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Figure 10.4: Loss imposed by keeping constant setpoint for the controlled variable. In this case (� is a
better “self-optimizing” controlled variable than (�.

10.3.2 Selecting controlled outputs: local analysis

We use here a local second-order accurate analysis of the loss function. From this, we derive
the useful minimum singular value rule, and an exact local method; see Halvorsen et al.
(2003) for further details. Note that this is a local analysis, which may be misleading; for
example, if the optimum point of operation is close to infeasibility.

Consider the loss ( � "��� �� � "�(&���, where � is a fixed (generally non-zero)
disturbance. We here make the following additional assumptions:

1. The cost function " is smooth, or more precisely twice differentiable.
2. As before, we assume that the optimization problem is unconstrained. If it is optimal

to keep some variable at a constraint, then we assume that this is implemented (“active
constraint control”) and consider the remaining unconstrained problem.

3. The dynamics of the problem can be neglected when evaluating the cost; that is, we
consider steady-state control and optimization.

4. We control as many variables ) as there are available degrees of freedom, i.e. �� � ��.

For a fixed � we may then express "��� �� in terms of a Taylor series expansion in � around
the optimal point. We get

"��� �� � "�(&��� �

�
�"

��

��

�(&� �� �
��

��� ��(&����

�
�

�
��� ��(&����

�

�
��"

���

�
�(&� �� �

�9!!

��� ��(&	��� � � � � (10.2)

We will neglect terms of third order and higher (which assumes that we are reasonably close
to the optimum). The second term on the right hand side in (10.2) is zero at the optimal point
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for an unconstrained problem. Equation (10.2) quantifies how a non-optimal input � � ��(&
affects the cost function. To study how this relates to output selection we use a linearized
model of the plant

) � ������ (10.3)

where � and �� are the steady-state gain matrix and disturbance model respectively. For a
fixed �, we have ) � )�(& � ���� ��(&�. If � is invertible we then get

�� ��(& � ����) � )�(&� (10.4)

Note that � is a square matrix, since we have assumed that �� � ��. From (10.2) and (10.4)
we get the second-order accurate approximation

( � " � "�(& � �

�
�) � )�(&�

� ��� "���
�� �) � )�(&� (10.5)

where the term "�� � ��
�"������(& is independent of ). Alternatively, we may write

( �
�

�
��)��� (10.6)

where �) � "
���
�� ����) � )�(&�. These expressions for the loss ( yield considerable insight.

Obviously, we would like to select the controlled outputs ) such that )�)�(& is zero. However,
this is not possible in practice because of (1) varying disturbances � and (2) implementation
error 
 associated with control of ). To see this more clearly, we write

) � )�(& � ) � 	 � 	 � )�(& � 
� 
�(&��� (10.7)

where

�(&��� � 	 � )�(&���


 � ) � 	

First, we have an optimization error 
�(&��� because the algorithm (e.g. the cook book for
cake baking) gives a desired 	 which is different from the optimal )�(&���. Second, we have
a control or implementation error 
 because control is not perfect; either because of poor
control performance or because of an incorrect measurement (steady-state bias) �� . If we
have integral action in the controller, then the steady-state control error is zero, and we have

 � ��. If ) is directly measured then �� is its measurement error. If ) is a combination of
several measurements �, ) � C�, see Figure 10.2(b), then �� � C��, where �� is the vector
of measurement errors for the measurements �.

In most cases, the errors 
 and 
�(&��� can be assumed independent. The maximum value
of 
) � )�(&
 for the expected disturbances and implementation errors, which we call the
“expected optimal span”, is then

�;���9� � ��/
�"�


9� 9�(&
 � ��/
�



�(&���
���/
�




 (10.8)

Example 10.1 Cake baking continued. Let us return to the question: why select the oven temperature
as a controlled output? We have two alternatives: a closed-loop implementation with ( � � (the oven
temperature) and an open-loop implementation with ( � 	 � 
 (the heat input). From experience, we
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know that the optimal oven temperature �" � is largely independent of disturbances and is almost
the same for any oven. This means that we may always specify the same oven temperature, say
� � �� � �%#

ÆC, as obtained from the cook book. On the other hand, the optimal heat input 
" �

depends strongly on the heat loss, the size of the oven, etc., and may vary between, say, �##W and �###
W. A cook book would then need to list a different value of � � 
� for each kind of oven and would in
addition need some correction factor depending on the room temperature, how often the oven door is
opened, etc. Therefore, we find that it is much easier to get �" � � �� � �" � [ÆC] small than to get
�" � � 
��
" � [W] small. Thus, the main reason for controlling the oven temperature is to minimize
the optimization error. In addition, the control error � is expected to be much smaller when controlling
temperature.

From (10.5) and (10.7), we conclude that we should select the controlled outputs ) such that:

1. ��� is small (i.e. � is large); the choice of ) should be such that the inputs have a large
effect on ).

2. 
�(&��� � 	�)�(&��� is small; the choice of ) should be such that its optimal value )�(&���
depends only weakly on the disturbances (and other changes).

3. 
 � ) � 	 is small; the choice of ) should be such that it is easy to keep the control or
implementation error 
 small.

4. ��� is small, which implies that � should not be close to singular. For cases with two or
more controlled variables, the variables should be selected such that they are independent
of each other.

By proper scaling of the variables, these four requirements can be combined into the
“maximize minimum singular value rule” as discussed next.

10.3.3 Selecting controlled outputs: maximum scaled gain method

We here derive a very simple method for selecting controlled variables in terms of the steady-
state gain matrix� from inputs � (unconstrained degrees of freedom) to outputs ) (candidate
controlled variables).

Scalar case. In many cases we only have one unconstrained degree of freedom (� is a
scalar and we want to select one ) to control). Introduce the scaled gain from � to ):

�� � ���;���)�

Note form (10.8) that span�)� � ��/�"� 
) � )�(&
 includes both the optimization (setpoint)
error and the implementation error. Then, from (10.5), the maximum expected loss imposed
by keeping ) constant is

(
�1 �

"��

�

�
��/�"� 
) � )�(&


�

��
�


"��

�

�


��
� (10.9)

Here 
"��
, the Hessian of the cost function, is independent of the choice for ). From (10.9),
we then get that the “scaled gain” 
��
 should be maximized to minimize the loss. Note that
the loss decreases with the square of the scaled gain. For an application, see Example 10.6 on
page 398.

Multivariable case. Here � and ) are vectors. Introduce the scaled outputs )� � '�) and
the scaled plant �� � '��. Similar to the scalar case we scale with respect to the span,

'� � ���#� �

�;���)��
� (10.10)



����	�� ��	����	� 
���2� �%�

where
�;���9�� � ��/

�"�

9� � 9�"�(&
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�"�(&��� � ��/
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From (10.6), we have ( � �
���)��� where �) � "

���
�� ����) � )�(&�. Introducing the scaled

outputs gives �) � "
���
�� �����)� � )��(&�. With the assumed scaling, the individual scaled

output deviations )�� � )��"�(& are less than 1 in magnitude. However, the variables )� are
generally correlated, so any combinations of deviations with magnitudes less than 1 may
not possible. For example, the optimal values of both )� and )� may change in the same
direction when there is a disturbance. Nevertheless, we will here assume that the expected
output deviations are uncorrelated by making the following assumption:

(A1) The variations in )�� � )����� are uncorrelated, or more precisely, the “worst-case”
combination of output deviations )�� � )����� , with �)� � )��(&�� � �, can occur in practice.
Here )� � '�) denotes the scaled outputs.

The reason for using the vector 2-norm, and not the max-norm, is mainly for mathematical
comvenience. With assumption (A1) and (A.104), we then have from (10.6) that the
maximum (worst-case) loss is

(
�1 � ��/
�������������

��)��
�

�
�

�
�8��"����� ����� �

�

�

�

8����"������ �
(10.11)

where �� � '�� and the last equality follows from (A.40). The result may be stated as
follows

Maximum gain (minimum singular value) rule. Let � denote the steady-
state gain matrix from inputs � (unconstrained degrees of freedom) to outputs
) (candidate controlled variables). Scale the outputs using '� in (10.10) and
assume that A1 holds. Then to minimize the steady-state loss select controlled
variables ) that maximize 8�'��"

����
�� �.

The rule may stated as minimizing the scaled minimum singular value, 8����, of the scaled
gain matrix �� � '��'�, where the output scaling matrix '� has the inverse of the spans
along its diagonal, whereas the input “scaling” is generally a full matrix, '� � "

����
�� .

This important result was first presented in the first edition of this book (Skogestad and
Postlethwaite, 1996) and proven in more detail by Halvorsen et al. (2003).

Example 10.5 The aero-engine application in Chapter 13 (page 500) provides a nice illustration of
output selection. There the overall goal is to operate the engine optimally in terms of fuel consumption,
while at the same time staying safely away from instability. The optimization layer is a look-up table,
which gives the optimal parameters for the engine at various operating points. Since the engine
at steady-state has three degrees of freedom we need to specify three variables to keep the engine
approximately at the optimal point, and six alternative sets of three outputs are given in Table 13.3.2
(page 503). For the scaled variables, the value of -����#�� is #�#�#� #�#�%� #�#��� #����� #��#% and
#���� for the six alternative sets. Based on this, the first three sets are eliminated. The final choice is
then based on other considerations including controllability.

Remark 1 In the maximum gain rule, the objective function and the magnitudes of the disturbances
and measurement noise enter indirectly through the scaling �� of the outputs (. To obtain �� �
)�!9� �

� ��	+��
�we need to obtain for each candidate output span�(�� �  !�� ���" ����� !� ����. The
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second contribution to the span is simply the expected measurement error, which is the measurement
error plus the control error. The first contribition, ���" �, may be obtained from a (nonlinear) model
as follows: Compute the optimal values of the unconstrained ( for the expected disturbances (with
optimally constrained variables fixed). This yields a “look-up” table of (" � for various expected
disturbance combinations. From this data obtain for each candidate output, the expected variation in
its optimal value, ����� � �(�������
 � (�����������.

Remark 2 Our desire to have -���� large for output selection is not related to the desire to have -���
large to avoid input constraints as discussed in Section 6.9. In particular, the scalings, and thus the
matrix ��, are different for the two cases.

Remark 3 We have in our derivation assumed that the nominal operating point is optimal. However,
it can be shown that the results are independent of the operating point, provided we are in the region
where the cost can be approximated by a quadratic function as in (10.2) (Alstad, 2005). Thus, it is
equally important to select the right controlled variables when we are nominally non-optimal.

Exercise 10.1 Recall that the maximum gain rule requires that the minimum singular value of the
(scaled) gain matrix be maximized. It is proposed that the loss can simply be minimized by selecting the
controlled variables as ( � @�, where @ is a large number. Show that such a scaling does not affect the
selection of controlled variables using the singular value method.

10.3.4 Selecting controlled outputs: exact local method

The maximum gain rule is based on assumption A1 on page 395, which may not hold for
some cases with more than one controlled variable (�� � �� 0 �). This is pointed out by
Halvorsen et al. (2003), who derived the following exact local method.

Let the diagonal matrix !� contain the magnitudes of expected disturbances and the
diagonal matrix!� contain the expected implementation errors associated with the individual
controlled variables. We assume that the combined disturbance and implementation error

vector has norm �, �
�
��


�

	
�� � �. Then, it may be shown that the worst-case loss

is (Halvorsen et al., 2003)
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where

�� � "�����
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!� (10.13)

�� � "����� ���!� (10.14)

Here "�� �
&
��"����

'
�(&

, "�� �
&
��"�����

'
�(&

and the scaling enters through the
weights !� and !�.

10.3.5 Selecting controlled outputs: direct evaluation of cost

The local methods presented in Sections 10.3.2-10.3.4 are very useful. However, in many
practical examples nonlinear effects are important. In particular, the local methods may not
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be able to detect feasibility problems. For example, in marathon running, selecting a control
strategy based on constant speed may be good locally (for small disturbances). However,
if we encounter a steep hill (a large disturbance), then operation may not be feasible,
because the selected reference value may be too high. In such cases, we may need to use
a “brute force” direct evaluation of the loss and feasibility for alternative sets of controlled
variables. This is done by solving the nonlinear equations, and evaluating the cost function
" for various selected disturbances � and control errors 
, assuming ) � 	 � 
 where 	
is kept constant (Skogestad, 2000). Here 	 is usually selected as the optimal value for the
nominal disturbance, but this may not be the best choice and its value may also be found
by optimization (“optimal back-off”) (Govatsmark, 2003). The set of controlled outputs
with smallest worst-case or average value of " is then preferred. This approach may be
time consuming because the solution of the nonlinear equations must be repeated for each
candidate set of controlled outputs.

10.3.6 Selecting controlled outputs: measurement combinations

We have so far selected ) as a subset of the available measurements �. More generally, we may
consider combinations of the measurements. We will restrict ourselves to linear combinations

) � C� (10.15)

where � now denotes all the available measurements, including the inputs � used by the
control system. The objective is to find the measurement combination matrix C .

Optimal combination. Write the linear model in terms of the measurements � as
� � ��� � ��

��. Locally, the optimal linear combination is obtained by minimizing
�8���� �� �� in (10.12) with !� � C!�" , where !�" contains the expected
measurement errors associated with the individual measured variables; see Halvorsen et al.
(2003). Note that C enters (10.12) indirectly, since � � C�� and �� � C��

� depend on
C . However, (10.12) is a nonlinear function of C and numerical search-based methods need
to be used.

Null space method. A simpler method for finding C is the null space method proposed
by Alstad and Skogestad (2004), where we neglect the implementation error, i.e., �� � � in
(10.14). Then, a constant setpoint policy () � 	) is optimal if )�(&��� is independent of �,
that is, when )�(& � � � � in terms of deviation variables. Note that the optimal values of the
individual measurements ��(& still depend on � and we may write

��(& � @� (10.16)

where @ denotes the optimal sensitivity of � with respect to �. We would like to find ) � C�
such that )�(& � C��(& � C@� � � � � for all �. To satisfy this, we must require

C@ � � (10.17)

or thatC lies in the left null space of @ . This is always possible, provided�� 	 �����. This
is because the null space of @ has dimension �� ��� and to makeC@ � �, we must require
that �� � �� 3 �� � ��. It can be shown that when (10.17) holds, �� � �. If there are too
many disturbances, i.e. �� 3 �����, then one should select only the important disturbances
(in terms of economics) or combine disturbances with a similar effect on � (Alstad, 2005).
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In the presence of implementation errors, even when (10.17) holds such that �� � �, the
loss can be large due to non-zero ��. Therefore, the null space method does not guarantee
that the loss ( using a combination of measurements will be less than using the individual
measurements. One practical approach is to select first the candidate measurements �, whose
sensitivity to the implementation error is small (Alstad, 2005).

10.3.7 Selecting controlled outputs: examples

The following example illustrates the simple “maximize scaled gain rule” (mimimum singular
value method).

Example 10.6 Cooling cycle. A simple cooling cycle or heat pump consists of a compressor (where
work :� is supplied and the pressure is increased to �1), a high-pressure condenser (where heat is
supplied to the surroundings at high temperature), an expansion valve (where the fluid is expanded to

��" ��
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��

2�
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��" ��

6�

��

��

2�

Figure 10.5: Cooling cycle

a lower pressure � such that the temperature drops) and a low-pressure evaporator (where heat is
removed from the surroundings at low temperature); see Figure 10.5. The compressor work is indirectly
set by the amount of heating or cooling, which is assumed given. We consider a design with a flooded
evaporator where there is no super-heating. In this case, the expansion valve position (	) remains as
an unconstrained degree of freedom, and should be adjusted to minimize the work supplied, $ � :�.
The question is: what variable should we control?

Seven alternative controlled variables are considered in Table 10.1. The data is for an ammonia
cooling cycle, and we consider =�" � for a small disturbance of #�� K in the hot surroundings
(�� � �%). We do not consider implementation errors. Details are given in Jensen and Skogestad
(2005). From (10.9), it follows that it may be useful to compute the scaled gain �� � ��span�(�����

for the various disturbances �� and look for controlled variables ( with a large value of ����. From a
physical point of view, two obvious candidate controlled variables are the high and low pressures (�1

and � ). However, these appear to be poor choices with scaled gains ���� of ��� and #, respectively. The
zero gain is because we assume a given cooling duty 
5 � 30�� ��5� and further assume saturation
� � � ����� �. Keeping � constant is then infeasible when, for example, there are disturbances in �5 .
Other obvious candidates are the temperatures at the exit of the heat exchangers, �1 and � . However,
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Table 10.1: Local “maximum gain” analysis for selecting controlled variable for cooling cycle
Variable (�) =(" ����� � � $+

$�
���� � �	�

�$+���	����
Condenser pressure, �1 [Pa] 3689 �464566 126
Evaporator pressure, � [Pa] �167 0 0
Temperature at condenser exit, �1 [K] 0.1027 316 3074
Degree of sub-cooling, �1 � � �����1� [K] �0.0165 331 20017
Choke valve opening, 	 $�#� �#�� 1 1250
Liquid level in condenser, '1 [6�] ���� �#�� �1.06 157583
Liquid level in evaporator, ' [6�] ���#� �#�
 1.05 105087

the temperature � at the evaporator exit is directly related to � (because of saturation) and also has
a zero gain. The open-loop policy with a constant valve position 	 has a scaled gain of ���#, and
the temperature at the condenser exit (�1) has a scaled gain of 3074. Even more promising is the
degree of subcooling at the condenser exit with a scaled gain of �##��. Note that the loss decreases
in proportion to �����, so the increase in the gain by a factor �##������# � ���# when we change
from constant choke valve opening (“open-loop”) to constant degree of subcooling, corresponds to a
decrease in the loss (at least for small perturbations) by a factor ���#� � ���. Finally, the best single
measurements seem to be the amount of liquid in the condenser and evaporator, '1 and ' , with
scaled gains of ����$� and �#�#$�, respectively. Both these strategies are used in actual heat pump
systems. A “brute force” evaluation of the cost for a (large) disturbance in the surrounding temperature
(�� � �%) of about �# K, confirms the linear analysis, except that the choice ( � �1 turns out to be
infeasible. The open-loop policy with constant valve position (( � 	) increases the compressor work
by about �#%, whereas the policy with a constant condenser level (( � '1) has an increase of less
than #�##�%. Similar results hold for a disturbance in the cold surroundings (�� � �5 ). Note that the
implementation error was not considered, so the actual losses will be larger.

The next simple example illustrates the use of different methods for selection of controlled
variables.

Example 10.7 Selection of controlled variables. As a simple example, consider a scalar
unconstrained problem, with the cost function $ � �	����, where nominally �� � #. For this problem
we have three candidate measurements,

�� � #���	 � ��& �� � �#	& �� � �#	� ��
We assume the disturbance and measurement noises are of unit magnitude, i.e. ��� � � and �)�

� � � �.
For this problem, we always have $" ���� � # corresponding to

	" ���� � �� ����*���� � #� ����*���� � �#� !") ����*���� � ��

For the nominal case with �� � #, we thus have 	" ���
�� � # and �" ���

�� � # for all candidate
controlled variables and at the nominal operating point we have $�� � �� $�� � ��. The linearized
models for the three measured variables are

��: ��
� � #��, ��

�� � �#��
��: ��

� � �#, ��
�� � #

��: ��
� � �#, ��

�� � ��
Let us first consider selecting one of the individual measurements as a controlled variable. We have

Case �: ( � ��, � � ��
�

Case �: ( � ��, � � ��
�

Case �: ( � ��, � � ��
�
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The losses for this example can be evaluated analytically, and we find for the three cases

�� � ��#���
�& �� � �#�#��� � ���& �� � �#���� � #�����

(For example, with ( � ��, we have 	 � ��� � �����# and with ( � )�
� , we get �� � �	 � ��� �

�#��)�
� � #��� � ���.) With ��� � � and �)�

� � � �, the worst-case losses (with ��� � � and
�)�

� � � �) are �� � �##, �� � ��#�� � ���#�� and �� � #��� � #���, and we find that
( � �� is the best overall choice for self-optimizing control and ( � �� is the worst. We note that
( � �� is perfectly self-optimizing with respect to disturbances, but has the highest loss. This highlights
the importance of considering the implementation error when selecting controlled variables. Next, we
compare the three different methods discussed earlier in this section.

A. Maximum scaled gain (singular value rule): For the three choices of controlled variables we have
without scaling ���� � -���� � #��, -���� � �# and -���� � �#. This indicates that (� is
the best choice, but this is only correct with no disturbances. Let us now follow the singular value
procedure.

1. The input is scaled by the factor ��
�
���$��	��" � � ��



� such that a unit deviation in each

input from its optimal value has the same effect on the cost function $ .
2. The maximum setpoint error due to variations in disturbances is given as �" ��� � ��

� $
��
�� $�� �

��
��. Then, for ( � ��, �" ��� � #�� � �� � ����� ��#��� � # and similarly, �" ��� � ��# and

�" ��� � �.
3. For each candidate controlled variable the implementation error is )+ � �.
4. The expected variation (“span”) for ( � �� is ��" ����� �)�

� � � #� � � �. Similarly, for ( � ��
and ( � ��, the spans are �# � � � �� and � � � � �, respectively.

5. The scaled gain matrices and the worst-case losses are

( � �� : ���
�� � �

�
� #���
� � #�#��; �� �

�
��	��� � �##

( � �� : ���
�� � �

��
� �#�
� � #���; �� �

�
��	��� � ���#��

( � �� : ���
�� � �

�
� �#�
� � ���$; �� �

�
��	��� � #���#

We note from the computed losses that the singular value rule (= maximize scaled gain rule) suggests
that we should control ( � ��, which is the same as found with the “exact” procedure. The losses
are also identical.

B. Exact local method: In this case, we have :� � � and :)� � � and for ��
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Similarly, we find with (� and (�
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Thus, the exact local method also suggests selecting ( � �� as the controlled variable. The reason
for the slight difference from the “exact” nonlinear losses is that we assumed � and )� individually
to be less than � in the exact nonlinear method, whereas in the exact linear method we assumed that
the combined 2-norm of � and )� was less than �.

C. Combinations of measurements: We now want to find the best combination ( � ?�. In addition to
��� �� and ��, we also include the input 	 in the set �, i.e.

� � � �� �� �� � �
�
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We assume that the implementation error for 	 is �, i.e. )� � �. We then have : �
� � � , where : �

�

is a �� � matrix. Furthermore, we have

�� � 4 #�� �# �# � 5� ��
� � 4�#�� # �� # 5�

Optimal combination. We wish to find ? such that 7-��
� 
) �� in (10.12) is minimized, where
� � ?��, �� � ?��

� , :) � ?: �
� , $�� � �� $�� � �� and :� � �. Numerical optimization

yields ?" � � 4 #�#�#% �#����# #�%�$# �#�#��� 5; that is, the optimal combination of the
three measurements and the manipulated input 	 is

( � #�#�#%�� � #����#��� � #�%�$#�� � #�#���	
We note, as expected, that the most important contribution to ( comes from the variable ��. The loss
is � � #�#�#�, so it is reduced by a factor � compared to the previous best case (� � #���) with
( � ��.

Null space method. In the null space method we find the optimal combination without implementation
error. This first step is to find the optimal sensitivity with respect to the disturbances. Since 	" � � �,
we have

=��*� � 8=� � ��=	" � ���
�=� � ��� ���

��� �� �
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and thus the optimal sensitivity is

8 � 4 # �# � � 5�

To have zero loss with respect to disturbances we need to combine at least )� � )� � � � � � �
measurements. Since we have four candidate measurements, there are an infinite number of possible
combinations, but for simplicity of the control system, we prefer to combine only two measurements.
To reduce the effect of implementation errors, it is best to combine measurements � with a large
gain, provided they contain different information about 	 and �. More precisely, we should maximize
-���� ��

� ��. From this we find that measurements 2 and 3 are the best, with -���� ��
� �� �

-
�
�� �
�� ��

�
� ����. To find the optimal combination we use ?8 � # or

�#�� � ��� � #

Setting �� � � gives �� � ��, and the optimal combination is ( � �� � ��� or (normalizing the
2-norm of ? to �):

( � �#������� � #�%�#���
The resulting loss when including the implementation error is � � #�#���. We recommend the use
of this solution, because the loss is only marginally higher (#�#��� instead of #�#�#�) than that
obtained using the optimal combination of all four measurements.

Maximizing scaled gain for combined measurements. For the scalar case, the “maximize scaled gain
rule” can also be used to find the best combination. Consider a linear combination of measurements
2 and 3, ( � ���� � ����. The gain from 	 to ( is � � ���

�
� � ���

�
� . The span for (,

31!"�(� � ��" ��+�� ��+�, is obtained by combining the individual spans
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and ��+� � ������ � ������. If we assume that the combined implementation errors are 2-norm
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resulting scaled gain that should be maximized in magnitude is
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The expression (10.18) gives considerable insight into the selection of a good measurement
combination. We should select ? (i.e. �� and ��) in order to maximize ����. The null space method
corresponds to selecting ? such that �" � � ���" ��� � ���" ��� � #. This gives �� � �#�����
and �� � #�%�#�, and ��+� � �

�
��
��



�� � �. The corresponding scaled gain is

�� �
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with a loss � � ���������� � #�#��� (as found above). (The factor � � $�� � � is included
because we did not scale the inputs when obtaining ��.)

Some additional examples can be found in Skogestad (2000), Halvorsen et al. (2003),
Skogestad (2004b) and Govatsmark (2003).

Exercise 10.2 � Suppose that we want to minimize the LQG-type objective function, $ � 4� � �	�,
� � #, where the steady-state model of the system is

4� �	 � �� � #
�� � �4� �� � �4� ��� �� � �4� ��

Which measurement would you select as a controlled variable for � � �? How does your conclusion
change with variation in �? Assume unit implementation error for all measurements.

Exercise 10.3 In Exercise 10.2, how would your conclusions change when 	 (open-loop
implementation policy) is also included as a candidate controlled variable? First, assume the
implementation error for u is unity. Repeat the analysis, when the implementation error for 	 and
each of the measurements is �#.

10.3.8 Selection of controlled variables: summary

When the optimum coincides with constraints, optimal operation is achieved by controlling
the active constraints. It is for the remaining unconstrained degrees of freedom that the
selection of controlled variables is a difficult issue.

The most common “unconstrained case” is when there is only a single unconstrained
degree of freedom. The rule is then to select a controlled variable such that the (scaled) gain
is maximized.

Scalar rule: “maximize scaled gain 
��
”
� � = unscaled gain from � to )
� Scaled gain �� � ��span
� span = optimal range (

�(&
) + implementation error (


)

In words, this “maximize scaled gain rule” may be expressed as follows:

Select controlled variables ) with a large controllable range compared to their
sum of optimal variation and implementation error. Here

� controllable range = range which may be reached by varying the inputs (as
given by the steady-state gain)

� optimal variation: due to disturbance (at steady-state)
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� implementation error = sum of control error and measurement error (at steady-
state)

For cases with more than one unconstrained degree of freedom, we use the gain in the most
difficult direction as expressed by the minimum singular value.

General rule: “maximize the (scaled) minimum singular value 8���� (at steady-
state)”

We have written “at steady-state” because the cost usually depends on the steady-state, but
more generally it could be replaced by “at the bandwidth frequency of the layer above (which
adjusts the setpoints for ))”.

10.4 Regulatory control layer

In this section, we are concerned with the regulatory control layer. This is at the bottom of
the control hierarchy and the objective of this layer is generally to “stabilize” the process and
facilitate smooth operation. It is not to optimize objectives related to profit, which is done
at higher layers. Usually, this is a decentralized control system of “low complexity” which
keeps a set of measurements at given setpoints. The regulatory control layer is usually itself
hierarchical, consisting of cascaded loops. If there are “truly” unstable modes (RHP-poles)
then these are usually stabilized first. Then, we close loops to “stabilize” the system in the
more general sense of keeping the states within acceptable bounds (avoiding drift), for which
the key issue is local disturbance rejection.

The most important issues for regulatory control are what to measure and what to
manipulate. Some simple rules for these are given on page 405. A fundamental issue
is whether the introduction of a separate regulatory control layer imposes an inherent
performance loss in terms of control of the primary variables ). Interestingly, the answer is
“no” provided the regulatory controller does not contain RHP-zeros, and provided the layer
above has full access to changing the reference values in the regulatory control layer (see
Theorem 10.2 on page 415).

10.4.1 Objectives of regulatory control

Some more specific objectives of the regulatory control layer may be:

O1. Provide sufficient quality of control to enable a trained operator to keep the plant running
safely without use of the higher layers in the control system.

This sharply reduces the need for providing costly backup systems for the higher layers of
the control hierarchy in case of failures.

O2. Allow for simple decentralized (local) controllers (in the regulatory layer) that can be
tuned on-line.

O3. Take care of “fast” control, such that acceptable control is achievable using “slow”
control in the layer above.

O4. Track references (setpoints) set by the higher layers in the control hierarchy.


