
PID tuning using the SIMC rule

Sigurd Skogestad



2

Lecture outline

• SIMC rule for first order systems 

• Closed loop tuning

• Half-rule for higher order models



3

PID controller

• Time domain ("ideal" PID)

𝑢𝑢 𝑡𝑡 = 𝑢𝑢0 + 𝐾𝐾𝑐𝑐 𝑒𝑒 𝑡𝑡 +
1
𝜏𝜏𝐼𝐼
�
0

𝑡𝑡
𝑒𝑒 𝜉𝜉 𝑑𝑑𝑑𝑑 + 𝜏𝜏𝐷𝐷

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

• Laplace domain ("ideal"/"parallel" form)

𝑐𝑐 𝑠𝑠 = 𝐾𝐾𝑐𝑐 1 +
1
𝜏𝜏𝐼𝐼𝑠𝑠

+ 𝜏𝜏𝐷𝐷𝑠𝑠

• Usually 𝜏𝜏𝐷𝐷 = 0. Only two parameters left (𝐾𝐾𝐶𝐶 and 𝜏𝜏𝐼𝐼)…

• How difficult can it be?

– Surprisingly difficult without systematic approach!



4

PID tuning – wikipedia - 2023

https://en.wikipedia.org/wiki/PID_controller#Loop_tuning

Hm…. SIMC tuning is not mentioned – maybe someone can update wiki

SIMC                 Has tuning parameter, analytically derived, works also on                          The process must not be  
                         delay processes(where ZN does not work)                                                                           oscillatory

BAD
method

No, less agressive
Version of ZN

??

https://en.wikipedia.org/wiki/PID_controller#Loop_tuning


5

PID tuning – wikipedia - 2024

https://en.wikipedia.org/wiki/PID_controller#Loop_tuning
SIMC tuning is on the list !!   …. Thank you (I don’t know who)

??

Still a BAD
method, Delete 

https://en.wikipedia.org/wiki/PID_controller#Loop_tuning


6

Trans. ASME, 64, 759-768 (Nov. 1942).

Disadvantages Ziegler-Nichols:
1.Aggressive settings
2.No tuning parameter
3.Poor for processes with large time delay (𝜃𝜃)

Comment:
Similar to SIMC for integrating 
process with 𝜏𝜏c=0 (aggressive!):
Kc = 1/k’ 1/𝜃𝜃
𝜏𝜏I = 4 𝜃𝜃

Excellent work – especially considering that it was published only 3 years after the PID controller came on the market (Taylor Model 100 Fullscope, 1939)



7



8

Disadvantage IMC-PID (=Lambda tuning):
1.Many rules
2.Poor disturbance response for «slow» processes (with large 𝜏𝜏1/𝜃𝜃)



9



10



11

1
𝜏𝜏𝑐𝑐 ≥ 𝜃𝜃

(gives Gain Margin>3)

Only one tuning parameter:
Closed-loop time constant:

k’=k/τ1

+ Filter time constant, 𝜏𝜏𝐹𝐹 ≤
𝜏𝜏𝑐𝑐
2

Summary SIMC PID tuning rule 

With anti windup



13

Derivation of SIMC-PID tuning rules
• PI-controller (based on first-order model)

𝑐𝑐 𝑠𝑠 = 𝐾𝐾𝑐𝑐 1 +
1
𝜏𝜏𝐼𝐼𝑠𝑠

= 𝐾𝐾𝑐𝑐
𝜏𝜏𝐼𝐼𝑠𝑠 + 1
𝜏𝜏𝐼𝐼𝑠𝑠

• For second-order model add D-action.
– For our purposes, simplest with the “series” (cascade) PID-form:

𝑐𝑐 𝑠𝑠 = 𝐾𝐾𝑐𝑐
𝜏𝜏𝐼𝐼𝑠𝑠 + 1 𝜏𝜏𝐷𝐷𝑠𝑠 + 1

𝜏𝜏𝐼𝐼𝑠𝑠



14

Basis: Direct synthesis (IMC)

Closed-loop response to setpoint change:

𝑦𝑦 = 𝑇𝑇 𝑦𝑦𝑠𝑠, 𝑇𝑇 𝑠𝑠 =
𝑔𝑔𝑔𝑔

1 + 𝑔𝑔𝑔𝑔

Idea: specify desired response 𝑇𝑇 and from this get the controller:

𝑐𝑐 =
1
𝑔𝑔 ⋅

1
1
𝑇𝑇 − 1



SIMC-tunings

NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!

Time delay is not really desired
but it cannot be avoided

15



16

IMC Tuning = Direct Synthesis 
Algebra:

SIMC-tunings

Surprisingly, this PID-controller is generally better, or at least more robust with respect to changes in the time delay θ, than the Smith 
Predictor controller from which it was derived. We are lucky .
Reference: Chriss Grimholt and Sigurd Skogestad. ''Should we forget the Smith Predictor?'' (2018)
In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018) .

IMC-tuning is the same as “Lambda-tuning”: τc is sometimes called λ

http://folk.ntnu.no/skoge/publications/2018/grimholt-forget-sp-pid2018


17

Example step setpoint response
(with choice τc=θ =2)

17

s=tf(‘s’);
k=1; tau=10; theta=2; 
g = k*exp(-theta*s)/(tau*s+1);
tauc=theta;
Kc=(1/k)*(tau/(tauc+theta));   % Kc=2.5
taui=tau;
c = Kc*(1+ 1/(taui*s));
T = g*c/(1+g*c);
Tideal = exp(-theta*s)/(tauc*s+1);
step(T,Tideal,20)

y (PI)

Red: «ideal» = «originally desired» (with Smith Predictor)

PI: Overshoot (y=1.04) is from approximation exp(-θs) ≈ 1 - θs 



18

Input usage for setpoint response

18

%Input usage
figure(2);
KS = c/(1+g*c);
KSideal = (1/k)*(tau*s+1)/(tauc*s+1); 
step(KS,KSideal,20); 
axis([0 20 0 5])

u (PI)

Red: «ideal» (with Smith Predictor)

The process has a «natural» time constant τ=10, and 
we use control to «speed it up» to τc=2. 
This is why we get an overshoot for the input
(for PI-control, u starts at 0, jumps up to Kc=2.5 and 
then I-action increases it to 3 at its peak, before 
settling at its steady-state value of 1).



19

Integral time
• Found: Integral time = dominant time constant (τI = τ1)
• Gives P-controller for integrating process (τI = ∞)

– This works well for setpoint changes
– But: τI needs to be modified (reduced) for integrating disturbances

Example. “Almost-integrating process” with disturbance at input:
G(s) = e-s/(30s+1)
Original integral time τI = 30 gives poor disturbance response
Try reducing it!

gc

d
yu



20

Effect of decreasing 𝜏𝜏𝐼𝐼

SIMC

SIMC modification:
Decrease integral time to 
improve disturbance rejection
for slow processes (with large 
τ)!



21

Integral time correction

• Want to reduce the integral time for “integrating” processes
• But to avoid “slow oscillations” (not caused by the delay θ) 

we must require k’KcτI≥4, which with the SIMC-rule for Kc 
gives:

• Proof:



22

Conclusion: SIMC-PID Tuning Rules 

One tuning parameter: τc  



23

Some special cases

One tuning parameter: τc

(1)(*) Note that we get pure I-controller for static process with delay.



24

Choice of SIMC-tuning parameter τc. 
1. Trade-off between robustness (Ms) and performance (J=IAE)

Conclusion: τc= 𝜃𝜃 gives a good trade-off

Ms = Peak of |S(jω)| = 1/(smallest distance to (-1)-point). Want less than 1.7 



25
SIMC: GM and DM increase linearly with τc

Ms

GM

PM

τc /θ τc /θ

DM=
∆θ /θ =
PM/ωc

3

1

2

1.6
1

60o

1/Ms

Choice of tuning SIMC-parameter τc. 
2. Relationship between τc and robustness (Ms, GM, PM, DM)

Conclusion: τc/𝜃𝜃 = 1 gives a acceptable robustness (Ms=1.6, PM=60o, GM=3, DM=2)



26

TIGHT CONTROL

1/Ms



27

Typical closed-loop SIMC responses with the choice τc=θ (delay)

TIGHT CONTROL



• Example 2. Compare PI and PID 

28

s=tf('s')
g=(-0.3*s+1)*(0.08*s+1)/((2*s+1)*(s+1)*(0.4*s+1)*(0.2*s+1)*(0.05*s+1)^3)
k=1;
tau1=2.5, tau2=0, theta=1.47, tauc=theta % 1st order
%tau1=2, tau2=1.2, theta=0.77, tauc=theta % 2nd order

Kc=(1/k)*tau1/(tauc+theta)        % Kc.   PI: 0.85  PID: 1.30
taui=min(tau1,4*(tauc+theta))    % taui. PI: 2.50  PID: 2
taud=tau2;                                 % taud. PI: 0      PID: 1.2
cpi=Kc*(1+1/(taui*s));            
cd=(taud*s+1)/(0.1*taud*s+1);
cpid=cpi*cd;
L = cpid*g
S=inv(1+L)
%setpoint response
Ty=g*cpi*S, Ty=minreal(Ty); % without D-action on setpoint
Tuy=cpi*S, Tuy=minreal(Tuy); % without D-action on setpoint
%Input disturbance
gd=g;
Td=gd*S; Td=minreal(Td);
Tud=-gd*cpid*S; Tud=minreal(Tud);
Typi=Ty; Tdpi=Td; Tuypi=Tuy; Tudpi=Tud;
%Typid=Ty; Tdpid=Td; Tuypid=Tuy; Tudpid=Tud;

figure(1),step(Typi,'blue',Typid,'blue--',Tuypi,'red',Tuypid,'red--',15)
figure(2),step(Tdpi,'blue',Tdpid,'blue--',Tudpi,'red',Tudpid,'red--',15)

TIGHT CONTROL

Note: tau2>theta , so 2nd order and PID gives 
perfromance improvement compared to PI



Comparison of
PI and PID - - 

Input u

Input u

STEP SETPOINT CHANGE (ys)
(note: without D-action on setpoint, 
so u jumps initially to Kc also for PID)

STEP INPUT DISTURBANCE (gd=g)

PI

PID

Output y

Output y

Conclusion:
PID is quite a lot better.
(expected since tau2=1.2
> theta=0.77)

Example 2.

PI

PID

PID

PI

PI

PID



30

Conclusion D-action (for series-form PID): 
1. Use PID with τD = τ2 for dominant 2nd order processes with τ2 >θ (otherwise, add τ2/2 to effective delay θ and use PI)
2. Use derivative action (PID) for unstable processes, for example, a double integrating process (not so common in 
process control).
3. Derivative action (PID) can help a little to speed up response for a process with time delay (e.g. use τD = θ/3), but we 
then need to reduce τC (i.e., increase Kc) to get the performance benefit (e.g., reduce τC  from θ to θ/2). 
We did not do this in the above simulation, so this is why the benefit of D-action is small. 
Example 3 (next slide): Compare SIMC-PI with PID with τD = θ/3  using τC  = θ (red curve, small benefit) and τC  = θ/2 (yellow curve, less overshoot).
4. If you end up using a “large” τc, such that you have τc > 2τD (approximately), then D-action is not helping much and you 
may consider PI-control instead. Example: See above simulation which has τc= θ and τD= θ/2, that is, τc = 2τD.

SIMC-tunings



31

Example 3 (disturbance response Dynea reactor): 
(1) Effect of wrong tau-I, (2) Use of tau-D to reduce overshoot

Note: Often D-action requires much more input usage - but in this example the input usage (not shown) is almost the 
same for all controllers. This is because the disturbance is so «slow» (almost integrating) 



Too complicated

32



33

When do we need «tight control»? For 
hard constraints

«SQEEZE and SHIFT» RULE

Original
tuning

Improved
tuning

Optimized
operation

Setpoint

Squeeze Shift

time



34

Selection of tuning parameter τc

Two main cases
1. TIGHT CONTROL (τc small):  Want “fastest possible 

control” subject to having good robustness
• Want tight control of active constraints (“squeeze and shift”)
• Select τc = θ (effective delay)

2. SMOOTH CONTROL (τc large):  Want “slowest possible 
control” subject to acceptable disturbance rejection

• Prefer smooth control if fast control is not required

SIMC-tunings



35

Tuning for smooth control
SMOOTH CONTROL

 Tuning parameter: τc = desired closed-loop response time 

 Selecting τc=θ if we need “tight control” of y.

 Other cases: “Smooth control” of y is sufficient, so select τc > θ for 
 slower control
 smoother input usage

 less disturbing effect on rest of the plant
 less sensitivity  to measurement noise
 better robustness

 Question: Given that we require some disturbance rejection.
 What is the largest possible value for τc ?
 ANSWER: τc,max =1/ωd  (where ωd is defined as the frequence where |gd(jωd)| = ymax/dmax )

Proof. y=Sgd d, where S=(1+L). Require |y|<ymax at all frequencies, so |S| < |gd| d/ymax at all frequencies. 
The integral action takes care of most of the disturbance rejection, so usually, the «worst-case» frequency is where |S| reaches 1, which is approximately at wc=1/tauc.  
So define wd as the frequency where (gd/g) d/ymax = 1 and we must require wc > wd or equivalently tauc < 1/wd. Thus we have tauc.maxc=1(wd. 

This bound may be optimistic if there are disturbances with two or more «slow» poles, because then the worst-case frequency may be lower than wc.

Comment: An simpler (but sometimes conservative) answer is to select Kc,min =|ud|/|ymax| where |ud| is the input magnitude to reject the maximum 
disturbance. (Given Kc,min we may obtain the corresponding tauc,max using the SIMC-rule for Kc). 
.  
More detailed proof: S. Skogestad, ``Tuning for smooth PID control with acceptable disturbance rejection'', Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).



36

Level control
• Level control often causes problems
• Typical story:

– Level loop starts oscillating
– Operator detunes by decreasing controller gain
– Level loop oscillates even more
– ......

• ???
• Explanation: Level is by itself unstable and requires control.  

LEVEL CONTROL



37

Level control: Can have both fast and slow 
oscillations

• Slow oscillations (Kc too low): P > π τI

• Fast oscillations (Kc too high): P < π τI

Fast oscillations: Caused by (effective) time delay
Here: Consider the common slow oscillations

LEVEL CONTROL

P=period of oscillations = 2π/ω 



38

Level control (integrating process): Can have 
both fast and slow oscillations

• Fast oscillations (Kc too high): P < π τI
– Caused by (effective) time delay

• Slow oscillations (Kc too low): P > π τI
– Caused by integral action in controller 
– Avoid slow oscillations: 𝑘𝑘′𝐾𝐾𝑐𝑐𝜏𝜏𝐼𝐼 ≥ 4.

LEVEL CONTROL

P=period of oscillations = 2π/ω 



39

How avoid slowly oscillating levels?
LEVEL CONTROL

0.1 ¼ 1/π2



40

Case study oscillating level
• We were called upon to solve a problem with oscillations in a 

distillation column
• Closer analysis: Problem was oscillating reboiler level in upstream 

column
• Use of Sigurd’s rule solved the problem

LEVEL CONTROL



41

LEVEL CONTROL



42

Model



43

Need a model for tuning
• Model: Dynamic effect of change in input u (MV) on output y (CV) 

• First-order + delay model for PI-control

𝐺𝐺 𝑠𝑠 =
𝑘𝑘

𝜏𝜏1𝑠𝑠 + 1
𝑒𝑒−𝜃𝜃𝜃𝜃

• Second-order model for PID-control

𝐺𝐺 𝑠𝑠 =
𝑘𝑘

𝜏𝜏1𝑠𝑠 + 1 𝜏𝜏2𝑠𝑠 + 1
𝑒𝑒−𝜃𝜃𝜃𝜃

– Recommend: Use second-order model only if 𝜏𝜏2 ≥ 𝜃𝜃



44

1. Step response experiment

• Make step change in one u (MV) at a time

• Record the output (s) y (CV)



45

1A. Open-loop setting

STEP IN INPUT u

RESULTING OUTPUT y

θ: Delay - Time where output does not change
τ1: Time constant - Additional time to reach 

63% of final change
k = ∆ y(∞)/∆ u : Steady-state gain

Δy(∞)

Δu



46

Step response of integrating process

Δy

Δt

Imagine this as a 1st order with "infinite" 𝜏𝜏1:

𝐺𝐺 𝑠𝑠 =
𝑘𝑘

𝜏𝜏1𝑠𝑠 + 1 ≈
𝑘𝑘
𝜏𝜏1𝑠𝑠

=
𝑘𝑘′

𝑠𝑠



47

1B. Closed-loop setpoint response
• Shams’ method: P-controller with about 20-40% overshoot

Kc0=1.5
Δys=1

Δyu=0.54
Δyp=0.79

tp=4.4

1. OBTAIN 5 DATA IN RED (wait for first overshoot
and undershoot), and then read off:

tp=4.4, dyp=0.79; dyu=0.54, Kc0=1.5, dys=1

dyinf = 0.45*(dyp + dyu)
Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
b=dyinf/dys
A = 1.152*Mo^2 - 1.607*Mo + 1.0
r = 2*A*abs(b/(1-b))

%2. OBTAIN FIRST-ORDER MODEL:

k = (1/Kc0) * abs(b/(1-b))
theta = tp*[0.309 + 0.209*exp(-0.61*r)]
tau = theta*r

3. CAN THEN USE SIMC PI-rule

Example 2: Get k=0.99, theta =1.68, tau=3.03
Ref: Shamssuzzoha and Skogestad (JPC, 2010) 

+ modification by C. Grimholt (Project, NTNU, 2010; see also PID-book 2012, 
Sigurd Skogestad and Chriss Grimholt. ''The SIMC Method for Smooth PID Controller Tuning'' (2012))

Δy∞

https://folk.ntnu.no/skoge/publications/2012/skogestad-improved-simc-pid/


48

2. Model reduction
• Start with complicated stable model on the form

𝐺𝐺0 𝑠𝑠 = 𝑘𝑘0
𝑇𝑇10𝑠𝑠 + 1 𝑇𝑇20𝑠𝑠 + 1 …
𝜏𝜏10𝑠𝑠 + 1 𝜏𝜏20𝑠𝑠 + 1 …

𝑒𝑒−𝜃𝜃0𝑠𝑠

• Want to get a simplified model on the form

𝐺𝐺 𝑠𝑠 =
𝑘𝑘

𝜏𝜏1𝑠𝑠 + 1 𝜏𝜏2𝑠𝑠 + 1
𝑒𝑒−𝜃𝜃𝑠𝑠

• Most important parameter is the “effective” delay 𝜃𝜃



49

Details:



50

Example 1

Half rule



51

s=tf('s')
g=(-0.1*s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]
g1 = exp(-2.1*s)/(6.5*s+1)
g2 = exp(-0.35*s)/[(5*s+1)*(3.25*s+1)] 
step(g,g1,g2)

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1
Step Response

Time (seconds)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Step Response

Time (seconds)

Am
pl

itu
de

Example 2

Original (third-order with inverse response)
First-order approx. using half rule
Second-order approx. using half rule

51



half rule

3

MODEL, Approach 2

Comment: The subtraction of T0=0.08 from the effective delay follows from the approximation (0.08s+1)/(0.2s+1) ≈ 1
0.2−0.08 𝑠𝑠+1 

(rule T3).  
Alternatively, we could have used the approximation (0.08s+1)/(0.05s+1) ≈ 1 (rule T1b) which would reduce the effective delay by 0.05 (instead 
of 0.08).  In any case, it only has a small effect om the effective delay, so it does not matter much for the final result. 

52



half rule

3

MODEL, Approach 253



g0: Original complicated system 
      (with 2 zeros and 8 poles) 

g2: 2nd order with delay (half rule, θ=0.77)

g1: 1st order with delay (half rule, θ=1.47)

Example 3.



55

Example 4. Integrating process

Example. g0 = 5/(s*(3*s+1)), 
                 g = 5*exp(-1.5*s)/s,
                 step(g,g0,10) 55

Doesn’t look so good
But it’s OK



57

Approximation of LHP-zeros

τc  = desired closed-loop time constant

57

We should approximate T0 by a “close-
by” τ0 . 
• BUT: The goal is to use the model for 

control purposes, so we would like to 
keep (i.e., not approximate) the τ
which is closest to the desired τc. 

In Example E3, we have two possible values for 
τ0 , namely 20 and 1. Since T0=15, it  seems clear 
that we should select the closest τ0 = 20 and use 
rule T2. 
• But what if T0=2, maybe selecting τ0 = 1 is 

better (and using rule T1)? 
• No, this is not clear. Since τc is between 0.05 

(PID) and 0.15 (PI), we may want to keep τ
=1 which is closest to τc ,that is, also in this 
case select τ0 = 20 (and use rule T2)

• This may seem surprising, but it turns out that 
it will not matter very much in the case for the 
PI/PID-tunings (try!), because k/tau1 (and 
thus Kc) will not change much and because 
tauI = min(tau,4(tauc+theta)).

• Of course, if T0 gets much closer to 1, then we 
should select τ0 = 1.

Generally, the LHP-zeros approximation 
rules results in acceptable (robust) PI/PID-
settings, but not necessarily the “optimal” 
settings.

g0

g2

g1

PID-controller (from 2nd order model) will give performance 
improvement because τ2 > θ



58

Step response (without control)

58

g0 = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)^2)
g1=1.5*exp(-0.15*s)/(1.05*s+1)
g2=1.5*exp(-0.05*s)/((s+1)*(0.15*s+1))
step(g0,g1,g2,1)

Note: It’s the initial
response that matters
for feedback control
(time from 0 to about 5*tauc)

g1
g0, g2

g0

g1, g2



59

Simulation with control is as expected: Better 
performance with controller based on g2 (PID) than g1 (PI) but 
more input usage

59

g = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)^2)
gd=g

Using g1:
PI. tauc=0.15
Kc=(1/1.5)*1.05/(2*0.15)=2.33
taui=min(1.05,8*tauc)=1.05
taud=0

Using g2
PID. tauc=0.05
Kc=(1/1.5)*1.00/(2*0.05)=6.66
taui=min(1.05,8*tauc)=0.4
taud=0.15, tauf=0.015

y(t)

u(t)

y(t)PI

PID

PI

PID



60

Example: Approximation of zero for flow control 

– 𝐺𝐺0 𝑠𝑠 = 1.2 15𝑠𝑠+1
9 𝑠𝑠+1

• Note that 𝑇𝑇0 = 15 > 𝜏𝜏0 = 9 so we get an overshoot in the step response

• How should we approximate this as a first-order with delay model?                                                             
It will depend on the value for tauc. If we apply the LHP-zero approximation rules then we get:

1. Small tauc (tauc<9):  (15s+1)/(9s+1) ≈ 15/9  (Rule T1)  ⇒ G(s)= k = 1.2*15/9 = 2
2. Intermediate tauc (9<taux<15):  (15s+1)/(9s+1) ≈ 15/tauc (Rule T1a)  ⇒ G(s)= k = 1.2*15/tauc=18/tauc
3. Large tauc (tauc>15) . (15s+1)/(9s+1) ≈ 1  (Rule T1b)  ⇒ G(s)= k = 1.2

• In all three cases we get 𝐺𝐺 𝑠𝑠 = 𝑘𝑘 so we get 𝜏𝜏1 = 0 and in all three cases the SIMC PI-controller 
becomes a pure I-controller C(s)=KI/s where KI = 1/(k*tauc). Here tauc is free to choose.

• Flow controller, The transfer function G0(s) is typical for a control valve where u=z=valve position and y=F =flow.  
Consider a typical valve equation 𝐹𝐹 = 𝐶𝐶𝐶𝐶 𝑝𝑝1 − 𝑝𝑝2 . Following a step change in z, F will immediately jump (to 1.2*15/9=2), 
but then it will drop down again (to 1.2) because of the reduction in the pressure drop 𝑝𝑝1 − 𝑝𝑝2 which for gases may take 
some time (𝜏𝜏0 = 9 in this case). (See Exam 2022, Problem 5 for how to derive G0)

– For liquids the dynamics are fast because of small compressibility and can be neglected. Thus, for liquids we always 
have case 3 (tule T1b).  However, the short-term flow overshoot may result in the phenomena of “water hammering”.

– For gases, also cases 1 or 2 may happen if the valve is close to a large gas holdup (large tank or large pipeline).

For a flow controller, a typical value is tauc=10s. 

Some commercial controllers do not allow a pure I-controller. In this case, select taui as some small value (say taui=1s) and use Kc=KI*taui, 
that is, Kc=(1/k)*(taui/tauc) . 

However, if the dynamics for changing z or measuring F are slow compared to the desired closed-loop response time tauc, then a better 
approximatiom of the valve may be G=k/(tau1*s+1). In this case a PI-controller with tauc=tu1 is recommened (SIMC-rule). 60

Step in u at t=10

y(t)

Extra slide



61



62



63

Shams’ method: Closed-loop setpoint response 
with P-controller with about 20-40% overshoot

Kc0=1.5
Δys=1

Δyu=0.54
Δyp=0.79

tp=4.4

Start from steady state and do step P-response
1. OBTAIN DATA IN RED (first overshoot

and undershoot), and then:

dyinf = 0.45*(dyp + dyu) % estimate dyinf (so don’t wait)
Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
b=dyinf/dys % offset parameter
A = 1.152*Mo^2 - 1.607*Mo + 1.0
r = 2*A*abs(b/(1-b))

2. OBTAIN FIRST-ORDER with DELAY MODEL:

k = (1/Kc0) * abs(b/(1-b))
theta = tp*[0.309 + 0.209*exp(-0.61*r)]
tau = theta*r

3. CAN THEN USE SIMC PI-rule

Example 2: Get k=0.99, theta =1.67, tau=3.0

Ref: Shamssuzzoha and Skogestad (JPC, 2010) + modification by C. Grimholt (PID-book 2012)

Δy∞

Alternative to Ziegler-Nichols closed-loop experiment: Obtains more information and avoids cycling. 



64



65 65

SIMC-rule with measurement dynamics

This is simple: Combine the measurement 
dynamics gm(s) and the process model g(s) 
and apply the SIMC-rules on ggm. This 
applies both to the model approximation 
(half rule) to get a 1st or 2nd model and to 
the PI- or PID-tuning, including the choice 
of τc.

See also the handwritten note for a «proof», for example, that 
the total delay also includes the delay in the 
measurement gm. 



66

Tuning of PID controllers

• SIMC tuning rules (“Skogestad IMC”)(*)

• Main message: Can usually do much better by taking 
a systematic approach

• Key: Look at initial part of step response
Initial slope: k’ = k/τ1

• One tuning rule! 

• τc: desired closed-loop response time (tuning parameter)
• For robustness select: τc ≥ θ

CONCLUSION

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
(Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”

For cascade-form PID controller:

Note: The delay θ includes any measurement delay


	PID tuning using the SIMC rule
	Lecture outline
	PID controller
	PID tuning – wikipedia - 2023
	PID tuning – wikipedia - 2024
	Trans. ASME, 64, 759-768 (Nov. 1942).
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Derivation of SIMC-PID tuning rules
	Basis: Direct synthesis (IMC)
	Slide Number 15
	IMC Tuning = Direct Synthesis 
	Example step setpoint response�(with choice τc=θ =2)
	Input usage for setpoint response
	Slide Number 19
	Effect of decreasing  𝜏 𝐼 
	Integral time correction
	Conclusion: SIMC-PID Tuning Rules 
	Slide Number 23
	Choice of SIMC-tuning parameter c. �1. Trade-off between robustness (Ms) and performance (J=IAE)
	SIMC: GM and DM increase linearly with τc
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	When do we need «tight control»? For hard constraints
	Selection of tuning parameter c
	Tuning for smooth control
	Level control
	Level control: Can have both fast and slow oscillations
	Level control (integrating process): Can have both fast and slow oscillations
	How avoid slowly oscillating levels?
	Case study oscillating level
	Slide Number 41
	Model
	Need a model for tuning
	1. Step response experiment
	1A. Open-loop setting
	Step response of integrating process
	1B. Closed-loop setpoint response
	2. Model reduction
	Slide Number 49
	Example 1
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Example 4. Integrating process
	Approximation of LHP-zeros�
	Step response (without control)
	Simulation with control is as expected: Better performance with controller based on g2 (PID) than g1 (PI) but more input usage
	Example: Approximation of zero for flow control 
	Slide Number 61
	Slide Number 62
	Shams’ method: Closed-loop setpoint response with P-controller with about 20-40% overshoot
	Slide Number 64
	Slide Number 65
	Tuning of PID controllers

