Self-optimizing control Theory

«How to put optimization into the control layer by selecting the right controlled variable c»



Outline

Skogestad procedure for control structure design:

.  Top Down
« Step S1: Define operational objective (cost) and constraints
« Step S2: Identify degrees of freedom and optimize operation for disturbances

« Step S3: Implementation of optimal operation
— Control active constraints
— Control self-optimizing variables for unconstrained, c=Hy

« Step S4: Where set the production rate? (Inventory control)
[l. Bottom Up
« Step S5: Regulatory control: What more to control (secondary CV's)?
« Step S6: Supervisory control
« Step S7: Real-time optimization



Step S3: Implementation of optimal operation

« Optimal operation for given d:

min J(u, x, d)
u

subject to:

J . — uopt(d)
Model equations: flu,x,d) =0
Operational constraints: glu,x,d) <0

Problem: Usally cannot keep u,,; constant because disturbances d change

How should we adjust the degrees of freedom (u)?
What should we control?




“Optimizing Control” (EMPC)

Measurements




“Self-Optimizing Control”
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c = Hy
H: Nonsquare matrix

» Usually prefer single measurements as c’s (simple)— H is selection matrix of 0’s and 1’s
« H can also be full matrix (measurement combinations)



Self-optimizing control

Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values for the
controlled variables
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Optimal operation - Runner

Optimal operation of runner

* Cost to be minimized: ] = T (total time)
* One degree of freedom: u = power
« What should we control?



Optimal operation - Runner

1. Sprinter case

e 100 metersrun.J =T

* Active constraint control:
— Maximum speed ("no thinking required")
— CV = power (at max)



Optimal operation - Runner

2. Marathon runner case

* 40 kmrun. J =T (total time)
« What should we control? CV = ?
* Unconstrained optimum:

Ugor L = power % : "'_:’3?
T T




Optimal operation - Runner

Self-optimizing control: Marathon

* Any self-optimizing variable (to control at constant setpoint)?
— ¢4 = distance to leader of race (not optimal and not always feasible)
— G = speed (not always feasible, similar to controlling cost J=T, speed = 42 km/T)
— C3= heartrate
— ¢, = «pain» = level of lactate in muscles
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Optimal operation - Runner

Conclusion Marathon runner

OPsiprzer
TN

Feedback
Controller

c = heart rate

select one measurement

au
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d %’3

Measurement N T
combination
If:H;l
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1
>
Ym C c=heart rate
opt
-

n

* CV = heart rate is good “self-optimizing” variable

« Simple and robust implementation

« Disturbances are indirectly handled by keeping a constant heart rate

« May have infrequent adjustment of setpoint (c,)



Unconstrained degrees of freedom

The ideal “self-optimizing” variable
is the gradient, J,
c = AJ/Au = Ju

— Keep gradient at zero for all disturbances (c = J =0)
— Problem: Usually no measurement of gradient

cost J

*|.J. Halvorsen, S. Skogestad, Indirect on-line optimization through setpoint control, in: AIChE 1997 Annual Meeting, Los Angeles; paper 194h.
*.J. Halvorsen, S. Skogestad, J.C. Morud, V. Alstad, Optimal selection of controlled variables, Industrial & Engineering Chemistry Research 42 (14) (2003) 3273-3284



min

A
J \
J>J )

min

J<J

min

Unconstrained optimum: NEVER try to control a
variable that reaches max or min at the optimum

— In particular, never try to control directly the cost J

— Assume we want to minimize J (e.g., J =V = energy) - and we
make the stupid choice os selectingCVvV =V =J

Then setting J < J_;;,: Gives infeasible operation (cannot meet
constraints)

 and setting J > J_;,: Forces us to be nonoptimal (two steady
states: may require strange operation)



Measurements or mesurement combinations

Optimizer

(RTO) steady-state
control error
c n° =1
Idea”y C - J Measurement
u Feedback co. o combination
. . — Controller |~% ~ —
In practice: ¢ = Hy controlled (H)
variable
u
¥m
@ Process | g
disturbance (G, Ga) y

measurement noise

e Single measurements:
1 0 0 O

¢ =Hy H‘[o 1 0 0]

e Combinations of measurements:

hi1 hi2 Mz hyg ]
c=H H=
y { oy hoo hoz hoy



Optimal measurement combination

SN

Ac = h1Ay; + hoAyr, +--- = HAy

« Candidate measurements (y): Include also inputs u
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No measurement noise (nY=0)

Nullspace method

Theorem
Given a sufficient number of measurements (n, > n, + ny) and no measurement

noise, select H such that
HF =0
where
ay>
od
Controlling ¢ = Hy to zero yields locally zero loss from optimal operation.

F:

Proof: Given dy°Pt = F dd, and ¢ = Hy:
dcOPt = H 0y°Pt = HF 0d

To make dc°Pt = 0 for any dd, we must have HF = 0.

V. Alstad, S. Skogestad, Null space method for selecting optimal measurement combinations as controlled variables,
Industrial & Engineering Chemistry Research 46 (2007) 846-853.
Jaschke, J., Cao, Y., & Kariwala, V. (2017). Self-optimizing control-A survey. Annual Reviews in Control, 43, 199-223.



Nullspace method (HF=0): Analytic
expression for H and proof that it gives J, =0

Ju = Juubu + JyqAd = Uuu]ud] 23]
sy =167 631 [ 5] = G [34] = [ae] = Gy

Formula for F:

OPt = L AUOPE + [, aAd = 0 > AuoPt = —[71] Ad

- opt ~ 71
AVOPt = (G Au =G [ ]uu]ud] Ad
Y | Ad o

S>F=0_G [_]J&]ud]
1o
Let H = [Jyy, JualGy . We can verify that HF = 0. Therefore, J,, =

Jwu JualGyf Ay = HAy = Ac, and thus controlling ¢ (Ac = 0) leads
toJ, =0.

Proof. Appendix B in:  Jaschke and Skogestad, "NCO tracking and self-optimizing control in the context of
real-time optimization”, Journal of Process Control, 1407-1416 (2011)



Example. Nullspace Method for
Marathon runner

u = power, d = slope [degrees]
y, = hr [beat/min], y, = v [m/s]

0.25

F = dyopt/dd = 0.2
H=1[h; hy]
HF=0 - h,f;+h,f,=0.25h,-0.2h,=0

Choose h, =1 = h,=0.25/0.2=1.25

Conclusion:c=hr+1.25v
Control ¢ = constant - hr increases when v decreases (OK uphill!)



Extension: "Exact local method”
(with measurement noise)

ming ||Jul*(HGY) " H [FWyq Wyl ||

A\ >4
Vs

Y

General analytical solution (“full” H):

H =gV (vyyT)-1
H is unique, except that it can be premultiplied by any nonsingular matrix.

No noise (W,,=0): Cannot use above analytic expression because YYT is then singular,
but optimal is clearly HF = 0 (Nullspace method)

Assumes enough measurements: #y > #u + #d
If “extra” measurements (>) then solution to HF=0 is not unigue (but above general solution with noise is unique except for premultiplication)

No disturbances (W,= [ ]) + same noise for all measurements (W, =Y = 1):
Optimal is H=GYT (“control sensitive measurements”)

V. Alstad, S. Skogestad, E.S. Hori, Optimal measurement combinations as controlled variables, Journal of Process Control 19 (1) (2009) 138-148.
Jaschke, J., Cao, Y., & Kariwala, V. (2017). Self-optimizing control-A survey. Annual Reviews in Control, 43, 199-223.



Marathon runner: Exact local method

o RTOR R R

025 1 0
Y = [FWy W,W]:LO2 01

H=6Y"(vyY")"1>H=[0989 1.009]

Normalized H1 =D*H= [1 1.02]
Conclusion:c=hr+1.02 v

« Before (nullspace method): c =hr+1.25v
* Note: Gives same as nullspace when W, is small



Assume:
Derivation of «exact local method». -Stedy-state analysis
3-steps: -Deviation variables (from
1. Express loss in terms of c-Cyy nominal optimum *) cost J
2. Express c-C,, in terms of H, d and n¥ I3
3. Find optimal H (min. loss) for
expected d and nY

Step 1 lLoss

opt

Ugpt(d)

W, and W, are diagonal matrices with
expected magnitudes for d and nY

Step 2 Note: HF=0 -> copt=0 (Nullspace method)

Note: Signs don’t matter for loss = %2 z" z.
Step 3

Note: H is not unique. Can premultiply this H by any
non-singular matrix and get same loss (since c¢,,=0)
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Can use H for static gradient estimation.
=J, = H(y,, — y*). Very simple and works

d
vy
Gd
ny
Cs N u N Ve y x Ym
1K G D, )

L =H -y

From «exact local method» of self-optimizing control (F = Y):

S I .|
H.I:Ju“[ “"LT(FF ) G\—‘ G_\T(FFT)
where F = [FW; Wy]and F = d;, — =G, -G J .~

ntents lists available at ScienceDirect

Computers and Chemical Engineering

» So we premultiply the «simple» H to get the right directions
« and add a constant («bias») which may be viewed as the setpoint c,=Hy*

journal homepage

Optimal measurement-based cost gradient estimate for feedback real-time
optimization

Lucas Ferreira Bernardino, Sigurd Skogestad

Department of Chemical Engineeing, Norwsggan Universky of Scince and Technlogy (NTNU

Trondheim, Norway

« Bernardino and Skogestad, Optimal measurement-based cost gradient estimate for real-time optimization, Comp. Chem. Engng., 2024



Obtaining F

F is defined as the gain matrix from the disturbances to the optimal
measurements = Ay°Pt = F Ad

Brute force method (often the simplest):

* Foreverydisturbance d;, i =1, ...,ny:
— Perturb the system with d; = d; + Ad;, Ad; small
— Reoptimize the system = obtain change in measurements Ay°Ptt
— Obtain i-th column of F: F; = Ay°Pbt/Ad,;

 Return F



Linearization method for F

F can also be obtained from a linearized state-space model:

Ay = GYAu + Gy Ad
™
.+ Au,d* + Ad) = J;, + Jyudu + J,qAd =0
= Au°Pt = —j 1y JAd

Ay°Pt = GYAuPt + GYAd = (—GY ]zt g + G)) Ad

F=—-GY]; ]+ G,




Toy Example.

J = (u—d)?
ny = 1 unconstrained degrees of freedom
qut — d

Alternative measurements:
y1 = 0.1(u — d)

y2=20u
y3 = 10u — bd
Yga = u

Scaled such that:

d| <1, |n;| <1, i.e. all y;'s are +1
Nominal operating point:

d= Oiuoptzo,yoptzo
What variable ¢ should we control?

Single measurements
Ly = E(M)Z
1
M=z (HGY)'HY,
Y = [FWy Wy |, F = =G [t Jua + G

N =

. Exact evaluation of loss:

Liyye,1 = 100
Liype,2 = 1.0025
Lye3 = 0.26
Lpe,a =2

Here Wd = 1,Wny = 1, ]uu = 2']ud = —2,

For yy: HGY = 0.1,HG) = —=0.1,F = O,HY = [0 1], M =2 -10-[0 1], Ly,c =5 & (M) =100

For y,: HGY = 20,HGY = 0,F = 20,HY = [20 1],M = ﬁ-z—1()~ [20 1], Lye :% & (M)? = 1.0025

For y3: HGY = 10,HG} = =5,F = —15,HY =[5 1, M = V2 - [5 1], Ly =5 5(M)? =026

Reference: I. J. Halvorsen, S. Skogestad, J. Morud and V. Alstad, “Optimal selection of controlled
variables”, Industrial & Engineering Chemistry Research, 42 (14), 3273-3284 (2003).



Toy Example. Exact local method.
Combine all measurements

J = (u—d)?

_ . Y = [FW, Way),
ny = 1 unconstrained degrees of freedom

F=—-GY]; e+ G

UO t pr— d
g H=(Y' )1 Gy
Alternative measurements:
y1 = 0.1(u — d) Here: Wy = 1, Wy, = I (4x4), Juu = 2, Jua = —2,
Yo = 20u GY=1[0.120101], G)=[-010 -5 0],
F=1[0 205 1],
y3 = 10u — 5d 01000
. v [200100
Yg = u “|s50010
Scaled such that: 10001
Id| <1, |n;] <1, i.e. all y;'s are +1 (VYT )1=
Nominal operating point: 10000 0 0 0
S S I 0 0.0632 -0.2342 -0.0468
d=0= uopt = 0,yopt = O 0 -0.2342 0.9415 -0.0117
What variable ¢ should we control? 0 -0.0468 -0.0117 0.9977

H=(YY' )L G’ = [0.1000 -1.1241 4.7190 -0.0562]

Normalized to have 2-norm = 1.

H= [0.0206 -0.2317 0.9725 -0.0116]
Reference: V. Alstad et al. , Journal of Process Control 19 (2009) 138-148



Toy Example: Nullspace method (not
unique)

Y1

c=Hy = (h h2 hs h4)<§§) = h1y1 + hoyo + hays + hays

Y4

B1l. Nullspace method
Neglect measurement error (n = 0):
HF =0
Sensitivity matrix
Ayopt = FAd;F=(0 20 5 1)
To find H that satisfies HF = 0 must combine
at least two measurements:
Ny >ny+ng=1+1=2



Toy Example. Nullspace method with 2
measurements

C. Optimal combination
Need two measurements. Best combination is

yo> and y3:

()= (23 ) (3): ==sas

Optimal sensitivity:

20
Yopt = F'd; F' = ( 5)

Optimal combination:

20
5

Select hy = 1. Get hp = —20h1/5 = —4, so

HF =0 = (hy h2)< >:o:>20h1+5h2=o

Copt = Y2 — 4y3

Check: ¢ = yo — 4ys = 20u — 40u + 20d = —20(u — d)
(OK!)



Example where nullspace method «fails»

u= reflux
d=feed rate F =[00.2]
Wd=1*eye(1)
Wn=1*eye(2)
—_ 2 Gy =[0.01 1T
J - (U-d) _ HO=null(F"); HO=HO0'/HO(1) % nullspace method
y1 =0.01(u-d) % temperature product (very small gain!) Y = [F*Wd Wn],
y2 = u-0.8d % tempereture inside column H1 =Gy Tinv(Y 7Y)
H=H1/H1(1) % exact local method
uopt =d
ylopt =0
y2opt =0.2d

Nullspace: HO=[1 0] % Not good! Use only y1
Exact local method: H=[1 96] % Use y2 instead



Conclusion: GOOD “SELF-OPTIMIZING” CV =c¢

1. Optimal value ¢, is constant (independent of disturbance d):

> Want small optimal sensitivity: F. = AZ‘Z” = HF

2. cis “sensitive” to input u (MV) (to reduce effect of measurement noise)
- Want large gain G = HGY = %

u

(Equivalently: Optimum should be flat!)

Good BAD

LV

C Cc

(b) Flat optimum: Imple- (¢) Sharp optimum: Sensi-
mentation easy tive to implementation erros



Optimal steady-state operation with constraints

min, J(u,d)
s.t. g(u,d) = 0 (constraints)
« J =economic cost [$/s]
» Unconstrained case: Optimal to keep gradient J,= dJ/ou =0

cost J

Constrained case: KKT-conditions: Active constraints: g=0,
Remaining conconstrained DOFs: L, = .J, + A g, = 0



WITH CONSTRAINTS

Want tight control of active constraints for economic reasons

— Active constraint: g,=0
— Tight control of g, minimizes «back-off»

 How can we identify and control active constraints?
* How can we switch constraints?
 How do find the correct gradient when the constraints change?

 How to implement in the control system?
— We published 3 approaches in JPC in 2024
— All may use the «unconstrained» gradient estimate presented above:

Ju =H Y — ¥




. Primal-dual control based on KKT conditions: Feedback

solution that automatically tracks active constraints by adjusting Lagrange
multipliers (= shadow prices = dual variables) A

T
_ Constraint control g (measured constraint)
SP=0 (n; slower PI)/I- Inequality constraints: A = ()
coniroliers
0 MAX
)\ | Dual variables A
Uncgng,tra!ned J Primal-dual feedback control.
SP=0 optimization ! Gradient * Makes use of «dual
(n, PID-controllers) Yu estimation decomposition» of KKT conditions
Ly=Ju+ A g,=0 + Selector on dual variables A

* Problem: Constraint control using
dual variables is on slow time
d y scale (can avoid with override)

u' Primal variables u

g (measured constraint) P ————

b | Journal of Process Control
A N

* D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, , Primal-dual feedback-optimizing control with override for real-time
* R.Dirza and S. Skogestad . Primal—-dual feedback-optimizing control with override for real-time optimization. J. Process Control, Vol. 138 (2024), 103208. optimization



Il. Region-based feedback solution with «direct» constraint
control (for case with more inputs than constraints)

: T
g (constraints paired with u1) KK . Lu — Ju -+ A gy — O

SP=0 Constraint controllers
(fast PID-controllers) _
T SP-OJ Introduce N: Nfg, =0
10
MAX/ |- = PLE™ NT | (changes!
MIN D |J, (changest) Control
J,, 1. Reduced gradient N7J, =0
 Selector on primal » «self-optimizing variables»)
variables (inputs) Gradient 2. Active constraints g, = 0.
estimation
u’ u2 Problem: Simple switching requires
at least as many MVs (u) as
d y constraints
g (measured constraint) e — [

» Jaschke and Skogestad, «Optimal controlled variables for“polynomial systems». S., J. Process Control, 2012
» D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019 s oenlTalged cOntro) B o
» Bernardino and Skogestad, Decentralized control using selectors for optimal steady-state operation with changing active constraints, J. Process Control, Vol. 137, 2024 ;




lll. Region-based MPC with switching of cost function (for general case)

Standard MPC with fixed CVs: Not optimal Proposed: With changing cost (switched
CVs)--_

G, Hy~ . Ly*,T*
~ - Pl ~ =
My, - ’_\_"““I“““‘—\‘. ““““““““““““““
" Real.tinte” d ) * T %
N opﬁmizs?(icm Estimator ! Actlve_ set c
-t T | detection
cve : I
| Region-based | A CV;f
X MPC !
TP | & | %
Superv I.‘f(‘rl y ! MPC Xaug S.mtc ! _— Xaug State
layer | cv estimator : CVa estimator
u
! Regulatory : y : I
! control ! | Regulatory : y
! | : control [
l : ! :
d : ‘ ; !
| |
— = Process ; P !
l | —  Process

Figure 1: Typical hierarchical control structure with standard setpoint-tracking
MPC in the supervisory layer. The cost function for the RTO layer is J¢“ and

. . MPC i Figure 2: Proposed region-based MPC structure with active set detection and
the cost function for the MPC layer is J . With no RTO layer (and thus con-

change in controlled variables. The possible updates from an upper RTO layer

e q H o VS ic @ e ~ e 3 P Ty . g0 a

stant setpoints CV_P), this structure is not ec,onomlc.all)f optimal when 1h(_ere are (v*,J; etc.) are not considered in the present work. Even with no RTO layer
changes in the active constraints. For smaller applications, the state estimator (and thus with constant setpoints CV*?, see () and (33), in each active con-
may be used also as the RTO estimator. straint region), this structure is potentially economically optimal when there are

changes in the active constraints.

. y CVag =57 =| £4 (14)
TP = N NICVE = CVPIR + | Augll : ~|ea|  [NZHo
2 oI TRC = 3 ICVA = CVRIG, + Il Al Ao .A
= Ho =t 16" G

A Journal of Process Control
+ Bernardino and Skogestad, Optimal switching of MPC cost function for changing active constraints. J. Proc. Control, 2024 s o e R l
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