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Feedforward (and decoupling) control

• Feedforward control relies on model

• as opposed to feedback which relies mostly on data

• Feedback control: Linear model is often OK

• Feedforward control: Much less likely that linear model is OK because
of process changes and disturbances

• Here: Nonlinear feedforward control using Input transformations
based on static process model
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Motivating Example decoupling: Mixing of hot 
(u1) and cold (u2) water

• Want to control (outputs, CVs)
y1 = Temperature T
y2 = total flow q

• Inputs, u1,u2=flowrates
• May use two SISO PI-controllers

TC
FC

• Insight: Get decoupled response with
transformed inputs

TC sets flow ratio, v1 = u1/u2

FC sets flow sum, v2 = u1 + u2

• Decoupler: Need «static calculation
block» to solve for inputs
  u1 = v1 v2 / (1+ v1)  

  u2 = v2 / (1 + v1)

T

F

u1

u2

v2=sum

v1=ratio



TCys

u1=hot
flowrate

y=
v1=ratio

u1 = v1 v2 / (1+ v1)  

u2 = v2 / (1 + v1)

y

Two SISO

controllers
Nonlinear Decoupler Process

T

F

Pairings:  

• T – v1

• F – v2

No interactions for setpoint change

v2=sum

Ts-T

Fs-F
FC

Note:
• In practice, Physical inputs are valve positions (z) 
• So must add two flow (q) controllers 

• These generate inverse z=f-1(q) by feedback

u2=cold
flowrate



TCys y=

v1=ratio
=u1/u2

u1 = v1 v2 / (1+ v1)  

u2 = v2 / (1 + v1)

y

Two SISO

controllers

T

F

v = transformed inputs

u = flowrates

z = valve positions

In practice must add two slave flow controllers

v2=sum
=u1+u2

Ts-T

Fs-F
FC FC

FC

u2s

u2

z2

z1u1s

u1Nonlinear Decoupler 

Even better (see next):



Nonlinear feedforward, decoupling and 
linearization: Input transformations
• Transformed inputs: Extremely simple and effective way of achieving

feedforward, decoupling and linearization
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General approach: Combined Nonlinear decoupling, 
feedforward and linearization using Transformed Inputs 

• Extremely simple: Introduce transformed input v and use Nonlinear calculation block

Controller
Calc. block
= f-1(v,d,w) 

(static)
Process

ys

y

V

d

u y

Genaral Method: 

Steady-state model:  y = f(u,d,w)

Select transformed input:    v = f(u,d,w) («right-hand side» of model)

Calculation block:  Invert for given v:  u = f-1(v,d,w)  (may be replaced by slave v-controller)

w=dependent variable (flow, temperature), but treated as measured disturbance - to simplify model

Transformed system becomes: y=I v («decoupled, linear, indepedent of d»)

It is so simple that many people (e.g., Seborg textbook) think it cannot work in all cases  – but it does!

w

Sigurd Skogestad, Cristina Zotica, Nicholas Alsop. "Transformed inputs for linearization, decoupling and feedforward control" Journal of Process Control 122 (2023) 113-133 

Transformed system:
y=I v

Comment: To simplify often may use only «parts» of f(u,d,w) as v (because of unknown parameters etc.)



Controller
Calculation

block
(static)

Process

ys

y

V

d

u y

Example: Tranformed input to get nonlinear decoupling and feedforward.

Mixing of hot and cold water

Generalized ratio

Decoupler with feedforward: 



1. Th:  60->70 °C       at t = 50 s

2. Tc:  30->20 °C        at t = 100 s

3. Th
s: 40->42 °C       at t = 150 s

4. qs:  1->1.1  L/s       at t = 200 s

Transformed MVs for decupling, linearization and disturbance rejection

Mixing of hot and cold water (static process) 

New system: T=v1 and q=v2



Alternative B: Calculation block solved by feedback (using fast slave controller Cv)

Example: Power control 

In practice (Perstorp) use only part of this: 
v=F2(T2

0 – T2) 
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(slave)



Also: Transformed outputs z

• No fundamental advantage, but can simplify input transformation
• For example, y=T, z=H (enthalpy)
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More on transformed inputs 
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Economic optimization (RTO)

• Consider the task of minimizing a scalar cost function J (or 
equivalently, maximizing the profit −J). 

• Typically, J represents an economic quantity with units such as 
[$/s]. We assume that we can influence J through input variables 
u, and that we may also have access to measurements y. 
Furthermore, we assume the system is static (i.e., without 
dynamics), so we can write J=J(u,d). 
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On-line steady-state Optimization 

There are three main approaches for manipulating u to minimize the cost J:

I. Real-time optimization (RTO): Model-based - use nonlinear online process model with model updates 
from measurements y.

II. Extremum seeking control (ESC): Purely data-based using measured cost J.

III. Self-optimizing control (SOC): c=Hy. Combine data (y) and offline model (to get H). 

In addition, there are hybrid methods and combinations. Actually, all three methods can be combined. 

Process
(assume static)

u

d

y

Cost J (sometimes measured or estimated)

In addition: Feedback methods make use 
of gradient Ju = dJ/du (estimated)



Unconstrained optimization. 

Necessary condition of optimality (NCO):
• Gradient of cost function = 0

• Ju ≡
𝜕𝐽

𝜕𝑢
≡ ∇𝑢𝐽 = 0

Feedback optimization (control gradient Ju to zero)

Process
(dynamic)

u

d

y Gradient estimator 
(static or dynamic)

Feedback 
controller (I or PI)

መ𝐽𝑢𝑆𝑃 = መ𝐽𝑢,𝑠
= 0

-



Often: Pure I-controller

uopt

Ju

0

• Optimal setpoint: Ju=0
• If Hessian Juu is constant: 

• Ju as a function of u is a straight line 
with slope Juu

• Nice properties for feedback control of Ju

• No dynamics: Pure I-controller optimal
• SIMC-rule: KI = 1/(Juu τc)
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I. Standard Model-Based Optimization (RTO)
Real-Time Optimization (RTO) uses a detailed nonlinear model and 
does not require that the cost J is measured.

The system model is used at each time step k to compute the 
input u(k) that minimizes the cost J. Measurements y are used 
online to update selected model parameters (e.g., efficiencies). 
RTO minimizes the cost J while explicitly handling constraints.

Two main approaches

IA. Without gradient: Standard RTO (minimize cost J) 

IB. With gradient: Feedback-based RTO (control gradient Ju to 
zero)
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II. Purely Data-Based Feedback Optimization (ESC)
Also known as extremum seeking control (ESC), hill-climbing, greedy search, or perturb-and-observe.

This method relies entirely on measurements of the cost J (which may not always be available) and does 
not use a process model. It is simple, but generally slow, especially when gradient estimation is involved.

Also known as extremum seeking control (ESC), hill-climbing, greedy search, or perturb-and-observe.

This method relies entirely on measurements of the cost J (which may not always be available) and it does 
not use a process model. It is simple, but generally slow, especially when gradient estimation is involved. 

IIA. ESC without gradient: “Perturb and observe” (simplest)

This is the simplest and most intuitive version. It is used, for example, to fine-tune the position of solar 
mirrors.

IIB.  ESC with gradient Ju (most common in academia)

 In classical ESC, sinusoidal perturbations are used to estimate the gradient Ju, which is subsequently 
controllerd to zero - but sinusoids is not always an efficient method – so later others methods for 
estimating Ju have been developed
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III. Self-Optimizing Control (SOC)
Here, the model is used offline to find good “self-optimizing” variables c. The online implementation uses a 
simple PID controller to keep c and its setpoint cs.

The goal of SOC is to find a "magic variable" c to control—ideally one where a constant setpoint cs leads to 
near-optimal performance despite disturbances. This allows the optimization to be embedded into the fast 
control layer.

In its simplest form, c=y is a single measurement. The variable c is chosen such that its setpoint cs is 
insensitive to disturbances, yet c is sensitive to input changes (i.e., has a large gain from u to c).

More generally, we can use combinations of measurements: c=Hy where H is a matrix. Ideally, this corresponds 
to the gradient: c=Ju =Hy. See the paper by Bernardino and Skogestad (2024) for methods to find H to estimate 
the gradient.

III-C. Self-Optimizing Control with Constraints

SOC can be extended to handle constraints by incorporating Lagrange multipliers 
into the control strategy. In this approach, the multiplier acts as a manipulated 
variable in an upper slow control layer. Constraint violation can be avoided using 
override logic (Dirza and Skogestad, 2024). In essence, this is a clever trick where a 
PI controller is used to iteratively solve a set of equations numerically.
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Combinations

These approaches can be combined in all ways:

a) I + II: ESC (slow) sends bias for gradient Ju to RTO.  

This methods is sometimes called “modifier adaptation” but I don’t like this 
name because it is not very descriptive. 

The bias means that the RTO-gradient will not be zero. This is to correct for 
model errors, unmeasured disturbances and measurement errors in the RTO-
layer.

b) II + III: ESC (slow) updates setpoints to SOC (fast).

c) I + III: RTO (slow) updates setpoints to SOC (fast).

d) I + II + III: ESC (slow) sends bias for Ju to RTO (faster), which 
updates setpoints to the SOC layer (fastest).

There needs to be a time scale separation between the layers, 
typically about 10.

References

• D Krishnamoorthy, S Skogestad. Real-time optimization as a feedback control 
problem–A review.  Computers & Chemical Engineering (2022 

• R Dirza and S Skogestad .Primal-dual feedback-optimizing control with override 
for real-time optimization. Journal of Process Control 138, 103208 3 (2024)

• LF Bernardino and S Skogestad. Optimal measurement-based cost gradient 
estimate for feedback real-time optimization. Computers & Chemical 
Engineering, 108815 (2024)

(b) ESC + SOC

(a) ESC + RTO

RTO

ESC

ESC

https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC


More details on RTO and ESC now follow

I. RTO
• A. Without gradient (most common) 

• B. With control of gradient (feedback-RTO)
• Ju=Hy with H from SOC can used to get fast gradient estimation

II. ESC
• A. Without gradient (simplest)

• B. With control of gradient (most common) 
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IA. Conventional (commercial) steady-state RTO

Fairly common in refining and 
petrochemical industy.

Two-step approach:

Step 1. “Data reconciliation”:
• Steady-state detection

• Update estimate of d: model 
parameters, disturbances (feed), 
constraints 

Step 2. Re-optimize numerically to 
find new optimal steady state

D
ata reco

n
ciliatio

n

𝑑



Steady-state wait time

• Transient measurements cannot be used → system must “settle”

• Large chunks of data discarded

• Steady state detection issues
• Erroneously accept transient data

• Non-stationary drifts

Dinesh Krishnamoorthy, Bjarne Foss, Sigurd Skogestad, Steady-state real-time optimization using transient measurements,  Computers & Chemical Engineering (2018)

https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096


How to avoid steady state wait time?

1. Dynamic RTO = EMPC

Dinesh Krishnamoorthy, Bjarne Foss, Sigurd Skogestad, Steady-state real-time optimization using transient measurements,  Computers & Chemical Engineering (2018)

D Krishnamoorthy, S Skogestad. Real-time optimization as a feedback control problem–A review.  Computers & Chemical Engineering (2022)

Could be nonlinear Kalman filter

https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC
https://scholar.google.com/citations?view_op=view_citation&hl=no&user=AHUrS0EAAAAJ&citation_for_view=AHUrS0EAAAAJ:GnPB-g6toBAC


RTO problem formulation

Steady-state RTO (used in Hybrid RTO):

min
𝑥,𝑢

𝐽 𝑥, 𝑑, 𝑢

s.t.:
0 = 𝐹 𝑥, 𝑑, 𝑢
0 = ℎ 𝑥, 𝑑, 𝑢
𝑔 𝑥, 𝑑, 𝑢 ≤ 0

Dynamic RTO ≡ (Economic) nonlinear MPC :

min
𝑥 𝑡 ,𝑢 𝑡

න
𝑡0

𝑡𝑓

𝐽 𝑥 𝑡 , 𝑑 𝑡 , 𝑢 𝑡 𝑑𝑡

s.t.:
ሶ𝑥 𝑡 = 𝐹 𝑥 𝑡 , 𝑑 𝑡 , 𝑢 𝑡
0 = ℎ 𝑥 𝑡 , 𝑑 𝑡 , 𝑢 𝑡
𝑔 𝑥 𝑡 , 𝑑 𝑡 , 𝑢 𝑡 ≤ 0

𝑥 𝑡0 = ො𝑥0

Now we calculate not only an optimal 
point, but an optimal trajectory!

BUT Much more complex that static RTO, 
and may not give much economic benefit



How to avoid steady state wait time?

2. Hybrid RTO 

Static

Could be nonlinear Kalman filter

Dinesh Krishnamoorthy, Bjarne Foss, Sigurd Skogestad, Steady-state real-time optimization using transient measurements,  Computers & Chemical Engineering (2018)

https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096
https://www.sciencedirect.com/science/article/pii/S0098135418302096


«Solving RTO-problem using PI control»

IB. Feedback RTO (control gradient Ju to 0) 
(unconstrained case)

IB. Feedback RTO: With gradient

Process
(dynamic)

u

d

y Gradient estimator 
(static or dynamic)

Feedback 
controller (I or PI)

መ𝐽𝑢𝑆𝑃 = መ𝐽𝑢,𝑠
= 0

-



IB. Feedback RTO (control gradient Ju to 0) 
(unconstrained case)

D Krishnamoorthy, E Jahanshahi, S Skogestad. Feedback Real-Time Optimization Strategy Using a Novel Steady-state Gradient Estimate and Transient

Measurements. Industrial & Engineering Chemistry Research, 2019
31

Gradient estimator

Note: This is one simple way of doing the gradient estimation, but need nonlinear dynamic model (e.g., Kalman Filter)

Nonlinear Kalman Filter

IB. Feedback RTO

Linearize the dynamic model

Trick, set ሶ𝑥 = 0, 𝑡𝑜 𝑔𝑒𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑐 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡:

Δ



Here is another simpler Static gradient estimation:
Based on self-optimizing control. Very simple and works well!

From «exact local method» of self-optimizing control:

• Bernardino and Skogestad, Optimal measurement-based cost gradient estimate for real-time optimization, Comp. Chem. Engng., 2024  



Constrained optimization problem

Solution: Turn into unconstrained optimization problem  using Lagrange multipliers

minu,λ L 
u = primal variables = inputs
λ ≥ 0 = dual variables = Lagrange multipliers = shadow prices

Necessary conditions of optimality (KKT-conditions)

J

(complementary condition)

33

J

With constraints 



IB-c. Primal-dual control based on KKT conditions: Feedback 

solution that automatically tracks active constraints by adjusting Lagrange multipliers (= shadow
prices = dual variables) λ

Process

Unconstrained
optimization

(nu PID-controllers)
Gradient 

estimation

Constraint control
(nc slower PI/I-controllers)

MAX0

y

g (measured constraint)

g (measured constraint)
SP=0

SP=0

u

d

Primal-dual feedback control.
• Makes use of «dual decomposition» of 

KKT conditions
• Selector on dual variables λ
• Problem 1: Constraint control is indirect –

it uses dual variables on slow time scale
(upper layer)

• Can be fixed using override at bottom of 
hiearchy (Dirza)

• Problem 2: Single-loop PID control in lower
layer (Lu=0) may not be possible for coupled
processes so may need to use Solver.

Dual variables λ

Primal variables u

Inequality constraints: 𝜆 ≥ 0

IB-c. Feedback RTO with constraints

KKT:

• D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, J. Process Control 97 (2021) 72–83,

• R. Dirza and S. Skogestad . Primal–dual feedback-optimizing control with override for real-time optimization. J. Process Control, Vol. 138 (2024), 103208.



Alternative: Direct control of constraints

36

Introduce 𝑁:  𝑁𝑇𝑔𝑢 = 0

KKT:

Controlled variables (CVs) that gives optimal operation:
1. Active constraints gA = 0.
2. Reduced gradient  𝑁𝐴

𝑇𝐽𝑢 = 0
• for the remaining inbconstrained degrees of freedom
• «self-optimizing variables»

• Jaschke and Skogestad, «Optimal controlled variables for ̈ polynomial systems». S., J. Process Control, 2012
• D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019

Seems easy. But how do we handle changes in constraints?
• Because gA and 𝑁𝐴 vary
• Originally, I thought we need a new control structure (with pairings) in each region



IB-c. Region-based feedback solution with «direct» constraint control

Process

Gradient 
estimation

Constraint controllers
(fast PID-controllers)

MAX/
MIN

y

g (measured constraint)

g (constraints paired with u1)
SP=0

u1

d

u2

Ju1

u1
(see next slide)

Ju2

PID
u1o

SP=0

• Jaschke and Skogestad, «Optimal controlled variables for ̈ polynomial systems». S., J. Process Control, 2012
• D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019
• L. Bernadino and S. Skogestad, Decentralized control using selectors for optimal steady-state operation with active constraints, J. Proc. Control, 2024

• Selector on primal
variables (inputs)

Introduce 𝑁:  𝑁𝑇𝑔𝑢 = 0

KKT:

Feedback RTO with constraints

• Selector on primal variables (inputs)
• Similar to selectors in ARC
• Limitation: need to pair each constraint with

an input u, may not work if many constraints



L. Bernadino and S. Skogestad, Decentralized control using selectors for optimal 
steady-state operation with active constraints, J. Proc. Control, 2024 38

Feedback RTO with constraints

Assume: Have at least as many inputs as constraints
Can them have fixed pairings between constraints and unconstrained CVs!
(with N is fixed)



IB-c. Region-based MPC with switching of cost function (for general case)

Standard MPC with fixed CVs: Not optimal Proposed: With changing cost (switched CVs)

• Bernardino and Skogestad, Optimal switching of MPC cost function for changing active constraints. J. Proc. Control, 2024  

Feedback RTO WITH CONSTRAINTS



II. Model-free optimization:
Extremum Seeking Control (ESC) based on measuring cost J 

Why ESC («hill-climbing»)? 
• Simple if we can measure J
• Avoid expensive model (for J) needed for model-based RTO
• May also be used on top of a faster RTO-layer: 

• «Adapt» setpoint for Ju (to a nonzero bias value) to correct for model error
• This hybrid approach is sometimes called «modifier adaptation» (bad name)

Two ESC alternatives
A. Without estimating gradient («perturb and observe»)
B. Gradient-based (classical ESC) (must perturb u to estimate gradient)

Main problems with ESC:
• Cost function J often not measured

• For chemical process: J=pFF – pPP – pQQ
• So need model (!) to estimate flows F, P and utility Q

• Slow. Typically 100 times slower than process dynamics (at least for gradient-based ESC) 40

Process
(assume static)

u

d

J



IIA. Extremum-seeking control (ESC) without gradient

41

A simple and intuitive version of ESC is the perturb-and-observe algorithm

• Step 1: Apply a perturbation Δu to the input:
u(k)=u(k−1)+sign(k)⋅ Δu 
where k is the current time sample and sign(k) alternates between +1 and -1.

• Step 2: Observe (after time Ts) the cost J(k+1). If J(k+1)<J(k), then the system is 
moving in the right direction so keep the same sign; otherwise, reverse the direction 
(change sign(k)). Repeat from Step 1.

This method has two main tuning parameters:

• The step size Δu: Larger steps speed up convergence but cause larger oscillations 
around the optimum.

• The sampling time Ts: This must be long enough to let the system respond. A rule of 
thumb is Ts≈3τ, where τ is the system’s time constant (to settle to steady state).

This approach is used, for example, to fine-tune the position of solar mirrors – and we 
use it currently to optimize a dividing-wall distillation column (Halvorsen et al., 2025)

Process
(assume static)

u(k)

d

J(k+1)



IIB. ESC with gradient: Drive gradient Ju=dJ/du to zero.

Probe the
system

Observe how 
the cost 
changes

Estimate 
Gradient

Decide where 
to move

∆𝐽 = 0

∆𝐽

∆𝑢 ∆𝑢

𝑢

𝐽

Ju=0 at top of hill

42Simplest: Ju=ΔJ/Δ u

PI-
control

Δu

ΔJ



Classical Extremum seeking control using sinusoids

Gradient EstimationI-controller

Multiplication trick: Draper & Li (1951)
Theory: Krstic & Wang (Automatica, 2000)

Processu

uc

J

• Simple to implement (don’t need computer), but

• Prohibitively slow convergence for systems with slow dynamics

• Typically 100 times slower than the system dynamics !

KI

Averaging Remove bias in J

One side of optimum: Same phase
Other side: opposite phase

43



More common today: Estimate Steady-state
gradient using discrete perturbations (steps)

J

u
∆𝑢

∆𝐽

𝐽𝑢 =
Δ𝐽

Δ𝑢

Usually only one input. Simplest: step change in u:
• Hill climbing control (Shinskey, 1967)

• Evolutionary operation (EVOP) (1960’s)

• NCO tracking (Francois & Bonvin, 2007)

More advanced variants which may also be applied 
to multivariable systems

• Least squares estimation

• Fast Fourier transform (Dinesh Krishnamoorthy)

To avoid waiting for steady state 
• Fitting of data to ARX model (difficult to make robust)

Note: Assumes steady state -> samling (step) time > 3-10 time process time constant

44



Least square gradient estimation for ESC

LSE: Fit a linear model

Using least squares fit

Hunnekens et al. (2011, 2014)

Note: Assumes no dynamics -> samling time > 3-10 time process constant

45



IIB. Summary extremum seeking control with gradient

Idea: Estimate the cost gradient Ju from data and drive it to zero

• Common to all methods: 
• Need measurement of cost J
• Must wait for steady state (except ARX method which fails frequently)
• Must assume no «fast» disturbances (while optimizing) 

Algorithm needs two layers on top of process:
1. Optimization layer (slowest): Control Ju to zero (may use I-controller)
2. Lower estimation layer: Estimate the local gradient Ju using data 

• Must wait for the process to reach steady state

• Need time scale separation between layers. 
• At best this means that the optimization needs to be 10 times slower than the process. 

• Often it needs to be 100 times slower.

• Useful for fast processes with settling time a few seconds
• Not useful for many chemical processes where time constant typically are several minutes

• 10 minutes * 100 = 1000 minutes = 16 hours

• Unllikely with 16 hours without disturbance
46



Now we are finished…
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ARC: Research tasks



What about MPC?
• First industrial use in the 1970s

• Became common in the refining and petrochemical industry in the 1980s

• In the 1990s a bright future was predicted for MPC in all process industries (chemical, thermal power, …)

• 30 years later: We know that this did not happen

• Why? First, the performance benefits of MPC compared to ARC are often minor (if any)

• In addition, MPC has some limitations
1. Expensive to obtain model
2. Does not easily handle integral action, cascade and ratio control
3. Normally, cannot be used at startup (so need ARC anyway)
4. Can be difficult to tune. Difficult to incorporate fast control tasks (because of centralized approach)
5. Computations can be slow
6. Robustness (e.g., gain margin) handled indirectly

• Advantages of MPC
1. Very good for interactive multivariable dynamic processes
2. Coordinates feedforward and feedback
3. Coordinates use of many inputs
4. Makes use of information about future disturbances, setpoints and prices (predictive capabilities of MPC)
5. Can handle nonlinear dynamic processes (nonlinear MPC)

• What about constraints
• Not really a major advantage with MPC; can be handled well also with ARC

49
MPC = model predictive control
ARC = advanced regulatory control
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Complex optimal centralized 

Solution (EMPC, FL)

Sigurd

Present Academic control community fish pond

Simple solutions
that work (ARC, PID)
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FL = feedback linearization



Complex optimal centralized 

Solution (EMPC, FL)Future Academic control community fish pond

Simple solutions
that work (SRC,PID)
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