
[
wTk−N · · · wTk−1

]T
(5.74)

v =
[
vTk−N+1 · · · vTk

]T
(5.75)

(5.76)

Note that

The problem formulation above reflects the situation where, at each timestep,
the state estimation is performed after receiving new measurements, before the
MPC calculations are performed. Thus, the MPC calculations are performed
with the a posteriori state estimate as a initial condition. To reduce computa-
tional delay before a new manipulate variable is available, one may instead in
the MPC use the a priori state estimate as the initial condition - and at each
timestep perform the MPC calculations before the state estimation. This may
be particularly relevant for some nonlinear MPC problems, where the model
at each timestep is linearized around a predicted future state and input trajec-
tory. Using the a priori state estimate in the MPC allows the linearization and
subsequent problem formulation to be performed ’at the end of the previous
timestep’ rather than before solving the MPC optimization ’at the start of the
new timestep’.

In the problem formulation above, the effect of v0 is assumed accounted for in
the estimate x̂0, and v0 therefore does not enter the optimization problem.

Likewise, no effect of wk can be observed before time k + 1, and wk therefore
does not enter the optimization problem.

In the MPC formulation, the state constraints represent undesirable operating
conditions. In the estimation formulation, however, the state constraints rep-
resent impossible (or highly improbable) operating conditions - typically con-
straints such as ’the concentration of any chemical component cannot be nega-
tive’. That is, the state constraints typically are not the same in MPC and RHE.
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If an operating condition is undesirable, it is important to get away from that
operating condition as quickly as possible. Therefore, the RHE must be able
to detect such an operating condition - and the state constraint introduced in
the MPC to avoid the undesirable operating condition therefore should not be
included in the RHE.

5.4.4.1 The arrival cost In the RHE formulation above, the term (x̂k−N−x̃k−N )TS(x̂k−N−
x̃k−N ) accounts for the information hat has been available about the system before
the start of the estimation window. This term is often called the arrival cost. The
ideal arrival cost would make the fixed window length problem in (5.69-5.72) iden-
tical to the Full Information problem in (5.64-5.67). In general, we are not able to
determine such an arrival cost. The exception is the linear, unconstrained case, where
the Kalman filter can provide us with the arrival cost. However, the arrival cost also
depends on how information is passed between subsequent timesteps of the RHE,
which will be further explained in the next two subsections.

5.4.4.2 The filtering formulation of RHE In the filtering formulation of the RHE,
we use the estimate

x̂k−N = x̃k−N |x−N (5.77)

That is, x̂k−N is the (a posteriori) estimate obtained the first time the time instant
k − N was included in the estimation window, and is based only on information
available at time k −N . With this formulation, we use

S = Π−1
k−N |k−N (5.78)

where Πk−N |k−N is the a posteriori estimate covariance at time k −N .

5.4.4.3 The smoothing formulation of RHE In the smoothing formulation, we
use instead the most recent estimate of xk−N . Thus, at time k we use

x̂k−N = x̃k−N |k−1 (5.79)

This means that the estimate x̂k−N is ’smoothed’ (and improved) using measure-
ments obtained after time k −N . In this case, it has been shown (see, e.g., [RRL01]),
that the arrival cost should consist of two terms. The first term represents the uncer-
tainty (covariance) of the estimate x̂k−N , represented by Πk−N |k−1. The second
term is added to prevent the information in yk−N , · · · , yk−1 to be used twice (both
in x̂k−N and in the RHE calculations at time k).

To calculate the second term, we need the covariance of the estimate of the mea-

surement sequence YN−1 =
[
yTk−N+1 · · · yTk−1

]T
, given xk−N .

Manipulating the model equations, we get
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YN−1 =



CA

CA2

...
CAN−2

CAN−1


xk−N (5.80)

+


0 0 · · · 0 CB
...

...
...

...
...

0 0 CB · · · CAN−3B

0 CB · · · CAN−3B CAN−2B





uk−1

uk−2

...
uk−N+1

uk−N



+


0 0 · · · 0 CE

0 0
. . . CE CAE

...
. . . · · ·

. . .
...

0 CE · · · CAN−3E CAN−2E





wk−1

wk−2

...
wk−N+1

wk−N



+
[
0 I(N−1)·ny×(N−1)·ny

]


vk

vk−1

...
vk−N+1


Noting that YN−1 is independent of vk, this may be reformulated as

YN−1 −ON−1xk−N − B̃u = Ẽw + Ĩvk−1 (5.81)

where

Ĩ =
[
I(N−1)·ny×(N−1)·ny 0(N−1)ny×·ny

]
; vk−1 =


vk−1

...
vk−N


The variance of the left hand side of (5.81) (for a given xk−N ) and fixed u is therefore

S−1
2 = ẼW̃ ẼT + Ĩ Ṽ ĨT (5.82)

where W̃ = diag{W} and Ṽ = diag{V }.
The above expression clarifies some ambiguities in the expression in [RRL01].

Next, we need to account for the fact that the inputs u, although known, depend on
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the noises w and v. To express this dependency, we need to account for feedback in
both control and estimation. An explicit formulation of MPC and RHE would enable
accounting for the constraints active at each timestep. However, the explicit solution
often is not available, and the formulation would become both complex and time-
varying. Instead, we will assume that a ’conventional’ QP-based MPC formulation
is in use, which when constraints are not active corresponds to (an easily computable)
LQ-optimal controller K. Similarly, the state estimation will be represented by the
steady-state Kalman filter gain L.

The plant model, together with the (unconstrained) control and estimation, then
yields

xk+1|k+1 = Axk|k +Buk + L(yk − Cxk|k) + wk (5.83)
= (A+BK)xk|k + Lvk + wk

Starting from a given value of xk−N , we then obtain

uk−N = Kxk−N

uk−N+1 = K(A+BK)xk−N +KLvk +Kwk

uk−N+2 = K(A+BK)2xk−N +K(A+BK)Lvk +KLvk+1 +K(A+BK)wk +Kwk+1

uk−N+i = K(A+BK)ixk−N

+ K
[
I (A+BK) · · · (A+BK)i−1

]
Lvk−N+i + wk−N+i

...
Lvk−N + wk−N

 (5.84)

Thus, we get
uk−1

uk−2

...
uk−N

 = K̃



(A+BK)N−1

(A+BK)N−2

...
(A+BK)

I


xk−N

+ K̃



I (A+BK) · · · (A+BK)N−2 (A+BK)N−1

0 I (A+BK) · · · (A+BK)N−2

...
. . . . . . . . .

...

0 0
. . . I (A+BK)

0 0 · · · 0 I




Lvk−1 + wk−1

...
Lvk−N + wk−N



= K̃AKxk−N + K̃BKw + K̃BKL̃vk−1 (5.85)

Substituting (5.85) into (5.81) we obtain

YN−1 −
(
ON−1 + K̃AK

)
xk−N =

(
Ẽ + K̃BK

)
w +

(
Ĩ + K̃BKL̃

)
vk−1

(5.86)
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This corresponds to the arrival cost

Γ(x̃k−N ) = (x̂k−N − x̃k−N )TS1(x̂k−N − x̃k−N ) (5.87)

−
(
YN−1 −

(
ON−1 + K̃AK

)
x̃k−N

)T
S2

(
YN−1 −

(
ON−1 + K̃AK

)
x̃k−N

)
with

S−1
1 = Πk−N |k−1 (5.88)

S−1
2 =

(
Ẽ + K̃BK

)
W̃
(
Ẽ + K̃BK

)T
+
(
Ĩ + K̃BKL̃

)
Ṽ
(
Ĩ + K̃BKL̃

)T
(5.89)

To obtain the smoothed covariance Πk−N |k−1 we must first propagate the Kalman
filter covariances forward in time to obtain Πk−N+i|k−N+i and Πk−N+i|k−N+i−1.
The smoothed covariance is then obtained by propagating backwards from k − 1 to
k −N using the following relationships [AEBH69]:

ΠT−i|T = ΠT−i|T−i − ZT−i(ΠT−i+1|T−i −ΠT−i+1|T )ZTT−i (5.90)

ZT−i = ΠT−i|T−iA
TΠ−1

T−i+1|T−i (5.91)

starting with Πk−1|k−1 and T = k − 1.

5.4.5 Concluding comments on state estimation

It is clearly impossible to cover all relevant formulations of state estimators in a
chapter of this note. Other relevant and interesting estimator types include

The second order EKF[Sim06], mentioned briefly above.

The particle filter [Sim06]. This is essentially a Monte Carlo approach to state
estimation, and may be particularly relevant for systems where the probabil-
ity density function of the state estimate is multi-modal. For such systems it
is clearly misleading to represent the state estimation accuracy using the state
estimate covariance only.

The Ensemble Kalman Filter (EnKF), [Eve94, Eve03], a modification of the
Kalman filter for applications to systems of very high order, such as meteoro-
logical models and petroleum reservoir models.

In addition, there is also a large area of observer design for deterministic systems.
Another area that has not been addressed, is the practical implementation of the

state estimators, both for computational efficiency and robustness. For all of these
topics, the reader is referred to more specialized literature. The book by Simon
[Sim06] is proposed as a good place to look for information and references to other
works on many of these issues.
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5.5 Disturbance handling and offset-free control

In most control applications, the ability to handle disturbances is important. In ad-
dition, differences between the model and the actual plant will lead to erroneous
prediction, and hence to steady state offset.

Disturbances that can be measured directly, and whose effect on the controlled
variables are known, can be handled by feedforward, which is easily included in
MPC. This is addressed briefly in the next subsection.

Unmeasured disturbances and plant-model mismatch require integral action for
offset-free control at steady state. The simplest way of including integral action is
to formulate the MPC in terms of the changes in manipulated variables, as described
in Section 5.2, combined with a ’bias update’. Provided the actuation limits for the
manipulated variables are included in the constraints, to avoid windup, this is a fairly
straight forward way of achieving offset-free control.

The problem with this simple way of achieving offset-free control is that it can re-
sult in poor control performance. It implicitly assumes that the effects of disturbances
is modelled well as steps in the measured output. In many applications, disturbances
show dynamics over a significant timescale - typically the same timescale as for the
manipulated variables. That is, disturbances often enter at the plant inputs rather than
at the plant outputs. Good performance for MPC requires the effects of disturbances
to be modelled well. For disturbances entering at the plant inputs, the simple way of
introducing integral action described above will lead to poor performance in the face
of disturbances. A more general way of ensuring offset-free control, which is able to
handle disturbances entering both at the plant inputs and at the plant outputs, will be
described below. This is based on [MB02], where a more complete description may
be found.

5.5.1 Feedforward from measured disturbances

With MPC it is very simple to include feedforward from measured disturbances,
provided one has a model of how the disturbances affect the states/outputs.

Feedforward is naturally used to counteract the future effects of disturbances on
the controlled variables (it is too late to correct the present value). Thus, feedforward
in MPC only requires that the effect on disturbances on the controlled variables are
taken into account when predicting the future state trajectory in the absence of any
control action. Feedforward from measured disturbances is included in the MPC for-
mulation above, through the term B̂dδ in (5.15), where δ represents the present and
future disturbances. If no other information is available, it is usually assumed that the
future disturbances are equal to the present disturbance. Control performance will
of course be affected by the accuracy of this assumption. In some cases informa-
tion from upstream units, or knowledge of planned production changes, can provide
better information about future disturbances.

The benefit obtained by using feedforward will (as always) depend on what band-
width limitations there are in the system for feedback control. Furthermore, effective
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feedforward requires both the disturbance and process model to be reasonably accu-
rate.

5.5.2 Disturbance estimation and offset-free control

If offset-free control is desired, it is necessary to account for differences between the
model and the actual plant. This can be done by estimating unmeasured disturbances
affecting the plant. The ’bias update’ is a simple way of doing this, but it is often
desired to be able to account for more general disturbance dynamics. This is done
by augmenting the plant model with additional states di,k representing disturbances
entering at the plant inputs, and do,k representing disturbances entering at the plant
output. Thus, the augmented state space model becomes

x̃k+1 = Ãkx̃k + B̃uk + Ẽdk (5.92)
yk = C̃x̃k + Fdk

Here dk represent measured disturbances, whereas the estimated disturbances are
included in the augmented state vector x̃. The augmented state vector and the corre-
spondingly modified state space matrices are given by

x̃ =

 xdi
do

 (5.93)

Ã =

A Ei 0

0 I 0

0 0 I

 ; B̃ =

B0
0

 ; Ẽ =

E0
0

 (5.94)

C̃ =
[
C 0 Cdo

]
(5.95)

This model can be used for state estimation, using, e.g., a Kalman filter or Receding
Horizon Estimation. Muske and Badgwell [MB02] show that it is always possible to
chooseEi andCdo such that the augmented state space model is detectable, provided

the original model {C,A} is detectable, and

the number of estimated disturbance states (the sum of the number of elements
in di and do) is no larger than the number of independent measurements used
for estimation.

Naturally, the matrices Ei and Cdo, as well as the dimensions of di and do, should be
chosen to reflect the observed disturbance dynamics as well as possible. However,
unfortunate choices for Ei and Cdo may make the augmented model undetectable.

If {C,A} is detectable, detectability of the overall system is determined by

Rank

[
(I −A) −Ei 0

C 0 Cdo

]
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which should equal the number of states in the augmented model. From this is
derived a few conditions for detectability of the augmented system:

The augmented system {C̃, Ã} is not detectable if Ei and/or Cdo are not full
column rank.

The augmented system {C̃, Ã} is not detectable if the number of disturbance
states exceeds the number of linearly independent outputs.

The augmented system {C̃, Ã} is not detectable if the range of Ei contains an
unobservable mode of {C,A}.

The augmented system {C̃, Ã} is not detectable if the range of Cdo contains the
output space spanned by an integrating mode of A.

If a detectable augmented state-space model is used for estimation, the estimated
input disturbances di can be used just like measured disturbances in the MPC. That
is, the following state space equation should be used

xk+1 = Axk +Buk +
[
E Ei

] [ dk
di,k

]
(5.96)

while the output disturbances do affect the output directly without affecting the
states. In addition, one must ensure that the state references xref and manipulated
variable references uref are consistent at steady state with the steady state (measured
and estimated) disturbances and the input and output targets specified by higher lev-
els of the operational hierarchy. This is further addressed in the section on Target
calculation below. If the references are consistent at steady state, and the system is
stable in closed loop, the disturbance estimation scheme described above will result
in offset-free control at steady state8.

5.6 Feasibility and constraint handling

For any type of controller to be acceptable, it must be very reliable. For MPC
controllers, there is a special type of problem with regards to feasibility of the con-
straints. An optimization problem is infeasible if there exists no set of values for the
free variables in the optimization for which all constraints are fulfilled. Problems
with infeasibility may occur when using MPC controllers, for instance if the oper-
ating point is close to a constraint, and a large disturbance occurs. In such cases,
it need not be possible to fulfill the constraint at all times. During startup of MPC
controllers, one may also be far from the desired operating point, and in violation of
some constraints. Naturally, it is important that the MPC controller should not ’give

8The integrating disturbance models ensure that there is no steady state error in the predicted outputs,
while consistent target calculation ensures that the minimum of the MPC objective function corresponds
to inputs/states that achieve the specified output references.
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up’ and terminate when faced with an infeasible optimization problem. Rather, it
is desirable that the performance degradation is predictable and gradual as the con-
straint violations increase, and that the MPC controller should effectively move the
process into an operating region where all constraints are feasible.

If the constraints are inconsistent, i.e., if there exists no operating point where the
MPC optimization problem is feasible, then the problem formulation in meaningless,
and the problem formulation has to be modified. Physical understanding of the
process is usually sufficient to ensure that the constraints are consistent. A simple
example of an inconsistent set of constraints is if the value of the minimum value
constraint for a variable is higher than the value of the maximum value constraint.

Usually, the constraints on the inputs (manipulated variables) result from true,
physical constraints that cannot be violated. For example, a valve cannot be more
than 100% open. On the other hand, constraints on the states/outputs often represent
operational desireables rather than fundamental operational constraints. State/output
constraints may therefore often be violated for short periods of time (although pos-
sibly at the cost of producing off-spec products or increasing the need for mainte-
nance). It is therefore common to modify the MPC optimization problem in such a
way that output constraints may be violated if necessary. There are (at least) three
approaches to doing this modification:

1. Remove the state/output constraints for a time interval in the near future. This
is simple, but may allow for unnecessarily large constraint violations. Fur-
thermore, it need not be simple to determine for how long a time interval the
state/output constraints need to be removed - this may depend on the operat-
ing point, the input constraints, and the assumed maximum magnitude of the
disturbances.

2. To solve a separate optimization problem prior to the main optimization in the
MPC calculations. This initial optimization minimizes some measure of how
much the output/state constraints need to be moved in order to produce a fea-
sible optimization problem. The initial optimization problem is usually a LP
problem, which can be solved very efficiently.

3. Introducing penalty functions in the optimization problem. This involves mod-
ifying the constraints by introducing additional variables such that the con-
straints are always feasible for sufficiently large values for the additional vari-
ables. Such modified constraints are termed soft constraints. At the same
time, the objective function is modified, by introducing a term that penalizes
the magnitude of the constraint violations. The additional variables introduced
to ensure feasibility of the constraints then become additional free variables
in the optimization. Thus, feasibility is ensured by increasing the size of the
optimization problem.

The two latter approaches are both rigorous ways of handling the feasibility prob-
lem. Approach 3 has a lot of flexibility in the design of the penalty function. One
may ensure that the constraints are violated according to a strict list of priorites, i.e.,
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that a given constraint will only be violated when it is impossible to obtain feasibility
by increasing the constraint violations for less important constraints. Alternatively,
one may distribute the constraint violations among several constraints. Although
several different penalty functions may be used, depending on how the magnitude of
the constraint violations are measured, two properties are desireable:

That the QP problem in the optimization problem can still be solved efficiently.
This implies that the Hessian matrix for the modified problem should be positive
definite, i.e., that there should be some cost on the square of the magnitude of
the constraint violations.

That the penalty functions are exact, which means that no constraint violations
are allowed if the original problem is feasible. This is usually obtained by
putting a sufficiently large weight on the magnitude of the constraint violations
(i.e., the linear term) in the objective function.

The use of penalty functions is described in standard textbooks on optimization
(e.g. [Fle87]), and is discussed in the context of MPC in e.g. [dOB94, SR99, HB01].
A computational approach for designing penalty functions ensuring exact soft con-
straints is described in [HS14].

Feasibility at steady state is discussed in more detail in the section on ’Target
calculation’ below. The techniques used there closely resemble those that are applied
to the dynamic optimization problem in MPC, with the simplification that only steady
state is addressed i.e., there is no prediction horizon involved and the variation in
constraint violations over the prediction horizon is not an issue. Thus, only the
techniques of points 2 and 3 above are relevant for target calculation.

In addition to the problem with feasibility, hard output constraints may also desta-
bilize an otherwise stable system controlled by an MPC controller, see [ZM91]. Al-
though this phenomenon probably is quite rare, it can easily be removed by using
a soft constraint formulation for the output constraints [dOB94]. The following
section will discuss closed loop stability with MPC controllers in a more general
context.

5.7 Closed loop stability with MPC controllers

The objective function in Eq. (5.5) closely resembles that of discrete-time Linear
Quadratic (LQ) - optimal control. For stabilizable and detectable9 systems, infinite
horizon LQ-optimal control is known to result in a stable closed loop system. Note
that the requirement for detectability does not only imply that unstable modes must

9Stabilizability is a weaker requirement than the traditional state controllability requirement, since a sys-
tem is stabilizable if and only if all unstable modes are controllable, i.e., a system can be stabilizable
even if some stable modes are uncontrollable. Similarly, a system is detectable if all unstable modes are
observable.
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be detectable from the physical measurements (i.e., that (C,A) is detectable), but
also that the unstable modes must affect the objective function, i.e., (Q1/2, A) must
be detectable.

With the stabilizability and detectability requirements fulfilled, a finite horizon
LQ-optimal controller is stable provided the weight on the ’terminal state’, S, is
sufficiently large. How large S needs to be is not immediately obvious, but it is
quite straight forward to calculate an S that is sufficiently large. In the MPC context,
this can be done by designing a stabilizing state feedback controller K , and then
calculate the S that gives the same contribution to the objective function that would
be obtained by using the controllerK, and summing the terms (xi−xref,n)TQ(xi−
xref,n) from i = n to infinity. Since the controller K results in an asymptotically
stable system, this sum is finite, and hence S is finite. The value of S can be obtained
by solving a discrete Lyapunov equation

S − (A+BK)TS(A+BK) = Q+KTPK (5.97)
Note that if one chooses to use the infinite horizon LQ-optimal controller, solving
the Riccati equation gives both the controller K and the terminal state weight S:

S = ATSA+Q−ATSB(P +BTSB)−1BTSA (5.98)

and the corresponding controller is given by

K = −(BTSB + P )−1BTSA

With a sufficiently large S, obtained as described above, the remaining require-
ment for obtaining closed loop stability is that constraints can be fulfilled over the
infinite horizon. For the appropriately determined terminal constraint set, obtained
as described above, this condition is fulfilled provided the constraints are feasible
initially.

The above results on how the terminal cost and the terminal constraint set guaran-
tee stability are not very useful if, e.g., a step response model is used, since the values
of the states are then unavailable. Step response-based MPC controllers therefore
do not have a terminal state weight S, but rather extend the prediction of the outputs
further into the future than the time horizon over which the inputs are optimized (cor-
responding to np > nu in the comments following Eq. (5.6). Although a sufficiently
large prediction horizon np compared to the ”input horizon” nu will result in a stable
closed loop system (the open loop system is assumed asymptotically stable, since a
step response model is used), there is no known way of calculating the required np.
Tuning of step-response based MPC controllers therefore typically rely heavily on
simulation. Nevertheless, the industrial success of step response-based MPC con-
trollers show that controller tuning is not a major obstacle in implementations.

5.8 Target calculation

It is common for MPC controllers perform a ’target calculation’ prior to the main
optimization described above. The purpose of this target calculation is to determine
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consistent steady-state values for the state references xref,∞ and input references
uref,∞. Most MPC implementation have infrequently changing setpoints, and will
use reference values that are constant throughout the prediction horizon, i.e. xref,i =
xref,∞∀i and uref,i = uref,∞∀i. This covers industrial practice in the majority of
installations, but will not be applicable to some problems, e.g. batch processes or
cyclically operated plants. We will use a linear plant model, which is also common
industrial practice. Extending the following to non-linear plant models should in
principle not be difficult for the competent reader. However, performing the target
calculation at each timestep means that one should be concerned with being able
to do the calculations quickly and reliably, and using linear models makes it much
simpler to ascertain that will actually the case.

One prerequisite for offset-free control is that the minimum value of the objective
function is at the desired references, and to ensure that one desires that

(I −A)xref,∞ = Buref,∞ + Ẽd̃∞ (5.99)

yref = Cxref,∞ + F̃ d̃∞ (5.100)

Here yref,∞ is the desired steady state value of some variables, the desired values
of which are determined by higher levels in the operational hierarchy10.

The disturbance variable vector d̃∞ is the expected/predicted/estimated steady
state value of all disturbances affecting the process, i.e., it should contain the steady
state values of measured disturbances d, estimated input disturbances di, and esti-
mated output disturbances do. Thus,

d̃∞ =

 d∞di,∞
do,∞


Ẽ =

[
E Ei 0

]
F̃ =

[
F 0 Cdo

]

In the (rare) unconstrained case, and with as many inputs u as controlled outputs
y, the state and input targets can be found from a simple matrix inversion

10In general, the higher levels of the operational hierarchy may specify targets in terms of different mea-
surements than those that are used for control/estimation at the supervisory control level. In such cases, the
relationships between the variables used for supervisory control (including estimated output disturbances)
and the variables for which targets are specified, will need to be modelled.
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[
xref,∞

uref,∞

]
=

[
−(I −A) B

C 0

]−1 [
0 −Ẽ
I −F̃

][
yref,∞

d̃∞

]
(5.101)

= M−1

[
0 −Ẽ
I −F̃

][
yref,∞

d̃∞

]
(5.102)

Clearly, for the targets xref,∞ and uref,∞ to be well defined, the matrix M above
needs to be of full rank. Many factors may make it impossible to obtain the targets
by the simple calculations above:

There may be more inputs than outputs.

There may be more controlled variables than inputs.

In addition to desired values for the controlled variables, one may wish to keep
the inputs close to specific values.

Achieving the desired values for the controlled variables may be impossible (or
otherwise unacceptable) due to constraints.

When such problems are of concern (and if they are not, there is probably little
reason to use MPC in the first place), the target calculations are performed by solving
an optimization problem or a series of such problems. In the following, we will
use the subscript d to denote desired values of controlled variables y and inputs u,
whereas the subscript ref will still refer to the reference values or targets used in
the MPC calculations. The desired values are set by operators or higher level plant
optimization, whereas the MPC targets are the result of the target calculation.

The most straight forward formulation will cast the target calculation as a QP
problem:

min
xref,∞,uref,∞

(
yd − Cxref,∞ − F̃ d̃∞

)T
Q
(
yd − Cxref,∞ − F̃ d̃∞

)
(5.103)

+(ud − uref,∞)TW (ud − uref,∞) (5.104)

subject to given values for yd, ud and d∞ , the model equations Eq. (5.99) and
the relevant maximum and minimum value constraints on xref,∞ and uref,∞. The
matrix Q is assumed to be positive definite. A positive definite W will in general
result in offset in the controlled variables even in cases when the desired values
ŷd can be achieved. The matrix W may therefore be chosen to be positive semi-
definite. Muske [Mus97] shows how to specify a semi-definite W which does not
introduce offset in the controlled variables. Note, however, that when there are more
inputs than controlled variables, the number of inputs whithout any weight in the
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optimization problem must not exceed the number of controlled variables. Also, in
many cases there may be reasons for keeping the inputs close to a specified value,
and in such cases the inputs concerned should be given a weight in the optimization
problem above. Ideally, the target values should comply with the same maximum
and minimum value constraints as that of the MPC problem, c.f. Eq. (5.6), but
there may also be other constraints. Let us assume that all such constraints can be
described by the inequality

Ĥ

[
xref,∞

uref,∞

]
≥ b̂ (5.105)

Difficulties will arise whenever there is no feasible region in which the constraints
of Eq. (5.99) and Eq. (5.105) can all be fulfilled. This is indeed often the case when
operating in a highly constrained region (which is the major advantage of MPC),
but may also result from operators specifying overly stringent constraints. For any
sort of control to be feasible in such a case, it becomes necessary to relax some of
the constraints. It should be obvious that the process model Eq. (5.99) cannot be
relaxed, since it is given by the physics of the problem at hand. Likewise, most input
constraints are hard constraints that cannot be relaxed, such as actuator limitations.
On the other hand, many state or output constraints represent operational desirables
rather than physical necessities, and violation of such constraints may be possible
without putting the safety of the plant in jeopardy. Allowing violations in selected
constraints can be achieved by introducing additional variables into the optimisation
problem. Thus, instead of Eq. (5.103) we get

min
xref,∞,uref,∞,p

(yd − Cxref,∞ − F̃ d̃∞)TQ(yd − Cxref,∞ − F̃ d̃∞)(5.106)

+(ud − uref,∞)TW (ud − uref,∞) + lT p+ pTZp(5.107)

where l is a vector of positive constraint violation costs and Z is positive definite.
The vector p gives the magnitude of the constraint violations. The model equations
in Eq. (5.99) are assumed to hold as before, whereas the constraints in Eq. (5.105)
are modified to

Ĥ

[
xref,∞

uref,∞

]
+ L̂p ≥ b̂ (5.108)

p ≥ 0

The matrix L̂ determines which constraints are relaxed. Its elements will take the
values 0 or 1, with exactly one element equal to 1 for each column, and at most one
element equal to 1 for each row. If a row of L̂ contains an element equal to 1, this
means that the corresponding constraint may be relaxed.
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For a sufficiently large l, the optimal solution to Eq. (5.106) is also the optimal
solution to Eq. (5.103), provided a feasible solution for Eq. (5.103) exists.

The target calculation formulation in Eqs. (5.106 - 5.108) will distribute the con-
straint violations between the different relaxable constraints. If one instead wishes
to enforce a strict priority among the constraints, so that a given constraint is violated
only if feasibility cannot be achieved even with arbitrarily large constraint violations
in the less important constraints, this may be achieved by solving a series of LP
problems 11, followed by a QP problem for the target calculation. The following
algorithm may be used:

1. Simple inspection at the design stage will often ensure that the non-relaxable
constraints are always feasible. If not, it may be necessary to check that
there exists a feasible solution to the problem when only considering the non-
relaxable constraints. Set Ĥr to the rows of Ĥ corresponding to the non-
relaxable constraints, and b̂r to the corresponding elements of b̂. Set cr to[
0 0 1 · · · 1

]T
,where the leading zeros should be interpreted as zero

vectors of dimensions corresponding to the dimensions of the state and input
vectors, respectively. Solve the LP problem

min
xref,∞,uref,∞,p

cTr

xref,∞uref,∞

p


subject to the constraints

[
Ĥr I

]xref,∞uref,∞

p

 ≥ b̂r

p ≥ 0

If the optimal value for this LP problem is larger than 0, the non-relaxable con-
straints are infeasible, which would indicate serious mistakes in the constraint
specifications or abnormally large disturbances (the latter of which could affect
b̂r). Proceed to the next step in the algorithm if the non-relaxable constraints
are feasible, if not, there is reason to activate an alarm to get operator attention.

11A series of QP problems may sometimes be preferable, if one wishes to distribute constraint violations
between several constraints of the same importance. Using a QP formulation only affects the criterion
functions of the following optimization problems, not the constraints.
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2. Add the most important of the remaining relaxable constraints and find the min-
imum constraint violation in that constraint only which results in a feasible solu-
tion. This is done by adding the corresponding row of Ĥ and b̂ to Ĥr and b̂r, re-

spectively, using a scalar ’dummy variable’ p, and setting cr to
[
0 0 1

]T
The

zeros in cr are still zero vectors of appropriate dimension, whereas the 1 is
scalar. The LP problem to solve at this stage becomes

min
xref,∞,uref,∞,p

cTr

xref,∞uref,∞

p


subject to the constraints

Ĥr

0
...
0

1


xref,∞uref,∞

p

 ≥ b̂r

p ≥ 0

3. Move the contribution of the dummy variable p into b̂r. That is, set b̂r ←
b̂r +

[
0 · · · 0 1

]T
p. If there are more relaxable constraints, go to point 2

above.

4. When all constraints are accounted for, and a feasible solution is known to exist,
solve the QP problem for target calculation with modified constraints.

Instead of solving a series of LP problems, the solution may be found by solving a
single LP problem [Vad00]. However, the required LP problem is quite complex to
design. Although this design problem is solved off-line, it will need to be modified
whenever the constraint specifications change. At the time of writing, no reliable
software is known to exist for solving this LP design problem.

5.9 Speeding up MPC calculations

MPC is a computationally demanding controller type, which can limit its applicabil-
ity for systems requiring high sampling rates. Techniques for speeding up MPC cal-
culations may therefore be useful. Considering the wide range of MPC formulations
and application areas, it is not surprising that there are many different approaches to
speeding up the MPC calculations, such as
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Using an explicit MPC formulation [BMDP02, TJB03], where all possible op-
timization problems are solved at the design state. The result is a set of affine
state feedback controllers, each of which is valid in a specific region of the
state space (depending on what constraints are active in that region). The on-
line calculations are reduced to a simple table search to identify the affine state
feedback controller and the calculation of the corresponding manipulated vari-
able value12. Currently, the size of MPC problems that can be handled using an
explicit formulation is somewhat limited, due to very demanding offline compu-
tations and a large memory requirement for storing the resulting solution table.

In MPC for nonlinear systems, one may use special tools for the efficient calcu-
lation of gradients. These are not very relevant for MPC for linear systems.

One may use optimization solvers that utilize the structure of the problem to
speed up calculations, see, e.g.,[RWR98]. These techniques are most applicable
when both states and manipulated variables are kept as optimization variables,
as the resulting QP problem is highly structured with sparse matrices.

Here, we will instead focus on techniques that can be applied using standard,
off-the-shelf optimization solvers.

5.9.1 Warm-starting the optimization

Many optimization solvers will find the solution more quickly if one can provide a
good guess at what the solution will be13, so that the optimization solver can start
its search close to the actual solution. In MPC, the solution from the last timestep
is easily used to find such a good guess at the solution at the next timestep. The
solution at time k provides the predicted sequence of manipulated variables

uk =


u0,k

u1,k

...
uN−1,k

 .

Assuming that a terminal controller uN+i = KxN+i, i = 0, 1, . . . is used in the
MPC formulation, a reasonable guess for the solution at time k+1 would be obtained
by simply removing the first input in the sequence uk (the input that has already been
applied), and adding the feedback from the predicted state at time k + N at the end

12An affine state feedback controller is of the form u = Kx+ k, i.e., with a constant term in addition to
the linear state feedback.
13Interior point solvers will typically not benefit much from warm starting.
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of the sequence, giving

ũk+1 =



u1,k

u2,k

...
uN−1,k

Kxk+N |k


.

Clearly, this idea is easily generalized to formulations where states are included
among the optimization variables, or where the deviation from linear feedback is
used as optimization variables.

The main problem with the warm start is initialization: what to do when starting
up the MPC and we don’t have a previous solution? One may then

Require the plant to be at some known, ’calm’ state when starting the MPC,
for which a reasonable initial guess is available. For large plants, bringing it to
such a known, ’calm’ state may be very difficult (in particular without the help
of an advanced controller), but there are many smaller control problems where
this approach is reasonable.

Terminate the optimization solver prematurely if the optimum is not found in
the time available, and instead use a sub-optimal intermediate solution. It will
then depend on the particular solver whether such an intermediate solution is
even feasible. If the infeasibility occurs some timesteps into the future, one may
be lucky and be ’saved’ by improved optimization solutions at later timesteps.
However, it is only when a feasible solution is found at the first timestep that
we can guarantee feasibility at later timesteps and closed loop stability.

Allow the optimization at the first timestep to take longer time. This will mean
that the calculated manipulated variable will be implemented later than what
was assumed in the design of the MPC. This could again jeopardize feasibility
at later timesteps and thereby also closed loop stability.

Clearly, none of these approaches to initialization of the warm start is entirely sat-
isfactory, but it will be highly case dependent how severe the indicated problems
are.

5.9.2 Input blocking

The time to find a solution for most optimization problems is highly dependent on
the number of degrees of freedom - more degrees of freedom requires longer solution
times. For convex quadratic programming (which is most often used in MPC), the
solution time may grow linearly with the number of degrees of freedom for specially
tailored QP solvers, but may grow with the cube of the number of degrees of freedom
if a ’naive’ approach to solving the QP is used [RWR98]. In either case, fewer
degrees of freedom leads to faster QP solution, which is the motivation for input
blocking.
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Input blocking means that in the optimization formulation the input (manipulated
variable) is held constant over several timesteps (while state constraints are usually
imposed at each timestep). Thus, the number of degrees of freedom is reduced.
The same approach may also be used when optimizing the deviation from linear
state feedback - in this case it is the deviation from linear state feedback that is kept
constant over several timesteps (this is sometimes called offset blocking).

Note that it is only in the optimization formulation that the input is kept constant
over several timesteps. In operation the first element of the optimal input vector is
implemented at each timestep, and the input may therefore change at every timestep.

In input blocking, it is common to have short ’blocks’ in the near future, and
gradually longer blocks far into the prediction horizon. Apparently, the reason for
this is the expectation that most of the control action will be taken in the near future,
while less agressive control moves are made in the fare future, when it is expected
that the state is approaching the desired operating conditions.

Input blocking (and offset blocking) ruins guarantees for both recursive feasibility
and stability. This may or may not be a practical problem. Often, a blocking scheme
that appears to work is found using simulation studies - but there are no guarantees
that the same scheme will work with different disturbances or initial conditions than
what was used in simulations.

In [CGKM07] Moving Window Blocking (MWB) is proposed. The key point in
MWB is that the length of the last block varies from timestep to timestep, such that
recursive feasibility and stability can be guaranteed, see the original publication for
details.

5.9.3 Enlarging the terminal region

Recall the crucial role of the terminal region in proving stability of MPC. The ter-
minal region is positively invariant for the system when using the terminal controller
uk+N+i = Kxk+N+i, i ≥ 0, and no constraints are violated when using this ter-
minal controller inside the terminal region. The feasible region is the region from
which it is possible to reach the terminal region within the prediction horizon, while
adhering to the state and input constraints. Obviously, it is important that the feasible
region for the MPC is large enough to cover the states that are likely to occur in plant
operation. A longer prediction horizon will thus typically result in a larger feasible
region, since more timesteps can be used to reach the terminal region. However, a
longer prediction horizon will mean more degrees of freedom in the optimization,
and hence longer calculation times for the MPC. Conversely, if the terminal region
is enlarged, the required feasible region may be obtained with a shorter prediction
horizon. A method for enlarging the terminal region, due to Limon et al. [LAaC08],
will be described next. The method is focused on enlarging the terminal set for refer-
ences that remain constant for a significant time. Hence, the MPC objective in (5.5)
is re-stated for constant references
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min
u

f(x, u) =

n−1∑
i=0

{(xi − xref )TQ(xi − xref ) (5.109)

+(ui − uref )TP (ui − uref )T }
+(xn − xref )TS(xn − xref )

The expression of the corresponding constraints in (5.6) are modified by explicitly
including the model equations, and explicitly stateing that the terminal state should
lie inside the maximal output admissible set O∞:

x0 = given
xi+1 = Axi +Bui

Mixi +Niui ≤ Gi for 0 ≤ i ≤ n− 1 (5.110)
xn ∈ O∞

In [LAaC08], the terminal set is enlarged by introducing a feasible steady state xs
and corresponding feasible input us. The MPC objective does not weigh the devia-
tion from xref uref , but rather the deviation from xs and us. Then, an extra term is
introduced in the objective function to penalize the difference between xref and xs:

min
u,us,xs

f(x, u) =

n−1∑
i=0

{(xi − xs)TQ(xi − xs) (5.111)

+(ui − us)TP (ui − us)T }
+(xn − xs)TS(xn − xs) + VT (xref − xs)

where VT is some positive definite function of (xref − xs). A simple choice (which
allows the optimization problem to be solved as a standard QP problem) would be
a quadratic function (xref − xs)

TT (xref − xs) for some positive definite matrix
T . For simplicity, we assume that the state constraint are time invariant, and the
corresponding constraints are

x0 = given
xi+1 = Axi +Bui

xs = Axs +Bus

Mixi +Niui ≤ Gi for 0 ≤ i ≤ n− 1 (5.112)
xn ∈ Os∞, xs ∈ Os∞

The third equality constraint above ensures that xs and us are a steady state with
the corresponding input, while the two next inequalities ensure that xs and us are
feasible. The terminal set is changed to Os∞, which is larger than O∞ because the
terminal controller uses xs as a setpoint, i.e.,
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uk+n+i = K(xk+n+i − xs) + us; i ≥ 0. (5.113)

To calculate the setOs∞, let us first parameterize the subspace that xs and us must
lie in to correspond to a steady state. From the model equations, this is expressed
as14 [

(A− I) B
] [xs
us

]
= W

[
xs

us

]
=
[
0
]

(5.114)

Thus, xs and us must lie in the right null-space of the matrix W . The matrix W
has dimensions nx × (nx + nu). Denote the rank of W as nr. A convenient way
of obtaining a basis for the right null-space of W is to perform a singular value
decomposition of W = UΣV H . Let M be the last nx + nu − nr columns of the
output singular vector matrix V . Thus, if[

xs

us

]
= Mθ (5.115)

where θ is a vector of length nx + nu − nr, the steady state condition (5.114) is
fulfilled for all values of θ. Considering constant references, we might therefore
describe the closed loop system behaviour after the end of the prediction horizon in
the enlarged space of (x, θ), resulting in[

xs

θ

]
k+1

=

[
A+BK BL

0 I

][
xs

θ

]
k

= AW

[
xs

θ

]
k

(5.116)

where L =
[
−K I

]
M . Describe the state and input constraints as Hxx ≤

hx, Huu ≤ hu Define the convex polyhedral set Γλ, given by the inequalities[
Hx 0

0 Hu

][
I 0

K L

]
Aiw

[
x

θ

]
≤

[
hx

hu

]
; i = 0, 1, ... (5.117)[

Hx 0

0 Hu

]
Mθ ≤ λ

[
hx

hu

]
(5.118)

The set Γλ can be calculated as follows:

1. Define P0 as the polyhedron consisting of inequalities (5.117) for i = 0 and
(5.118).

2. Increment i, and define S the polyhedron consisting of inequalities (5.117) for
the new value of i.

14In [LAaC08] the authors also include the option of having xs and us fulfilling some additional ’target
output value’. This would add additional line(s) in (5.114). However, adding such output targets removes
degrees of freedom for maximizing the terminal set, and is therefore not included here.
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3. Define the polyhedron P1 as the intersection of polyhedra P0 and S.

4. If P1 = P0, set Γλ = P1 and terminate. Else set P0 = P1 and go to step 2.

These operations on polyhedra are simple to perform using appropriate software such
as the MPT toolbox for Matlab. The largest possible invariant set is found for λ = 1,
but unfortunately the procedure described above is not guaranteed to terminate in
this case. Instead, we have to choose λ = 1− ε for some small ε > 0, and calculate
the corresponding Γλ (in this case the calculations are guaranteed to terminate). The
resulting Γλ will be an inner approximation to the maximal invariant set in (x, θ)-
space, but for small values of ε the difference from Γ1 will not be significant. The
enlarged terminal set for use in MPC is found by the projection of Γλ onto x, i.e.,

Os∞ = projxΓλ

This projection may be conveniently done using software such as the MPT tool-
box for Matlab - or using the Fourier-Motzkin elimination described in Appendix
.

5.10 Robustness of MPC controllers

The term robustness, when used about an MPC controller, can refer to several differ-
ent aspects of controller functionality:

Robust feasibility. The MPC optimization problem should remain recursively
feasible in the face of model errors and disturbances.

Robust stability. The system should remain closed loop stable in the face of
model errors and disturbances. While for linear systems closed loop stability
can be investigated without taking constraints into account, we remember from
Section 4.8.4 that for constrained open loop unstable systems that disturbances
can indeed affect closed loop stability.

Robust performance. Beyond requiring robust stability, we would like the con-
trol performance to degrade ’gracefully’ in the fase of model errors and distur-
bances.

The main advantage of MPC controllers lie in their ability to handle constraints.
On the other hand, they may be sensitive to errors in the process model.

There are numerous works addressing each of the issues above, and a compre-
hensive coverage would require an entire monograph. Of most interest here is robust
stability, as this is the minimum requirement for the controller to be practically use-
ful. A number of approaches have been proposed in the literature, including

Optimizing the worst-case system response, as proposed by, e.g., [ZM93]. This
approach generally leads to very difficult min max optimization problems.
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Optimization over feedback policies, i.e., optimizing over the control law in-
stead of optimizing the input directly, as proposed by e.g., [KBM96]. This also
easily leads to complex online optimization formulations.

Robust MPC using tubes e.g., [LCRM04], where the MPC essentially only ad-
dresses the control of the nominal system, while an auxiliary controller ensures
robustness by keeping the true system in a ’narrow tube’ around the nominal
system. While the online computational requirements for this approach may be
less demanding than the other two approaches, the design of the robust auxiliary
controller goes beyond the scope of this book.

A more comprehensive presentation of robust MPC, with a focus on tube-based
MPC, can be found in [RM09]. Here we will instead focus on simpler industrial
approaches to robustness, while noting that in many practical cases the inherent ro-
bustness of feedback will provide the required robust stability and performance. A
first step towards accounting for the robustness of feedback in the MPC formulation
will be to optimize over the deviation from linear state feedback, as described above.

The potential robustness problems are most easily understood for cases when no
constraints are active, i.e., when we can study the objective function in Eq. (5.1) with
H and c from Eq. (5.18). We then want to minimize

f(v) = 0.5vT (B̂T Q̂B̂ + P̂ )v + χTdevÂ
T Q̂B̂v

with respect to v. The solution to this minimization can be found analytically,
since no constraints are assumed to be active. We get15

v = −(B̂T Q̂B̂ + P̂ )−1B̂T Q̂Âχdev

Clearly, if the model contains errors, this will result in errors in B̂ and Â, and
hence the calculated trajectory of input moves, v, will be different from what is ob-
tained with a perfect model. If the Hessian matrix B̂T Q̂B̂ + P̂ is ill-conditioned16,
the problem is particularly severe, since a small error in the Hessian can then re-
sult in a large error in its inverse. For a physical motivation for problems with
ill-conditioning consider the following scenario:

The controller detect an offset from the reference in a direction for which the
process gain is low.

To remove this offset, the controller calculates that a large process input is
needed in the low gain input direction.

Due to the model errors, this large input actually slightly ”misses” the low gain
input direction of the true process.

15Note that Q̂ = Q̂T , and that the assumptions onQ, S and P ensures that (B̂T Q̂B̂+ P̂ ) is of full rank,
and hence invertible.
16A matrix is ill-conditioned if the ratio of the largest singular value to the smallest singular value is large.
This ratio is called the condition number.
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The fraction of the input that misses the low gain direction, will instead excite
some high gain direction of the process, causing a large change in the corre-
sponding output direction.

Now, there are two ways of reducing the condition number of B̂T Q̂B̂ + P̂ :

1. Scaling inputs and states in the process model, thereby changing B̂.

2. Modifying the tuning matrices Q̂ and P̂ .

Scaling inputs and states (or outputs, if the objective function uses outputs in-
stead of states) is essentially the same as changing the units in which we measure
these variables. In some cases this sufficient, but some processes have inherent ill-
conditioning that cannot be removed by scaling.

In theory, one may use non-zero values for all elements in the tuning matrices
Q̂ and P̂ , with the only restriction that Q̂ should be positive semi-definite17 and P̂
should be positive definite (and hence both should be symmetric). However, little is
known on how to make full use of this freedom in designing Q̂ and P̂ , and in practice
they are obtained from Q ,P and S as shown in Eq. (5.7), and typically Q and P are
diagonal. It is common to try to reduce the ill-conditioning of the Hessian matrix by
multiplying all elements of P̂ by the same factor. If this factor is sufficiently large,
the condition number of the Hessian matrix will approach that of P - which can be
chosen to have condition number 1 if desired. However, increasing all elements of P̂
means that the control will become slower in all output directions, also in directions
which are not particularly sensitive to model uncertainty.

If the above ways of reducing the condition number of the Hessian matrix are in-
sufficient or unacceptable, one may instead modify the process model such that the
controller ”does not see” offsets in the low gain directions. Inherent ill-conditioning
(which cannot be removed by scaling) is typically caused by physical phenomena
which make it difficult to change the outputs in the low gain direction. Fortunately,
this means that disturbances will also often have a low gain in the same output direc-
tion. It may therefore be acceptable to ignore control offsets in the low gain output
directions. In terms of the MPC formulation above, the controller can be forced to
ignore the low gain directions by modifying B̂ by setting the small singular values of
B̂ to zero. This is known as singular value tresholding, since we remove all singular
values of B̂ that is smaller than some treshold. If we term this modified matrix B̂
for B̂m, we find that the trajectory of input moves calculated by the (unconstrained)
MPC optimization now becomes

v = −(B̂TmQ̂B̂m + P̂ )−1B̂TmQ̂Âχdev = −(B̂TmQ̂B̂m + P̂ )−1χm

Note that the conditioning of the Hessian matrix is not improved by setting the
small singular values of B̂ to zero, but the vector χm does not show any control

17The lower right diagonal block of Q̂, corresponding to the terminal state weight S, should be strictly
positive definite (and sufficiently large).
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offset in the corresponding output directions, and hence the vector v will contain no
input moves in the corresponding input directions.

Singular value tresholding is effective in improving robustness to model errors,
but it clearly causes nominal control performance (the performance one would get
if the model is perfect) to deteriorate, since the controller ignores control offsets in
some output directions. Removing too many singular values from B̂ will result in
unacceptable control performance. Also, one should take care not to remove control
offsets in directions corresponding to open loop unstable modes. For this reason,
singular value tresholding is usually applied only for open loop stable plants (or
plants that have been stabilized by some lower-level controllers).

5.11 Using rigorous process models in MPC

Most processes are inherently nonlinear. In some cases, rigorous dynamical models
based on physical and chemical relationships are available, and the process engineers
may wish to use such a model in an MPC controller. This would for instance have
the advantage of automatically updating the model when the process is moved from
one operating point to another.

To optimize directly on the rigorous model is not straight forward. Nevertheless,
over recent years there have been significant advances in many aspects of relevance
to this, including formulation of the optimization problem per se, efficient computa-
tion of derivatives, and preparing for efficient computations in the interval between
sample times. For a comprehensive presentation of these issues the reader is referred
to [RMD17].

The presentation below will only scratch the surface of how to use rigorous non-
linear models in MPC, with a focus on approaches that are relatively simple exten-
sions of standard MPC for linear systems.

Predict using the rigorous model. The simplest way of (partially) accounting
for non-linearity in the process model, is to calculate the deviation from the desired
state (or output) trajectory from a rigorous, non-linear model, whereas the other parts
of the optimization formulation uses a linearized model. In this way, the calculated
input trajectory v will to some extent account for the non-linearities.

Line search If greater accuracy is needed, one may do a line search using the

non-linear model to optimize what multiple of v should be implemented, i.e., perform
a search to optimize (while taking the constraints into account)

min
α
f(x, u) = min

α
f(x0, uref + αv) (5.119)

where α is a positive real scalar. Such line searches are a standard part of most
non-linear optimization methods, and are covered in many textbooks on optimization
e.g. in [Fle87]. When performing the minimization in Eq. (5.119) above, the full
non-linear model is used to calculate future states from (x0, uref + αv).
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Iterative optimization. Even with the optimal value of α, one probably has not
found the optimal solution to the original non-linear optimization problem. Still bet-
ter solutions may be found by an iterative procedure, where the predicted deviation
from the desired state trajectory xref is found using the best available estimate of
the future input trajectory. That is, for iteration number k, use the model to calcu-
late the resulting vector χdev,k when the input trajectory uref + vt is applied, where
vt =

∑k−1
l=0 vl, and minimize

min
vk

f(v) = (vt + vk)T (B̂T Q̂B̂ + P̂ )(vt + vk) + χTdev,kÂ
T Q̂B̂(vt + vk)

subject to constraints that should be modified similarly. It is also assumed that a line
search is performed between each iteration. The iterations are initialized by setting
v0 = 0, and are performed until the optimization converges, or until the available
time for calculations is used up. The iterative procedure outlined above need not
converge to a globally optimal solution for the original problem, it may end up in
a local minimum. Furthermore, there is no guarantee that this is a particularily
efficient way of solving the original optimization problem (in terms of the non-linear
model). It does, however, have the advantage of quickly finding reasonable, and
hopefully feasible, input sequences. Even if the optimization has to terminate before
the optimization has converged, a ’good’ input has been calculated and is available
for implementation on the process.

Linearize around a trajectory. If the operating conditions change significantly
over the time horizon (n) in the MPC controller, the linearized model may be a rea-
sonable approximation to the true process behaviour for only a part of the time hori-
zon. This problem is relatively rare when constant reference values are used, but may
be relevant when moving from one operating point to another. It is then possible to
linearize the process around the predicted process trajectory (xref+χdev) rather than
around a constant state. One then gets a time-varying (but still linear) model, i.e., a
”new model” for each time interval into the future. Conceptually, linearizing around
a trajectory does not add much complexity compared to linearizing around a con-
stant state, but it does add significantly to the notational complexity that is necessary
in the mathematical formulation of the optimization problem. Furthermore, unless
automatic differentiation routines are used, finding the required linearized models
may itself be computationally burdensome. Linearizing around a trajectory can be
combined with iterative optimization as outlined above - which would further add to
the computational burden.





CHAPTER 6

SOME PRACTICAL ISSUES IN
CONTROLLER IMPLEMENTATION

This short chapter will address a few practical issues in controller implementation
that can be crucial for achieving good control performance. For an experienced
control engineer at a production plant, the issues discussed here may be trivial and
self-evident. However, after having seen trivial mistakes in controller implementa-
tion leading to seriously reduced performance or controller malfunction, and having
heard tales of many more cases of the same, it appears necessary to address these
issues.

Suggestions and motivation for extending the list of issues are welcome.

6.1 Discrete time implementation

Although many controller design procedures use continuous-time plant and con-
troller descriptions, controllers are nowadays invariably implemented on digital com-
puters, resulting in a discrete time implementation. This gives rise to the two issues
that are briefly addressed below.
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6.1.1 Aliasing

Aliasing occurs when a high frequency signal (beyond the sampling frequency) ,
due to slow sampling, is interpreted as a low frequency signal (below the sampling
frequency. This phenomenon is easy to understand, simply by inspecting a figure
like Fig. 6.1. The continuous curve represents the high frequency signal, and the x’s
represent sampled values. Clearly, if the signal in Fig. 6.1 is a controlled variable in
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Figure 6.1: High frequency being mistaken for a low frequency signal, due to too
slow sampling.

a control loop, the controller will attempt to counteract the slow oscillations it sees
in the controlled variable. Since the true oscillation is at a frequency beyond the
sampling frequency, counteracting the oscillations by control is impossible, and the
controller will merely excite the plant without achieving improved control.

Once a continuous-time signal has been sampled, there is no way of distinguish-
ing low-frequency signal components due to aliasing from ’true’ low frequency sig-
nal components. High frequency signal components must therefore be removed from
the continuous-time signal, prior to sampling (also known as a ’presampling filter’).
Usually, the continuous-time signal from a measurement device is an electrical sig-
nal, and a presampling filter is made from a simple RC network with low pass char-
acteristics.



DISCRETE TIME IMPLEMENTATION 215

6.1.2 Sampling interval

Converting from a continuous- to a discrete-time control description is fairly stan-
dard, and covered in most books on digital control. Continuous-to-discrete con-
version is therefore not described here. We will only note that this can be done in
several different ways, among which discretization with zeroth order hold on the ma-
nipulated variables (assuming the manipulated variables to remain constant between
sampling instances) appears to be the more common, and to work well in most cases.

Many introductory books will also provide the following rule-of-thumb for select-
ing the sampling interval: The sampling interval should be at least ten times faster
than the closed loop bandwidth. Denoting the (continuous-time) crossover frequency
ωc, this means that the sampling interval ts should be chosen according to

ts ≤
2π

10ωc
(6.1)

This is not an absolute rule, slower sampling may be possible. Furthermore, adhering
to this rule is no guarantee against problems related to the discrete-time implementa-
tion. However, if slower sampling is attempted, there is particular reason for consid-
ering the possibility of performance degradation or even instability due to infrequent
sampling.

Sampling too fast is primarily a waste of computing power. For systems where
the computing power is limited, too fast sampling should therefore be avoided. Note
that emergency situations may put significantly higher demands on the computing
power of a control system than normal operations.

Most control functions in a large plant is implemented in a Distributed Control
System (DCS). The engineer will then not have full freedom in selecting the sam-
pling time, it has to be in integer multiples of the basic cycle time for the DCS. Con-
trol functions that require faster sampling than the basic sample time, will need to be
implemented in dedicated hardware. For some control problems, e.g., compressor
anti-surge control, this is often the case.

6.1.3 Execution order

Each time a controller executes, the following tasks have to be performed:

1. Read in new plant measurements.

2. Perform controller calculations, i.e., calculate new values for the manipulated
variable. For observer/state feedback type controllers, the observer or state esti-
mation calculations should be performed before the state feedback control cal-
culations.

3. Implement the new manipulated variable values.

Clearly, these tasks should be executed in the order indicated above. Executing the
tasks in the wrong order will introduce a totally unnecessary time delay into the
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control loop. With reasonable sampling intervals, a wrong execution order can be
very detrimental for control. Only if sampling is very fast compared to the closed
loop bandwidth, can one safely neglect this additional deadtime.

6.2 Pure integrators in parallel

Whereas a multiple integrators in series can be stabilized by a single feedback path,
the same is not true for integrators in parallel. Thus, if there are ni integrators in
parallel, and nm independent feedback paths (the number of independent feedback
paths often corresponds to the number of independent measurements or the number
of manipulated variables, whichever is lower), there will be ni − nm integrators that
are not possible to stabilize by feedback.

Often such integrators in parallel occur because of using several controllers (with
integral action), controlling the same measurement, while using different manipu-
lated variables. The safe way of implementing such parallel control can be found in
Section 2.2.7 and Fig. 2.7.

To better understand the problem with integrators in parallel, consider Figure 6.2.
The two integrating controllers integrate the opposite way of each other. The com-
bined effect on the output is zero. That is, the two integrators are not both observable
from the output (only their sum is), and they can therefore not both be stabilized by
feedback.

Plant

PI1

PI2

Input 1

Input 2

Output

Figure 6.2: Multiple integrating controllers with a single measurement.

There are at least three different reasons why two integrating controllers in parallel
may drift opposite ways, as illustrated in Fig. 6.2:

1. They may be given different setpoints. This is a rather stupid error that should
be avoided.
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2. The transmission of the feedback measurement may be affected by noise - and
by different noise values for the different controllers. This was a very common
problem with analog signal transmission, but is less of a problem with digital
communications.

3. The two controllers will in practice not execute simultaneously. It is possible
that the plant measurement is updated between the times when the two con-
trollers execute, and the measurement may be updated several times for each
time the controllers execute. The effect will be that the two controllers see
different measurement and quantization noises. The result will be that the con-
troller outputs drift. This cause for drifting controllers is every as likely with
modern control systems as with older systems.

6.3 Anti-windup

In virtually all practical control problems, the range of actuation for the control input
is limited. Whenever the input reaches the end of its range of actuation (the control
input is saturated), the feedback path is broken. If the controller has been designed
and implemented without regard for this problem, the controller will continue oper-
ating as if the inputs have unlimited range of actuation, but further increases in the
controller output will not be implemented on the plant. The result may be that there is
a large discrepancy between the internal states of the controller and the input actually
applied to the plant. This problem often persists even after the controlled variable
has been brought back near its reference value, and controllers that would work fine
with unlimited inputs or with small disturbances, may show very poor performance
once saturation is encountered.

The problem described is typically most severe when the controller has slow dy-
namics - integral action is particularly at risk (since a pure integration corresponds
to a time constant of infinity). An alternative term for integral action is ’reset ac-
tion, since the integral action ’resets’ the controlled variable to its reference value at
steady state. When the input saturates while there remains an offset in the controlled
variable, the integral term will just continue growing, it ’winds up’. The problem
described above is therefore often termed reset windup, and remedial action is cor-
respondingly termed anti-reset windup or simply anti-windup.

Anti-windup techniques remain an active research area, and no attempt is made
here to give an up-to-date review of this research field. The aim is rather to present
some important and useful techniques that should be known to practicing control
engineers.

6.3.1 Simple PI control anti-windup

A simple PI controller with limited actuation range for the control inputs (i.e., con-
troller outputs), may be implemented as illustrated in Fig. 6.3. Here, the actual input
implemented on the plant is feed back to the controller through the low pass filter
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1/(τIs + 1). If the actual plant input is not measured, it suffices to know the range
of actuation for the input. The actual input can then easily be calculated.

Kp

1
τIs+1

umax

umin
+

uu~
Saturation

yref - y

Figure 6.3: Simple anti-windup scheme for a PI controller.

From Fig. 6.3, it is easy to see that when the plant input is not saturated (when
ũ = u), we get

u = Kp
τIs+ 1

τIs
(yref − y) (6.2)

That is, we get the normal behaviour of a PI controller. On the other hand, consider
the case when the input is in saturation at its upper limit umax:

ũ = K(yref − y) +
1

τIs+ 1
umax (6.3)

The internal feedback path in the controller is now broken, there is no open integrator
in the controller, and the controller state goes to umax with a time constant τI . Thus,
the integrating state does not wind up. Note also that when the controller state has
reached its stationary value of umax, the controller output will stay at its maximum
value until the measurement y has crossed the reference value yref .

This anti-windup scheme is straight forward and simple to implement provided
any actuator dynamics is fast compared to the PI controller time constant τI .

6.3.2 Velocity form of PI controllers

The PI controller in (6.2) is in position form, i.e., the controller output corresponds
to the desired position/value of the plant input. Alternatively, the controller output
may give the desired change in the plant input.

Whereas the equations for PI controllers in position form are often expressed in
continuous time (even though the final implementation in a plant computer will be
in discrete time), the velocity form of the PI controller is most often expressed in
discrete time. Let the subscript denote the discrete time index, and ek = yref − yk
be the control offset at time k. The discrete time equvivalent of (6.2) may then be
expressed as

∆uk = uk − uk−1 =
T

τI
ek−1 +Kp(ek − ek−1) (6.4)
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where T is the sample interval. Here ∆uk represents the change in the plant input
at time k. If this change is sent to the actuator for the plant input, instead of the
desired position of the input, the windup problem goes away. This is because desired
changes that violate the actuation constraints simply will not have any effect.

The velocity form can also be found for more complex controllers, in particular
for PID controllers. However, derivative action is normally rather fast, and the effects
thereof quickly die out. It is therefore often not considered necessary to account for
the derivative action in anti-windup of PID controllers.

6.3.3 Anti-windup in cascaded control systems

For ordinary plant input, it is usually simple to determine the range of actuation. For
instance, a valve opening is constrainted to be within 0 and 100%, maximum and
minimum operating speeds for pumps are often well known, etc. In the case of cas-
caded control loops, the ’plant input’ seen by the outer loop is actually the reference
signal to the inner loop, and the control is typically based on the assumption that the
inner loop is able to follow the reference changes set by the outer loop. In such cases,
the ’available range of actuation’ for the outer loop may be harder to determine, and
may depend on operating conditions. An example of this problem may be a temper-
ature control system, where the temperature control loop is the outer loop, and the
inner loop is a cooling water flow control loop with the valve opening as the plant
input. In such an example, the maximum achievable flowrate may depend on up-
and downstream pressures, which may depend on cooling water demand elsewhere
in the system.

Possible ways of handling anti-windup of the outer loop in such a situation include

Using conservative estimates of the available range of actuation, with the pos-
sibility of not fully utilizing plant capacity in some operating scenaria.

The controller in the inner loop may send a signal informing the controller in
the outer loop when it is in saturation (and whether it is at its maximum or
minimum value). The controller in the outer loop may then stop the integration
if this would move the controller output in the wrong direction.

Use the velocity form of the controller, provided the reference signal for the
inner loop is calculated as present plant output + change in reference from outer
loop. If the reference signal is calculated as ’reference at last time step + change
in reference from outer loop’, windup may still occur.

For PI controllers, use the implementation shown in Fig. 6.3, where the ’plant
input’ used in the outer loop is the plant measurement for the inner loop.

Note that the two latter anti-windup schemes above both require a clear timescale
separation between the loops, otherwise performance may suffer when the plant input
(in the inner loop) is not in saturation. There is usually a clear timescale separation
between cascaded loops.
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6.3.4 A general anti-windup formulation

Consider a controller described by

v̇ = AKv +BKe (6.5)
ũ = CKv +DKe (6.6)

where v are the controller states, e are the (ordinary) controller inputs, and ũ is
the calculated output from the controller (desired plant input). The corresponding
controller transfer function may be expressed as

K(s)
s
=

[
AK BK

CK DK

]
= CK(sI −AK)−1BK +DK (6.7)

Anti-windup is commonly performed by adding another input to the controller. This
additional input is proportional to the difference between the calculated controller
output and its saturated value, as illustrated in Fig. 6.4. Note that the ’Actual actuator
position’ indicated in the figure may either come from a direct measurement of the
actuator position/value (preferable), or be calculated from knowledge of the range of
actuation for the manipulated variable(s) in question. Naturally, KK must be chosen
to make sI − (AK −KKCK) stable (and, typically, also fast).

KK

Control
offset

Integration
Saturation

_

+

+

+

DK

CK
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Calculated
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ve
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Figure 6.4: Illustration of a general anti-windup scheme.

Closer inspection of Fig. 6.4 will reveal that the indicated anti-windup setup may
allow for some (hopefully only slight) degree of windup. When anti-windup is im-
plemented as indicated in the figure, when saturation is active the dynamics of the
controller states will be

v̇ = AKv +BKe+KKz. (6.8)
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The steady state value of the controller states will therefore be a ’compromise’ be-
tween the effect of the control offset e and the effect of the anti-windup signal z.
If KK is large compared to BK , this ’compromise’ will be dominated by the anti-
windup signal z. However, this ’compromise’ may be avoided altogether by using
Hanus’ self-conditioned form.

6.3.5 Hanus’ self-conditioned form

In Hanus’ self-conditioned form [HKH87, SP05], a specific anti-windup gain KK is
chosen. Assume a linear controller is used, with state space realization as specified
in (6.6).

The corresponding implementation of the same controller in Hanus’ self-conditioned
form is illustrated in 6.5, where K̃(s) given by

ũ = K̃(s)

[
e

u

]

K(s)
s
=

[
AK −BKD−1

K CK 0 BKD
−1
K

CK DK 0

]
, (6.9)

corresponding to choosing KK = BKD
−1
K in Fig. 6.4

umax

umin

uu~

Saturation

e

~

Figure 6.5: Illustration of anti-windup with the controller K(s) implemented in its
self-conditioned form K̃(s).

From (6.9) we see that when the plant input u is not saturated, i.e., when ũ = u,
the controller dynamics are given by (6.6). When the plant input is saturated, the
steady state controller output will be

ũ = −CK(AK −BKD−1
K CK)−1u+De (6.10)

If BKD−1
K CK >> AK , we get

ũ ≈ u+DKe (6.11)

and thus the plant input will stay at its limit until the corresponding element of DKe
changes sign.



222 SOME PRACTICAL ISSUES IN CONTROLLER IMPLEMENTATION

Clearly, the use of this anti-windup methodology requires DK to be invertible,
and hence also of full rank. Thus, the controller must be semi-proper. The rate
at which the controller states converge towards the steady state solution (when in
saturation) is given by the eigenvalues of AK −BKD−1

K CK . This matrix obviously
has to be stable. A small (but non-singular)DK will generally make the convergence
fast.

In [HKH87], self-conditioning is presented in a more general setting, potentially
accounting also for time-varying or non-linear controllers. However, only in the case
of linear time-invariant controllers do the resulting controller equations come out in
a relatively simple form.

Although Hanus’ self-conditioned form avoids the ’compromise’ between the
control offset and the anti-windup signal, it can be quite cumbersome in some ad-
vanced controller formulations where may have to back-calculate a ’synthetic’ anti-
windup signal reflecting the range available to the controller states after account-
ing for other variables affecting the controller output. In such cases, the general
anti-windup formulation presented above allows for a much simpler implementation.
This may be illustrated by the next two subsections.

6.3.6 Anti-windup in observer-based controllers

Many advanced controllers are (or may be) implemented as a combination of static
state feedback controllers and a state observer/estimator. This is the case forLQG/H2-
optimal controllers as well as H∞-optimal controllers.

For such controllers, anti-windup is achieved by ensuring that the state observer/estimator
receives the actual plant input that is implemented on the plant. This is illustrated in
Fig. 6.6

In many applications it is desired to have offset-free control at steady state. This
requires the use of integral action. This is often incorporated in a state estimator/state
feedback control design as illustrated in Fig. 6.7.

The state estimator only estimates actual plant states, whereas the state feedback
is designed for a model where integrators (which integrate the control offset) are
appended to the plant model. When implementing the controller, the integrators are
a part of the controller (in the control system). The values of the integrators are thus
directly available in the control system, and clearly there is no need to estimate these
states.

However, when integration is incorporated in this way, the integrating states may
wind up even if the actual input values are sent to the state estimator. Figure 6.8
illustrates how to implement anti-windup for this case.

For comparison, Figure 6.9 illustrates how the anti-windup signal to the integra-
tors is calculated to represent the range of movement available for the integrating
states when Hanus’ self-conditioned form is used. The available ranges for the inte-
grating states have to be calculated from the other signals, i.e., the contribution from
the (actual) state feedback has to be subtracted from the saturated input.

Remark. Note that if Hanus’ self-conditioned form is used for the anti-windup,
this requires a non-singularD-matrix, resulting in a PI block instead of a purely inte-
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Figure 6.6: Illustration of anti-windup for controllers based on static state feedback
combined with state estimation.

grating block. The size of this D-matrix may affect controller performance (depend-
ing on how and whether it is accounted for in the ’state’ feedback control design).

6.3.7 Decoupling and input constraints

Decouplers are particularly prone to performance problems due to input constraints.
This is not easily handled by standard anti-windup, because much of the input usage
can be related to counteracting interactions. Therefore, if an output is saturated, but
other outputs are adjusted to counteract the effects of the ’unsaturated’ output, severe
performance problems may be expected.

One way of ensuring that the decoupler only tries to counteract interactions due to
the inputs that are actually implemented on the plant, is to implement the decoupler
as illustrated in Fig. 6.10.

The implementation in Fig. 6.10 is easily extended to systems of dimension higher
than 2 × 2. When the inputs are unsaturated, the ’Decoupler with saturation’ in
Fig. 6.3 corresponds to the decoupling compensator W (s) = G(s)−1G̃(s), where
G̃(s) denotes the diagonal matrix with the same diagonal elements as G(s). The
precompensated plant therefore becomes GW = G̃, i.e., we are (nominally) left
only with the diagonal elements of the plant.

Note that if the individual loop controllers ki(s) contain slow dynamics (which is
usually the case, PI controllers are often used), they will still need anti-windup. This
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Figure 6.7: State estimator and static state feedback augmented with integral action.
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Figure 6.8: Implementation of anti-windup for state estimator and static state feed-
back augmented with integral action.

is simple to do with the anti-windup setup in Fig. 6.4, by feeding back the difference
between the unsaturated and the saturated input for each loop. When using Hanus’
self-conditioned form, the contributions from the decoupling signals from the other
loops will have to be subtracted, in a way similar to what was described above for
state estimation based controllers with integral action.

6.3.8 Anti-windup for ‘normally closed’ controllers

Many controllers should have a manipulated variable that is at its saturation limit
during normal operation. A typical example would be control loops used for over-
pressure protection. In normal operation, the valve should be closed, while the con-
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back augmented with integral action using Hanus’ self-conditioned form.
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Figure 6.10: Implementation of decoupler in order to reduce the effect of input
saturation. The decoupler will only attempt to counteract interactions due to inputs
that are actually implemented on the plant.

trol loop should act quickly to vent gas from the vessel if a dangerously high pressure
should occur. Naturally, if the controller in the loop in question has integral action,
anti-windup will be necessary.

However, if the measurement contains significant noise, one may experience fre-
quent (slight) openings and subsequent closing of the valve. If, at a given timestep,
the integrator state is set to correspond to the saturated input, at the next timestep
measurement noise may cause the valve to open due to the proportional and/or



226 SOME PRACTICAL ISSUES IN CONTROLLER IMPLEMENTATION

derivative action in the controller. Measurement noise of the opposite sign, or the
integral action in the controller, will eventually close the valve again. This problem
is made worse by the fact that such control loops often are tuned quite fast, with
significant proportional (and possibly also derivative) action.

In order to handle this problem, one will typically have to trade off the need
for quick action when high pressure occurs, against the need to avoid unintended
opening of the valve in normal operation. In practice, this corresponds to setting an
artificial saturation limit slightly below the physical one, setting the controller states
in normal operation to correspond to a controller output of −ε instead of 0. If ε is
small, it will not take long for the controller to react in the case of overpressure.

6.4 Bumpless transfer

The term ’bumpless transfer’ refers to the ’bumps’ that may occur in the controller
output (and consequently in the plant output) when changing controller parameters,
switching between different controllers, or switching the control between manual
and automatic operation.

6.4.1 Switching between manual and automatic operation

If we want bumpless transfer in this case, we must ensure that the controller output
remains unchanged if the controller input is unchanged. For proportional controllers
this requires setting/modifying the bias on the controller output. For controllers with
dynamic states, the controller states must be set such that the states agree with both
the controller output prior to switching to manual and the observed plant outputs
prior to switching.

Assume that a discrete time implementation of the controller is used, and that
switching from manual to automatic occurs before executing the controller calcula-
tions at time k = 1.

Proportional control. The controller output bias is set such that the controller
output at time k = 0 (if the controller had been in automatic) equals the manual
controller output value for the plant output observed at time k = 0.

PI control. The calculation is similar to the case for proportional-only control.
However, in this case one has the choice of either calculating an output bias,
and set the integral (i.e., state) value to zero, or vice versa.

PID control. In this case, the controller output at time k = 0 must agree with
both the observed plant output at time k = 0 and the derivative of the plant
output at that time. As there are differences in how PID controllers are imple-
mented, particularly the derivative term, the detailed calculations are not de-
scribed further here.
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For SISO controllers with n states, it is generally necessary to consider the
n most recent plant outputs to calculate the controller states giving bumpless
transfer.

Note that

It is well known that integral action is generally needed to get offset-free control
at steady state. For controllers without integral action, setting the output bias to
an unfortunate value will make the steady state offset worse.

Bumpless transfer is irrelevant for PI controllers in the velocity form.

6.4.2 Changing controller parameters

The calculations are very similar to what is described for switching between manual
and automatic, the difference is only that the need for bumpless transfer arises for a
different reason.

6.4.3 Switching between different controllers

Many advanced controllers can be decomposed in a state estimator and a static state
feedback controller. Often different estimators/controllers are designed for different
operational regions or different modes of operation. In this case it is essential that
when switching to a new controller, the state estimates used are appropriate for the
state feedback controller used. Therefore, all state estimators should be run in paral-
lel - also the estimators corresponding to inactive controllers. The estimators should
receive the input that is actually implemented on the plant, which for estimators cor-
responding to inactive controllers typically means a plant input different from that
the corresponding state feedback controller would generate. This way, the estimator
can provide an updated state estimate when the corresponding controller is put in
operation. This is illustrated in Fig. 6.11.
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CHAPTER 7

CONTROLLER PERFORMANCE
MONITORING AND DIAGNOSIS

7.1 Introduction

It is a sad fact that many control loops in industrial processes actually degrade system
performance, by increasing the variability in the controlled variable rather than de-
creasing it. Still more control loops do actually work, but are very far from optimal.
Some causes for poor controller performance are:

Operating conditions have changed after the controller was tuned.

The actual process has changed, some process modifications have been made
after the controller was tuned.

The controller has never actually been tuned, it is still using the manufacturer’s
default tuning parameters.

A poor (or even inconsistent) control structure, causing severe interactions be-
tween control loops.

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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Some equipment in the control loop may be in need of maintenance or replace-
ment, e.g., faulty measurements, control valves with excessive stiction, severe
fouling in heat exchangers, etc.

There are many reasons why such a situation may be allowed to last. Often, plant
operators are aware of what parts of the process are oscillating or show large control
offsets. However, this information often stays with the operators, and they learn
to cope with the process as it is. The typical operator will lack the competence to
assess whether the observed control performance is much worse than what should
be expected. When asked a general question about whether control of the process is
acceptable, they may therefore very well confirm that the control is good even if that
is not the case.

The automation department of a large plant is often very small. The typical
automation department is fully occupied with keeping the various automation and
control system in operation, with little time for improving the performance of the
control system. Most industrial automation engineers are therefore also trained to
keep the control system running, and have little relevant background for evaluating
controller performance or improving controllers. After an initial commissioning
phase, most controllers are therefore ”left alone” for long periods.

Considering the large number of control loops in an industrial plant, there is a need
for tools which ensure efficient use of what little time is available for improving the
control system, that is, tools which help the engineer to

focus on where the control problems are most acute

quickly assess whether significant improvements are easily achievable, e.g. by
retuning the controller

diagnose the cause for poor control performance.

Here, Control Performance Monitoring (CPM) is understood as tools and system-
atic methods for

Assessing control loop performance, by comparison with a well-defined perfor-
mance benchmark.

Detecting oscillating control loops, and diagnosing the cause for oscillations.

Root cause analysis for distributed oscillations (i.e., when multiple loops are
oscillating, to arrange the loops into groups which oscillate in the same pattern,
and then locate - and preferably also diagnose - the cause for oscillation for each
of the groups).

In the open literature, the performance assessment part has received by far the
most attention. This issue was brought to the attention of the academic community
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by an influential paper by Harris [Har89] in 1989, although similar ideas had been
proposed earlier, e.g. by Fjeld [Fje]. These papers, as well as most publications on
performance assessment, consider performance assessment in a stochastic setting, by
comparing the observed variance in the controlled variable to the variable that can
be achieved by an ideal controller (typically a minimum variance controller). De-
terministic performance assessment has received much less attention, with Åström
et al. [ÅHPH92] and Swanda and Seborg [SS97] as exceptions. Another interest-
ing approach to performance monitoring is presented by Tyler and Morari [TM96],
who show how many performance specifications can be formulated as bounds on the
system’s impulse response coefficients. The performance monitoring then consists
of testing the relative likelihood of the system fulfilling the performance bounds,
compared to the likelihood of it not doing so.

Oscillation detection and diagnosis has received less attention. More recently
there has also appeared significant publications in the open literature on root cause
detection for distributed oscillations.

This report will first consider the issue of oscillation detection, and then address
oscillation diagnosis and root cause detection for distributed oscillations. The ra-
tionale for this is that loops with significant persistent oscillations will certainly fail
any performance assessment test, and should always be examined. Thereafter, per-
formance assessment is described. Issues relating to the relevance of a minimum
variance benchmark are discussed, and a brief discussion about requirements for
successful CPM is given. Finally, available techniques for CPM are discussed, with
a focus on issues that need to be clarified, and needs for further development in
analysis techniques.

There are some available literature surveys on Control Performance Monitoring,
notably by Qin [Qin98], Harris et al. [HSD99], and Jelali [Jel06]. Industrial experi-
ence is described in many papers, this authors favourites are probably the papers by
Kozub [Koz96] and Thornhill et al. [TOF99]. A recent update on multivariable CPM
is given by Shah et al. [SPH01]. The only textbook on the subject so far seems to
be that of Huang and Shah [HS99], a review of which can be found in [KS01]. On
the more specific topic of diagnosing plant nonlinearities, the book of Choudhury et
al. is an interesting source.

There are several commercial suppliers of CPM tools. However, there is rel-
atively little available in the open literature on how the CPM activities should be
organized and coordinated with other activities involved in plant operation in the
processing industries. Useful information on such issues is found in papers from
the CPM team at Honeywell, e.g. [DNM01, MD00]. Some of the complications in-
volved in correctly diagnosing control problems and proposing corrective measures
are illustrated in Owen et al. [ORBR96].
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7.2 Detection of oscillating control loops

For the trained human eye, detection of oscillations may seem a trivial task. How-
ever, it is far from trivial to define and describe oscillations in a typical signal from
a process plant in such a way that it can reliably be automated (in either on-line or
off-line tools). We will here present a few tools that have been proposed, but first
present some statistical tools. It is assumed that the signals under study are stable,
or at least only marginally unstable, as otherwise the control loops in question will
have to be taken out of service (and it should then be apparent that the control loop
needs attention). Any exponentially growing signal will eventually hit some system
constraint or cause some malfunction. Note that control loops are here classified as
oscillatory if they show an unacceptable tendency to oscillate, a perfect limit cycle is
not a requirement. Stable loops with insufficient damping will also be classified as
oscillatory in this context.

7.2.1 The autocorrelation function

The autocorrelation function is essentially a measure of how closely the values of a
variable, when measured at different times, are correlated. For a variable y and a
data set of N datapoints, the autocorrelation function is given by

ρk =

∑N−k
t=1 (yt − y)(yt+k − y)

(N − k)σ2
y

where σ2
y is the variance of y.

The autocorrelation function is 1 for lag 0, that is, ρ0 = 1. For stable signals, it
generally decays with increasing lags, whereas it will oscillate for systematically os-
cillating signals, and a periodic signal will have a periodic autocorrelation function.

In principle, one should be able to detect oscillations directly from the autocor-
relation function. However, it need not be so straight forward if the signal contains
multiple frequencies, measurement noise, assymmetric oscillations, etc. Nonlin-
ear effects may also introduce oscillations at frequencies that are multiples of the
base oscillation frequency. Nevertheless, Moiso and Piipponen [MP98] propose an
oscillation index calculated from the roots of a second order AR model fitted to the
autocorrelation function. The method of Miao and Seborg, which is described below,
is also based on the autocorrelation function.

7.2.2 The power spectrum

The power spectrum results from a Fourier transform of the autocorrelation function,
and in essence it is the frequency domain equivalent of the autocorrelation function.
If the signal exhibits a pure sinusoidal oscillation at a particular frequency, the power
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spectrum will have a peak at that frequency. An oscillation that does not decay
with time, will have a very large peak at that frequency in the power spectrum. The
problems of using the power spectrum for oscillation detection are similar to those
of using the autocorrelation function. Instead of the power spectrum having a single
spike at the oscillating frequency, the signal may be corrupted by noise and nonlinear
effects that the power spectrum is blurred or contains numerous spikes.

7.2.3 The method of Miao and Seborg

Miao and Seborg[MS99] uses the autocorrelation function to detect oscillations. It
calculates a somewhat non-standard ’decay ratio’, as illustrated in Fig. 7.1.

b

a


0


1


-1


Figure 7.1: Calculation of the Miao-Seborg oscillation index from the autocorrela-
tion function.

The Miao-Seborg oscillation index is simply the ratio given by R = a/b. Miao
and Seborg propose a treshold value of R = 0.5, a larger value will indicate (unac-
ceptable) oscillations. Little justification is provided for this measure. In particular,
it is not explained why this measure is better than simply comparing the magnitude
of neighbouring peaks in the autocorrelation function.

Nevertheless, industrial experience appears to be favourable, and oscillations are
detected with reasonable reliability. Some drawbacks are

it is somewhat complicated for on-line oscillation detection, it is better suited
for offline analysis of batches of data.

it does not take the amplitude of oscillations directly into account. Some oscil-
lations of small amplitude may be acceptable, but this method will classify also
loops with acceptable oscillation as oscillatory.

it assumes that the oscillations are the main cause of variability in the measured
variable. If a control loop experiences frequent (and irregular) setpoint changes
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of magnitude larger than the amplitude of the oscillations, it may fail to detect
the oscillations.

7.2.4 The method of Hägglund

Hägglunds measure[Häg95] may be said to be a more general measure of control
performance rather than an oscillation detection method. The basic idea behind
the measure is that the controlled variable in a well-functioning control loop should
fluctuate around the setpoint, and that long periods on one side of the setpoint is a
sign of poor tuning.

Hägglund’s performance monitor looks at the control error e(t) = r(t) − y(t),
and integrates the absolute value of e(t) for the period between each time this signal
crosses zero:

IAE =

∫ ti

ti−1

|e(t)| dt

where ti−1 and ti are the times of two consequtive zero crossings. Whenever this
measure increases beyond a treshold value, a counter is incremented, and an alarm
is raised when the counter passes some critical value. It is shown in [Häg95] how a
forgetting factor can be used to avoid alarms from well-functioning loops which are
exposed to infrequent, large disturbances (or setpoint changes).

Critical tuning parameters for this monitoring method are the IAE treshold value
and the counter alarm limit. Typical choices for the IAE treshold value are

IAElim = 2a/ωu

IAElim = aTI/π

where a is an acceptable oscillation magnitude, ωu is the ultimate frequency (the
oscillation frequency found in a closel loop Ziegler Nichols experiment), and TI is
the integral time in a PI(D) controller. The more rigorous of the two treshold values
is the first, and ωu would be available if the loop was tuned with e.g. Hägglund’s
relay-based autotuning procedure. However, often ωu will not be available, and the
second expression for IAElim will then have to be used - this expression is intended
to work as a reasonable approximation of the first expression for IAElim for a rea-
sonably tuned loop. Naturally, this may be misleading if the cause of poor control
performance is poor choice of controller tuning parameters.

The counter alarm limit is simply a tradeoff between the sensitivity of the moni-
toring method and the rate of ”unnecessary” alarms. This monitoring method is

Simple and appliccable for on-line implementation.

It takes oscillation amplitude into account - it is ignores small oscillations unless
the oscillation period is very long.
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Some tuning of the monitoring method must be expected. The guidelines for
choosing IAElim is based on knowledge of the ultimate frequency of the con-
trol loop - which typically is not known unless a Ziegler-Nichols type tuning
experiment or a Hägglund type autotuner is used. Alternatively, it is proposed
to base IAElim on the controller integral time - which is only reasonable if the
loop is well tuned.

7.2.5 The regularity index

Hägglund’s monitoring method is extended in [TH97] for off-line oscillation detec-
tion, resulting in a new oscillation measure called the regularity index.

To calculate the regularity index, the integral absolute error is calculated, and
when the control error crosses zero, the measure

IAEi
∆Tiσ

(7.1)

is plotted together with the time ti+1 for the most recent zero crossing. Here IAEi
is the integral absolute error between the two most recent zero crossings, ∆Ti is
the time between the zero crossings, and σ is an estimate of the r.m.s. value of the
noise. It is recommended to filter the measurements by estimating an AR model for
the measurement, and to base the analysis (calculation of IAE) based on a one step
ahead prediction from the AR model rather than the raw measurement. This will
reduce the influence of measurment noise, and the AR model estimation can also
give an estimate of the measurement noise, from which σ can be calculated.

Next, a treshold value ξ is chosen, and a regularity factor is derived from the time
intervals ∆ki between each time the measure in Eq. (7.1) crosses the treshold value.
Thus,

Ri =
∆ki+1

∆ki
; q(ξ) =

Mean value of R

Standard deviation of R
(7.2)

The regularity index is then

q = max
ξ
q(ξ) (7.3)

The period of oscillation is estimated from the number of times the measure in
Eq. (7.1) crosses the treshold ξ between the first and last instance of crossing the
treshold.

7.2.6 The method of Forsman and Stattin

This method also looks at the control error e(t) = r(t) − y(t), but it is strictly an
oscillation detection method and not a general performance measure. Forsman and
Stattin [FS99] proposes comparing both the areas between the control error and zero
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and the time span that the error has the same sign. However, the resulting area and
time span is not compared with the immediately previous area/timespan (when the
control error had opposite sign), rather the comparison is made with the preceding
period when the control offset had the same sign. This is illustrated in Fig. 7.2.

A0 A1
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B1

t0 t1 t2 t3 t4

e(t)

δ
0

δ
1

ε
0

ε
1

Figure 7.2: The oscillation detection method of Forsman and Stattin.

The method uses two tuning constants α and γ, that both should be in the range
between 0 and 1, and simply counts the number of times hA in a data set that

α <
Ai+1

Ai
<

1

α
and/or γ <

δi+1

δi

and the number of times hB that

α <
Bi+1

Bi
<

1

α
and/or γ <

εi+1

εi

where Ai, Bi, δi and εi are defined in Fig. 7.2. The oscillation index is then given
by h = (hA+hB)/N , whereN is the number of times in the data set that the control
offset crosses zero.

Forsman and Stattin recommend closer examination of loops having h > 0.4, and
if h > 0.8 a very clear oscillative pattern can be expected.
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7.2.7 Pre-filtering data

All methods presented above may be ineffective for noisy data, and both Miao and
Seborg [MS99] and Forsman and Stattin [FS99] discuss pre-filtering the data with a
low pass filter to reduce the noise. Thornhill and Hägglund [TH97] propose filtering
through using the one-step-ahead prediction from an AR model, as described previ-
ously. Clearly, the filter should be designed to give a reasonable tradeoff between
noise and oscillation detection in the frequency range of interest. The interested
reader should consult the original references for a more comprehensive treatment of
this issue.

7.3 Oscillation diagnosis

Once an oscillating control loop has been detected, it is naturally of interest to find
the cause of the oscillations, in order to come up with some effective remedy. There
is no general solution to the diagnosis problem, the proposed methods can at best
handle parts of the problem. We will present diagnosis procedures proposed by
Hägglund [Häg95, TH97], and passive procedures (that may be automated) for de-
tecting valve stiction proposed by Horch [Hor99].

7.3.1 Manual oscillation diagnosis

Hägglund [Häg95] proposes the manual oscillation diagnosis procedure presented in
Fig. 7.3

The main problem with this procedure is the assumption that if the oscillation
(in the controlled variable) stops when the controller in a particular loop is put in
manual, then the oscillation is caused by that loop. Often, oscillations arise from
multivariable interactions between loops, and the oscillation will then stop when any
one of these loops are put in manual. The first loop to be put in manual will then
receive the ”blame” for the oscillations, and will consequently be detuned (made
slower). Therefore, the results of this procedure will depend on the order in which
the loops are examined. If several loops show a similar oscillation pattern, one
should therefore first examine the loop for which slow control is more acceptable.

The procedure is also a little short on examining other instrumentation prob-
lems than valve friction (stiction), e.g., valve hysteresis, measurement problems,
etc. Furthermore, the procedure gives no proposals for how to eliminate external
disturbances. Clearly, the solution will be very dependent on the particular process,
but typically it will involve modifying the process or the control in other parts of the
process.

Additional flowcharts for oscillation diagnosis are presented in [TH97]. Some of
those flowcharts do not require putting the controller in manual. They also show
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Figure 7.3: Hägglund’s method for manual oscillation diagnosis.

how useful diagnostic information can be derived from plotting the controlled vari-
able (pv) vs. the setpoint (sp). Idealized plots for actuators with deadband, static
friction in actuator, oversized valve as manipulated variable, and a linear loop with
phase lag are shown. The use of such sp-pv plots is clearly limited to loops with
frequent setpoint changes, otherwise setpoint changes have to be introduced purely
for diagnostic purposes (i.e., the plant has to be disturbed).

Thornhill and Hägglund [TH97] also address nonlinearity detection (without fur-
ther classifying the non-linearity) using the regularity index and the power spectrum
for the controlled variable.

7.3.2 Detecting and diagnosing valve stiction

A commonly occuring problem with valves is that they can have a tendency to stick
due to stiction (short for ’static friction’). Once the controller applies sufficient force
to overcome the stiction and move the valve, the friction force drops dramatically
(since the ’dynamic’ friction is much smaller than the static friction). This results
in a large net force acting on the valve stem, causing a sudden move of it. It is well
known that such stiction can cause oscillations.

7.3.2.1 Using the cross-correlation function to detect valve stiction Horch
[Hor99] have developed a method for detecting stiction, based on measurements
of the controlled variable and the controller output. The method assumes that the
controller has integral action. The integral action will steadly increase the controller



OSCILLATION DIAGNOSIS 239

output, until the valve suddenly ”jumps” to a new position. Persistent oscillations
often result when the valve jumps too far, so that the controller has to stop the valve
movement and move it in the opposite direction. Stopping the valve causes it to
stick again, causing the sequence of events to repeat.

When there are problems with valve stiction, the controller output signal typically
has a sawtooth shape. The controlled variable is typically almost like a square wave,
especially if the dominant time constant of the process (in open loop) is much shorter
than the period of oscillation.

Horch found that the cross-correlation function between controller output and
controlled variable typically is an odd function1 for a system oscillating due to stic-
tion. On the other hand, if the oscillation is due to external disturbances, the cross-
correlation function is normally close to an even function. Unstable loops oscillating
with constant amplitude (due to input saturation) also have an even cross-correlation
function.

For a data set with N data points, the cross-correlation function between u and y
for lag τ (where τ is an integer) is given by

ruy(τ) =
N

(N − τ)

∑k1

k=k0
u(k)y(k + τ)∑N

k=1 u(k)y(k)
(7.4)

where the data series u(k) and y(k) should have their mean value removed before
calculating the cross-correlation, and

k0 = 1 for τ ≥ 0

k0 = τ + 1 for τ < 0

k1 = N − τ for τ ≥ 0

k1 = N for τ < 0

Note that the denominator in Eq. (7.4) is merely a normalization, giving ruy(0) =
1. It is not necessary for the stiction detection method.

Horch’ stiction detection method has been found to work well in most cases.
However, it fails to detect stiction in cases where the dominant time constant of the
(open loop) process is large compared to the observed period of oscillation. In such
cases the cross-correlation function will be approximately even also for cases with
stiction. This problem is most common with integrating processes (e.g., level control
loops), but may also occur for other processes with slow dynamics.

7.3.2.2 Histograms for detecting valve stiction Horch [Hor00, HI01] has pro-
posed an alternative method for stiction detection for integrating processes. Indus-
trial experience with this alternative method is not known. This method is patented
by ABB. The alternative method works by looking for abrupt changes in the process
output, by twice differentiating the measured process output. This is illustrated in
Fig. (7.4).

1Reflecting the 90◦ phase shift due to the integral action in the controller.
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Figure 7.4: Stiction detection by twice differentiating the process output.

It can be seen from the figure that twice differentiation a sinusoidal signal (with-
out any abrupt changes), results in a sinusoid. On the left of Fig. (7.4) is the output
of a pure integrator with a square-wave input, i.e., the typical input shape for a stick-
ing control valve. Twice differentiating this signal gives an output that is zero except
for periodic spikes of alternating sign. The stiction detection method for integrating
processes is therefore based on a histogram showing the relative frequency of oc-
curence of the various values for the twice-differentiated measurement signal. This
is illustrated in Fig. 7.5. Although the difference between the two histograms in Fig.
7.5 become less distinct in the presence of measurement noise, this method claimed
to work well also in the presence of measurement noise.

The same method of detecting stiction is also proposed also for asymptotically
stable plants [HI01] (for which the cross-correlation based stiction detection should
work well). In this case, the measurement signal should be more like a square
wave if the oscillations are caused by stiction, and the measurement signal is only
differentiated once prior to obtaining the histograms.

7.3.2.3 Stiction detection using an x-y plot The method involves plotting the

controller output (manipulated variable) vs. the controlled variable. If these two
variables tend to move in a closed path around an area where the curve seldom enters,
this is a sign of an oscillating control loop, where there is a phase lag (different from
n · 180◦) between input and output. If the x-y plot shows sharp ’corners’, this is
considered to be a sign of significant stiction. Without the sharp corners, there is no
cause for suspecting non-linearity (i.e., stiction) to be the cause of the oscillations,
since they may just as well be caused by poor tuning and random noise or oscillating
disturbances. The use of an x-y plot is illustrated in Fig. 7.6, where the blue curve
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Figure 7.5: Histograms for detecting stiction in integrating processes.

shows a case with stiction, and the red curve shows the same system without stiction.
The use of this method is apparently widespread in industrial practice, although its
origin is not known to this author. In the example illustrated in Fig. 7.6, this method
would correctly identify stiction in a case with some measurement noise.

However, numerical experience and intuition would suggest that this method may
fail in cases with severe measurement noise, especially when there is a phase dif-
ference of close to n · 180◦ at the dominant frequency of oscillation. Filtering may
reduce the sensitivity to noise, but may also reduce the sharp corners in the x-y curve
that are necessary to distinguish stiction from other causes of oscillation (which may
occur also for linear systems).

7.3.2.4 Comparison of stiction detection measures In addition to the three stic-
tion detection methods described above, a number of other methods have also been
proposed. To this authors knowledge, there is no systematic and extensive compar-
ison of different stiction detections methods in the open literature - although it is
known that the cross-correlation method fails for integrating processes. There is thus
a need for comparing various methods, both on industrial and simulated data. Such a
comparison should cover both the reliability of the methods (both false negatives and
false positives), as well as the ease of use and applicability for automated analysis.

The cross-correlation and histogram methods are easily formulated in a form suit-
able for automatic analysis. Although visual stiction detection is easy using the x-
y plot, a formulation suitable for automatic analysis is not known. However, this
should not be an insurmountable challenge.
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Figure 7.6: Use of xy-plot to detect stiction. The blue curve shows a system with
stiction, the red curve shows the same system without stiction.

7.3.3 Stiction compensation

There are a number of papers looking at using the controller to compensate for stic-
tion, not only in process control, but also in other areas like robotics. There are
many models for stiction - that all share the common trait that none of them can be
expected to be a perfect representation of the phenomenon.

The compensation schemes are typically rather complex, finely tuned to the specifics
of the stiction model used, and not very surprisingly they often work well for the
same stiction model. What is lacking is the demonstration of any sort of robustness
for the compensation scheme. In a simulation study one could at least use a different
model for the ’system’ than the stiction model used in designing the controller. The
practical usefulness of such stiction compensation schemes are therefore at best not
proven.

Industrial practitioners report that use of derivative action often has some positive
effect on stiction. However, derivative control action may not be suitable for all
control loops, and there is also the question whether it should be placed in the main
controller or in the valve positioner. Some further work in this area may therefore be
warranted.
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Other practical approaches to managing control problems due to stiction, include
changing the controller to a pure P controller, or introducing a deadband in the inte-
grating term (only integrate when the offset is larger than the deadband). This may
reduce or remove the oscillations, but have their own detrimental effects on control
performance. These approaches are therefore mainly short-term modifications until
valve maintenance can be performed.

7.3.4 Detection of backlash

Backlash is a particular type of hysteresis that occurs when the direction of move-
ment changes for the input. The input then has to travel through the deadband before
any change is detected at the output2.

Input

Output

Min Max

Max

Min

d

Figure 7.7: Illustration of backlash with deadband of width d.

2Sometimes the words backlash and deadband are used as synonyms. Here the deadband refers to the
width of the backlash.
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Hägglund[Häg07] proposes a method for on-line estimation of the deadband. Us-
ing describing function analysis, it is shown that an integrating system controlled
with an integrating controller will exhibit oscillations in the presence of backlash.
These oscillations are typically quite fast and of significant amplitude, and will there-
fore be detected by an appropriate oscillation detection method.

Asymptotically stable processes with integrating controllers, on the other hand,
will typically not show pronounced oscillations, but rather drift relatively slowly
around the setpoint. This results in slow, low amplitude oscillations that often will
not be detected by oscillation detection methods. Hägglund’s deadband estimation
method is developed for this kind of systems. It uses the control loop measurement,
filtered by a second order low pass filter to reduce the effect of measurement noise.
The filtered loop measurement is denoted yf . The slow oscillations are typically at
a frequency lower than the plant dynamics, and hence the plant model is represented
by the steady state gain Kp. The controller is assumed to be a PI controller with
proportional gain K and integral time Ti. The plant gain Kp and the controller gain
K are assumed to be given in compatible units (such that the product of their units is
1 and dimensionless).

The filtered control error is given as e = ysp − yf , where ysp is the setpoint (or
reference) for the control loop. Let ti be the times when the filtered control error e
changes sign. Correspondingly, ∆t = ti+1− ti denotes the time between successive
zero crossings of the filtered control error. The deadband estimation is executed only
when the time between these zero crossings is large, i.e., when ∆t ≥ 5Ti. We also
define

∆y =

∫ ti+1

ti

|e|dt/∆t (7.5)

∆y may thus be seen as the ’average’ control error between the zero crossings. The
deadband is then estimated as

d̂ = K

(
∆t

Ti
− 1

KKp

)
∆y (7.6)

This deadband estimation suffers from the fact that the steady state gain needs to
be known. In many cases this will be available (although not necessarily easily
available) from steady state plant simulations - even if dynamic simulation models
are not available. Instead, Hägglund takes a more practical approach and argue that
the deadband estimate is relatively insensitive to the value of Kp for the majority of
plants. This stems from the fact that the estimation is performed only when ∆t ≥
5Ti, and the observation that the product KKp is normally larger than 0.5 (assuming
a reasonable controller tuning in the absence of backlash, and that the controller
tuning is not dominated by pure time delay).

For more details of implementation of the deadband estimation, the reader is re-
ferred to the original publication by Hägglund[Häg07].
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7.3.5 Backlash compensation

It is possible to compensate for backlash by adding an extra term to the calculation
of the manipulated variable

u = uFB + uBC (7.7)

where uFB is the ordinary controller output3, and uBC is an additional term added
to compensate for backlash. The ideal backlash compensation would be

uBC =
d

2
sign

(
duFB
dt

)
(7.8)

Due to noise this ideal compensation is impractical, and some filtering is necessary.
Hägglund[Häg07] proposes using the filtered control error e introduced in the sub-
section above, resulting in the backlash compensation

uBC =
δ

2
sign(e) (7.9)

where δ ≤ d̂. The motivation for basing the compensation on the filtered control
error is that sign changes in this term corresponds to changes in the derivative of the
integral term of the controller. The integral terms is less sensitive to noise than the
proportional and derivative terms.

The use of filtered signals for backlash compensation introduces a delay in detect-
ing the sign changes of the derivative of the manipulated variable, and this is further
aggravated by considering only the integral term of the controller. Therefore the δ
used in the backlash compensation should be somewhat reduced compared to the
deadband d.

7.3.6 Simultaneous stiction and backlash detection

A number of physically motivated models for friction (including stiction) have been
proposed, see e.g., [Ols96]. Choudhury and coworkers [CTS05] instead aim at devel-
oping a simple model capable of mimicking the actual behaviour of a pneumatically
actuated control valve. This two-parameter model is illustrated in Fig. 7.8.

The model is parametrized in terms of two parameters:

the ’slip jump’ J (equal to the ’stick band’).

the sum of the ’stick band’ and the ’deadband’, S.

Both S and J are expressed as a percentage of the full valve operating range.
If the valve is initially at rest at point a, the controller output (OP) must exceed

both the deadband and the stickband before any movement of the valve position
(MV) starts. When reaching point b, the MV suddenly jumps to point c, and a further

3the subscript FB implies the use of a feedback controller, but uFB may also include disturbance feed-
forward components.
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Figure 7.8: Illustration of two-parameter model for behaviour of a pneumatically
actuated control valve.

increase in the OP will cause a corresponding increase in MV. If the OP stops at point
d and then continues in the same direction as previously, the OP must exceed the stick
band before movement of the MV starts again. This happens at point e, when the MV
suddenly jumps to point f . With the OP continuing in the same direction, the MV
moves correspondingly. At point g, the OP reverses direction, and the OP has to
traverse both the deadband and the stick band before at point h the MV suddenly
moves again, jumping to point i.

Both the deadband and the slip jump are clearly undesirable in a control valve,
as they cause the valve behaviour to differ from a linear response (even worse, they
cause non-differentiable non-linearities, meaning that many non-linear control de-
sign methods do not apply, either).

Jelali [Jel08] proposes a method for finding the parameters S and J . It is based
on the identification of a so-called Hammerstein model, where the nonlinearity (de-
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scribed by the two-parameter model) is in series with some linear dynamics. The
method iterates between using non-smooth optimization (pattern search or genetic
algorithms) to identify the parameters J and S, and linear systems identification
for the linear dynamics. The method is computationally intensive and dependent on
good initial estimates for S and J , and therefore suited for off-line analysis only.

7.3.7 Discriminating between external and internally generated oscil-
lations

It makes little sense to look for the cause of an oscillation inside a control loop,
if the oscillation is caused by external disturbances. A simple way of distinguishing
between internally and externally generated oscillations is to change the proportional
gain in the control loop. If the control loop is involved in producing the oscillation
(due to malfunctioning equipment, poor tuning, or interactions with other control
loops), a change in the period of oscillation can be expected. If the control loop is
not involved in causing the oscillation, a change in the proportional gain would be
expected to change the magnitude of oscillation in the loop, but not to change the
period of oscillation.

7.3.8 Detecting and diagnosing other non-linearities

In his thesis, Horch [Hor00] found no systematic method for diagnosing oscilla-
tions due to other typical non-linearities than stiction. In particular, he considered
dead-band and quantization effects, but found that they had similar effects on the
cross-correlation function as external disturbances. However, the observation that
non-linear effects are frequent causes for poor control performance in general, and
oscillations in particular, leads to the conclusion that it is valuable to detect non-
linear behaviour, even if one is not able to diagnose the type or cause of the non-
linearity. This is the approach taken by Thornhill and coworkers [TSH01, CST02].
In [TSH01], two measures are used to quantify non-linearity, a distortion factor D
and a measure N based on non-linear time series analysis.

The distortion factor D compares the total power in the fundamental oscillation
frequency and the harmonics to the power in the fundamental frequency alone. The
calculation of D requires manual inspection of the power spectrum to determine the
appropriate frequency range for the fundamental oscillation. Note that if several
variables in a plant oscillate due to a common cause, the fundamental oscillating
frequency will be the same for all these variables. The selection of an appropriate
frequency range for evaluating D is therefore not an onerous task. D cannot be
determined in cases with no well-defined oscillation and no spectral peak.

The measure N based on non-linear time-series analysis is based on the obser-
vation that the statistical description of the output of a linear system affected by
normally distributed input signals is fully defined by its first and second order statis-
tics (i.e., mean, variance, autocorrelation function). The idea is therefore to generate
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time series that could be the output of a linear system, but with the same first and sec-
ond order statistics as the signal in question. Such time series are called surrogate
time series, see the paper by Schreiber and Schmitz [SS00] for details. Next, one
has to select a measure of non-linearity and calculate this measure for both the signal
in question and the surrogates. Finally, hypothesis testing is used to assess whether
the signal in question is significantly different from the surrogates (which would be
an indication of non-linearity). Thornhill et al. [TSH01] measured non-linearity
in terms of the ’r.m.s. value of the error from zero-order non-linear prediction us-
ing matching of nearest neighbors in an m-dimensional phase space’. This error is
expected to be lower for a non-linear signal than for an arbitrary linear signal with
the same first and second order statistics. A ’zero-order non-linear prediction using
matching of nearest neighbors in an m-dimensional phase space’ essentially means
the following:

1. A m−dimensional ’phase space’ for the signal is established, where each point
in that space are defined by the most recent and (m− 1) earlier observations of
the signal. These m observations should be evenly spaced in time, but they do
not necessarily have to be consequtive.

2. The time series is searched for neighboring points in this phase space.

3. The zero-order prediction of the next signal value is simply the mean of the next
signal value for the neighboring points.

Tuning variables in for this non-linearity measure will be the dimension m of the
phase space and the number of nearest neighbors to use (or, alternatively, the distacne
from the present point within which the neighbors must lie).

In [TSH01], it is shown that both D and N can be used successfully to detect
non-linearity. N appears to be more reliable than D, but is also significanlty more
computationally expensive.

In [CST02], the bispectrum is used to detect non-linearity. The bispectrum mea-
sures interaction between two frequencies, and is defined as

B(f1, f2) = E [X(f1)X(f2)X∗(f1 + f2)] (7.10)

where B(f1, f2) is the bispectrum at the frequency pair f1, f2), X(f) is the discrete
Fourier transform of the time series x(k), ′∗′ denotes the complex conjugate, and E
is the expectation operator. In practice, the expectation operation is approximated
by calculating the Fourier transform for a number of segments of a long data series,
and averaging over these transforms. For more detail of the data treatment and signal
processing, consult [CST04] and the references therein. It is clear from (7.10) that
B(f1, f2) can be plotted in a 3D plot with two frequency axes and the corresponding
value of the bispectrum (real part, imaginary part, or absolute value) on the third
axis.

In order to simplify interpretation, the bispectrum can be normalized to be real
valued and between 0 and 1, resulting in the socalled bicoherence function bic(f1, f2):
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bic2(f1, f2) =
|B(f1, f2)|2

E [|X(f1)X(f2)|2]E [|X(f1 + f2)|2]
(7.11)

The bicoherence is expected to be flat for a linear signal. Significant peaks and
troughs in the bicoherence is therefore an indication of non-linearity. A discrete
ergodic4 time series x(k) is called linear if it can be represented by a random variable
e(k) passed through finite impulse response dynamics h, that is:

x(k) =

n∑
i=0

h(i)e(k − i) (7.12)

where the random variable e(k) is independent and identically distributed. In [CST04]
it is shown that if e(k) has zero mean and a Gaussian (normal) distribution, then the
bicoherence function is exactly zero. The authors of [CST04] therefore propose a
’Non-Gaussianity Index’ NGI based on a statistical test of whether the bicoherence
is significantly different from zero, and a ’Non-linearity index’ NLI based on whether
the squared maximum of the bicoherence deviates much from the mean value of the
squared bicoherence. Theoretically, NGI > 0 should indicate a non-gaussian sig-
nal, and NLI > 0 should indicate a non-linear signal. In practical implementation
it is recommended to set the thresholds a little higher, with NGI > 0.001 indicating
a non-Gaussian signal, and NLI > 0.01 indicating a non-linear signal.

It is recommended to use the NGI first and then use the NLI only for signals
that have been found to be non-Gaussian. If both the NGI and NLI exceed their
thresholds, one should look for a non-linear cause of the poor performance, e.g.,
valve stiction or backlash, or other non-linear phenomena. Otherwise, the cause for
the poor performance is likely to be ’linear’, e.g., a linear external disturbance or an
excessively tightly tuned controller.

7.4 Root-cause analysis for distributed oscillations

Thornhill et al. [TSH01] demonstrate how detection of non-linearity can be used to
locate the origin of an oscillation that affects multiple variables in a process plant,
without necessarily diagnosing the cause or nature of the non-linearity. The basic
idea is that most units in a process plant has a low-pass characteristic, and will there-
fore tend to filter higher harmonics more than the fundamental oscillation frequency.
Variables that are located far from the origin of the oscillations are therefore likely to
appear ’more linear’ than variables close to the origin of the oscillations. Root-cause
analysis (or, rather, ’locating’) then consists of first identifying groups of signals
that oscillate with similar patterns, and then assessing the degree of non-linearity for

4Roughly speaking, a time series is called ergodic if the time average of the signal value over a significant
segment of the time series can be expected to be the same irrespective of where in the time series the
segment is located.
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the various signals within each group. Oscillations are then thought to arise at the
location of the most non-linear signal.

The measures D and N , as well as the NGI/NLI described in the previous
section may be used as measures of non-linearity. What is needed in addition is
a systematic way of grouping or ’clustering’ signals that display similar oscillation
patterns.

One should, however, keep in mind that even linear systems can be unacceptably
oscillatory, and therefore looking for non-linearity need not be a successful approach
for locating the origin of oscillations in a plant. This problem is particularly difficult
in multivariable systems, since the individual loops may function fine, while the
oscillations are caused by interactions between the loops. This issue is also discussed
in 7.3.1 above.

7.4.1 Spectral Principal Component Analysis

Thornhill et al. [TSH01] used Principal Component Analysis of the signal spectra to
establish groups of signals with similar oscillation patterns.

The power spectra are normalized to the same total power. The spectra are then
organized in a matrix P , with one row per signal and one column per frequency. A
Principal Component Analysis (PCA) on this matrix is then performed. That is,

1. A singular value decomposition is performed on the matrixP , givingP?UΣV H .

2. For a given signal i, its power spectrum is arranged in a column vector pi, with
elements arranged according to frequency in the same order as the rows of P .

3. Each power spectrum is then projected onto the singular values of P , using
si = V Hpi.

4. The resulting projections si are essentially considered as points in an n-dimensional
space5. Clustering then involves looking for points in this n-dimensional space
that lie close together.

Often, a lower-dimensional space instead of the full n-dimensional space can be
considered, if the matrix P has some singular values that are very small and may
be ignored. Some care is advisable when doing this, though: although it is conve-
nient to perform the grouping visually using 2- or 3-dimensional plots, one should
afterwards verify that the candidate clusters found are indeed clusters also in the full-
dimensional space. Ignoring the smaller singular values amounts to projecting the
points in n-dimensional space onto a space of lower dimension. Points that are far
apart in the full-dimensional space may therefore appear close after the projection.

5n being the smaller of the number of signals and the number of frequencies considered
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7.4.2 Visual inspection using High Density Plots

The somewhat peculiarly termed ’High Density Plot’ is also used for visually identi-
fying clusters of signals that have similar shapes [TSH01, TSHV02]. This essentially
consist of time plots and power spectra of the various signals stacked on top of each
other. The data is pre-treated by

Removing the mean value (giving signals with zero mean).

Removing linear trends in the data.

Scaling the power spectra to unity total power.

Scaling the time plots to a variance of unity.

The y-axis for each individual plot is therefore of no significance after the scaling -
which is OK since the purpose is simply to identify similar signals.

A High Density Plot of 18 loops (showing the control error y − r) taken from an
industrial plant is shown in Fig. 7.9
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Figure 7.9: High Density Plot of industrial data.

From Fig. 7.9, at three different ’clusters’ of signals can be identified: {8, 10},
{7, 9, 17}, and {4, 11, 12}, although this clustering is not entirely clear- loop 11 has
high frequency components that are not found in loops 4 and 12, and loop 9 also
has a low peak at the frequency of the main peak in loops 8 and 12. The time plots
also indicate that several of the signals are heavily compressed in the data historian,
which is known to result in unreliable results (as heavily compressed data - with
common compression techniques - appear more nonlinear than the original data).
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7.4.3 Power Spectral Correlation Maps

In [TST05], the Power Spectral Correlation index is introduced as a way of condens-
ing the information in the signal power spectra when looking for similar signals. For
two power spectra |Xi(ωk)| and |Xj(ωk)|, the Power Spectral Correlation Index is
defined as

PSCI =

∑
ωk
|Xi(ωk)|2|Xj(ωk)|2√∑

ωk
|Xi(ωk)|4

∑
ωk
|Xj(ωk)|4

(7.13)

The PSCI always lies in the range 0 to 1, with a value close to 1 indicating a pair
of very similar spectra. The Power Spectral Correlation Map is simply obtained by
plotting the PSCI as ’the elements of a matrix’, using a color code to indicate the
value of the PSCI.
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Figure 7.10: Power Spectral Correlation Map for industrial data.

Figure 7.10 shows the Power spectral correlation map for the same plant as the
Fig. 7.9. Only the loops with clear oscillations are included in Fig. 7.106. From
Fig. 7.10 we may draw similar conclusions as what was reached in the previous
section based on the High Density Plot.

6In [TST05] it is also recommended to re-order the PSC map such that signals with high degree of cor-
relation are collected in blocks along the main diagonal of the plot. This reordering has not been done in
Fig. 7.10.



CONTROL LOOP PERFORMANCE MONITORING 253

7.5 Control loop performance monitoring

Traditionally control loop monitoring has not received much attention, often being
limited to logging whether a control loop is in automatic of manual, and logging
alarms for the controlled variable in the loop. Although logging such variables and
events can give valuable information about the control system, they hardly provide
any diagnostic information or any ’standard’ against which the actual behaviour of
the control system can be measured. Autocorrelation functions and signal power
spectra can also give valuable information. However, their evaluation require sig-
nificant process understanding, and they therefore are not applicable for automatic
performance monitoring.

7.5.1 The Harris Index

The most popular index for monitoring controller performance has been named af-
ter T. J. Harris. Control loop performance monitoring has received much attention
since his publication of an influential paper on the subject [Har89], although similar
ideas have been proposed earlier, by e.g., Fjeld [Fje]. The Harris’ index simply com-
pares the observed variance in the controlled variable with that theoretically could
be obtained with a minimum variance controller (MVC)7. The observed variance
is easily calculated from on-line data. The beauty of the method lies in that only
modestly restrictive assumptions about the process are necessary in order to estimate
the achievable variance under MVC control from available on-line data.

The necessary assumptions are:

1. The deadtime from manipulated variable u to controlled variable y must be
known or estimated.

2. The process is asymptotically stable.

3. The process does not have any inverse response8.

Assumptions 2 and 3 above may be relaxed, if a sufficiently accurate process
model is available, see Tyler and Morari [TM].

When assumptions 1-3 are fulfilled, a minimum variance controller may be used,
and as the name says, this controller would achieve the minimum variance in the
output. The minimum variance controller will not be derived here, but it is de-
scribed in many textbooks on stochastic control theory. All we need is the following
observations:

No control action can influence the controlled variable before at least one dead-
time has passed.

7As implied by its name, the minimum variance controller minimizes the variance in the controlled vari-
able for a linear system, and hence gives a lower bound on the variance in the controlled variable.
8In terms of systems theory, the (discrete time) process should not have any zeros on or outside the unit
disk. This corresponds to zeros in the right half plane for continuous-time systems.
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The minimum variance controller will remove all autocorrelation in the con-
trolled variable for time lags greater than the deadtime.

Thus, if we have an impulse response model for the effect of the (unknown) dis-
turbance on the controlled variable with the existing controller

yk =
∑
i≥0

hidk−i

we know that hi is unaffected by feedback for i < δ, where δ is the deadtime
(in number of sample intervals), whereas the minimum variance controller would
achieve hi = 0 for i ≥ δ. Thus, the minimum achievable variance in y is

σ2
y,mv = (1 + h2

1 + h2
2 + · · ·+ h2

δ−1)σ2
d (7.14)

where we have selected h0 = 1, since this is equivalent to scaling the disturbance
variance σ2

d.
The Harris index provides a quantitative measure of control performance, rela-

tive to a well-defined idealized performance, while requireing a minimum of process
information. The analysis is easily automated, and may be claimed to capture a sig-
nificant part of the information a competent engineer could derive from the autocor-
relation function. All commercial tools for control performance analysis therefore
use the Harris index (or one simple modification thereof) as one of the main indica-
tors of control performance.

7.5.2 Obtaining the impulse response model

In order to identify a model for the effect of the unknown disturbance on the con-
trolled variable, we must first select a model structure. We will use an autoregressive
(AR) model, where we assume that the disturbance d is a zero mean white noise:

yk + a1yk−1 + a2yk−2 + · · · = dk

or, in terms of the backwards shift operator z−1:

(1 + a1z
−1 + a2z

−2 + a3z
−3 + · · · )yk = A(z−1)yk = dk

Now, the AR model is very simple, and one may therefore need a high order
for the polynomial A(z−1)in order to obtain a reasonably good model. One there-
fore runs the risk of ”fitting the noise” instead of modelling system dynamics. It is
therefore necessary to use a data set that is much longer than the order of the poly-
nomial A(z−1). However, if a sufficiently large data set is used (in which there is
significant variations in the controlled variable y), industrial experience indicate that
acceptable models for the purpose of control loop performance monitoring is often
obtained when the order of the polynomial A(z−1) is 15-20. The AR model has the
advantage that a simple least squares calculation is all that is required for finding the
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model, and this calculation may even be performed recursively, i.e., it is applicable
for on-line implementation. We will here only consider off-line model identification.
The expected value of the disturbance d is zero, and thus we have for a polynomial
A(z−1) of order p and a data set of length N with index k denoting the most recent
sample



yk−1 yk−2 · · · yk−p+1 yk−p

yk−2 yk−3 · · · yk−p yk−p−1

...
...

. . .
...

...
yk−N+p yk−N−1+p · · · yk−N+2 yk−N+1

yk−N−1+p yk−N−2+p · · · yk−N+1 yk−N



a1

...
ap



= −



yk

yk−1

...
yk−N+p+1

yk−N+p


+



dk

dk−1

...
dk−N+p+1

dk−N+p


m

Y a = −y + d

where the underbars are used to distinguish vector-valued variables from scalar
elements. The expected value of the disturbance d is zero, and thus the model is
found from a least squares solution after setting d= 0:

a = −(Y TY )−1Y T y

After finding a, an estimate of the noise sequence is simply found from d=
Y a+y, from which an estimate of the disturbance variance σ2

d can be found. Having
found the polynomial A(z−1), the impulse response coefficients hi are found from

yk =
1

A(z−1)
dk = H(z−1)dk

using polynomial long division. Here H(z−1) = 1 +h1z
−1 +h2z

−2 +h3z
−3 +

· · · .

7.5.3 Calculating the Harris index

The Harris index is the ratio of the observed variance to the variance that would be
obtained by MVC. The minimum achievable variance can be calculated from Eq.
(7.14) above, using the identified impulse response coefficients and the estimated
disturbance variance
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σ2
d =

1

N − 1

N∑
i=1

(
di − d

)2
where d is the mean value of the estimated disturbance, which is zero by con-

struction.
The observed variance of the controlled variable can be computed similarly. How-

ever, if there is a persistent offset in the control loop, i.e., if the mean value of the
controlled variable deviates from the reference, this should also be reflected in a mea-
sure of control quality. Hence, a modified variance should be used which accounts
for this persistent offset

σ2
y,o =

1

N − 1

N∑
i=1

(yi − yref )2

If there is a persistent offset from the reference, the modified variance σ2
y,o will

always be larger than the true variance σ2
y , and the Harris index becomes

HI =
σ2
y,o

σ2
y,mv

7.5.4 Estimating the deadtime

A reasonably accurate estimate of the process deadtime is clearly a prerequisite for
obtaining meaningful information from the Harris index. Sometimes such estimates
may be available a priori, based on physical understanding of the process. In other
cases, the deadtime must be extracted from process data. Clearly, the deadtime can be
obtained from identification experiments. However, with the exception of quite small
plants, the number of identification experiments required would be prohibitive, due
both to an unacceptable workload and excessive process excitation. Instead, Isaksson
et al. [IHD01] propose to estimate the deadtime from closed loop data, based on data
collected around the time of significant setpoint changes. Their method consists of:

1. First detect whether the control loop is close to a steady state (for details, see
[IHD01] and references therein).

2. If the loop is approximately at steady state, and a setpoint change significantly
larger than the noise level of the output occurs, start collecting input-output data
until the loop reaches a new steady state.

3. Fit a Laguerre filter model to the collected data.

4. Factorize the resulting model into a minimum phase and an all-pass part, where
the all-pass part will contain all non-invertible zeros of the model, i.e. G(z) =
Gmp(z)Gap(z).
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5. The deadtime is estimated from

Td = limω→0

(
−∠Gap(ω)

ω

)
(7.15)

Simpler alternatives to steps 3-5 above would be to either

estimate the deadtime visually from plots of the manipulated and measured vari-
ables, or to

fit a low order model (first or second order + deadtime). Such model fitting is
commonly done by simply fitting a first or second order model, and accounting
for the deadtime by shifting the manipulated (or measured) variable trajectory
by the number of time steps corresponding to the deadtime. Trying different
deadtimes, the ’correct’ deadtime is taken as the value which gives the best
model fit for the first/second order model.

7.5.5 Modifications to the Harris index

Despite the theoretical elegance of the derivation of the minimum variance controller,
the minimum variance controller is generally not a realistic choice for a controller
in a real application. This is because it is sensitive to model errors, and may use
excessive moves in the manipulated variable. It does provide an absolute lower
bound on the theoretically achievable variance, but it is nevertheless of interest to
have a control quality measure which compares the actual performance to something
(hopefully) more realistic.

A simple modification to the Harris index is to simply use a too high value for
the time delay, thus increasing the ’minimum’ variance. This is discussed in Thorn-
hill et al. [TOF99] The resulting performance index will then no longer compare
actual performance with a theoretically optimal performance. In [TOF99], typical
choices for the ’prediction horizons’ are discussed for common control loop types in
refineries (e.g., pressure control, flow control, etc.)

Another modification is to assume that the ’ideal’ controller does not totally re-
move the effect of disturbances after one deadtime has passed, but rather that the ef-
fect of the disturbance decays as a first order function after the deadtime has passed.
If we assume that this decay is described by the parameter µ (0 < µ < 1), so that
the ideal response to disturbances against which performance is measured would be

yk,mod =

δ−1∑
i=0

hidk−i +

∞∑
i=δ

hδ−1µ
i−δ+1dk−i

which results in a modified ’benchmark variance’

σ2
y,mod = σ2

y,mv + h2
δ−1

µ2

1− µ2
σ2
d

The modified control performance index then simply becomes
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HI,mod =
σ2
y,o

σ2
y,mod

This modified Harris index is proposed by Horch and Isaksson [HI98] and Kozub
[Koz96]. Horch and Isaksson also provide some guidelines for how to specify the
tuning factor µ. They find that if one wishes to account for a possible error in the
estimated deadtime of±1 sample interval, and still require a gain margin of 2 for the
’ideal closed loop’, this corresponds to choosing µ > 0.5. It is also recommended
to have a realistic attitude to how much the dynamics of the closed loop system can
be speeded up, compared to the dynamics of the open loop process. Horch and
Isaksson argue that it is unrealistic to speed up the system by a factor of more than
2-49. If we denote the open loop dominant time constant τol, and the desired closed
loop time constant is τol/v, then the parameter µ should be chosen as

µ = exp

(
−vTs
τol

)
where Ts is the sampling interval for the control system.

7.5.6 Assessing feedforward control

The time series analysis behind the Harris index can also be extended to cases with
feedforward control from measured disturbances. In cases where disturbances are
measurable, but not used for feedforward control, the analysis can be used to quantify
the potential benefit (in terms of variance reduction) from implementing a feedfor-
ward controller. This is described by Desborough and Harris in [DH93] The anal-
ysis requires knowledge of the deadtimes from measured disturbances to controlled
variable in addition to the deadtime from the manipulated variable to the controlled
variable10. Their analysis results in an Analysis of Variance table, which shows
how much of the observed variance is due to the unavoidable minimum variance,
and what fractions of the excess variance is affected by feedback control alone, how
much is affected by feedforward control alone, and how much is affected by both
feedback and feedforward control.

In a related paper, Stanfelj et al. [SMM91] address the analysis of the cause for
poor performance, and show how to determine whether it is due to poor feedforward

9While this argument is reasonable for many control loops, it is obviously incorrect for integrating pro-
cesses (e.g., levle control), where the open loop time constant is infinite. Ideally, one should base an
estimate of the achievable bandwidth on more fundamental system properties like time delays, inverse
response, or limitations in the manipulated variables.
10The deadtime from measured disturbances to the controlled variables should be possible to identify
from closed loop data, given a data segment with significant variations in the measured disturbance. If the
identified deadtime is equal to or higher than the time delay from manipulated to controlled variable, the
measured disturbance does not contribute to variance in the controlled variable under minimum variance
control.
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or feedback control. If the cause is poor feedback control, it is sometimes possible
to determine whether it is due to poor tuning, or due to errors in the process model.
This obvioulsy requires that a (nominal) process model is available, in contrast with
the analysis of Desborough and Harris which only requires the knowledge of dead-
times. Reliable model quality assessment also requires some external excitation of
the control loop, typically via controller setpoint changes.

7.5.7 Comments on the use of the Harris index

Before screening for poorly performing loops using the Harris index (or preferably
the modified version presented above), one should first remove any persistently os-
cillationg loops, as these will certainly require attention.

It is important to understand that an underlying assumption when using the Harris
index is that small variance of the controlled variable is actually desired. Whereas
this is normally the case, it is not always so. For example, for buffer tanks used
to filter liquid flowrate disturbances, one actually desires the control to be as slow
as possible. This means that the control should stabilize the liquid level and keep
the tank from overflowing or emptying, but otherwise change the outlet flowrate as
slowly as possible. Perfect level control would require the outlet flowrate to equal
the inlet flowrate, and thus no flowrate filtering would be obtained.

Furthermore, onse should realize that the Harris index is a relative measure of
control quality. Thus, if a process is modified to improve controllability, e.g., by in-
stalling a new measurement with less deadtime, the Harris index may well get worse
even if the actual performance improves significantly. This is of course because
the observed variances before and after the process modifications are not compared
against the same minimum variance.

The Harris index is applicable to systems where the deadtime is the main factor
limiting bandwidth and control performance. It was mentioned earlier that there
are available modifications which allow consistent assessment of loops controlling
an unstable process, or processes with inverse response (zero outside the unit disc).
However, these modifications require much more detailed process knowledge than
the basic Harris index. Similarly, the Harris index is not appliccable to control loops
where the manipulated variable is in saturation much of the time, since no controller
could then reduce variance in the controlled variable (i.e., comparison with a MVC
controller becomes meaningless). Consistently saturating inputs would have to be
resolved by other means, e.g.

Resolving conflicts between control loops by changing control structures. This
includes eliminating cases where multiple controllers with integral action con-
trol (essentially) the same process variable.

Modifying the process to reduce the size of disturbances. This could involve
removing oscillations in upstream control loops, or installing buffer tanks to
filter flow, temperature, or composition disturbances.
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Installing manipulated variables with a larger operating range.

Despite these limitations, the Harris index is applicable to many control loops in
most chemical processes.

Deterministic performance indeces may in some cases be desireable alternatives
to the Harris index for performance assessment. In particular, measures like rise
time or settling time may be easier to discuss with operators than a more compli-
cated concept like variance. Some such measures may easily be derived from the
autocorrelation function or the cross-correlation between reference and control er-
ror11. However, although actual performance may be assessed, it seems harder to
assess how to correct for unacceptable performance, and to define an ideal perfor-
mance benchmark when using deterministic performance measures. Many control
loops in the processing industries are used for regulatory purposes. Their main ob-
jective is to attenuate disturbances rather than quickly follow setpoints. For such
loops a stochastic performance measure may be more relevant than a measure like
rise time, which focuses on response to setpoint changes.

7.5.8 Performance monitoring for PI controllers

The minimum variance controller gives an absolute lower bound on the achievable
performance. However, this performance may not be achievable with a particular
controller type. In particular, most controllers in industry are of the PI or PID type.
The problem of PI/PID controller performance assessment has been addressed in
the literature, but the resulting assessment procedures generally require the entire
process model to be known (not only the deadtime). Instead of doing such a perfor-
mance assessment, it would then appear more meaningful to do a controller tuning
based on the available model (for some chosen performance measure - not necessar-
ily minimum variance). If the resulting tuning parameters are significantly different
from those in use, the controller should be retuned.

7.6 Multivariable control performance monitoring

The concept of comparing the observed variance to the minimum variance can be
extended to multivariable systems, see e.g., [HBM96]. A complicating factor is that
the minimum variance in general can not be determined based only on knowledge of
the time delays in all transfer function elements, even in the absence of poles outside
the unit disk or (finite) zeros outside the unit disk. Instead, the knowledge of the so-
called ’interactor matrix’ is required, which contains all plant zeros at infinity (i.e.,

11To calculate this cross-correlation, it is of course a requirement that the there are significant changes in
the reference in the period under investigation, i.e., the process has to be excited. The Harris index, on
then other hand, can be evaluated from data obtained from passively observing process operation.
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complete knowledge of the delay structure of the plant). Thus, the transfer function
matrix G(z−1) has to be factorized as

E(z)G(z−1) = G̃(z−1)

where G̃(z−1) is a delay-free matrix, containing only finite zeros, such that

lim
z−1→0

G̃ = K

where K is a full rank, constant matrix. The interactor matrix E(z) is a poly-
nomial matrix such that det(E) = zr, where r is the number of infinite zeros of
G(z−1). The interactor matrix is not uniquely defined, and Huang et al. [HSF97]
observe that the optimal form of the interactor matrix depend on the application. A
common form is a lower triangular interactor matrix. The use of such an interactor
matrix for designing a minimum variance controller, would lead to minimum vari-
ance in the first output, whereas the variance in the second output is minimzed sub-
ject to minimizing the variance in the first output, etc. For multivariate performance
assessment, such an ordering of the outputs according to priority appear misplaced,
and Huang et al. instead proposes the use of a unitary interactor matrix. Filtering
by a unitary interactor matrix leaves the spectrum of the original signal unchanged,
i.e., no particular order of priority is imposed on the outputs. A weighted unitary
interactor matrix can be used to give different weight to different outputs.

The determination of the interactor matrix has traditionally required the knowl-
edge of the entire transfer function matrix. Huang et al. describe how it can be found
from knowledge of the first few Markov parameter matrices of the plant. Since the
delay structure is invariant under feedback control, closed loop identification can be
used to determine the interactor matrix. However, even in closed loop the system
has to be excited to perform the identification.

In cases where the plant has other non-invertible zeros (i.e., finite zeros outside
the unit disk), Huang [Hua97] has shown how a generalized interactor matrix can be
defined and used for multivariable performance assessment. In the same way as for
monovariable performance monitoring, such non-invertible zeros need to be known
a priori.

7.6.1 Assessing feedforward control in multivariable control

In a development similar to that in [DH93] for SISO systems, Huang et al. [HSM00]
have extended multivariable performance assessment to also account for feedforward
control, or to assess the potential benefit of feedforward control when measurable
disturbaces are not used for feedforward control.

7.6.2 Performance monitoring for MPC controllers

MPC controllers minimize a performance criterion online. The relative success at
minimizing this criterion is therefore probably the best possible measure of MPC
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performance. This is actually a more complex problem to analyze than to assess
whether a (multivariable) controller is close to minimzing some weighted variance
in the outputs. Many MPC controllers place little importance on controlling variables
that are within an acceptable operating range. Only variables that are at or outside
their operational limits are actively controlled12. This means that the ’weight’ of the
different variables are in a sense time-varying (or state dependent). This feature is
quite easily captured in the formulation of the optimization problem in an MPC con-
troller, but means that a minimum variance control benchmark is not very relevant.

Apart from the well-known problems of inappropriate model updating, which in
an obscure way is re-visited in [KE01], a key issue is the accuracy of the model
used by the MPC controller. This is essentially the issue of ’model (in)validation’.
There is a substantial literature on model (in)validation, and no attempt have been
made at reviewing this literature systematically. In a control performance monitor-
ing framework, we would like to assess model quality in a passive sense, without
exciting the system. This could appear to contradict the assumptions of most model
(in)validation techniques, which require that the process is excited (in essence, that
either an open loop or closed loop experiment is carried out).

Kammer et al. [KGD01] propose a model invalidation technique based on the
spectrum of the model prediction error. This method only requires the controller to
be temporarily switched off, but beyond that no upset to the process is required. If
the process model is perfect, the spectrum of the prediction error should not change
as the MPC controller is switched off (put in manual). Their approach is interesting,
and require modest effort and process excitation. However, the issue of on-line model
updating is not addressed in their paper, and hoping that the disturbances are well
described as a stationary stochastic process both when collecting closed-loop and
open loop data may be much to ask for.

When speaking to industrial practitioners, one can hear stories of how they have
been able to ’see’ that an oscillatory closed loop has been caused by too low gain
in the model used by the MPC. Similarly, a too high gain in the MPC model would
result in a slow closed loop. However,

An oscillatory closed loop may also be caused by an oscillatory external dis-
turbance (which is possibly not measured). The conclusion that the gain in the
MPC model is too high therefore requires specific process knowledge enabling
the engineer to rule out external disturbances as the cause of the oscillation.
Such process knowledge may well be available to engineers intimately familiar
with a particular process - but is hard to capture in a general purpose monitoring
tool.

A slow closed loop may also be caused by a slow (unmeasured) disturbance,
or by slow model updating (such as the bias update). Both these causes may

12This can be implemented in the MPC setting presented above by using a small or zero state weight,
and use soft constraint with a penalty function to put a (higher) weight on variable values violating the
soft constraint. If necessary, this can be augmented with a hard(er) constraint farther from the acceptable
operating range to have the more common constraint handling in MPC.
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be ruled out by introducing steps in the reference (any disturbance is unlikely
to be correlated to the reference signal - and the resulting change in the input
should be instantly accounted for by the model update). However, such steps in
the reference means exciting the process.

Also, associating a particular type of poor performance with a specific model param-
eter is typically only possible when very simple models are used, such as first order
plus deadtime models. Furthermore, even with such simple models there is the pos-
sibility of arriving at the wrong conclusion. For instance, and oscillatory closed loop
may also be caused by the plant time constant being much faster than the time con-
stant in the MPC model. Again, specific process knowledge may enable the engineer
to rule out this option.

7.7 Some issues in the implementation of Control Performance Moni-
toring

There are several issues that need to be addressed when designing and/or implement-
ing a control performance monitoring system. These include:

Structural issues. For example, should the system be implemented centrally or
in a decentralized manner? Some aspects of control performance monitoring,
like oscillation/stiction detection, calculating the Harris index, etc., can be per-
formed locally. While this will put higher demands on local computing power
and data storage, it will reduce the requirement for transferring data over the
network. On the other hand, inherently multivariable aspects like root cause
analysis of distributed oscillations can only be performed centrally. Software
updates are also simpler to handle with a centralized implementation. It appears
that a centralized implementation is common in industrial practice. Honeywell
has taken this position ’to the extreme’, data is only collected locally, and is
then encrypted before being trasnsmitted over the Internet to a central server for
analysis.

Data quality. From what source is process data obtained, and how often is it
logged? Some guidelines can be found in e.g. [MD00] and [TOF99]. Many pro-
cess data historians use infrequent sampling and/or use irreversible data com-
pression algorithms. This will permanently alter the statistical properties of
the data, and can be very detrimental to control performance monitoring. The
above references also contain recommendations for typical logging frequencies
for various control loops (pressure control, flow control, etc.). On the one hand
one would like frequent logging to be certain to capture all relevant process dy-
namics - and possibly also allow some filtering of high-frequency noise without
affecting the process dynamics. On the other hand, frequent logging - in partic-
ular when applied to hundreds or thousands of control loops - will cause high
loads on the data communication network.
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Integration into normal operating practice. A control performance monitoring
system can only succeed if it clearly contributes to making normal operation
and maintenance of the plant simpler. If system configuration is complex, or
significant effort is required to extract information from the CPM system, it is
bound to fail in practice. Reports from the CPM system should be prepared
regularly (e.g., once every day or week) and automatically, contain a prioritized
list of problem areas and recommended corrective actions, and the report should
automatically be sent to the responsible plant engineer.

7.8 Discussion

Common sense and reports from industry seem to agree that Control Performance
Monitoring can make maintenance and optimization of process control systems much
more effective. However, there are many aspects within this area for which there are
few reports in the open literature of comparisons between alternative methods us-
ing real industrial data. This is the case for both stiction detection and measures of
non-linearity used to locate the origin of distributed oscillations.

A relevant measure of control performance for surge-attenuating controllers (e.g.,
level controllers in buffer tanks) is not available. For such controllers a minimum
variance based benchmark will be absurd, and there is a need for an alternative mea-
sure.

The research on root cause detection for distributed oscillations have focused on
non-linearity as a cause for oscillations. It would be of interest to be able to diagnose
other types of commonly occuring (and un-intended) non-linearities than stiction and
backlash from operational data. However, inappropriate control structures, leading
to severe interactions between control loops, can also cause oscillations - even if each
loop works fine in on its own. Many inappropriate control structures can be identified
from physical understanding of the process, if such understanding is backed up by a
proper understanding of control. Automated detection and diagnosis of conflicting
controls has received little attention, but would be very useful.

The minimum variance benchmark is often criticized, since it may not be achiev-
able with a particular controller type, e.g., a PI controller. However, it seems un-
avoidable that any exact analysis based on a particular controller type (other than the
minimum variance controller) will require a much more detailed process model. The
modification of the Harris index described above should also make the index much
more realistic. Whether process deadtime is the only factor which limits achiev-
able variance is another issue. This author is unaware of any method for detecting
open-loop poles and zeros outside the unit disk - short of performing a regular iden-
tification experiment requiring extensive excitation.

For multivariable systems, a minimum variance benchmark seems most appro-
priate for multi-loop control (i.e., decentralized control, using multiple single-loop
controllers). In such a setting, the minimum variance benchmark may serve to illus-
trate the tradeoffs between control quality for different outputs, although the issue of
restrictions in controller type becomes even more acute in such a setting.
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Most multivariable controllers in the process industries are of the MPC type, for
which the minimum variance benchmark will often be inappropriate, as discussed
above. Model quality and model (in)validation, preferably based on closed loop
data, appear to be of more relevance.
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APPENDIX A

FOURIER-MOTZKIN ELIMINATION

Fourier-Motzkin elimination is a method for eliminating variables from sets of linear
inequalities, or, equivalently, to project polyhedra described by linear inequalities
onto lower dimensional subspaces. It has been described as ’Gauss-Jordan elimina-
tion applied to inequalities’, and although less well known is equally simple. For
illustration consider the two inequalities

a11x1 + a12x2 ≤ b1 (A.1)
a21x1 + a22x2 ≤ b2 (A.2)

Multiplying (A.1) and (A.2) with non-negative constants λ1 and λ2, respectively, and
adding the resulting inequalities, results in the inequality

(λ1a11 + λ2a21)x1 + (λ1a12 + λ2a22)x2 ≤ λ1b1 + λ2b2 (A.3)

Clearly, (A.3) is also a valid inequality. If, a11 and a21 have opposite signs, λ1 and
λ2 can be chosen to eliminate x1 from (A.3). Next, the procedure above will be
generalized to arbitrary dimensions.
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Problem A1.1. Consider the set Ξ1 described by the linear inequalities

A1x1 +A2x2 ≤ b (A.4)

where x1 ∈ Rn, x2 ∈ Rr, b ∈ Rq , and A1 and A2 are of consistent dimensions.
Find the corresponding set

Ξ2 = {Aξx2 ≤ bξ}
such that ∀x2 ∈ Ξ2∃x1 ∈ Rn such that (A.4) is fulfilled.

Algorithm A1.2. Solution to Problem A1.1: The Fourier-Motzkin elimination pro-
cedure.

1. Group the inequalities in (A.4) in three subsets

s0: Inequalities for which the corresponding element of A1 in (A.4) is zero.

s1: Inequalities for which the corresponding element ofA1 in (A.4) is positive.

s2: Inequalities for which the corresponding element of A1 in (A.4) is nega-
tive.

2. Form the set of inequalities s12 as follows:

i) Take one inequality from s1 and one inequality from s2.

ii) Multiply the two inequalities by appropriate positive constants, and add the
results to form a new inequality in which x1 does not appear.

iii) Include this new inequality in the set s12.

iv) Repeat i - iii above for all possible pairs of inequalities from s1 and s2.

3. The set Ξ2 is then described by the inequalities in s0 and s12.

Eliminating more than one variable from the inequalities is done by repeated appli-
cation of Algorithm A.1.2. Note that many of the resulting inequalities describing
the set Ξ2 may be redundant. If a minimal set of inequalities is desired, removing
redundant constraints will therefore be necessary.

Example A1.1.
Consider the set of linear inequalities

x1 ≤ 2 (A.5)
−x1 ≤ 2 (A.6)
x2 ≤ 2 (A.7)
−x2 ≤ 2 (A.8)

x1 − x2 ≤ 3

4
(A.9)

−1

3
x1 + x2 ≤ 2 (A.10)

−3x1 − x2 ≤ 3 (A.11)
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Figure A.1: Feasible region for x1 for Example 1.

what are the values of x1 for which there exists a feasible x2? These inequalities
are illustrated in Fig. A.1, from which it is simple to identify the range of values
for x1 for which a feasible value of x2 can be found. Clearly, s0 ∈ {(A.5), (A.6)},
s1 ∈ {(A.7), (A.10)}, and s2 ∈ {(A.8), (A.9), (A.11)}. Forming the set s12 as
described above, we get the following set of inequalities:

Combining (A.7) and (A.9): x1 ≤ 11
4

Combining (A.7) and (A.11): −3x1 ≤ 5

Combining (A.10) and (A.8): − 1
3x1 ≤ 4

Combining (A.10) and (A.9): 2
3x1 ≤ 11

4

Combining (A.10) and (A.11): − 10
3 x1 ≤ 5

The combination of inequalities (A.7) and (A.8) resiults in 0 ≤ 4, which is trivially
always fulfilled. Forming the set Ξ2 from s0 and s12, and removing redundant con-
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straints, we find that the feasible region for x1 is given by − 3
2 ≤ x1 ≤ 2, which

agrees with what we find from Fig. A.1.



APPENDIX B

REMOVAL OF REDUNDANT CONSTRAINTS

The Fourier-Motzkin elimination described above results in many redundant con-
straints, which are superfluous in any application. Likewise, calculation of the max-
imal output admissible set also requires checking whether constraints are redundant.

We will here use an adaptation of the procedure proposed in [T0̈3], due to its con-
ceptual and mathematical simplicity. No claims are made about the computational
efficiency of the procedure. However, in an MPC setting, checking for constraint
redundancy is generally done at the design stage, i.e., offline, when there is typically
no strict limitations on available computation time.

We start from a bounded convex polyhedron described by q linear inequalities

Ξ = {xk|Axk ≤ b} (A2.1)

A new constraint Acxk ≤ bc is redundant if it can be added to the original set of
constraints without altering the set, that is

Axk ≤ b⇒ Acxk ≤ bc (A2.2)
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This is checked with a simple LP:

m = max
xk

Acxk (A2.3)

s.t. Axk ≤ b (A2.4)

If m ≤ bc then the constraint Acxk ≤ bc is redundant.
Applying the above method for redundancy checking does not necessarily guar-

antee that the final set of constraints is minimal (i.e., does not contain any redundant
constraints), since adding new constraints may make some of the original constraints
redundant. However, in applications where it is important to minimize the number
of constraints in the optimization formulation, it is trivial to modify the redundancy
checking method above to identify any redundant constraints.



APPENDIX C

THE SINGULAR VALUE DECOMPOSITION

The SVD allows any matrix A of dimension r × c to be decomposed into three
matrices

A = UΣV H (A2.1)

where U has dimension r× r, Σ is of dimension r× c, V is of dimension c× c, and
the superscript H denotes the complex conjugate transpose (which is the same as the
transpose for real valued matrices).

The matrices U and V are orthonormal, i.e., UHU = UUH = I , V HV =
V V H = I , whereas Σ is real valued with non-zero elements only on the main diag-
onal. By convention, the elements on the diagonal of Σ are arranged in descending
order. These diagonal elements of Σ are termed singular values, singular value num-
ber i is commonly denoted σi, and the largest and smallest singular value are denoted
σ̄ and σ, respectively.

The fact that U and V are orthonormal, have a few immediate consequences:

The determinant and singular values of a matrix are related through

|det(A)| =
∏
i

σi(A) (A2.2)
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The SVD provides an expression for any matrix as a sum of rank-one matrices

A =
∑
i

uiσiv
H
i (A2.3)

where ui and vi are column vectors equal to column i of U and V , respectively.

An expression for the inverse for the matrix (and the SVD of the inverse) is
easily obtained

A−1 = V Σ−1UH (A2.4)

For rank defect matrices, the pseudo-inverse is similarly obtained by inverting
only the non-zero singular values in Σ.



APPENDIX D

FACTORIZATION OF TRANSFER FUNC-

TIONS INTO MINIMUM PHASE STABLE

AND ALL-PASS PARTS

Above we have seen bounds on the minimum H∞ norm obtainable by feedback
control expressed in terms of Gms(s), i.e., the ’minimum phase and stable’ version
of the transfer function G(s), with both RHP poles and zeros mirrored into the LHP.
While obtaining Gms(s) is trivial for SISO transfer functions, it is somewhat more
complex for MIMO transfer function matrices. The following description of how to
obtain Gms(s) is taken from Havre [Hav98].

A transfer function matrix B(s) is termed all pass if BT (−s)B(s) = I , which
implies that all singular values of (B(iω) are equal to one. Clearly, for a transfer
function matrix G(s) = B(s)Gf (s) this again means that σi(G(iω)) = σi(Gf (jω).

The factorizations we obtain will depend on whether the poles and zeros are fac-
tored to the input or to the output. We can thus have:
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Input Output

RHP-zeros G(s) = Gmi(s)Bzi(G(s)) G(s) = Bzo(G(s))Gmo(s)

RHP-poles G(s) = Gsi(s)B−1
pi (G(s)) G(s) = B−1

po (G(s))Gpo(s)

whereGmi, Gmo are versions ofG(s) with the RHP-zeros mirrored across the imag-
inary axis.
Bzi,Bzo are stable all-pass rational transfer function matrices containing the RHP-
zeros of G(s).
Gsi, Gso are stable versions of G(s) with the RHP-poles mirrored across the imagi-
nary axis.
Bpi,Bpo are stable all-pass rational transfer function matrices containing the RHP-
poles of G(s) as RHP-zeros.

D.1 Input factorization of RHP-zeros

For a transfer function matrix G(s) with Nz RHP-zeros, we get

Bzi(G(s)) = BNz (s)BNz−1(s) · · · B1(s) =

Nz−1∏
i=0

BNz−i(s) (A2.1)

where

Bi(s) = I − 2Re(zi)

s+ z̄i
ûzi û

H
zi (A2.2)

and ûzi is the input zero direction for RHP-zero i, obtained after RHP-zero i− 1 has
been factored out. The resulting Gmi(s) is given by

Gmi(s) =

[
A B′

C D

]
(A2.3)

where B′ is found by repeatedly solving[
A− ziI Bi−1

C D

][
x̂zi

ûzi

]
=

[
0

0

]
(A2.4)

Bi = Bi−1 − 2Re(zi)x̂zi û
H
zi (A2.5)

with
[
x̂Hzi ûHzi

]H
scaled such that ûHzi ûzi = 1 (thus also giving the input zero di-

rection after factoring out RHP-zero i− 1), B0 = B, and B′ = BNz .

D.2 Output factorization of RHP-zeros

We get

Bzo(G(s)) = B1(s)B2(s) · · · BNz (s) =

Nz∏
i=1

Bi(s) (A2.6)
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where

Bi(s) = I − 2Re(zi)

s+ z̄i
ŷzi ŷ

H
zi (A2.7)

and ŷzi is the output zero direction for RHP-zero i, obtained after RHP-zero i − 1
has been factored out. The resulting Gmo(s) is given by

Gmo(s) =

[
A B

C ′ D

]
(A2.8)

where C ′ is found by repeatedly solving[
x̂Hzi ûHzi

] [A− ziI B

Ci−1 D

]
=
[
0 0

]
(A2.9)

Ci = Ci−1 − 2Re(zi)ŷzi x̂
H
zi (A2.10)

with
[
x̂Hzi ŷHzi

]
scaled such that ŷHzi ŷzi = 1 (thus also giving the output zero direc-

tion after factoring out RHP-zero i− 1), C0 = C, and C ′ = CNz .

D.3 Output factorization of RHP-poles

We get

Bpo(G(s)) = BNp(s)BNp−1(s) · · · B1(s) =

Np−1∏
i=0

BNp−i(s) (A2.11)

where

Bi(s) = I − 2Re(pi)

s+ p̄i
ŷpi ŷ

H
pi (A2.12)

and ŷpi is the output pole direction for RHP-pole i, obtained after RHP-pole i − 1
has been factored out. The resulting Gso(s) is given by

Gso(s) =

[
A′ B′

C D

]
(A2.13)

where A′ and B′ are found by repeatedly solving

(Ai−1 − piI)x̂pi = 0; ŷpi = Cx̂pi (A2.14)
Ai = Ai−1 − 2Re(pi)x̂pi ŷ

H
piC (A2.15)

Bi = Bi−1 − 2Re(pi)x̂pi ŷ
H
piD (A2.16)

with
[
x̂Hpi ŷHpi

]
scaled such that ŷHpi ŷpi = 1, A0 = A, B0 = B, A′ = ANp and

B′ = BNp .
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D.4 Input factorization of RHP-poles

We get

Bpi(G(s)) = B1(s)B2(s) · · · BNp(s) =

Np∏
i=1

Bi(s) (A2.17)

where

Bi(s) = I − 2Re(pi)

s+ p̄i
ûpi û

H
pi (A2.18)

and ûpi is the output pole direction for RHP-pole i, obtained after RHP-pole i − 1
has been factored out. The resulting Gso(s) is given by

Gso(s) =

[
A′ B

C ′ D

]
(A2.19)

where A′ and B′ are found by repeatedly solving

(Ai−1 − piI)x̂pi = 0; ûpi = BH x̂pi (A2.20)
Ai = Ai−1 − 2Re(pi)Bûpi x̂

H
pi (A2.21)

Ci = Ci−1 − 2Re(pi)Dûpi x̂
H
pi (A2.22)

with
[
x̂Hpi ûHpi

]
scaled such that ûHpi ûpi = 1, A0 = A, C0 = C, A′ = ANp and

C ′ = CNp .

D.5 SISO systems

For SISO systems the input and output factorizations are the same, and pole and zero
directions do not play any role, and we easily get

Bz =

Nz∏
i=1

s− zi
s+ z̄i

(A2.23)

Bp =

Np∏
i=1

s− pi
s+ p̄i

(A2.24)

D.6 Factoring out both RHP-poles and RHP-zeros

We have from [Hav98]:

Bpo(Gmi) = Bpo(G); Bpi(Gmo) = Bpi(G); (A2.25)
G = B−1

po GmisoBzi(G); G = BzoGmosiB−1
pi (G); (A2.26)
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That is, whereas factoring out zeros generally affect pole directions and vice versa,
we do not have to consider this effect when factoring the poles and zeros on different
sides of the transfer function matrix. Whereas Gmiso and Gmosi above in general
will be different, they can both be used for the ’minimum phase and stable’ transfer
function Gms(s) for evaluation the minimum H∞ norms obtainable using feedback.
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