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«How to put optimization into the control layer by selecting the right controlled variable c»



Outline

Skogestad procedure for control structure design:

I. Top Down

• Step S1: Define operational objective (cost) and constraints

• Step S2: Identify degrees of freedom and optimize operation for disturbances

• Step S3: Implementation of optimal operation

‒ Control active constraints

‒ Control self-optimizing variables for unconstrained, c=Hy

• Step S4: Where set the production rate? (Inventory control)

II. Bottom Up

• Step S5: Regulatory control: What more to control (secondary CV’s)?

• Step S6: Supervisory control

• Step S7: Real-time optimization
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Step S3: Implementation of optimal operation

• Optimal operation for given d*:

min
𝑢

𝐽 𝑢, 𝑥, 𝑑

subject to:

Model equations: 𝑓 𝑢, 𝑥, 𝑑 = 0

Operational constraints: 𝑔 𝑢, 𝑥, 𝑑 < 0

→ 𝑢𝑜𝑝𝑡(𝑑)

Problem: Usally cannot keep 𝑢𝑜𝑝𝑡 constant because disturbances d change

How should we adjust the degrees of freedom (u)?

What should we control?



“Optimizing Control” (EMPC)

y



“Self-Optimizing Control”

What should we control?

(What is c? What is H?) 𝐻

y

𝑐 = 𝐻𝑦 

𝐻: Nonsquare matrix
• Usually prefer single measurements as c’s (simple)– H is selection matrix of 0’s and 1’s 

• H can also be full matrix (measurement combinations)

c=self-optimizing  variable: 

Constant setpoints give 

acceptable loss (at least 

on short time scale)



Self-optimizing control 

Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values for the 
controlled variables

BADGood

c

Delete - or at least

need only infrequent

update of cs
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Optimal operation of runner

• Cost to be minimized: 𝐽 = 𝑇 (total time)

• One degree of freedom: 𝑢 = power

• What should we control?

Optimal operation - Runner
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1. Sprinter case

• 100 meters run. 𝐽 = 𝑇

• Active constraint control:

– Maximum speed ("no thinking required")

– CV = power (at max)

Optimal operation - Runner
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2. Marathon runner case

• 40 km run. 𝐽 = 𝑇 (total time)

• What should we control? CV = ?

• Unconstrained optimum:

Optimal operation - Runner

u = power

J = T

uopt
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Self-optimizing control: Marathon

Optimal operation - Runner

• Any self-optimizing variable (to control at constant setpoint)?

– c1 = distance to leader of race (not optimal and not always feasible)

– c2 = speed (not always feasible, similar to controlling cost J=T, speed = 42 km/T)

– c3 = heart rate

– c4 = «pain» = level of lactate in muscles
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Conclusion Marathon runner

• CV = heart rate is good “self-optimizing” variable

• Simple and robust implementation

• Disturbances are indirectly handled by keeping a constant heart rate

• May have infrequent adjustment of setpoint (cs)

c = heart rate

select one measurement

c=heart rate

J=T

copt

Optimal operation - Runner



The ideal “self-optimizing” variable 

is the gradient, Ju

c = ΔJ/Δu = Ju

– Keep gradient at zero for all disturbances (c = Ju=0)

– Problem: Usually no measurement of gradient

Unconstrained degrees of freedom

u

cost J

Ju=0

Ju<0
Ju>0

uopt

Ju 0

*I.J. Halvorsen, S. Skogestad, Indirect on-line optimization through setpoint control, in: AIChE 1997 Annual Meeting, Los Angeles; paper 194h.

*I.J. Halvorsen, S. Skogestad, J.C. Morud, V. Alstad, Optimal selection of controlled variables, Industrial & Engineering Chemistry Research 42 (14) (2003) 3273–3284 



Unconstrained optimum: NEVER try to control a 

variable that reaches max or min at the optimum

– In particular, never try to control directly the cost J

– Assume we want to minimize J (e.g., J = V = energy) - and we 

make the stupid choice os selecting CV = V  = J 

• Then setting J < Jmin: Gives infeasible operation (cannot meet 

constraints)

• and setting J > Jmin: Forces us to be nonoptimal (two steady 

states: may require strange operation) 

u

J

Jmin

J>Jmin

J<Jmin ?



Measurements or mesurement combinations

Ideally: c = Ju

In practice: c = Hy

measurement noise

steady-state

control error

disturbance

controlled 

variable



Optimal measurement combination

• Candidate measurements (y): Include also inputs u

H

measurement noise

control error

disturbance

controlled 

variable



Nullspace method

Proof: Given 𝜕𝑦𝑜𝑝𝑡 = 𝐹 𝜕𝑑, and 𝑐 = 𝐻𝑦:

𝜕𝑐𝑜𝑝𝑡 = 𝐻 𝜕𝑦𝑜𝑝𝑡 = 𝐻𝐹 𝜕𝑑

To make 𝜕𝑐𝑜𝑝𝑡 = 0 for any 𝜕𝑑, we must have 𝐻𝐹 = 0.

No measurement noise (ny=0)

V. Alstad, S. Skogestad, Null space method for selecting optimal measurement combinations as controlled variables,

 Industrial & Engineering Chemistry Research 46 (2007) 846–853. 

Jäschke, J., Cao, Y., & Kariwala, V. (2017). Self-optimizing control–A survey. Annual Reviews in Control, 43, 199–223.



Nullspace method (HF=0): Analytic 

expression for H and proof that it  gives Ju=0

𝐽𝑢 = 𝐽𝑢𝑢Δ𝑢 + 𝐽𝑢𝑑Δ𝑑 = 𝐽𝑢𝑢 𝐽𝑢𝑑
Δ𝑢
Δ𝑑

Δ𝑦 = 𝐺𝑦 𝐺𝑑
𝑦 Δ𝑢

Δ𝑑
= ෨𝐺𝑦

Δ𝑢
Δ𝑑

 →
Δ𝑢
Δ𝑑

= ෨𝐺𝑦
+Δ𝑦

Formula for 𝐹:

𝐽𝑢
𝑜𝑝𝑡

= 𝐽𝑢𝑢Δ𝑢𝑜𝑝𝑡 + 𝐽𝑢𝑑Δ𝑑 = 0 → Δ𝑢𝑜𝑝𝑡 = −𝐽𝑢𝑢
−1𝐽𝑢𝑑Δ𝑑

Δ𝑦𝑜𝑝𝑡 = ෨𝐺𝑦
Δ𝑢𝑜𝑝𝑡

Δ𝑑
= ෨𝐺𝑦

−𝐽𝑢𝑢
−1𝐽𝑢𝑑

𝐼
Δ𝑑

→ 𝐹 = ෨𝐺𝑦
−𝐽𝑢𝑢

−1𝐽𝑢𝑑

𝐼

Let 𝐻 = 𝐽𝑢𝑢 𝐽𝑢𝑑
෨𝐺𝑦

+. We can verify that 𝐻𝐹 = 0. Therefore, 𝐽𝑢 =

𝐽𝑢𝑢 𝐽𝑢𝑑
෨𝐺𝑦

+Δ𝑦 = 𝐻Δ𝑦 = Δ𝑐, and thus controlling c (Δ𝑐 = 0) leads 

to 𝐽𝑢 = 0.

• Proof. Appendix B in: Jäschke and Skogestad, ”NCO  tracking  and  self-optimizing  control  in  the  context  of  

real-time  optimization”, Journal of Process Control, 1407-1416 (2011)



Example. Nullspace Method for 

Marathon runner

u = power, d = slope [degrees]

y1 = hr [beat/min], y2 = v [m/s]

F = dyopt/dd = 
0.25
−0.2

 

H = [h1  h2]

HF = 0  → h1 f1 + h2 f2 = 0.25 h1 – 0.2 h2 = 0

Choose h1 = 1  →  h2 = 0.25/0.2 = 1.25

Conclusion: c = hr + 1.25 v

Control c = constant → hr increases when v decreases (OK uphill!)



Extension: "Exact local method" 

(with measurement noise)

• General analytical solution (“full” H):

• H is unique, except that it can be premultiplied by any nonsingular matrix.

• No noise (Wny=0): Cannot use above analytic expression because YYT is then singular, 

but optimal is clearly HF = 0 (Nullspace method)
• Assumes enough measurements: #y ≥ #u + #d

• If “extra” measurements (>) then solution to HF=0 is not unique (but above general solution with noise is unique except for premultiplication)

• No disturbances (Wd= [ ]) + same noise for all measurements (Wny= Y = I):

Optimal is H=GyT (“control sensitive measurements”)

V. Alstad, S. Skogestad, E.S. Hori, Optimal measurement combinations as controlled variables, Journal of Process Control 19 (1) (2009) 138–148.

Jäschke, J., Cao, Y., & Kariwala, V. (2017). Self-optimizing control–A survey. Annual Reviews in Control, 43, 199–223.



Marathon runner: Exact local method

𝐹 =
0.25
−0.2

, 𝑊𝑑 = 1, 𝑊𝑛𝑦 =
1 0
0 1

, 𝐺𝑦 =
1
1

𝑌 = 𝐹𝑊𝑑 𝑊𝑛𝑦 =
0.25 1 0
−0.2 0 1

𝐻 = 𝐺𝑦𝑇
𝑌 𝑌𝑇 −1 → 𝐻 = 0.989 1.009

Normalized H1 = D*H =  [1    1.02]

Conclusion: c = hr + 1.02 v

• Before (nullspace method): c = hr + 1.25 v

• Note: Gives same as nullspace when Wny is small



z

Assume:

-Stedy-state analysis

-Deviation variables (from 

nominal optimum *)

Derivation of «exact local method».

3-steps:

1. Express loss in terms of c-copt

2. Express c-copt in terms of H, d and ny

3. Find optimal H (min. loss) for 

expected d and ny

Step 1

Step 2

Step 3

Note: HF=0 -> copt=0 (Nullspace method)

z

Note: H is not unique. Can premultiply this H by any 

non-singular matrix and get same loss (since cm=0)

Wd and Wn are diagonal matrices with 

expected magnitudes for d and ny

Note: Signs don’t matter for loss = ½ zT z.

u

cost J

Jopt

uopt(d)

Loss
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From lecture 04 Sep. 2025
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Can use H for static gradient estimation.

𝒄𝒎 = ෠𝑱𝒖 = 𝐻𝐽(𝑦𝑚 − 𝑦∗). Very simple and works 

well!

From «exact local method» of self-optimizing control ( ෨𝐹 ≡ 𝑌):

• Bernardino and Skogestad, Optimal measurement-based cost gradient estimate for real-time optimization, Comp. Chem. Engng., 2024

• So we premultiply the «simple» H to get the right directions

• and add a constant («bias») which may be viewed as the setpoint cs=Hy*

መ𝐽𝑢 = 𝐻𝐽(𝑦𝑚 − 𝑦∗)



Obtaining F

𝐹 is defined as the gain matrix from the disturbances to the optimal 

measurements → Δ𝑦𝑜𝑝𝑡 = 𝐹 Δ𝑑

Brute force method (often the simplest):

• For every disturbance 𝑑𝑖 , 𝑖 = 1, … , 𝑛𝑑:

– Perturb the system with መ𝑑𝑖 = 𝑑𝑖 + Δ𝑑𝑖, Δ𝑑𝑖 small

– Reoptimize the system → obtain change in measurements Δ𝑦𝑜𝑝𝑡,𝑖

– Obtain 𝑖-th column of 𝐹: 𝐹𝑖 = Δ𝑦𝑜𝑝𝑡,𝑖/Δ𝑑𝑖

• Return 𝐹



Linearization method for F

𝐹 can also be obtained from a linearized state-space model:

Δ𝑦 = 𝐺𝑦Δ𝑢 + 𝐺𝑑
𝑦

Δ𝑑

𝐽𝑢 𝑢∗ + Δ𝑢, 𝑑∗ + Δ𝑑 ≈ 𝐽𝑢
∗ + 𝐽𝑢𝑢Δ𝑢 + 𝐽𝑢𝑑Δ𝑑 = 0

⇒ Δ𝑢𝑜𝑝𝑡 = −𝐽𝑢𝑢
−1𝐽𝑢𝑑Δ𝑑

Δ𝑦𝑜𝑝𝑡 = 𝐺𝑦Δ𝑢𝑜𝑝𝑡 + 𝐺𝑑
𝑦

Δ𝑑 = −𝐺𝑦𝐽𝑢𝑢
−1𝐽𝑢𝑑 + 𝐺𝑑

𝑦
 Δ𝑑

𝐹 = −𝐺𝑦𝐽𝑢𝑢
−1𝐽𝑢𝑑 + 𝐺𝑑

𝑦

=0



Toy Example. 

Reference: I. J. Halvorsen, S. Skogestad, J. Morud and V. Alstad, “Optimal selection of controlled 

variables”, Industrial & Engineering Chemistry Research, 42 (14), 3273-3284 (2003).

𝐿𝑤𝑐 =
1

2
 ഥ𝜎 𝑀 2

𝑀 = 𝐽𝑢𝑢

1
2 𝐻𝐺𝑦 −1𝐻 𝑌, 

𝑌 = 𝐹𝑊𝑑 𝑊𝑛𝑦 , 𝐹 = −𝐺𝑦𝐽𝑢𝑢
−1𝐽𝑢𝑑 + 𝐺𝑑

𝑦

Here: 𝑊𝑑 = 1, 𝑊𝑛𝑦 = 1, 𝐽𝑢𝑢 = 2, 𝐽𝑢𝑑 = −2, 
For 𝑦1: 𝐻𝐺𝑦 = 0.1, 𝐻𝐺𝑑

𝑦
= −0.1, 𝐹 = 0, 𝐻𝑌 = 0 1 , 𝑀 = 2 ⋅ 10 ⋅ 0 1 , 𝐿𝑤𝑐 =

1

2
 ഥ𝜎 𝑀 2 =100

For y2: 𝐻𝐺𝑦 = 20, 𝐻𝐺𝑑
𝑦

= 0, 𝐹 = 20, 𝐻𝑌 = 20 1 , 𝑀 = 2 ⋅
1

20
⋅ 20 1 , 𝐿𝑤𝑐 =

1

2
 ഥ𝜎 𝑀 2 = 1.0025 

For y3: 𝐻𝐺𝑦 = 10, 𝐻𝐺𝑑
𝑦

= −5, 𝐹 = −15, 𝐻𝑌 = 5 1 , 𝑀 = 2 ⋅
1

10
⋅ 5 1 , 𝐿𝑤𝑐 =

1

2
 ഥ𝜎 𝑀 2 = 0.26 

Single measurements



Toy Example. Exact local method. 

Combine all measurements 

Reference: V. Alstad et al. , Journal of Process Control 19 (2009) 138–148

𝑌 = 𝐹𝑊𝑑 𝑊𝑛𝑦 , 

𝐹 = −𝐺𝑦𝐽𝑢𝑢
−1𝐽𝑢𝑑 + 𝐺𝑑

𝑦

H = (Y YT )-1 G y

Here: 𝑊𝑑 = 1, 𝑊𝑛𝑦 = 𝐼 (4𝑥4), 𝐽𝑢𝑢 = 2, 𝐽𝑢𝑑 = −2, 

𝐺𝑦 = 0.1 20 10 1 ′,  𝐺𝑑
𝑦

= −0.1 0 − 5 0 ′, 

𝐹 = 0 20 5 1 ′, 

𝑌 =

0 1 0 0 0
20 0 1 0 0
5 0 0 1 0
1 0 0 0 1

 (Y YT )-1 = 

        1.0000         0         0         0
         0    0.0632   -0.2342   -0.0468
         0   -0.2342    0.9415   -0.0117
         0   -0.0468   -0.0117    0.9977

 
 H = (Y YT )-1 G y = [0.1000   -1.1241    4.7190   -0.0562]

Normalized to have 2-norm = 1.

H =   [ 0.0206   -0.2317    0.9725   -0.0116]



Toy Example: Nullspace method (not 

unique)



Toy Example. Nullspace method with 2 

measurements



Example where nullspace method «fails»

F =[0 0.2]'

Wd=1*eye(1)

Wn=1*eye(2)

Gy = [0.01 1]'

H0=null(F'); H0=H0'/H0(1) % nullspace method

Y = [F*Wd Wn],

H1 = Gy' * inv(Y * Y')

H = H1/H1(1) % exact local method

u= reflux

d=feed rate

J = (u-d)2

y1 = 0.01(u-d)   % temperature product (very small gain!)

y2 = u-0.8d % tempereture inside column

uopt = d

y1opt = 0

y2opt = 0.2 d

Nullspace: H0=[1 0]   % Not good! Use only y1

Exact local method: H=[1 96]  % Use y2 instead



Conclusion: GOOD “SELF-OPTIMIZING” CV = c

1. Optimal value 𝑐𝑜𝑝𝑡 is constant (independent of disturbance d):

→ Want small optimal sensitivity: 𝐹𝑐 =
Δ𝑐𝑜𝑝𝑡

Δ𝑑
= HF

2. c is “sensitive” to input u (MV) (to reduce effect of measurement noise)

→ Want large gain 𝐺 = 𝐻𝐺𝑦 =
Δ𝑐

Δ𝑢

(Equivalently: Optimum should be flat!)

BADGood



Optimal steady-state operation with constraints

  minu J(u,d) 

   s.t. g(u,d) ≥ 0 (constraints)

• J = economic cost [$/s]

• Unconstrained case: Optimal to keep gradient Ju = J/u =0 

u

cost J

Ju=0

Ju<0
Ju<0

uopt

Ju 0

•  Constrained case: KKT-conditions: Active constraints: g=0, 

Remaining conconstrained DOFs:



Want tight control of active constraints for economic reasons

 
– Active constraint: gA=0

– Tight control of gA minimizes «back-off»

• How can we identify and control active constraints?

• How can we switch constraints?

• How do find the correct gradient when the constraints change?

• How to implement in the control system?
– We published 3 approaches in JPC in 2024

– All may use the «unconstrained» gradient estimate presented above: 

WITH  CONSTRAINTS

መ𝐽𝑢 = 𝐻𝐽(𝑦𝑚 − 𝑦∗)



I. Primal-dual control based on KKT conditions: Feedback 

solution that automatically tracks active constraints by adjusting Lagrange 

multipliers (= shadow prices = dual variables) λ

• D. Krishnamoorthy, A distributed feedback-based online process optimization framework for optimal resource sharing, J. Process Control 97 (2021) 72–83,

• R. Dirza and S. Skogestad . Primal–dual feedback-optimizing control with override for real-time optimization. J. Process Control, Vol. 138 (2024), 103208.

Proces

s

Unconstrained 

optimization 
(nu PID-controllers)

Gradient 

estimation

Constraint control
(nc slower PI/I-

controllers)

MAX0

y

g (measured constraint)

g (measured constraint)
SP=0

SP=0

u

d

Primal-dual feedback control.

• Makes use of «dual 

decomposition» of KKT conditions

• Selector on dual variables λ

• Problem: Constraint control using 

dual variables is on slow time 

scale (can avoid with override)

Dual variables λ

Primal variables u

Inequality constraints: 𝜆 ≥ 0



II. Region-based feedback solution with «direct» constraint 

control (for case with more inputs than constraints) 

Proces

s

Gradient 

estimation

Constraint controllers
(fast PID-controllers)

MAX/

MIN

y

g (measured constraint)

g (constraints paired with u1)
SP=0

u1

d

u2

Ju1

u1

(changes!)
Ju2

PI

D

u1o

SP=0

Control

1. Reduced gradient  𝑁𝑇𝐽𝑢 = 0 
• «self-optimizing variables»)

2. Active constraints gA = 0.

Problem: Simple switching requires 

at least as many MVs (u) as 

constraints

• Jaschke and Skogestad, «Optimal controlled variables for ̈ polynomial systems». S., J. Process Control, 2012

• D. Krishnamoorthy and S. Skogestad, «Online Process Optimization with Active Constraint Set Changes using Simple Control Structure», I&EC Res., 2019

• Bernardino and Skogestad, Decentralized control using selectors for optimal steady-state operation with changing active constraints, J. Process Control, Vol. 137, 2024

• Selector on primal

variables (inputs)

Introduce 𝑁:  𝑁𝑇𝑔𝑢 = 0

KKT:



III. Region-based MPC with switching of cost function (for general case)

Standard MPC with fixed CVs: Not optimal Proposed: With changing cost (switched 

CVs)

• Bernardino and Skogestad, Optimal switching of MPC cost function for changing active constraints. J. Proc. Control, 2024
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