
Part 1.
Plantwide process control
«Control architectures»

Sigurd Skogestad



Plantwide control (Control archirecture)
– Objective: Put controllers on flow sheet (make P&ID)
– Two main objectives for control: Longer-term economics (CV1) and shorter-

term stability (CV2)
– Regulatory (basic) control layer for CV2 and supervisory (advanced) control

layer for CV1



How can we design a control system for a 
complete chemical plant?

Where do we start?

What should we control? And why?



How we design a control system for a complete 
chemical plant?

• Where do we start?
• What should we control? and why?
• etc.
• etc.

Sigurd at Caltech (1984)



Alan Foss (“Critique of chemical process control theory”, 
AIChE Journal,1973):

The central issue to be resolved ... is the determination of control system structure*. 
Which variables should be measured, which inputs should be manipulated
and which links should be made between the two sets?

There is more than a suspicion that the work of a genius is needed here, for without 
it the control configuration problem will likely remain in a primitive, hazily stated 
and wholly unmanageable form. 

The gap is present indeed, but contrary to the views of many, it is the theoretician 
who must close it.

Control system structure*

*Current terminology: Control system architecture



Plantwide control = 
Control structure (architecture) design

• Not the tuning and behavior of each control loop…

• But rather the control philosophy of the overall plant with emphasis
on the structural decisions:
– Selection of controlled variables (“outputs”)
– Selection of manipulated variables (“inputs”)
– Selection of (extra) measurements
– Selection of control configuration (structure of overall controller that interconnects the

controlled, manipulated and measured variables)
– Selection of controller type (LQG, H-infinity, PID, decoupler, MPC etc.)
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QUIZ
What are the three most important inventions of process control?

• Hint 1: According to Sigurd Skogestad
• Hint 2: All became commonly used in the 1940s

SOLUTION
1. PID controller, in particular, I-action
2. Cascade control
3. Ratio control

Note: None of these are easily implemented using Model predictive control (MPC)



Main objectives of a control system

1. Economics: Implementation of acceptable (near-optimal) operation
2. Regulation: Stable operation 

ARE THESE OBJECTIVES CONFLICTING?

• Usually NOT
– Different time scales

• Stabilization  fast time scale
– Stabilization doesn’t “use up” any degrees of freedom

• Reference value (setpoint) available for layer above
• But it “uses up” part of the time window (frequency range)
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Optimal operation
General approach: minimize cost / maximize profit, subject to satisfying 
constraints (product quality, environment, resources)

Mathematically,

min
𝑢𝑢

 𝐽𝐽(𝑥𝑥,𝑢𝑢,𝑑𝑑)

s.t. 𝑥̇𝑥 = 𝑓𝑓 𝑥𝑥,𝑢𝑢,𝑑𝑑 ,
 ℎ 𝑥𝑥,𝑢𝑢,𝑑𝑑 = 0,
 𝑔𝑔 𝑥𝑥,𝑢𝑢,𝑑𝑑 ≤ 0.
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Optimal operation (in theory)

min
𝑢𝑢

 𝐽𝐽(𝑥𝑥,𝑢𝑢,𝑑𝑑)
s.t. 𝑥̇𝑥 = 𝑓𝑓 𝑥𝑥,𝑢𝑢,𝑑𝑑 ,
 ℎ 𝑥𝑥,𝑢𝑢,𝑑𝑑 = 0,
 𝑔𝑔 𝑥𝑥,𝑢𝑢,𝑑𝑑 ≤ 0.

objectives 

present state 

model of system 

degrees of freedom

Procedure:
• Obtain model of overall system
• Estimate present state
• Optimize all degrees of freedom

Problems:
• Model not available
• Optimization is complex
• Not robust (difficult to 

handle uncertainty)
• Slow response time

CENTRALIZED 
OPTIMIZER

(example: Economic MPC)
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Engineering systems
• Most (all?) large-scale engineering systems are controlled using

hierarchies of quite simple controllers
– Large-scale chemical plant (refinery)
– Commercial aircraft

• 100’s of loops

• Simple components:
on-off + PI-control + nonlinear fixes + some feedforward



Two fundamental ways of decomposing the controller

• Vertical (hierarchical; 
cascade)

• Based on time scale 
separation

• Decision: Selection of CVs 
that connect layers

• Horizontal 
(decentralized)

• Usually based on 
distance

• Decision: Pairing of 
MVs and CVs within 
layers

In addition: Decomposition of controller into smaller elements (blocks): 
Feedforward element, nonlinear element, estimators (soft sensors), switching 
elements

PROCESS



Two objectives for control: Stabilization and 
economics
• Supervisory (“advanced”) control layer

Tasks:
– Follow set points for CV1 from economic optimization 

layer 
– Switch between active constraints (change CV1)
– Look after regulatory layer (avoid that MVs saturate, 

etc.)

• Regulatory control (PID layer):
– Stable operation (CV2)

Time scale separation: Control* layers

CV = controlled variable

*My definition of «control» is that the objective is to track setpoints PROCESS

setpoint

setpoint



«Advanced» control

• Advanced: This is a relative term
• Usually used for anything than comes in addition 

to (or in top of) basic PID loops
• Mainly used in the «supervisory» control layer
• Two main options

– Standard «Advanced regulatory control» (ARC) 
elements

• Based on decomposing the control system
– Cascade, feedforward, selectors, etc.

• This option is preferred if it gives acceptable 
performance

– Model predictive control (MPC)
• Requires a lot more effort to implement and maintain
• Use for interactive processes 
• Use with known information about future (use predictive 

capanulities) PROCESS

setpoint

setpoint



Combine control and optimization into one 
layer?

CV = controlled variable
RTO = real-time optimization

PROCESS

setpoint

setpoint

Economic
 cost J EMPC

(no setpoints
CV1, CV2)

JEMPC = J + Jcontrol
• J [$/s] = Jeconomic = cost feed + cost energy – value products
• Jcontrol = ΣΔ𝑢𝑢𝑖𝑖2  (typical) - Penalize input usage

NO, combining layers is generally not a good idea!
(the good idea is to separate them!)

One layer (EMPC) is optimal theoreretically, but
• Need detailed dynamic model of everything
• Tuning difficult and indirect
• Slow! (or at least difficult to speed up parts of the control)
• Robustness poor
• Implementation and maintainance costly and time consuming

EMPC: Economic model predictive “control”



What about «conventional» RTO and MPC?

• Yes, it’s OK
• Both has been around for more than 50 years (since 1970s) 

– but the expected growth never came
• MPC is still used mostly in large-scale plants (petrochemical and 

refineries).
• MPC is far from replacing PID as some expected in the 1990s.

• But plants need to be run optimally:
⇒ Need something else than conventional RTO/MPC!

MPC = model predictive control
RTO = real-time optimization



Alternative solutions for advanced control
• Would like: Feedback solutions that can be implemented with minimum need for 

models

• Machine learning?
– Requires a lot of data, not realistic for process control
– And: Can only be implemented after the process has been in operation

• “Classical advanced regulatory control“ (ARC) based on single-loop PIDs?
– YES!
– Extensively used by industry
– Problem for engineers: Lack of design methods

• Has been around since 1930’s
• But almost completely neglected by academic researchers

– Main fundamental limitation: Based on single-loop (need to choose pairing)

ARC = Advanced regulatory control



Optimal operation and control objectives:
What should we control?

CV1 (economics)

CV2 (stabilization)

2024, 2025. Start here lecture, day 2



I. Top Down (analysis)
• Step S1: Define operational objective (cost) and constraints
• Step S2: Identify degrees of freedom and optimize operation for disturbances
• Step S3: Implementation of optimal operation

‒ What to control? (CV1) (self-optimizing control)
• Step S4: Where set the production rate (TPM)? (Inventory control)

II. Bottom Up (design)
• Step S5: Regulatory control: What more to control (CV2)?
• Step S6: Supervisory control
• Step S7: Real-time optimization

TPM = Throughput manipulator

Skogestad procedure for control structure design:



Step S1. Define optimal operation (economics)

• Usually easy!
• What are the economic goals of the operation?
• Typical cost function*:

*No need to include fixed costs (capital costs, operators, maintainance) at ”our” time scale (hours)
Note: J=-P where P= Operational profit

J = cost feed + cost energy – value products [$/s]



• Distillation at steady state with given p and F: N=2 DOFs, e.g. L and V (u)
• Cost to be minimized (economics)

J = - P where P= pD D + pB B – pF F – pVV

• Constraints
Purity D: For example, xD, impurity ≤ max
Purity B: For example, xB, impurity ≤ max
Flow constraints: min ≤ D, B, L etc. ≤ max
Column capacity (flooding): V ≤ Vmax, etc.
Pressure: 1) p given (d) 2) p free (u): pmin ≤ p ≤ pmax

Feed:      1) F given (d)  2) F free (u): F ≤ Fmax

• Optimal operation: Minimize J with respect to steady-state DOFs (u)

Example: distillation column

value products

cost energy (heating + cooling)

cost feed



Skogestad procedure for control structure design:

I. Top Down
• Step S1: Define operational objective (cost J) and constraints (easy!)
• Step S2: (a) Identify degrees of freedom and (b) optimize operation for disturbances

• Usually not easy! So often based on process insight
• Step S3: Implementation of optimal operation

‒ What to control? (primary CV’s) (self-optimizing control)
• Step S4: Where set the production rate? (Inventory control)

II. Bottom Up
• Step S5: Regulatory control: What more to control (secondary CV’s)?
• Step S6: Supervisory control
• Step S7: Real-time optimization



Step S2a: Degrees of freedom (DOFs) for operation 

How many? NOT as simple as one may think!

To find all operational (dynamic) degrees of freedom:
• Count valves! (Nvalves) 
• “Valves” also includes adjustable compressor power, etc. 

Anything we can manipulate!

BUT: not all these have a (steady-state) effect on the economics

Steady-state DOFs

IMPORTANT! 
DETERMINES THE NUMBER OF VARIABLES TO CONTROL!
• No. of CV1 = No. of steady-state DOFs



How many Steady-state degrees of freedom (DOFs)?

CV = controlled variable 

Methods to obtain no. of steady-state degrees of freedom (Nss): 
1. Equation-counting  

• Nss = no. of variables – no. of equations/specifications 
• Very difficult in practice

2. Valve-counting (easier!)
• Nss = Nvalves – N0ss – Nspecs
• Nvalves: include also variable speed for compressor/pump/turbine
• Nspecs: Fixed variables (which are not later included in constraints)
• N0ss = variables with no steady-state effect 

• Inputs/MVs with no steady-state effect (e.g. extra bypass) 
• Outputs/CVs with no steady-state effect that need to be controlled (e.g., liquid 

levels)
3. Potential number for some units (useful for checking!)
4. Correct answer: Will eventually find it when we perform optimization

Steady-state DOFs



Example: Distillation column

Nvalves = 6 ,   N0ss = 2* ,
NDOF,SS = 6 -2  = 4 (including feed and pressure as DOFs.

If feed and pressure are fixed: Nspecs=2 and NDOF.ss=4-2 = 2 )

*N0ss : no. controlled variables with no steady-state effect (here: levels M1 and M2)

1

2

3

4

5

6

Steady-state DOFs

NEED TO IDENTIFY 2 more CV’s 
- Typical: Top and btm composition

With levels and pressure controlled and given feed
(LV-configuration):

Nss = Nvalves – N0ss – Nspecs



Step S2b: Optimize for expected disturbances

• What are the optimal values for our degrees of freedom u (MVs)?

• Minimize J with respect to u for given disturbance d (usually steady-state):
min
𝑢𝑢

𝐽𝐽 𝑥𝑥,𝑢𝑢,𝑑𝑑
subject to:
– Model equations : 𝑥̇𝑥 = 𝑓𝑓 𝑥𝑥,𝑢𝑢,𝑑𝑑 = 0
– Operational constraints: 𝑔𝑔 𝑥𝑥,𝑢𝑢,𝑑𝑑 ≤ 0

OFTEN VERY TIME CONSUMING
– Commercial simulators (Aspen, Unisim/Hysys) are set up in “design mode” and often work poorly in 

“operation (rating) mode”.
– Optimization methods in commercial simulators often poor

• We can use Matlab or even Excel “on top”

J = cost feed + cost energy – value products 
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• Need good model, usually steady-state
• Optimization is time consuming! But it is offline
• Main goal: Identify ACTIVE CONSTRAINTS (optimal to maintain) 
• A good engineer can often guess the active constraints:

Cost J = T [h]
Constraint: v ≤ 50 km/h 
Control implementation: Cruise control with setpoint 50 km/h (active constraint) 

Step S2b: Optimize for expected disturbances

Example:



valuable 
product
methanol 

+ max. 1% water

cheap product
(byproduct)
water 
+ max. 5% methanol

methanol
+ water

• Both products (D, B) generally have purity specs

• Rule 1: Purity spec. always active for valuable product
– Reason: 1. Maximize amount of valuable product (D or B)

• Avoid product “give-away” (So “sell water as methanol”)
– Reason 2: Save energy (because overpurification costs energy)

• Rule 2: May overpurify (not control) cheap product
– Reason: Increase amount of valuable product (“reduce loss of 

methanol in bottom product”)
– This typically results in an unconstrained optimum because 

overpurification costs energy (“optimal purity of cheap product”)

Example Step S2b: Active constraints for distillation
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Generally: Two main cases (modes) depending on market conditions:

Mode 1 (low product price). Given throughput (feed rate)
Mode 2 (high product price). Maximum production (more constrained)

Comment: Depending on prices, Mode 1 may include many subcases (active 
constraints regions)

min J = cost feed + cost energy – value products 

Step S2b: Optimize for expected disturbances
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Mode 1. Given feedrate
Amount of products is then usually indirectly given and 

Optimal operation is then usually unconstrained

“maximize efficiency (energy)”
Control:
• Operate at optimal trade-off 
• NOT obvious what to control
• CV = Self-optimizing variable

J = cost feed – value products + cost energy 

c

J = 
energy

copt

Often constant
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Mode 2. Maximum production

• Assume feed rate is degree of freedom
• Assume products much more valuable than feed
• Optimal operation is then to maximize product rate
• “max. constrained”,  prices do not matter

Control: 
• Focus on tight control of bottleneck
• “Obvious what to control”
• CV = ACTIVE CONSTRAINT
• CVs = cmax

c

J

cmax

Infeasible
region

J = cost feed + cost energy – value products 
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Step S3. Implementation of optimal operation

• Assume we have analyzed the optimal way of operation. How 
should it be implemented?

• What to control? (primary CV’s)
1. Active constraints
2. Self-optimizing variables (for unconstrained degrees of freedom)
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1. Control of Active output constraints
Need back-off

a) If constraint can be violated dynamically (only average matters)
• Required Back-off = “measurement bias” (steady-state measurement error for c)

b) If constraint cannot be violated dynamically (“hard constraint”) 
• Required Back-off = “measurement bias” + maximum dynamic control error

Jopt Back-off
Loss

c ≥ cconstraint

c

J

Want tight control of hard output constraints to reduce the 
back-off. “Squeeze and shift”-rule

The backoff is the “safety margin” from the 
active constraint and is defined as the 

difference between the constraint value 
and the chosen setpoint

Backoff = | Constraint – Setpoint |
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Motivation for better control of active constraints: 
Squeeze and shift rule

y
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Example: max. throughput.
Want tight bottleneck control to reduce backoff!

Time

Back-off
= Lost 
production
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Example active constraint: purity on distillate

xB = purity of product > 95% (min.)

• D2 directly to customer (hard constraint)
– Measurement error (bias): 1%
– Control error (variation due to poor control):  2%
– Backoff = 1% + 2% = 3%
– Setpoint xBs= 95 + 3% = 98% (to be safe)
– Can reduce backoff with better control (“squeeze and shift”)

• D2 to large mixing tank (soft constraint)
– Measurement error (bias): 1%
– Backoff = 1%
– Setpoint xBs= 95 + 1% = 96% (to be safe)
– Do not need to include control  error because it averages out in tank

xB xB,product
±2% ∞

D2
xB
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2. Unconstrained optimum
Control “self-optimizing” variable! (More on this soon!)

• Which variable is best?
• Often not obvious

What are good self-optimizing variables?
1. Optimal value of CV is constant 
2. CV is “sensitive” to MV (large gain)

Note: Tight control of the self-optimizing variable is usually not important because optimum should be flat.
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Conclusion optimal operation
ALWAYS:

1. Control active constraints and control them tightly!!
– Good times: Maximize throughput  tight control of bottleneck

2. Identify “self-optimizing” CVs for remaining unconstrained degrees of freedom

• Use offline analysis to find expected operating regions and prepare control system for this!
– One control policy when prices are low (nominal, unconstrained optimum)
– Another when prices are high (constrained optimum = bottleneck)

ONLY if necessary: consider RTO on top of this



Example Steps 1, 2 & 3: Distillation columns in series

Given

LC

Given feed and pressures: We have 4 remaining steady-state MVs (L1, V1, L2, V2)
What more should we control?
HINT: CONTROL ACTIVE CONSTRAINTS

Red: Basic regulatory loops

LC

PC PC

LC LC



Step S1: Cost and constraints

DOF = Degree Of Freedom
Ref.: M.G. Jacobsen and S. Skogestad (2011)

Energy price: pV=0-0.2 $/mol (varies)
Cost (J) = - Profit = pF F + pV(V1+V2) – pD1D1 – pD2D2 – pB2B2

> 95% B
pD2=2 $/mol

F ~ 1.2mol/s
pF=1 $/mol < 4 mol/s < 2.4 mol/s

> 95% C
pB2=1 $/mol

N=41
αAB=1.33 N=41

αBC=1.5
> 95% A
pD1=1 $/mol

• 4 steady-state DOFs (e.g., L and V in each column)
• 5 (important) constraints: 3 product composition + 2 max. heat input 



Step S2. Optimal operation

DOF = Degree Of Freedom
Ref.: M.G. Jacobsen and S. Skogestad (2011)

Energy price: pV=0-0.2 $/mol (varies)
Cost (J) = - Profit = pF F + pV(V1+V2) – pD1D1 – pD2D2 – pB2B2

> 95% B
pD2=2 $/mol

F ~ 1.2mol/s
pF=1 $/mol < 4 mol/s < 2.4 mol/s

N=41
αAB=1.33 N=41

αBC=1.5
> 95% A
pD1=1 $/mol

QUIZ: What are the expected active constraints?
1. Always. 2. For low energy prices.

With given feed and pressures (disturbances): 4 steady-state DOFs 
(e.g., L and V in each column)

1.                                          xB = 95% B
Spec. valuable product (B): Always active!
Why? “Avoid product give-away”

2. Cheap energy: V1=4 mol/s, V2=2.4 mol/s
Max. column capacity constraints active!
Why? Overpurify A & C to recover more B

> 95% C
pB2=1 $/mol



43

Given

LC

Red: Basic regulatory loops

LC

PC PC

LC LC

CC

MAX V1 MAX V2

xB,s = 95%

L1 not used. What more should we control? 
Optimal to “overpurify” D1 - but optimal overpurification is uncontrained and varies with feedrate.  
LOOK FOR “SELF-OPTIMIZING” CVs = Variables we can keep constant

Step S3: Control 3 Active constraints: 
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Given

LC

Red: Basic regulatory loops

LC

PC PC

LC LC

CC

MAX V1 MAX V2

xB,s = 95%

What CV should L1 be paired with?
•Not: CV= xA in D1! (why? xA should vary with F!)
•Maybe: constant L1? (CV=L1)
•Better: CV= xA in B1? Self-optimizing?

Step S3: Control 3 Active constraints: 
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Given

LC

Red: Basic regulatory loops

LC

PC PC

LC LC

CC

MAX V1 MAX V2
CC

Self-optimizing
xA,B1,s = 1%? xB,s = 95%

Step S3: Control 3 Active constraints + 1 self-optimizing



Vary feedrate (F) and energy price (pV):
8 active constraint regions

Distillation example: Not so simple

• The figure shows the active constraints (between 1 and 4)  in each region. xB in D2 is always active.
• On the previous slide we only considered region VII («cheap energy» with pV small).
• In the «infeasible» region there are 5 constraints (xA, xB, xC, V1max, V2max ) but only 4 DOFs. Must reduce F

xA xB

xC

V1 V2



How many active constraints regions?

• Maximum: 2𝑛𝑛𝑐𝑐
where nc = number of constraints

BUT there are usually fewer in practice
• Certain constraints are always active (reduces 

effective nc)
• Only nu can be active at a given time 

nu = number of MVs (inputs)
• Certain constraints combinations are not possibe

– For example, max and min on the same variable 
(e.g. flow)

• Certain regions are not reached by the assumed 
disturbance set

Distillation
nc = 5
25 = 32

xB always active
24 = 16

-1 = 15

In practice = 8

This seems complicated….. But knowledge about all regions is rarely (if ever) needed…. 
In practice: We use the control system to switch when constraints are encountered….. 
It’s much simpler and in many cases optimal…. Try



48

Preview: How handle increase in F (still with low pV)?

How to control in three regions (VII, VIII and Infeasible)? 
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Given

LC

Red: Basic regulatory loops

LC

PC PC

LC LC

CC

MAX V1 MAX V2
CC

xA,B1,s = 1%

MAX CC xA,s = 95%

MIN
Fs

CC

xB,s = 95%

xC,s = 95%
Oops… long loop…
Can use B1

Preview: Control of distillation columns in series in three regions
(but finding a simple control structure with constant setpoints that works in all regions is not possible; 
One solution: 4 composition loops + RTO that optimizes composition setpoints)
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