PID tuning using the SIMC rule
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Lecture outline

« SIMC rule for first order systems
» Closed loop tuning

 Half-rule for higher order models




PID controller
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Usually T, = 0. Only two parameters left (K- and t;)...

How difficult can it be?

— Surprisingly difficult without systematic approach!



PID tuning — wikipedia - 2023
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Choosing a tuning method

Advantages Disadvantages

_ A Requires experienced personnel.
Mo mathematics required; online. [eation needet]

Process upset, some trial-and-

£ITor, Very aggressive tuning.

Proven method; online.
[citation nesded]

Process upset, some trial-and-

error, very aggressive tuning  No, less agressive
[citation nesded] Version of ZN

Proven method; online.
Consistent tuning; online or offline - can employ computer-automated control system
design (CAutol)) technigues; may include valve and sensor analysis; allows
simulation before downloading; can support non-steady-state (NSS) tuning.

Some cost or training involved 21!

Some mathematics; offline; only

good for first-order processes.

Good process models.
[citation needed]

The process itself is inherently Y0}

Can be used for auto tuning; amplitude is minimum so this method has lowest
Dsci”amr},_[cf:arfcn needed)]

process upset

The process must not be

Has tuning parameter, analytically derived, works also on
oscillatory

delay processes(where ZN does not work)

https://en.wikipedia.org/wiki/PID controller#Loop tuning

.... 9IMC tuning is not mentioned — maybe someone can update wiki


https://en.wikipedia.org/wiki/PID_controller#Loop_tuning

PID tuning — wikipedia - 2024

Method

Manual
tuning

Ziegler—
Nichols

Tyreus
Luyben

Software
tools

Still a BAD

Cohen-Coon
method, Delete

Astrém-
Hagglund

Simple
control rule
(SIMC)

Choosing a tuning method

Advantages

No mathematics required; online.

Online tuning, with no tuning parameter therefore easy to deploy.

Online tuning, an extension of the Ziegler—Nichols method, that is
generally less aggressive.

Consistent tuning; online or offline — can employ computer-
automated control system design (CAutoD) technigues; may
include valve and sensor analysis; allows simulation before
downloading; can support non-steady-state (NSS) tuning.

Good process modelslciation needed]

Unlike the Ziegler—Nichols method this will not introduce a risk of

loop instability. Little prior process knowledge required.[23]

Analytically derived, works on time delayed processes, has an
additional tuning parameter that allows additional flexibility. Tuning

can be performed with step-response model.[22]

Disadvantages

This is an iterative, experience-based, trial-
and-error procedure that can be relatively time
consuming. Operators may find "bad"
parameters without proper training.[gz]

Process upsets may occur in the tuning, can
yield very aggressive parameters. Does not

work well with time-delay processes.
[citation needed]

Process upsets may occur in the tuning;
operator needs to select a parameter for the
method which requires insight.

"Black box tuning" that requires specification of
an objective describing the optimal behaviour.

Offline; only good for first-order processes.
[citation needed]

May give excessive derivative action and
sluggish response. Later extensions resolve
these issues, but require a more complex
tuning procedure.[23]

Offline method; cannot be applied to oscillatory
processes. Operator must choose the

additional tuning parameler.[zg]

https://en.wikipedia.org/wiki/PID controller#Loop tuning

SIMC tuning is on the list !!

.... Thank you (I don’t know who)


https://en.wikipedia.org/wiki/PID_controller#Loop_tuning

Excellent work — especially considering that it was published only 3 years after the PID controller came on the market (Taylor Model 100 Fullscope, 1939)
Trans. ASME, 64, 759-768 (Nov. 1942).

Optimum Settings for Automatic Controllers

By J.G. ZIEGLER' and N. B. NICHOLS” « ROCHESTER, N. Y.

In this paper, the three principle control effects found varying its output air pressure, repositions a diaphragm-operated
in present controllers are examined and practical names valve. The controller may be measuring temperature, pressure,
and units of measurement are proposed for each effect. level, or any other variable, but we will completely divorce the

2. L . .

. aFe1.7 pai // Reset-Rate Determination From Reaction Curve. Since the
eriod of oscillation at the ultimate sensitivity proves to be 4 times
P period of oscillation at the ultimat tivity p to be 4 t
/ the lag. A substitution of 4 L for P, in previous equations for
%.d optimum reset rate gives an equation expressing this reset rate in
terms of lag. For a controller with proportionalMy notation:
4 reset responses, the optimum settings become /
3 .Ljv// R= S13pe potises, the op & Model: R=K',L =40
- .

0. // Im' Sensitivity:% psi perin. PI_Setglgng'

03 : Ke=775

Reset Rate =—L permin T = 3.30
-1 At these settings the period will be about 5.7L, having been in-
R e MIFUTES g g o creased, by both the lowering of sensitivity and the addition of

automatic reset.
FiG. 8 ReacTtioN CURVE

' ' -Ni : Comment:
Dlsadvantgges Zl.egler Nignels: Similar to SIMC for integrating
1 Agg ressive settlngs process with 7,=0 (aggressive!):
2.No tuning parameter PT<C_=41/9k’ 116

=

3.Poor for processes with large time delay (6)
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IMPLICATIONS OF INTERNAL MODEL CONTROL FOR PID CONTROLLERS
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Internal Model Control. 4. PID Controller Design

Danlel E. Rivera, Manfred Morarl," and Sigurd Skogestad
Chemical Engineering, 206-41, California Institute of Technology, Pasadena, California 91125

For a large number of single input-single output (SISO) models typically used in the process industries, the Internal
Model Control (IMC) design procedure is shown to lead to PID controllers, occasionally augmented with a first-order
lag. These PID controllers have as their only tuning parameter the closed-loop time constant or, equivalently, the
closed-loop bandwidth. On-line adjustments are therefore much simpler than for general PID controllers. As a
speclal case, PI- and PID-tuning rules for systems modeled by a first-order lag with dead time are derived
analytically. The superiority of these rules in terms of both closed-loop performance and robustness is demonstrated.
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For a large number of single input~-single output (SISO) models typically used in the process industries, the Internal
Model Control (IMC) deslign procedure Is shown to lead to PID controlters, occasionally augmented with a first-order
lag. These PID controllers have as their only tuning parameter the closed-loop time constant or, equivalently, the
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Disadvantage IMC-PID (=Lambda tuning):
1.Many rules

2.Poor disturbance response for «slow» processes (with large t,/0)




Probably the best simple PID tuning rules in the world
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Abstract

The aim of this paper is to present analytic tuning rules which are as simple as possible and
still result in a good closed-loop behavior. The starting point has been the IMC PID tuning rules
of Rivera, Morari and Skogestad (1986) which have achieved widespread industrial acceptance.
The integral term has been modified to improve disturbance rejection for integrating processes.
Furthermore, rather than deriving separate rules for each transfer function model, we start by
approximating the process by a first-order plus delay processes (using the “half method” ), and
then use a single tuning rule. This is much simpler and appears to give controller tunings with
comparable performance. All the tunings are derived analytically and are thus very suitable for
teaching.

1 Introduction

Hundreds, if not thousands, of papers have been written on tuning of PID controllers, and one must
question the need for another one. The first justification is that PID controller is by far the most
widely used control algorithm in the process industry, and that improvements in tuning of PID
controllers will have a significant practical impact. The second justification is that the simple rules
and insights presented in this paper may contribute to a significantly improved understanding into
how the controller should be tuned.
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Abstract

The aim of this paper is to present analytic rules for PID controller tuning that are simple and still result in good closed-loop behavior.
The starting point has been the IMC-PID tuning rules that have achieved widespread industrial acceptance. The rule for the integral
term has been modified to improve disturbance rejection for integrating processes. Furthermore, rather than deriving separate rules for
each transfer function model, there is a just a single tuning rule for a first-order or second-order time delay model. Simple analytic rules
for model reduction are presented to obtain a model in this form, including the “half rule” for obtaining the effective time delay.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Process control; Feedback control; IMC; Pl-control; Integrating process: Time delay

1. Introduction

Although the proportional-integral-derivative (PID)
controller has only three parameters, it is not easy,
without a systematic procedure, to find good values
(settings) for them. In fact, a visit to a process plant will
usually show that a large number of the PID controllers
are poorly tuned. The tuning rules presented in this
paper have developed mainly as a result of teaching this
material, where there are several objectives:

1. The tuning rules should be well motivated, and
preferably model-based and analytically derived.

2. They should be simple and easy to memorize.

3. They should work well on a wide range of
processes.

Step 2. Derive model-based controller settings. Pl-set-
tings result if we start from a first-order model, whereas
PID-settings result from a second-order model.

There has been previous work along these lines,
including the classical paper by Ziegler amd Nichols [1],
the IMC PID-tuning paper by Rivera et al. [2], and the
closely related direct synthesis tuning rules in the book
by Smith and Corripio [3]. The Ziegler—Nichols settings
result in a very good disturbance response for integrat-
ing processes, but are otherwise known to result in
rather aggressive settings [4,5], and also give poor per-
formance for processes with a dominant delay. On the
other hand, the analytically derived IMC-settings in [2]
are known to result in a poor disturbance response for
integrating processes (e.g., [6,7])., but are robust and



Summary SIMC PID tuning rule

e 1 1 Only one tuni ter:
i Cde(t) K, /t o K. — nly one tuning parameter:
u(t) = Keqe(t) + K. o(t')dt' +u = — .
R L T A i T E@)+6 Closed-loop time constant:
bias—b
. =
1 : : : ; " Ay(=) T] = 1min {7]"1@4_ HU . @ N 9 .
T o RESULTING OUTPUT y ] D = T (gives Gain Margin>3)
0.8} - — . . T
+ Filter time constant, 1 < ;C
N T '
T : w STEPININPUTU |
o i Doy - _ With anti windup
: T,: Time constant - 63% of final change
02r ' k= A y(e0)/A u : Steady-state gain
“T o : k,:k/ T 1 Actuator
GO E 1ll) 1I5 2:0 2]5 SIO SIS 40

Step response integrating process

y(t) er =1u—1u
r A /
Slope, k' = 7%=
Ay Figure 7: Recommended PID-controller implementation with anti-windup using tracking of
ult) the actual controller output (i), and without D-action on the setpoint. d.—jsst.rﬁm & H;'si,gglundI

1988)).
= integral = % in Laplace domain

Au .iiz = derivative = s in Laplace domain

K. = controller gain
~ 7r = integral time [s, min]
Tp = derivative time [, min]
71 = tracking time constant for anti-windup [s, min]




Derivation of SIMC-PID tuning rules

* Pl-controller (based on first-order model)

1 TS +1
c(s)=K.|1+— | =K,
7S 7S

* For second-order model add D-action.
— For our purposes, simplest with the “series” (cascade) PID-form:

(t;s + 1) (1ps + 1)
TIS

c(s) =K,




Basis: Direct synthesis (IMC)
ld
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v - c 2.0 g Ji- S
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Closed-loop response to setpoint change:




SIMC-tunings

049
0.a
0r
0.5
0.5
0.4
0.3
0z

o

Desired step response

3%

— TCS—I—le

\

Time delay is not really desired
but it cannot be avoided

& 10 12 14 15 18 20

time [sec)

NOTE: Setting the steady-state gain = 1 in T will result in integral action in the controller!



SIMC-tunings

IMC Tuning = Direct Synthesis

Algebra:

e Controller:  ¢(s) = (13}- —

7 ;
(v y-“'](lc'ﬂll‘v(l

e—fs

e Consider second-order with delay plant:  ¢(s) = k(nsﬂ)(mﬁl)

e Desired first-order setpoint response: (4'1) o=l e
Ys/ desired Tes+1
e Gives a “Smith Predictor” controller: ¢(s) = (Tl""ﬂgw'ﬁ”h ‘;Hl =
[ - G

e To get a PID-controller use ¢ 7% ~ 1 — fs and derive

(718 + 1)(198 + 1) 1

cls) = k (1. + 6)s
which is a cascade form PID-controller with
- 1 7
P == . T =T, Tp=T
[a——] I 1 D p

e 7, is the sole tuning parameter

IMC-tuning is the same as “Lambda-tuning”: 7. is sometimes called A

Surprisingly, this PID-controller is generally better, or at least more robust with respect to changes in the time delay 6, than the Smith
Predictor controller from which it was derived. We are lucky ©.

Reference: Chriss Grimholt and Sigurd Skogestad. "Should we forget the Smith Predictor?" (2018)

In 3rd IFAC conference on Advances in PID control, Ghent, Belgium, 9-11 May 2018. In IFAC papers Online (2018) .
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Example step setpoint response
(with choice T =0 =2)

Amplitude

0.8

<
>

0.4

0.2

Step Response

Pl: Overshoot (y=1.04) is from approximation exp

y(Py

T T ——

P SELMIEEI e

s=tf(‘s’);

k=1; tau=10; theta=2;

g = k*exp(-theta*s)/(tau*s+1);
tauc=theta;
Kc=(1/k)*(tau/(tauc+theta)); % Kc=2.5
taui=tau;

¢ = Kc*(1+ 1/(taui*s));

T =g*c/(1+g*c);

Tideal = exp(-theta*s)/(tauc*s+1);
step(T,Tideal,20)

(-6s) = 1-06s

8 10 12 14 16 18 20

Time (seconds)

17



Input usage for setpoint response

ST | | T |
| Red: «ideal» (with Smith Predictor)
4.5 —
o\
‘.“‘I
\
a5k "\ . The process has a «natural» time constant =10, and -

we use control to «speed it up» to 1,=2.

This is why we get an overshoot for the input

(for Pl-control, u starts at 0, jumps up to K.=2.5 and
then I-action increases it to 3 at its peak, before
settling at its steady-state value of 1).

Amplitude

%Input usage
figure(2);
KS = c/(1+g*c);
KSideal = (1/k)*(tau*s+1)/(tauc*s+1);
~ . step(KS,KSideal,20);
NN axis([0 20 0 5])

0 2 4 6 8 10 12 14 16 18
Time (seconds)




Integral time

* Found: Integral time = dominant time constant (7, = t,)
» Gives P-controller for integrating process (t, = «)
— This works well for setpoint changes
— But: 1, needs to be modified (reduced) for integrating disturbances

d

o |

VV'\<

4
@

1 8

Example. “Almost-integrating process” with disturbance at input:
G(s) = es/(30s+1)
Original integral time t, = 30 gives poor disturbance response
Try reducing it!




Effect of decreasing 1,

1.8 . T T T T T

y(t)

0.6} SIMC modification:
Decrease integral time to
improve disturbance rejection

0.4r for slow processes (with large
7)!

0.2 “

0 . ) . : '
0 10 20 30 40 50 60
time

Fig. 3. Effect of changing the integral time 1; for Pl-control of
“almost integrating” process g(s) =¢ °/(30s + 1) with K. = 15. Unit
setpoint change at r=0; load disturbance of magnitude 10 at = 20.



Integral time correction

« Want to reduce the integral time for “integrating” processes

« But to avoid “slow oscillations” (not caused by the delay 0)
we must require K'K.124, which with the SIMC-rule for K.

gives:
1 > 4(1c +0)

 Proof:

G(s) = ]{% ~ & where i = £ O(s) = K. (1 + %)

Closed-loop poles:

1+GC=0=1+%K, (1+%) =0=7s*+KK.ris+ KK, =0
To avoid oscillations we must not have complex poles:

B* —4AC 2 0= KPK277 —AK Ko 2 0= (K Kerr 2 4 11 2 75
Inserted SIMC-rule for K. = % %Jrg then gives

1 > 41, + 0)




Conclusion: SIMC-PID Tuning Rules

For cascade form PID controller:
17 11

Ke=-—1 — 2. 1
©kTe+6 K T+ 1)
4
77 = min{ 7y, TR } = min{r,4(1c + 0)} (2)
C
TD =T (3)

Derivation:

1. First-order setpoint response with response time 7. (IMC-tuning =
“Direct synthesis”)
2. Reduce integral time to get better disturbance rejection for slow or
integrating process (but avoid slow cycling = 77 > PJ‘T)
[

One tuning parameter: 1,




B Some special cases

Process q(s) K. T TE”
First-order k% O min{7,4(m. +0)} | -
Second-order, eq.(4) | kg Do) %ﬂ;‘re min{7ry, 4(7. +0)} | 7

Pure time delay'") ke % 0 0 ) -
Integrating!?) k’% L. |::r¢1+~!i']| A(1. + 0) -
Integrating with lag ;Sii;:” = (:r¢1+ﬂ]| d(1. + 0) Ty
Double integrating'® ke o 4{%19]2 4 (1. +0) 4 (1 + 0)

Table 1: SIMC PID-settings (23)-(25) for some special cases of (4) (with 7. as a tuning parameter).
(1) The pure time delay process is a special case of a first-order process with 1, = 0.

(2) The integrating process is a special case of a first-order process with 7 — oc.

(3) For the double integrating process, integral action has been added according to eq.(27).

(4)

(*)

4) The derivative time is for the series form PID controller in eq.(1).

* def g, 1

: e _ Ky o lef K, _
Pure integral controller c(s) = =t with K = = = o— .

One tuning parameter: t,

(1)(*) Note that we get pure I-controller for static process with delay.




Choice of SIMC-tuning parameter t_
1. Trade-off between robustness (Ms) and performance (J=IAE)

C. Grimholt, S. Skogestad / Journal of Process Control 70 (2018) 36-46

2.9
G(s) =e™°
dy dy 2
hﬁ
K(s) |-t Gls) [—t——¥ = 15 AR o7 tie g
< [ a
= Lk
o 1 TR =
Y = == "
- n 5] PII
[al
0.5 - ) I
2.1. Performance : o — q
" 0 Conclusion: t.= 6 gives a good trade-off —
In this paper, we quantify performance in terms of the integrated
absolute error (IAE),
o0 2.5 -
IAE =/ (1) — ys(t)idt. (7)
0
To balance the servo/regulatory trade-off we choose a weighted ey 2
average of the IAE for a step input disturbance d, (load disturbance) N
and a step output disturbance dy: 8 1.5
z -
IAE IAE <
Jp)=0.5 ( AErlP) | 1AEa(p) (8) =
IAE;, IAE], o
g 17
where IAE;, and IAE;, are weighting factors, and p denotes the z
controller parameters. Note that we do not consider setpoint A
responses, but instead output disturbances. For the system in Fig. 1, 0.5
Ms = Peak of |S(jw)| = 1/(smallest distance to (-1)-point). Want less than 1.7 0 - i ; _ 5 , | :
1 1.5 2 2.5 3 1 1.5 2 25 3
imal Pl and control of first-order plus delay processes and
(e)\l?;luatiopr:ofthzllgri;in;loar?d irrf];r(t))ve% ;MSC rme}gpﬂ »e F{,Obustrless1 ﬂ/fm RObustIleSS, ﬂ/fsfr

Chriss Grimholt, Sigurd Skogestad* Journal of Process Control 70 (2018) 36-46



Choice of tuning SIMC-parameter t_
2. Relationship betweent, and robustness (Ms, GM, PM, DM)

g o i 1‘5 2
T /6 C ] ed loop ng constant, 7,
Cc

25
/e

PM
60°

Phase mar

gin, PM

Conclusion: 1./ = 1 gives a acceptable robustness (Ms=1.6, PM=60°, GM=3, DM=2)

| - T (Te ]
osf / ! 7} 2 (9 + ) G _

% 1 I5 2 25
T /6 Closed loop tuning constant, 7./6

SIMC: GM and DM increase llnearly w1th T,

Chriss Grimholt and Sigurd Skogestad.
"Optimal PI-Control and Verification of the SIMC Tuning Rule".

Proce;

edings IFAC conference on

Advances

in PID control (PID'12), Brescia, Italy, 28-30 March 2012.

I
, / 0.5
n L(j' 50)
- ﬁ | P Re
1& P ’\‘ ) 05 1
Ms e L) _
/ -0.5
L{jw) - )
Mg 1 1
E = 9 aresin [ —— R
GM > M1 PM > 2arcsin (2,-’\1’5) = 7 [rad]




B TUNING FOR FAST RESPONSE WITH GOOD ROBUSTNESS

SIMC : 7. =6 (4)

Gives:
ives K_Eﬂ_%} 5
R A
77 = min{7y, 86} 6
7

™D = T2
Im
Gain margin about 3
Process g(s) ﬁf"“-"'“ %fr""" *
Controller gain, K. ian L
Integral time, 5 T sa
Gain margin (GM) 3.14 2.96
Phase margin (PM) 61.47 46.9
Allowed time delay error, Af/f 2.14 1.59 _
Sensitivity peak, M, 1.59 1.70 4L .
Complementary sensitivity peak, M, || 1.00 1.30 e
Phase crossover frequency, wig - # || 1.57 1.49 GM = ,L{:Ii [ PM2 2*‘“5"1(2;[5
Gain crossover frequency, w, - # 0.50 051

Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (5) and (6) (v. = #). The same margins apply to
second-order processes if we choose 7p = 1.




Typical closed-loop SIMC responses with the choice 1.=0 (delay)

4r 4
=l -
|—3 ~
=2 ,
=2} S T ]
: 'hh‘ 'I-.___ - 3
D ‘-""-- ---_'-:
yg rnnra

0 N N -

0 5 10 15 20 25 30 35 40

2_ -

- case 1 (pure delay)
= = case 2 (Integrating)
=1f *='= case 3 (int.+lag)

— case 4 (double int.

S case 5 (first-order) . . . .
0 5 10 15 20 25 30 35 40
time
Figure 4: Responses using SIMC settings for the five time delay processes in Table 3 (7. = #).

Unit setpoint change at ¢ = (0; Unit load disturbance at ¢ = 200,
Simulations are without derivative action on the setpoint.
Parameter values: § = Lk=1&F = 1.&" = 1.
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« Example 2. Compare Pl and PID

(—=0.35s+1)(0.08s 4+ 1)

s)=~k _.
90(s) (25 + 1)(Ls + 1)(0.4s + 1)(0.25 + 1)(0.055 + 1)?
s=tf('s')
9=(-0.3*s+1)*(0.08*s+1)/((2*s+1)*(s+1)*(0.4*s+1)*(0.2*s+1)*(0.05*s+1)"3)
k=1;
tau1=2.5, tau2=0, theta=1.47, tauc=theta % 1st order
%tau1=2, tau2=1.2, theta=0.77, tauc=theta % 2nd order Note: tau2>theta , so 2nd order and PID gives

erfromance improvement compared to Pl
Kc=(1/k)*tau1/(tauc+theta) % Kc. PI:0.85 PID: 1.30 P P P

taui=min(tau1,4*(tauc+theta)) % taui. Pl: 2.50 PID: 2

taud=tau2; % taud. PIl: 0  PID: 1.2

cpi=Kc*(1+1/(taui*s)); d
cd=(taud*s+1)/(0.1*taud*s+1);
cpid=cpi*cd;

L = cpid*g

S=inv(1+L)

%setpoint response Ys + u v+ Y
Ty=g*cpi*S, Ty=minreal(Ty); % without D-action on setpoint - ' +
Tuy=cpi*S, Tuy=minreal(Tuy); % without D-action on setpoint
%Input disturbance

gd=g;

Td=gd*S; Td=minreal(Td);

Tud=-gd*cpid*S; Tud=minreal(Tud);

Typi=Ty; Tdpi=Td; Tuypi=Tuy; Tudpi=Tud;

%Typid=Ty; Tdpid=Td; Tuypid=Tuy; Tudpid=Tud;

figure(1),step(Typi,'blue’, Typid,'blue--, Tuypi,'red’, Tuypid,'red--',15)
figure(2),step(Tdpi,'blue’, Tdpid,'blue--', Tudpi,'red’, Tudpid,'red--',15)



Example 2. ‘
(—0.35 4 1)(0.08s + 1)

90(5) o ff

g2,5 +1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3

<]
Amplitude
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=

o
@

=
o

<
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AT—— c - 9 o —

0.2

Step Response

STEP SETPOINT CHANGE (ys)

(note: without D-action on setpoint,
so u jumps initially to Kc also for PID)

0.6

Output'y Comparison of
Pl and PID - -
’ Time (seconds) 1‘0 L
EP INPUT DISTURBANCE (g,=g)

04—

02—

-~
—
e e T
= = e

Conclusion:
PID is quite a lot better.

(expected since tau2=1.2
> theta=0.77)

Amplitude

—————— [

Time (seconds)



SIMC-tunings

DERIVATIVE ACTION ?
First order with delay plant (79 = 0) with 7. = 6

1.4

1.2F N

OUTPUT y
=
P

=
[=2]
T

K, =(0.5/k) (t,/8)

0.4} T

0.2F

15 20 25 30 35 40
e

Figure 5: Setpoint change at t = 0. Load disturbance of magnitude 0.5 occurs at ¢ = 20.

e Observe: Derivative action (solid line) has only a minor effect.

Conclusion D-action (for series-form PID):

1. Use PID with 1 = 1, for dominant 2" order processes with 1, >0 (otherwise, add 1,/2 to effective delay 6 and use PI)
2. Use derivative action (PID) for unstable processes, for example, a double integrating process (not so common in
process control).

3. Derivative action (PID) can help a little to speed up response for a process with time delay (e.g. use tp = 6/3), but we
then need to reduce 1. (i.e., increase K_) to get the performance benefit (e.g., reduce 1t from 6 to 6/2).

We did not do this in the above simulation, so this is why the benefit of D-action is small.
Example 3 (next slide): Compare SIMC-PI with PID with 1, = 6/3 using 7 = 6 (red curve, small benefit) and z, = 6/2 (yellow curve, less overshoot).

4. If you end up using a “large” 1, such that you have 1. > 2ty (approximately), then D-action is not helping much and you
may consider Pl-control instead. Example: See above simulation which has 7,= 6 and ©,=6/2, that is, z, = 21,




Example 3 (disturbance response Dynea reactor):
(1) Effect of wrong tau-I, (2) Use of tau-D to reduce overshoot

d e
g qg=05——
d 10s + 1
Pl-part 0.1
s . u Y =g
K1+ —) g 200s + 1
e
1 SIMC (1. =6 =4) :
TnS +
Trs + 1 K.=257m=10,th =7 =10
D-part
+ filter 0.018 .
y®) ol o u=s0
Response y(t) to step d=1. _— 7, =40
Effect of changes in t; and 1, s Pt .
o u=30
Conclusion: 0012t e T
+  IT-action is important: Follow SIMC-rule for 1; 7 =20 h
+  D-action: Larger effect if we also increase K, by B 4
33% (vellow curve) 7
0.008 / — 4,=10 (SIMC-PI)
Note: The process (g) is fast compared to the 0.006 F | PIDH:?"'—‘i-,—}.
disturbance dynamics (g4). This is why the |- / b —
action is the most important. 0.004 [ | N Hh'\-\‘_'
0002 |/ Ue
SIMC-rule (from first-order process model g): Uu . - i i - e - B'D -
Ke= ki time [s]

7 = min(7, 4(7. + ) All simulations have Ke=2.5 except vellow curve which has Ke=1.33*2.5.
Red and vellow curves have D-action: =10, 1, =0/3=1.33, 17=15/10=0.133

Note: Often D-action requires much more input usage - but in this example the input usage (not shown) is almost the
same for all controllers. This is because the disturbance is so «slow» (almost integrating)
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6.3 Ideal PID controller

The settings given in this paper (K., 17, 7p) are for the series (cascade, “interacting”) form PID
controller in (1). To derive the corresponding settings for the ideal (parallel, “non-interacting”) form
PID controller

1 K! ‘
2 . g — K _ 'L - The P2 , GE
Ideal PID : (s) = K|, (l + s + ‘Tub) =7 (’rf'ru& + 118+ l) (35)
we use the following translation formulas
- - ™D D D
ﬁ’.zfic(l —)- - (1 —)- - 36
‘ +’T1’ I +Tf » D l—|——'r"-’fro (36)

Example. Consider the second-order process g/s) = e */(s+1)? (E9) with the k=1, = 1,7, =1
and 7 = 1. The series-form SIMC settings are K, = 0.5, 77 = 1 and 7p = 1. The corresponding
settings for the ideal PID controller in (35) are K! =1, 77 = 2 and 7}, = 0.5. The robustness margins
with these settings are given by the first column in Table 2.



When do we need «tight control»? For
hard constraints

«SQEEZE and SHIFT» RULE
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SIMC-tunings
Selection of tuning parameter 7,

Two main cases

1. NEHNCONIROEEETE: \Want “fastest possible

control” subject to having good robustness

« Want tight control of active constraints (“squeeze and shift”)
« Select 1, = 0 (effective delay)

2. SMOOTH CONTROL (z, large): Want “slowest possible
control” subject to acceptable disturbance rejection
» Prefer smooth control if fast control is not required



SMOOTH CONTROL
Tuning for smooth control

Tuning parameter: t, = desired closed-loop response time
Selecting t.=0 if we need “tight control” of y.

Other cases: “Smooth control” of y is sufficient, so select t, > 0 for
o slower control

o smoother input usage
less disturbing effect on rest of the plant

o less sensitivity to measurement noise
o better robustness

Question: Given that we require some disturbance rejection.
o What is the largest possible value for t_ ?
0 ANSWER: 1 0 =1/Wy (where wyis defined as the frequence where |gy(iw)| = Ymaxddmax )

Proof. y=Sgd d, where S=(1+L). Require |y|<ymax at all frequencies, so |S| < |gd| d/ymax at all frequencies.
The integral action takes care of most of the disturbance rejection, so usually, the «worst-case» frequency is where |S| reaches 1, which is approximately at wc=1/tauc.
So define wd as the frequency where (gd/g) d/ymax = 1 and we must require wc > wd or equivalently tauc < 1/wd. Thus we have tauc.maxc=1(wd.

This bound may be optimistic if there are disturbances with two or more «slow» poles, because then the worst-case frequency may be lower than wc.

Comment: An simpler (but sometimes conservative) answer is to select K¢, min =|ud|/|[ymax| where |ud| is the input magnitude to reject the maximum
disturbance. (Given Kc,min we may obtain the corresponding tauc,max using the SIMC-rule for Kc).

More detailed proof: S. Skogestad, *"Tuning for smooth PID control with acceptable disturbance rejection”, Ind.Eng.Chem.Res, 45 (23), 7817-7822 (2006).




LEVEL CONTROL

B Level control

Level control often causes problems
Typical story:
— Level loop starts oscillating

— Operator detunes by decreasing controller gain
— Level loop oscillates even more

« 77
Explanation: Level is by itself unstable and requires control.




LEVEL CONTROL
Level control: Can have both fast and slow

oscillations

* Slow oscillations (K, too low): P> x 1,
* Fast oscillations (K, too high): P <m 1,

Fast oscillations: Caused by (effective) time delay
Here: Consider the common slow oscillations

P=period of oscillations = 2n/®

Avoid slow oscillations: k'K t; = 4



LEVEL CONTROL

Level control (integrating process): Can have
both fast and slow oscillations

* Fast oscillations (K, too high): P <m 1,
— Caused by (effective) time delay

* Slow oscillations (K, too low): P>z 1,
— Caused by integral action in controller
— Avoid slow oscillations: k'K, 7; = 4.

P=period of oscillations = 2n/®




LEVEL CONTROL

How avoid slowly oscillating levels?

« Simplest: Use P-control only (no integral action)

« |If you insist on integral action, then make sure
the controller gain is sufficiently large

* |If you have a level loop that is oscillating then
use Sigurds rule (can be derived):

- =X [0 o [0 (3
Ji-—a | JT-aViKe KK
To avoid oscillations, increase K_ - 1, by factor e o o e
troller gain and integral time is approximately
f=D.1' (PD/T|D)2 1 /o2
Ko-tio = (ZF)QP (PL:)
Wh e re To avoid oscillations (¢ = 1) with the new settings we
. . . must. from (21) require K .ty>=4/k’, that is, we must
P, = period of oscillations [s]
. : . n s nl(?) (40)
Ti0 = original integral time [s]
Her l/R’ 22 (.10, so we have the rule:
01;:J1/ﬂ.2 o To avoid “slow” oscillatio fp od P the pro
= dtfth ontroller gain dt§ltmehldb

dby a factor £~ 0.1(Py/T)"-

Avoid slow oscillations: k'K t; = 4



LEVEL CONTROL

B Case study oscillating level

 We were called upon to solve a problem with oscillations in a
distillation column

» Closer analysis: Problem was oscillating reboiler level in upstream
column

« Use of Sigurd’s rule solved the problem




LEVEL CONTROL
APPLICATION: RETUNING FOR INTEGRATING PROCESS

To avoid “slow” oscillations the product of the controller gain and
integral time should be increased by factor f = 0.1(Fy/79)°.

Real Plant data:

Period of oscillations Py = 0.85h = 5lmin = f =0.1-(51/1)* = 260

BERORE?  (Ke=- 0.5, taui s Tmia)

oy
iy
- (wlve pts)
l..ll.l-.... { T ﬁ x 1‘,
O T TS (" ST Y
AFTE&: {;Kcr-'w?js) Lowis 'l"iﬂﬁn')' T T
e Ty
Y Covel) ~
" . mi'm'..u.."
- Ceahie pes.)

_6‘ Who Sh o [k bk 2tk oy alih :




Model




Need a model for tuning

* Model: Dynamic effect of change in input u (MV) on output y (CV)

* First-order + delay model for Pl-control

 Second-order model for PID-control

G(s) = u

e—@s
(s +1)(1,5+ 1)

— Recommend: Use second-order model only if 7, > 6




B 1. Step response experiment

« Make step change in one u (MV) at a time

* Record the output (s) y (CV)




1A. Open-loop setting

1 . .
0af -
RESULTING OUTPUT y
08} -
07f -
o
06f -
ui) STEP IN INPUT u
DGF Q=== s e s s s s s e ss e Es e s s em . == -- =
I
I -
1 Au :
03fF |, - 0: Delay - Time where output does not change -
I - 1,: Time constant - Additional time to reach
02} : 63% of final change -
] = k= A y(o)/A u : Steady-state gain
04 : : _
I g
0 2 e —— 1 | | ] 1




Step response of integrating process

y(t)
! Ay /
Slope, k' = x7x- “
Ay
u(t)

/N

Au

0 At
Imagine this as a 1st order with "infinite" ;:

k k k'

G(s) = ~
(s) T1s+1 7175 s




1B. Closed-loop setpoint response

« Shams’ method: P-controller with about 20-40% overshoot

D 8 S — I I !
Kc0=1.5
0.7 Ays=1
0.6
Ay.,

1. OBTAIN 5 DATA IN RED (wait for first overshoot
and undershoot), and then read off:

0.5

04 tp=4.4, dyp=0.79; dyu=0.54, Kc0=1.5, dys=1
dyinf = 0.45*(dyp + dyu)

Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
b=dyinf/dys

A =1.152*Mo”2 - 1.607*Mo + 1.0

r = 2*A*abs(b/(1-b))

0.3

%?2. OBTAIN FIRST-ORDER MODEL:

Q=== e e e ——— - - -

k = (1/Kc0) * abs(b/(1-b))
(0 e e e el theta = tp*[0.309 + 0.209*exp(-0.61*r)]

tau = theta*r

'0-10 é {_l.l M a g 10 12 1 3. CAN THEN USE SIMC PlI-rule
4

Example 2: Get k=0.99, theta =1.68, tau=3.03
Ref: Shamssuzzoha and Skogestad (JPC, 2010)

+ modification by C. Grimholt (Project, NTNU, 2010; see also PID-book 2012,
Sigurd Skogestad and Chriss Grimholt. '"The SIMC Method for Smooth PID Controller Tuning" (2012))



https://folk.ntnu.no/skoge/publications/2012/skogestad-improved-simc-pid/

2. Model reduction

« Start with complicated stable model on the form

(Tios + 1)(Thps + 1) ...
0 (Tlos + 1)(7:205 + 1)

—905

Go(s) =k

« Want to get a simplified model on the form

k

e—@s
(s +1)(1,5+ 1)

G(s) =

* Most important parameter is the “effective” delay 6




OBTAINING THE EFFECTIVE DELAY 6

Basis (Taylor approximation):

1 1
e %~ 1—-0s and e =

Effective delay =
“true” delay

+ inverse reponse time constant(s)

+|half| of the largest neglected time constant (the “half rule” )
(this is to avoid being too conservative)

+ all smaller high-order time constants

The “other half” of the largest neglected time constant is added to 7

(or to 7 if use second-order model).

Details:

e Half rule: the largest neglected (denominator)
time constant (lag) is distributed evenly to the
effective delay and the smallest retained time
constant.

In summary, let the original model be in the form

(-7 +1)

i —thys 9
[Tzios +1 ¢ @ ©)

where the lags 7y are ordered according to their magni-
tude, and T:T']’“ > 0 denote the inverse response (negative
numerator) time constants. Then, according to the half-
rule, to obtain a first-order model e /(1,5 + 1), we use

— ‘Egg_ _ @ i ny "IF_I
Tl—‘fm+7. 9—90+2+;‘E;{:+2Tm +2
= 1

(10)

and, to obtain a second-order model (4), we use

T3p
T1 = TI; T2 =T +T:
11)
T30 inv h (
=0 +——+ 0+ Ty +=

where /1 1s the sampling period (for cases with digital
implementation).

The main basis for the empirical half-rule is to main-
tain the robustness of the proposed PI- and PID-tuning
rules, as is justified by the examples later.




Example 1

The second-order process

1

gO(S) — (

with

1s+1)(0.6s+1)

Time [32c)

k=1, 1 =140.6/2=1.3;

0 =0.6/2=0.3;




s=tf('s')
g=(-0.1"s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)]
g1 = exp(-2.1*s)/(6.5*s+1)

Exa m p I e 2 g2 = exp(-0.35%s)/[(5*s+1)*(3.25*s+1)]

step(9,91,92)

Step Response

1 \ ——
0.8 N
Original (third-order with inverse response)
06 First-order approx. using half rule
) Second-order approx. using half rule
E— 0.4 04 7 ‘Slep Rfasponse‘
0.35r
0.2 03l
0 g 0.2t
§ 0.15r
02 | | | | | 0.1
0 5 10 15 20 25 30
Time (seconds) 0051
0

L L L L L L L L L
0.5 1 1.5 2 25 3 35 4 45 5
Time (seconds)
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Example 3

(s) = k (—0.35 +1)(0.08s + 1) |
9008) = R )T + 19045 + 1){0.25 + 1)(0.055 + 1)3

half rule
Is approximated as-a first-order delay process with

T =2%1/2=25
#=1/24+0440.24+3-0.05+0.3—0.08=1.47
or as a second-order delay process with

T — 2

n=14+04/2=12
#=04/24+024+3-0.05+0.3—0.08=0.77

1
(0.2-0.08)s+1 (rule T3)'

Alternatively, we could have used the approximation (0.08s+1)/(0.05s+1) = 1 (rule T1b) which would reduce the effective delay by 0.05 (instead
of 0.08). In any case, it only has a small effect om the effective delay, so it does not matter much for the final result.

Comment: The subtraction of T0=0.08 from the effective delay follows from the approximation (0.08s+1)/(0.2s+1) =
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Example 3
(—0.35s +1)(0.08s + 1)
go(s) =k 3
(23 + 1)(13 +1)(0.45 4+ 1)(0.2s 4+ 1)(0.05s + 1)
half rule
IS apprommate rst- ord delay process with

T1:2
f=1/2 - 0.054 0.3 —0.08 = 1.47

or as a s oy«fforje;//elay process with
T — 2/

TQ—I-I-O /2—12
#=04/24+024+3-0.05+0.3—0.08=0.77




Step Response

e N
Example 3.
RN o -
Ry -
g
< g0: Original complicated system
i (with 2 zeros and 8 poles) ]
N ' 92: 2nd order with delay (half rule, 6=0.77) ]
: g1: 1st order with delay (half rule, 6=1.47) |
0 IE 1I0 15

Time [sac)



B Example 4. Integrating process

_ k'
90(8) ~ s(120s+1)

Half rule gives
g(s) = e with ¢ = Tz

S 2
Proof:
Note that integrating process corresponds to an infinite time constant
Write

_ ;{"TI _ k‘rTI
90(8)  718(m208+1)  (m1s5+1)(m20s8+1
and then apply half rule as normal, noting that 7 + 222 ~ 7y:

) where 4 — o

. .rli"T]_E_ Ia'o's o / E_ I%D'S i SfepRe_sponsle
9(8) - (Tl—l—%ﬂ-)S =k 8 wl
£ Doesn’t look so good
Example. g0 = 5/(s*(3*s+1)), " | But it's OK

step(g,90,10) °
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Approximation of LHP-zeros

[ To/70 for Ty > 19 > 7. (Rule T1),

To/t. forTp = 1. = 10 (Rule T1a),

Tos+1 |4 for 7. > Ty > 70 (Rule T1b),
705 + 1 To/To for 7o > Ty = 57 (Rule T2),
| 2 for 7 € min(rp, 57) = Ty (Rule T3),

1. = desired closed-loop time constant

Example E3. For the process (Ezample 4 in (Astrom et al. 1998))
g0 2(155 + 1)

205+ 1)(s+1)(0.1s+ 1)?
we first introduce from Rule T2 the approzimation
15s +1 155
= — =0.75
20s+1  20s ?
(Rule T2 applies since Ty = 15 is larger than 56, where 0 is computed below). Using the half rule,
the process may then be approzimated as a first-order time delay model with

9(s) = ( (13)

. 0.1 0.1
g1 k=2:0T5=15 0=01+— =015 n=1+- =105
or as a second-order time delay model with
k=1.5 9:%—120.0* =1 72:0,1+E:U.15

PID-controller (from 2nd order model) will give performance
improvement because 1, > 6

We should approximate T, by a “close-

by” 1.

* BUT: The goal is to use the model for
control purposes, so we would like to
keep (i.e., not approximate) the t
which is closest to the desired t..

In Example E3, we have two possible values for
1, , namely 20 and 1. Since T =15, it seems clear
that we should select the closest T, =20 and use
rule T2.

» But what if T(=2, maybe selecting t,=1 is
better (and using rule T1)?

* No, this is not clear. Since 1, is between 0.05
(PID) and 0.15 (PI), we may want to keep t
=1 which is closest to 1, ,that is, also in this
case select 1= 20 (and use rule T2)

* This may seem surprising, but it turns out that
it will not matter very much in the case for the
PI/PID-tunings (try!), because k/taul (and
thus Kc) will not change much and because
taul = min(tau,4(tauc+theta)).

* Of course, if T gets much closer to 1, then we
should select 7,=1.

Generally, the LHP-zeros approximation
rules results in acceptable (robust) PI/PID-
settings, but not necessarily the “optimal”
settings.

S/



Step response (without control)

Step Response

g0 = 2*(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)"2)
g1=1.5"exp(-0.15*s)/(1.05*s+1)

mplitude

ol j step(g0.,91,92,1)
| ]
zz E Step Response
NEN | | 0.9 : :
’ Time (5130conds) © “
0.8
0.7
06
Lih]
Q057
=
E 04r
Note: It's the initial 03l
response that matters
for feedback control o
(time from 0 to about 5*tauc) 0.1 ¢
0 0.2 0.4 0.6 0.8 1

Time (seconds)
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B Simulation with control is as expected: Better
performance with controller based on g, (PID) than g, (PI) but
more input usage

1.8

1.6

| ) y(t

1.2 |

g = 2%(15*s+1)/((20*s+1)*(s+1)*(0.1*s+1)"2)
gd=g

1 L
0.8} PID | Using g1:

Pl. tauc=0.15
Kc=(1/1.5)*1.05/(2*0.15)=2.33
0.4 1 taui=min(1.05,8*tauc)=1.05
0.2 i taud=0

0.6

°o 1 2 s a 5 = 7 s s 10 Using g2
PID. tauc=0.05
Kc=(1/1.5)*1.00/(2*0.05)=6.66
PID T taui=min(1.05,8*tauc)=0.4
taud=0.15, tauf=0.015
u(t)

Pl

W N 4 0 a2 N W A OO N
r— 1 1 7T L




Extra slide

Example: Approximation of zero for flow control

2

— Go(s) = 12 () o

9s5+1 1
* Notethat T, = 15 > 7ty = 9 so we get an overshoot in the step response °5 Step in u at t=10
0
*  How should we approximate this as a first-order with delay model? 0 S .

It will depend on the value for tauc. If we apply the LHP-zero approximation rules then we get:

1. Small tauc (tauc<9): (15s+1)/(9s+1) = 15/9 (Rule T1) = G(s)=k=1.2*15/9=2
2. Intermediate tauc (9<taux<15): (15s+1)/(9s+1) = 15/tauc (Rule T1a) = G(s)= k = 1.2*15/tauc=18/tauc
3. Large tauc (tauc>15). (15s+1)/(9s+1) = 1 (Rule T1b) = G(s)=k=1.2

« In all three cases we get G(s) = k so we get t; = 0 and in all three cases the SIMC Pl-controller
becomes a pure |-controller C(s)=KIl/s where Kl = 1/(k*tauc). Here tauc is free to choose.

. Flow controller, The transfer function G(s) is typical for a control valve where u=z=valve position and y=F =flow:
Consider a typical valve equation F = Cz/p; — p, . Following a step change in z, F will immediately jump (to 1.2*15/9=2),
but then it will drop down again (to 1.2) because of the reduction in the pressure drop p; — p, which for gases may take
some time (7o = 9 in this case). (See Exam 2022, Problem 5 for how to derive G)

— For liquids the dynamics are fast because of small compressibility and can be neglected. Thus, for liquids we always
have case 3 (tule T1b). However, the short-term flow overshoot may result in the phenomena of “water hammering”.

— For gases, also cases 1 or 2 may happen if the valve is close to a large gas holdup (large tank or large pipeline).

For a flow controller, a typical value is tauc=10s.

Some commercial controllers do not allow a pure I-controller. In this case, select taui as some small value (say taui=1s) and use Kc=Kl*taui,
that is, Kc=(1/k)*(taui/tauc) .

However, if the dynamics for changing z or measuring F are slow compared to the desired closed-loop response time tauc, then a better
approximatiom of the valve may be G=k/(tau1*s+1). In this case a Pl-controller with tauc=tu1 is recommened (SIMC-rule).




Problem 5 (25%). Modelling and control of flow and pressure

Consider a gas pipeline with two valves. We have measurements of the inflow F) and the
intermediate pressure p and these should be controlled. The volume of the pipeline can be

represented as a tank with volume V as shown in the figure above.

Steady-state data: F1=1 kg/s, z;=2,=0.5, p;=2 bar, p=1.88 bar, p=1.8 bar, V=130 m*, T=300 K,
Parameters: R=8 31 JJK mol, Mw=18e-3 kg/mol (5o the gas 15 steam).

The following model equations are suggested to describe the system.

(1) dm/dt = F1-F2
(2) m =k, p where k;=VM,/(RT)

(3) Fy = Cyzy\jp1—p
(4) F, = Caz3/p — p2

(a) (3%) Explain what the variables and equations represent. What assumptions have been
made?

(b) (3%) Determme the parameters in the model (C1, C2, kp). What 1s the steady-state value of
m? What is the residence time of the gas, m/F;?

(c) (12%) Linearize the model and find the 2x2 transfer function model from z; and z2 (inputs) to
F1 and p (controlled variables). (Note: To simplify, you can assume p1 and p2 are constant)

(d) (4%) What pairings do you suggest for single-loop control (with u = [z; z:], y= [F1 p])? How
could control be improved?

(e) (3%) (This can be answered without solving parts a-d). What control structure would you
propose if we instead of p want to control the downstream pressure p2? Thus, we have u=[z;

2] and y =[F1 p2] .




Problem 5 (25%)

a) Model equations and assumptions.

(1) is the mass balance for the pipeline section [kg/s]

(2) is the ideal gas equation on mass basis with the temperature T is assumed constant.

(3) and (4) are the assumed valve equations. Note that we have assumed a linear valve
characteristic.

Variables:

F,oinlet flow

F,: outlet flow

z,: inlet valve opening

z,. outlet valve opening

C,: inlet valve constant

C,: outlet valve constant

m: mass of gas in the pipeline
p: pressure of gas in the pipeline
p,: pressure of gas at the inlet
p,: pressure of gas at the outlet
V: volume of pipeline

T: temperature of the system
R:ideal gas constant

M,,. molar mass of gas

b) At steady state, F, = F,, and therefore:
F, 1
C = = -
myfp—p 05%xV2-188

=5.773 kg/s - bar'/?

F 1

c, = =
T p—p: 05xVIBE 18

=7.071 kg/s - bart/?

k
_ VM, _130x18x 1072 m x5 8

k = - -7 _ _mol
P RT 8.31 x 300 I K
mol K

=0.386 x 10~* kg/Pa = 93.86 kg/bar

m=kyp="9386x 188 = 176.457 kg
Residence time: t; = m/F, = 176457 s
c) Linearizing the model. First linearize the two static valve equations (3) and (4):
¥ = AF, = (Cyp; —p)| Az, + (—%)L Ap=2Az, —4.166Ap

Cy2,

AF, = (Cy fp —p2)|‘ﬁz: + (m” Ap = 2 Az, + 6250 Ap
v 2/1,

From (2) the mass balance (1) becomes ky dp/dt = F1 — Fz which gives the linearized model for
yz = Ap:

p 2 = AF, —AF, = 24z, —2 Az, — 10416 Ap
dtp
= 93.86¥+ 10416 Ap = 2 Azy — 2 Azp
dip
= 9.011E+ Ap = 0.192 Az — 0,192 Az

Applying the Laplace transform to the last expression gives the transfer function for y, = Ap:

0.1925 _ 0.1925 Az
9.011s+1" ' 9.011s+1 *°

The expression for y, = AF, then becomes

Ap(s) =

_ 0.1925 — 01925
ARy = (z BTy 1) Az — 4166 X Ea.nu s+ 1) 2
25 (5.011 5+ 1) — 4.166 x 0.1925 0.800
:( S011s+1 )ax[+9_01“+1u1
_ /180225 + 1.200 0.3 (15018541 0.8
_[ 9.01ls+1 ) Ao topirsrr AT 1'2(9.011s+1 ) At opirevr A
Conclusion
0.1925 —0.1925
Apy Az, _ 9011s+1 9.011s+ 1
ﬂﬁ] =6 [ﬂzz]‘ GG = L (15.0185 + 1) 0.3
“loolls+1 9.011s+1

Note that the time constant of 95 is much smaller than the residence time of 176s. This is typical
for gas systems. Also note that u1=z1 has a direct effect on y2=F1({as expected from physics:;
see also element g21 in step response below which has an overshoot because of the zero).

Szﬁ{‘s‘) N Step Response
g11=0.1925/(9*s+1); g12=-g11; 02
g21=1.2*(15"s+1)/(9*s+1); )
g22=0.8/(9"s+1);

G=[g11g12; g21 g22];
step(G*exp(-10*s)) % To make plot
clearer | put in a delay so that step is
att=10

Fram: In(1] From: In{2)

Tox Out{1)

Amplitude

T Qut(2)

o 20 a0 B (] 20 40 60
Time (geconds)

d)
Steady-state gain matrix: G(0) = [0'19225 _0613 25] >
. i 1-21 0.1925%0.9
steady-state RGAmatri: A=, = "] whered = = 04

From the steady-state RGA, the recommended pairing is then the off-diagonal pairing, that is,
F, —z, and p — z;. This happens to coincide with the intuitive pairing (“pair-close rule”) since z1
has a direct effect on F1. It also agrees with what we get from the RGA if we consider the initial
response (high frequency).

b=

However, high steady-state interaction is to be expected, since A is far from the ideal case
(identity matrix). Possible solutions are the implementation of a decoupler (probably steady-
state decoupler is OK), or separating the timescales of the two loops.

Since the flow control has a direct effect from z1 to F1, this should probably be the fast loop,
and then the pressure loop can be about 5 times slower. But if both loops should be equally
fast, a decoupler is preferred.

What about the tuning of the flow loop? What model should we use? We have that

Go(s) = 1.2 {155 +1)

9s+1

Mote that TO=15 = tau0=9. How should we approximate this as a first-order with delay model? It
will depend on the value for tauc. If we apply the LHP-zero approximation rules then we get.

Small tauc {tauc=<9):  (15s+1)(9s+1) = 15/9 (Rule T1) = G(s)=1.2*15/9=2
Intermediate tauc (9<taux<15). (15s+1)/(9s+1) = 15ftauc (Rule T1a) = G(s)=18/tauc
Large tauc (tauc=15) _(15s+1)/(9s+1) = 1 (Rule T1b) = G(s)=1.2
In all these three case the SIMC Pl-controller becomes a pure I-controller C({s)=Kl/s with Kl =
1/(k*tauc). Note that for the intermediate tauc we get KI=1/18 (independent of Kc).

e) This is a trick question, because it will not work. This control strategy would not be
consistent, as we can see that that is does not follow the radiation rule. In general, the
control of pressures that are external to the process is equivalent to a flow specification
(TPM), which in this case would conflict with the specification of F, .



Shams’ method: Closed-loop setpoint response
with P-controller with about 20-40% overshoot

0.8 . . . .
Keo=1.5
0.7 Ay =1 |
0.6
Ay.,

0.5

Start from steady state and do step P-response
1. OBTAIN DATA IN RED (first overshoot
and undershoot), and then:

0.4

Ayp=0.79

dyinf = 0.45*(dyp + dyu) % estimate dyinf (so don’t wait)
Mo =(dyp -dyinf)/dyinf % Mo=overshoot (about 0.3)
Ayu =0.54 b=dyinf/dys % offset parameter

A =1.152*Mo”2 - 1.607*Mo + 1.0

r = 2*A*abs(b/(1-b))

0.3

0.2

0.1 2. OBTAIN FIRST-ORDER with DELAY MODEL:
k = (1/Kc0) * abs(b/(1-b))

L gy vy theta = tp*[0.309 + 0.209*exp(-0.617T)]
0 tau = theta*r

dq-—————— == — - - =

dq—-——=— === - -

0.1 | ) | | | | 3. CAN THEN USE SIMC Pl-rule

0 2 @ ) 10 12 T IS S ZU
N A

Example 2: Get k=0.99, theta =1.67, tau=3.0

Ref: Shamssuzzoha and Skogestad (JPC, 2010) + modification by C. Grimholt (PID-book 2012)
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Example E2 (Further continued) We want to derive PI- and PID-settings for the
process

{—0.35 + 10085 + 1)
(25 + 115 4+ 10{04s + 100.25 + 1W0.05s + 1P

gols) =

using the SIMC tuning rules with the “default” recommendation - = &. From the
closed-loop setpoint response, we obtained in a previous example a first-order model
with parameters & = 0994, 8 = 1.67, r; = 3.00 (5.10). The resulting SIMC PI-
settings with 1. =& = 1.67 are

Ply: K.=09M, =13

From the full-order model gods) and the half rule, we obtained in a previous ex-
ample a first-order mode] with parameters k = 1,8 = 1.47, r; = 2.5. The resulting
SIMC Pl-settings with . =0 = 1.47 are

PIh.n.lF-ruJ-l:: .ﬁ'—,_- ='|].3\5|:|, Tr =2.5.
From the full-order model go(s) and the half rule, we obtained a second-order model
with parameters k = 1,0 =0.77, 11 =2, 2 = 1.2. The resulting SIMC PID-settings
with . =8 =0.77 are

Series PID: K. —=1200, 1, =2  tp=12

The corresponding settings with the more common ideal (parallel form) PID con-
troller are obtained by computing f = 1 4+ o /oy = 1.60, and we have

Ideal PID: K. =K. f = 1L.69, =17 =32, ip=1n/f =0.75.
(3.30)



SIMC-rule with measurement dynamics

This is simple: Combine the measurement
dynamics g,,(s) and the process model g(s)
and apply the SIMC-rules on gg,,,.. This
applies both to the model approximation
(half rule) to get a 1st or 2"d model and to
the PI- or PID-tuning, including the choice
of t_.

See also the handwritten note for a «proof», for example, that
the total delay also includes the delay in the
measurement g,

| Rk Dosign € btls-ec{ on @:let

V(2-2023
5_1 MC-tde WU W st __dlu[_é_t;_@ )

Ys ol Y 05
: 2 !——"—b ol
z P2 ] 9m

r— \-‘l“ @/ : ..:I:;!I- 15{nG

Pbﬁ&ue wib asswutd C%w. O (v

st emm}f [y
Now asswt, Unak Qen = J’ b:gze Lhu(;l{s gon =1

—'Q'EQ‘N .:
GGl Lsstody 09 = 1 < — t&*w) wm;?ﬁf& )

Srowld also Mase t:/@k:& U*“JW Yokt

Pmﬂ@ Ws destgn for Jasted 59}@{,&:& SROUSL Lchd‘uk 3 ut‘ir"f\d'\ls §
\) \.\-}', wWhape T L*q’q C: D%Stl‘*’(‘l T G,SW

Al% d}{[,\ A5 J : G ﬁ:%
Eml =
- L t(i Ei'a -bb':-}gc S
: o
- . l (L3 h)&ﬂ’ : '['5‘:" ;'@‘Hdéui
e e T T
ol u,
’ | wd D) oS \r\ﬁ(ﬁ«.}”)
C= ermes

5 9{;)_3;13
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CONCLUSION
Tuning of PID controllers

» SIMC tuning rules (“Skogestad IMC”)(")

« Main message: Can usually do much better by taking
a systematic approach

« Key: Look at initial part of step response
Initial slope: k' = k/t,
* One tuning rule!

For cascade-form PID controller:

1 _1
KC kK (047e)

77 = min(7y, 4(7. + 0))

™D = T9

» 1. desired closed-loop response time (tuning parameter)
* For robustness select: 1.2 0

Note: The delay 0 includes any measurement delay

Reference: S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003
(Also reprinted in MIC)
(*) “Probably the best simple PID tuning rules in the world”
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