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a b s t r a c t 

Self-optimizing control is a strategy for selecting controlled variables. It is distinguished by the fact that 

an economic objective function is adopted as a selection criterion. The aim is to systematically select 

the controlled variables such that by controlling them at constant setpoints, the impact of uncertain and 

varying disturbances on the economic optimality is minimized. If a selection leads to an acceptable eco- 

nomic loss compared to perfectly optimal operation then the chosen control structure is referred to as 

“self-optimizing”. In this comprehensive survey on methods for finding self-optimizing controlled vari- 

ables we summarize the progress made during the last fifteen years. In particular, we present brute-force 

methods, local methods based on linearization, data and regression based methods, and methods for find- 

ing nonlinear controlled variables for polynomial systems. We also discuss important related topics such 

as handling changing active constraints. Finally, we point out open problems and directions for future 

research. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. What is self-optimizing control? 

The purpose of a process plant is to generate profit. Beside

lant design choices like size and type of equipment, plant oper-

tion has a major influence on the overall economic performance.

he profitability of plant operation is strongly influenced by the

esign of the control structure. In the control structure design

hase, engineers make fundamental decisions about which vari-

bles to manipulate, to measure and to control ( Skogestad, 2004a ).

specially when the operating conditions vary, a judicious selection

f controlled variables (CVs) can lead to large operational savings

nd increased competitiveness. In the context of control structure

esign, Skogestad (20 0 0) was the first to formulate the concept of

 self-optimizing control structure. It is characterized by the choice

f self-optimizing CVs: 

A set of controlled variables is called self-optimizing if, when it

is kept at constant setpoints, the process is operated with an

acceptable loss with respect to the chosen objective function

(also when disturbances occur). 
∗ Corresponding author. 
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It is important to note that “self-optimizing” is not a property of

he controller itself, as it is in e.g. adaptive control ( ̊Aström & Wit-

enmark, 2008 ). Rather, the term self-optimizing control has been

sed for describing a strategy for desinging the control structure,

here the aim is to achieve close to optimal operation by (con-

tant) setpoint control ( Alstad, Skogestad, & Hori, 2009; Skoges-

ad, 20 0 0; 20 04a ). In this paper, we will also use the term self-

ptimizing control in this sense. 

The successful application of self-optimizing control requires

ools and methods for selecting good CVs, and this is the topic

f this review paper. The main difference between self-optimizing

ontrol and other methods for designing control structures, that

ypically consider controllability and control performance as a se-

ection criterion, see e.g. van de Wal and de Jager (2001) , is that

n self-optimizing control the selection is done to systematically

inimize the loss of optimality with respect to a given economic

ost function. Typically, this cost function is directly linked to

he economic cost of plant operation, but also other objectives,

uch as energy efficiency, or also indirect control type objectives

re possible ( Skogestad & Postlethwaite, 2005 ). Thus, the selection

rocedure is driven by a clearly defined cost function, which is

inimized during plant operation by simply controlling the self-

ptimizing CVs at their setpoints. 

Unlike in real-time optimization approaches ( Grötschel,

rumke, & Rambau, 2001; Marlin & Hrymak, 1997 ), where a

ost function is repeatedly optimized online to update the set-

oints of the CVs, in self-optimizing control a model is used
control – A survey, Annual Reviews in Control (2017), 
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Fig. 1. Hierarchical control structure. The setpoint c s is calculated in the RTO, and 

passed down to a controller. The controller adjusts the inputs ū such that the CV 

c = h (y ) tracks the value of the setpoint c s closely. 
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off-line to study the structure of the optimal solution. This insight

is then translated into the design of a simple control structure,

that keeps the process close to the optimum despite varying dis-

turbances. Of course, this may lead to a loss due to simplification,

but in many cases the benefits of a simple scheme outweigh the

increased “optimality” of complex schemes, because of the high

costs of implementation and maintenance. 

Self-optimizing CVs have been used in industry for a long time.

Well-known examples, where self-optimizing control is inherently

realized, include ratio control with a constant ratio setpoint, or

controlling constrained variables at their constrained values, e.g.

keeping a pressure variable at the maximal allowable value. The

aim of the research field of self-optimizing control is, however,

to provide a mathematical framework and systematic methods for

finding CVs that give good economic performance. 

1.2. The purpose of this review 

After more than fifteen years of research on self-optimizing

control methods, we feel that it is time to summarize the main

results and give a self-contained overview of the state-of-the-art

and open issues in the development of methods for finding self-

optimizing CVs. In large part, this survey paper is written as a

tutorial, where the basic concepts are presented with examples.

We hope that both experienced researchers and newcomers to the

field will find it a useful resource that stimulates further applica-

tions and research. 

1.3. Defining optimal operation 

The goal for designing a control structure is nicely captured in

the statement by Morari, Stephanopoulos, and Arkun (1980) , who

mentioned that “our main objective is to translate the economic

objective into process control objectives”. Thus, process control is

not an end in itself, but is always used in the context of achieving

best performance in terms of economics for a given set of operat-

ing conditions and constraints. Mathematically, this can be stated

as an optimization problem. 

Most continuous processes are operated at a steady-state (or

close to it) for most of the time, which means that the distur-

bances stay constant long enough to make the economic effect of

the transients negligible. 1 Therefore, we formulate the problem of

optimal operation as a steady state optimization problem: 

min 

ū 
J̄ ( ̄u , x, d) 

s.t. 

f ( ̄u , x, d) = 0 

g( ̄u , x, d) ≤ 0 . (1)

Here x ∈ R 

n x denotes the state variables, d ∈ R 

n d denotes the

disturbances, and ū ∈ R 

n ū the steady state degrees of freedom 

2 

that affect the steady state operational cost J̄ : R 

n ū × R 

n x × R 

n d �→
R . Further, the function f : R 

n ū × R 

n x × R 

n d �→ R 

n f denotes the

model equations, and g : R 

n ū × R 

n x × R 

n d �→ R 

n g the operational

constraints. We denote the optimal objective value of Problem

(1) as J̄ ∗(d) . In this paper we assume that the optimization prob-

lems are sufficiently smooth, and have a unique (local) minimum.

This assumption generally excludes problems with logic and inte-

ger decision variables, such as the schedule for shutting a pump

on and off at given times. 
1 In the case where transient behavior significantly contributes to the operat- 

ing cost, optimal operation is formulated as a dynamic optimization problem, see 

Section 8 . 
2 For example, degrees of freedom that do not affect the steady-state are the lev- 

els in the condenser and reboiler of a distillation column. 
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Under operation, the cost J̄ ( ̄u , x, d) should be minimized while

atisfying the plant constraints. If all the states x , disturbances d ,

ere perfectly known, one could attempt to solve Problem (1) and

pply the optimal inputs ū ∗ to the plant. Under ideal conditions

his would result in optimal operation with the associated cost

 ̄

∗(d) . However, in practice such a strategy is not implementable

ecause the plant is never truly at steady state, and because per-

ect knowledge of the model states and disturbances is not avail-

ble. Instead, the knowledge about the plant conditions is typically

vailable from measurements, and we assume to have a model for

he plant measurements 

 0 = m ( ̄u , x, d) , (2)

here the function m : R 

n ū × R 

n x × R 

n d → R 

n y describes the rela-

ionship between the variables ū , x, d and the model outputs y 0 ∈
 

n y . However, the signals y that are measured in the real plant are

orrupted by measurement noise n y ∈ R 

n y , such that 

 = y 0 + n 

y . (3)

.4. Implementation of optimal operation 

Using the measurements y , the task of the control structure and

he controllers is to implement the optimal solution of Problem

1) into the real plant. A good control structure will ensure that

he plant runs close to the economically optimal point, also when

he operating conditions and disturbances change. 

The control system of a chemical plant is typically decomposed

nd organized in a hierarchical manner, where different control

ayers operate on different time-scales ( Skogestad, 20 0 0 ). An ex-

mple for such a hierarchical control structure is given in Fig. 1 . On

op of the hierarchy is the real-time optimizer (RTO), which usually

perates on a time scale of several hours and computes the set-

oints c s for the controller below which operates on a time scale

f seconds and minutes. In many cases, the real-time “optimiza-

ion” is done by plant operators, who adjust the setpoints of the

ontrollers according to their experience and best practices. How-

ver, with availability of cheap computing power, the optimization

f the setpoints is increasingly performed by a computer. 

The controller then adapts the inputs dynamically to keep the

Vs, which are functions of the measurements, 

 = h (y ) , (4)

t the setpoints c s that are given by the RTO. The choice of the

ontrol structure is manifested in the choice of the variable c .
control – A survey, Annual Reviews in Control (2017), 
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enerally c = h (y ) may be any function of measurements, but it is

ften chosen to be linear, such that c = Hy where H is a constant

atrix of suitable dimensions. 

Skogestad and Postlethwaite (2005) state some requirements

or good CVs: 

1. The CV should be easy to control, that is, the inputs u should

have a significant effect (gain) on c . 

2. The optimal value of c should be insensitive to disturbances. 

3. The CV should be insensitive to noise. 

4. In case of several CVs, the variables should not be closely cor-

related. 

A good choice of c that satisfies the requirements above will not

equire the RTO to update the setpoints every time the operating

onditions and disturbances change. Simply controlling c = h (y ) at

ts setpoint will indirectly lead to the corresponding optimal (or

ear optimal) inputs u , and the control structure is referred to as

 self-optimizing control structure. 

Instead of focusing on finding the optimal inputs to the plant

hen disturbances vary, as done in open-loop and controller de-

ign inspired approaches, such as economic model predictive con-

rol, in self-optimizing control we find or design the optimal out-

uts c = h (y ) of the plant. The controllers will then generate the

orresponding (near-optimal) plant inputs u . Although setpoint

hanges may still be necessary for some major disturbances, a

ood control structure will require much fewer setpoint changes,

nd often result in good performance without an RTO layer. 

To quantify performance, we define the loss L c associated with

 particular control structure as the difference between the cost

esulting from that control structure (represented by the cho-

en c = h (y ) ) and the cost resulting from truly optimal operation

 Halvorsen, Skogestad, Morud, & Alstad, 2003 ), 

 c = J̄ ( ̄u , x, d) − J̄ ∗(d) . (5)

he loss will be used to compare control structures, and to evalu-

te if a certain control structure is self-optimizing. 

. Historical notes 

With growing complexity of process plants many authors have

ound it increasingly necessary to find systematic ways for de-

igning control structures that optimize process performance. Foss

1973) pointed out that one of the most prevalent problems in

hemical engineering is: “ Which variables should be measured,

hich inputs should be manipulated, and what links should be

ade between these two sets?”. This important problem encoun-

ered by many engineers is still a research topic, and is addressed

n the field of control structure selection. 

A systematic approach to this question was enabled by the

ramework of hierarchical control systems, for which much of the

heoretical foundations were laid by Mesarovi ́c, Macko, and Taka-

ara (1970) , and which gained more recognition in the process

ontrol community by the work of Findeisen et al. (1980) . The con-

ept of a hierarchical decomposition of the control structure pro-

ided the ground for the idea of self-optimizing control. Morari

t al. (1980) formulated the core idea when writing about finding

ood CVs, that “we want to find a function c of the process vari-

bles which when held constant, leads automatically to the opti-

al adjustments of the manipulated variables, and with it, the op-

rating conditions”. They also introduced the idea of the loss as a

riterion to select the best feedback structure. 

Closely related to the ideas presented by Morari et al. (1980) is

he paper by Shinnar (1981) , with the main difference being that

n the latter, the main objective is tracking some variables while,

orari et al. (1980) consider a more general cost function to min-

mize. However, the idea is the same: To reach the objective in-

irectly by controlling certain measured process variables. Arbel,
Please cite this article as: J. Jäschke et al., Self-optimizing 
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inard, and Shinnar (1996) follow the ideas and introduce the

oncept of “dominant variables”. These are variables which dom-

nate the process behavior and are considered good CV candi-

ates, which when kept constant, give good overall process perfor-

ance. Although some examples for selecting dominant variables

re given in the paper, a clear definition of the dominant variables

s missing 

Luyben (1988) introduces the “eigenstructure” of a process to

efine a control structure with self-regulating/optimizing prop-

rties. In other publications, Luyben (1975) ; Yi and Luyben

1995) studied the selection of CVs, which are similar to self-

ptimizing variables, with the difference being that they propose

o use CVs which make ∂ u / ∂ d small, while the criterion in self-

ptimizing control is to find variables for which the loss is insen-

itive to the disturbance. 

Rijnsdorp (1991) included a procedure for plantwide control

tructure selection, and proposes to use on-line algorithms to ad-

ust the degrees of freedom optimally for the plant. Narraway,

erkins, and Barton (1991) and Narraway and Perkins (1993) ex-

licitly include the economics into the control structure selection,

nd discuss the effect of disturbances, but they do not present a

eneral procedure for selecting CVs. The paper by Zheng, Maha-

anam, and Douglas (1999) approaches the problem in a very simi-

ar fashion to self-optimizing control, and apply it to a reactor with

eparator. The work uses an economic objective function as a cri-

erion, but does not include the effect of implementation error and

easurement noise. 

More recently, Engell and coworkers, ( Engell, 2007; Engell,

charf, & Völker, 2005; Pham & Engell, 2009 ) developed an ap-

roach for control structure selection that is based on the eco-

omic cost. Beside the effect of disturbances, they also consider

easurement noise. However, instead of considering the loss dur-

ng operation, they consider the effect of the control on the cost

irectly, and the setpoint for CVs is found by optimizing over a set

f discrete representative disturbances. Heath, Kookos, and Perkins

20 0 0) present an economics-driven approach, where a mixed in-

eger linear problem is solved to obtain the CVs. In their case, they

ssume that all degrees of freedom are used to satisfy constraints. 

Enagandula and Riggs (2006) propose a method for selecting

he control structure by predicting the variability of the products.

angaiah and coworkers developed an approach integrating heuris-

ics and simulations for designing the control structure of chem-

cal plants ( Vasudevan & Rangaiah, 2011 ). A good review of cur-

ent approaches for designing a control structure was compiled by

angaiah and Kariwala (2012) . 

Bonvin and coworkers ( François, Srinivasan, & Bonvin, 2005;

rinivasan, Bonvin, Visser, & Palanki, 2003; Srinivasan, Palanki, &

onvin, 2003 ) propose to use the necessary conditions for opti-

ality (NCO) as CV, and the goal is to make the system track the

CO. The NCO are the ideal self-optimizing CVs, except that they

re generally expressed in terms of unmeasured variables, and are

hus difficult to implement. In order to track the NCO, their current

alues must be re-constructed, either using a model, or by plant

xperiments. 

There is also a large body of literature that considers the prob-

em of selecting the control structure without considering eco-

omics at all. That is, only control properties like stability and

nteraction measures are taken into account. Examples for these

pproaches include Banerjee and Arkun (1995) , who consider the

roblem from a purely control/stability perspective, as well as e.g.

algado and Conley (2004) ; Samuelsson, Halvarsson, and Carlsson

2005) ; Shaker and Komareji (2012) . However, these approaches

re out of the scope of this paper and will not discussed further. 

An approach that has recently gained popularity is to include

he economic optimization directly into the controllers, such that

he controller uses estimates of the disturbances d and states x
control – A survey, Annual Reviews in Control (2017), 
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and solves a dynamic optimization problem to calculate the opti-

mal inputs ū for the plant. This approach is commonly referred to

as Economic Model Predictive Control (MPC) ( Diehl, Amrit, & Rawl-

ings, 2011; Ellis, Durand, & Christofides, 2014; Jäschke, Yang, &

Biegler, 2014 ). Here typically a dynamic optimization problem is

discretized on a finite time horizon, and repeatedly solved at given

sampling times to compute the economically optimal inputs to the

plant. The input for the first sampling time is injected into the

plant, and the procedure is repeated at the next sampling time

when new measurements are available. 

Although conceptually simple, this approach is currently not

used much in practice because it requires a model that is accu-

rate on several time-scales, from long-term economics to short-

term regulatory control and plant stabilization. Moreover, in many

cases it is also difficult to obtain accurate estimates of the states

( Kolås, Foss, & Schei, 2008 ). For an overview of the current state

of the art, we refer the reader to a recently published special issue

of the Journal of Process Control that focuses on Economic Model

Predictive Control ( Christofides and El-Farra, 2014 ). This issue also

contains a review article by Ellis et al. (2014) . 

The class of extremum seeking methods ( Ariyur & Krstic, 2003 )

is in this respect similar to Economic MPC. In extremum seeking

methods, a controller is designed that maximizes the value of a

specified measurement. Although extremum seeking methods do

not rely on a process model, the objective is similar to the Eco-

nomic MPC approach, where control and optimization is performed

simultaneously. 

Finally, the concept of self-optimizing control was introduced at

the end of the 1990s ( Skogestad, Halvorsen, & Morud, 1998 ), as

a strategy to achieve near-optimal operation by selecting CVs that

are simply kept at their constant setpoint values. It gained wide

recognition through the seminal paper by Skogestad (20 0 0) . This

review paper covers the developments made since then. 

3. Brute force methods for self-optimizing CV selection 

The earliest methods for finding self-optimizing CVs use a

brute-force approach ( Govatsmark, 2003; Larsson, Hestetun, Hov-

land, & Skogestad, 2001; Skogestad, 20 0 0 ). The idea is to simply

evaluate the performance of all possible candidate CV sets for all

possible values of disturbances and measurement noise. 

For example, consider a plant with n y = 3 measurements, and

n ū = 2 degrees of freedom. For all possible disturbance and noise

values, we calculate the loss resulting from keeping the CV candi-

dates c (1) = [ y 1 y 2 ] 
T 
, c (2) = [ y 1 y 3 ] 

T 
, and c (3) = [ y 2 y 3 ] 

T 
at constant

setpoints. Then we select the CV candidate that gives the low-

est loss. If the loss is acceptable, then self-optimizing control is

achieved. 

The evaluation may be based on either the worst-case loss, or

the average loss associated with a particular choice of CVs. The

worst-case loss is calculated as 

L c,wc = max 
d∈D, n y ∈N 

L c , (6)

and the average loss is defined as 

L c,a v = E 

d∈D,n y ∈N 
[ L c ] . (7)

Here E [ ·] denotes the expectation operator and the sets D ⊂ R 

n d 

and N ⊂ R 

n y contain all allowable disturbance and noise values.

The variable L c denotes the loss associated with controlling the

variable c at a constant setpoint for a given value of disturbance

and measurement noise. 

Since the sets of all possible disturbances and noise realiza-

tions, D and N , generally have an infinite number of points, we

evaluate different sam ples (scenarios) i = 1 . . . M, which may be,

for example, uniformly distributed in D and N . The values of d
Please cite this article as: J. Jäschke et al., Self-optimizing 
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nd n y for the i th scenario are denoted by d ( i ) , n y ( i ) , respectively,

nd the corresponding optimal cost J̄ ∗(d (i ) ) is obtained by solving

1) parametrized by d ( i ) . 

Given a candidate CV set c ( j ) and its setpoint c s ( j ) , for each sce-

ario i = 1 . . . M the cost J̄ (i ) 
c ( j) 

obtained by controlling c ( j ) to its set-

oint is found as the solution of the following problem: 

min 

ū 
J̄ ( ̄u 

(i ) , x (i ) , d (i ) ) 

s.t. 

f ( ̄u 

(i ) , x (i ) , d (i ) ) = 0 

g( ̄u 

(i ) , x (i ) , d (i ) ) ≤ 0 

 ( j) ( ̄u 

(i ) , x (i ) , d (i ) , n 

y (i ) ) − c s ( j) = 0 (8)

ypically, the setpoint c s , ( j ) is chosen as the nominally optimal

alue that is obtained when optimizing the system with d = d nom 

nd n y = 0 . In the cases where this choice may be infeasible,

ovatsmark (2003) presents an approach to obtain a robust and

easible setpoint. All candidate sets c ( j ) , j = 1 . . . n j are then ranked

sing one of the loss expressions (6) or (7) . For example, the aver-

ge loss 

 c ( j) ,a v = E 

i =1 ..M 

[
J̄ (i ) 
c ( j) 

− J̄ ∗(d i ) 
]
. (9)

A similar approach may also be applied for finding combina-

ions of measurements as CVs, c = Hy (See e.g. Umar, Hu, Cao,

 Kariwala, 2012 ). This, however, leads to large-scale nonlinear

ilevel optimization problems that can be very difficult to solve. 

The brute force approaches require the solution of many op-

imization problems. Problem (8) needs to be solved for each CV

andidate j = 1 . . . n j for all i = 1 . . . M scenarios. When selecting n ū 
ingle measurements out of a total n y measurements as CVs, there

re 

 

n ū 
n y = 

(
n y 

n ū 

)
= 

n y ! 

(n y − n ū )! n ū ! 
(10)

ifferent control structures that may be chosen. Thus, the number

f possible control structures grows rapidly with the number of

easurements n y . For real plants where the number of candidate

Vs can become very large, this approach becomes intractable. 

To reduce the number of optimization problems, the noise may

e neglected by setting n y = 0 . However, if there are many distur-

ances and CV candidates, the approach will still be intractable.

oreover neglecting measurement noise may render a CV candi-

ate infeasible when noise is present in the real plant ( Govatsmark,

003 ). 

Generally the optimization problems (1) and (8) solved at each

cenario i = 1 . . . M are large-dimensional and non-convex. Thus,

he very large number of difficult optimization problems may ren-

er the approach practically infeasible, unless some heuristics are

evised to reduce the number of CV candidates. 

. Local methods for steady-state self-optimizing CVs 

To limit the number of CVs that are considered, and to exclude

oor CV choices early in the control structure design, local meth-

ds have been developed. The motivation for using local methods

s that a candidate CV must perform well locally around the nomi-

al operating point where the process is expected to operate most

f the time, otherwise it may be excluded immediately. Only CVs

hat are found to perform well close to the nominal conditions are

hen further examined and tested over the whole operating region.

.1. Local approximation of the cost function 

Starting from the steady-state problem (1) , the model equations

f ( ̄u , x, d) = 0 are used to formally eliminate the states x from the
control – A survey, Annual Reviews in Control (2017), 
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ptimization problem. This yields a simplified reduced problem 

in 

ū 
J̄ r ( ̄u , d) 

s.t. 

( ̄u , d) ≤ 0 . (11) 

ssuming further that the set of active constraints does not change

nder operation, 3 the first step is to control the active constraints

t their optimal values. Then the active constraints may be for-

ally eliminated from (11) together with their corresponding de-

rees of freedom. This results in the unconstrained problem 

in 

u 
J(u, d) , (12) 

here J ( u, d ) denotes the cost function of the unconstrained prob-

em, and u denotes the remaining unconstrained degrees of free-

om that are left after satisfying all the active constraints. These

nconstrained degrees of freedom u will be used to control self-

ptimizing CVs. We denote the optimal cost function value of

12) as J ∗( d ), and we note that as long as the disturbance d does

ot cause the set of active constraints to change, we have J ∗(d) =
 ̄

∗(d) . 

To find good self-optimizing CV candidates, the nonlinear opti-

ization problem (12) is approximated locally by a quadratic func-

ion around the nominally optimal operating point. Introducing de-

iation variables �u = u − u nom 

and �d = d − d nom 

and where u nom 

s the nominally optimal input corresponding to the nominal dis-

urbance d nom 

, a Taylor expansion around the nominally optimal

oint gives 

(�u, �d) ≈ J nom 

+ 

[
J u J d 

][�u 

�d 

]
+ 

1 

2 

[
�u 

T �d T 
][J uu J ud 

J du J dd 

][
�u 

�d 

]
(13) 

ere J u = 

∂ J 
∂u 

and J d = 

∂ J 
∂d 

denote the derivatives of the cost func-

ion with respect to u and d , respectively, and J uu = 

∂ 2 J 
∂u 2 

, J ud = J T 
du 

=
∂ 2 J 

∂ u∂ d 
and J dd = 

∂ 2 J 
∂d 2 

denote the second order derivatives of the cost

unction (12) , evaluated at u = u nom 

and d = d nom 

. 

Since we are approximating the cost around the nominally op-

imal point, we have that J u = 0 . Differentiating (13) with respect

o �u and equating the expression to zero yields the optimality

ondition that must hold in order to remain locally optimal, 

d J 

d u 

≈ J u ︸︷︷︸ 
= 0 

+ J uu �u + J ud �d = 

[
J uu J ud 

][�u 

�d 

]
= 0 . (14)

ote that J u , J uu , J ud are evaluated at the nominal optimal point,

hile d J 
d u 

is the gradient value at a point nearby given by �u and

d . Solving for the optimal input �u ∗( d ), yields 

u 

∗(d) = −J −1 
uu J ud �d. (15)

sing the quadratic cost function (13) and the optimal input (15) ,

t can be shown that the loss from optimality can be expressed as

 Alstad, 2005 ) 

 = J(u, d) − J ∗(d) = 

1 

2 

( �u − �u 

∗(d) ) J uu ( �u − �u 

∗(d) ) , (16)

r alternatively 

 = 

1 

2 

‖ z‖ 

2 
2 , (17)

here ‖ · ‖ 2 denotes the two-norm, and with z defined as 

 = J 1 / 2 (�u − �u 

∗(d)) . (18)
uu 

3 This assumption can be relaxed using the methods described in Section 5 . 

c

z  
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his loss expression is the basis for all local methods presented in

his section. 

Moreover, by inserting (15) into (18) , we obtain 

 = J −1 / 2 
uu 

[
J uu J ud 

][�u 

�d 

]
. (19) 

omparing (19) with the gradient expression in (14) we observe

hat the local loss from (17) can be written as the squared

eighted 2-norm of the gradient value: 

 = 

1 

2 

∥∥∥∥J −1 / 2 
uu 

[
J uu J ud 

][�u 

�d 

]∥∥∥∥2 

2 

= 

1 

2 

∥∥∥∥(
J −1 / 2 
uu 

) d J 

d u 

∥∥∥∥2 

2 

. (20) 

ere the gradient expression 

d J 
d u 

is the actual plant gradient under

peration (not at the nominal point). We see that when the gra-

ient is zero (a necessary condition for optimality), then also the

ocal loss becomes zero. 

.2. Local approximation of the plant and linear measurement 

ombination 

The measurement model (3) is linearized around the nominal

oint, 

y = G 

y �u + G 

y 

d 
�d + n 

y , (21)

here �y = y − y nom 

, and G 

y = 

∂y 
∂u 

, and G 

y 

d 
= 

∂y 
∂d 

are Jacobian ma-

rices of appropriate sizes, that are evaluated around the nominally

ptimal point, and which represent the gain from the inputs and

isturbances, respectively, to the outputs. Choosing the CVs to be

 linear combination of measurements y gives 

c = H�y, (22) 

here we call H ∈ R 

n u ×n y the measurement selection or combina-

ion matrix. Inserting (21) into (22) yields 

c = HG 

y �u + HG 

y 

d 
�d + Hn 

y . (23)

enerally the elements of H may take arbitrary values, as long as

ank (HG 

y ) = n u . This is required to obtain a linearly independent

et of CVs that fully specify the system. If a set of single measure-

ents is selected as CVs, then each row of H will contain exactly

ne “1”, and have zero-entries otherwise. In this case H has the

roperty 

 H 

T = I n u , (24)

here I n u denotes the Identity matrix of dimension n u × n u . 

.3. Loss for a given control structure (Exact Local Method) 

To evaluate the loss corresponding to a given control struc-

ure we substitute the input that is generated by controlling �c =
�y to zero, together with the expression for the optimal input

15) into the loss expression (16) . For a given disturbance �d and

iven control structure represented by H , the input �u generated

y the controllers can be found by solving (23) for �u , 

u = ( HG 

y ) 
−1 

( �c ︸︷︷︸ 
=0 

−H G 

y 

d 
�d − H n 

y ) 

= − ( HG 

y ) 
−1 

H 

(
G 

y 

d 
�d + n 

y 
)
. (25) 

nserting the input �u derived in (25) and the optimal input from

15) into the loss expressions (16) and (17) , the loss variable z for

 given disturbance and measurement combination matrix H be-

omes ( Halvorsen et al., 2003 ) 

 = −J 1 / 2 uu ( HG 

y ) 
−1 

H 

[(
G 

y 

d 
− G 

y J −1 
uu J ud 

)
�d + n 

y 
]
. (26)
control – A survey, Annual Reviews in Control (2017), 
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This may be simplified to 

z = −J 1 / 2 uu ( HG 

y ) 
−1 

H [ F �d + n 

y ] , (27)

where we used the optimal sensitivity matrix 

F = G 

y 

d 
− G 

y J −1 
uu J ud . (28)

Given a measurement combination matrix H , a disturbance �d and

a current noise value n y , the loss is calculated as L = 1 / 2 || z|| 2 
2 
. 

The matrix F represents the sensitivities of the optimal mea-

surement values with respect to disturbances 

F = 

∂y ∗

∂d 
. (29)

To see this, we insert the optimal input �u ∗ from (15) into the

measurement Eq. (21) to yield the optimal measurement variation

�y ∗ for a change �d , 

�y ∗ = y ∗ − y nom 

= − G 

y J −1 
uu J ud �d + G 

y 

d 
�d + n 

y 

= 

(
−G 

y J −1 
uu J ud + G 

y 

d 

)
�d + n 

y = F �d + n 

y . (30)

Noting that �d = d − d nom 

, by differentiating (30) with respect to

d , we obtain F = 

∂y ∗
∂d 

. 

The optimal sensitivity matrix F can be calculated using either

(28) , re-optimization and finite differences, or nonlinear program-

ming sensitivity ( Fiacco, 1983; Pirnay, López-Negrete, & Biegler,

2012 ) based on the inverse function theorem. 

To evaluate the performance of a given set of CVs �c = H�y

for a range of disturbances, we define diagonal scaling matrices of

appropriate sizes for the disturbances and noise, W d and W n , re-

spectively, such that 

�d = W d d 
′ ; n 

y = W n n 

′ . (31)

Here d ′ and n ′ denote the scaled disturbance and measurement

noise, respectively. This scaling of the variables allows us to make

statements about the loss for a given set of disturbances and noise

with magnitudes defined in W d and W n . 

Using the scaling matrices, the loss Eq. (17) for a specific value

of d ′ and n ′ is 

L = 

1 

2 

∥∥∥∥J 1 / 2 uu (H G 

y ) −1 H Y 

[
d ′ 
n 

′ 

]∥∥∥∥2 

2 

(32)

where 

 = [ F W d W n ] . (33)

To simplify notation, we introduce the loss matrix M as 

M = J 1 / 2 uu (H G 

y ) −1 H Y, (34)

so (32) can be written compactly as 

L = 

1 

2 

∥∥∥∥M 

[
d ′ 
n 

′ 

]∥∥∥∥2 

2 

(35)

Remark 1 (Important observation) . The loss matrix M =
J 1 / 2 uu (H G 

y ) −1 H Y, has an interesting property that will be used

later for finding combinations of measurements that minimize the

loss: The value of M does not change when H is pre-multiplied

by any invertible matrix Q . To see this, consider the matrix M and

assume that the CV is �c = 

ˆ H �y, where ˆ H = QH. Then we have 

M = J 1 / 2 uu ( ̂  H G 

y ) −1 ˆ H Y 

= J 1 / 2 uu (Q HG 

y ) −1 Q HY 

= J 1 / 2 uu (H G 

y ) −1 Q 

−1 QH Y 

= J 1 / 2 uu (H G 

y ) −1 H Y. (36)

This reflects the fact that scaling a CV will generally not affect the

loss at steady state. 

Depending on how the disturbances and errors are assumed to

be distributed, we have different cases for the worst-case and the

average errors. 
Please cite this article as: J. Jäschke et al., Self-optimizing 
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• Two-norm bounded disturbance and noise ( Halvorsen et al.,

2003 ). When assuming that the disturbances and noise are in-

dependent and uniformly distributed over the set 

DN 2 = 

{ 

(d ′ , n 

′ ) 
∣∣∣ ∥∥∥[ d ′ n 

′ ] T 
∥∥∥

2 
≤ 1 

} 

, (37)

the worst-case loss is derived based on (35) : 

L worst = max ∥∥∥∥∥
[ 

d ′ 
n 

′ 
] ∥∥∥∥∥

2 

≤1 

1 

2 

∥∥∥∥M 

[
d ′ 
n 

′ 

]∥∥∥∥2 

2 

= 

1 

2 

‖ 

M ‖ 

2 
2 = 

1 

2 

σ̄ 2 ( M ) , (38)

where σ̄ (·) denotes the largest singular value. 

• Infinity-norm bounded disturbance and noise ( Kariwala, Cao,

& Janardhanan, 2008 ). If the noise and the disturbance variables

n ′ and d ′ are assumed independent and uniformly distributed

in the set 

DN ∞ 

= 

{ 

(d ′ , n 

′ ) 
∣∣∣ ∥∥∥[ d ′ n 

′ ] T 
∥∥∥

∞ 

≤ 1 , 

} 

, (39)

the average (expected value of the loss) is 

L av = E 

n ′ ,d ′ ∈ DN ∞ 

[ 

1 

2 

∥∥∥∥M 

[
d ′ 
n 

′ 

]∥∥∥∥2 

2 

] 

= 

1 

6 

‖ 

M ‖ 

2 
F . (40)

where E [ ·] again denotes the expectation operator. 

• Normally distributed disturbance and noise ( Kariwala et al.,

2008 ). Assuming that d ′ and n ′ are normally distributed with

zero mean and unit variance, 

DN N = 

{
d ′ ∼ N (0 , I) , n 

′ ∼ N (0 , I) 
}
, (41)

the worst-case loss becomes unbounded L wc = ∞ , as n ′ and d ′ 
may become arbitrarily large. The average loss, however is 

L av , N = E 

n ′ ,d ′ ∈DN N 

[
1 

2 

M 

[
d ′ 
n 

′ 

]]
= 

1 

2 

‖ 

M ‖ 

2 
F . (42)

We observe that the assumptions on the disturbance and noise

istribution affect the worst-case and average loss in form of a

caling factor only. Thus, any of the loss expressions given above

ay be used to rank the candidate CVs. 

emark 2. Note that other loss expressions were derived, too, such

s the average loss expression for the case with 2-norm bounded,

niform distributed noise and disturbances ( Kariwala et al., 2008 ).

owever, those results do not make practical sense, as the problem

as formulated in such a way that the loss value is scaled with the

umber of measurements n y . This gives misleading results, because

he loss value may be changed arbitrarily, e.g. by adding measure-

ents (increasing n y ), while adding corresponding columns of ze-

os in H . 

xample 1. Consider the following process ( Halvorsen et al.,

003 ), with n y = 4 , n u = 1 , n d = 1 . The measurement gains from

he input u and the disturbance d are 
control – A survey, Annual Reviews in Control (2017), 
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y = 

⎡ 

⎢ ⎣ 

0 . 1 

20 

10 

1 

⎤ 

⎥ ⎦ 

, G 

y 

d 
= 

⎡ 

⎢ ⎣ 

−0 . 1 

0 

−5 

0 

⎤ 

⎥ ⎦ 

, (43)

nd the cost to minimize is 

 = (u − d) 2 . (44)

or this process, we have that J uu = 2 , J ud = −2 , and the optimal

ensitivity matrix becomes 

 = 

∂y ∗

∂d 
= G 

y 

d 
− G 

y J −1 
uu J ud = 

⎡ 

⎢ ⎣ 

0 

20 

5 

1 

⎤ 

⎥ ⎦ 

. (45)

ssuming further that the noise and disturbance magnitudes are

iven as W d = 1 and W n = I 4 , and that ||[ d ′ n ′ ] T || 2 ≤ 1, we evalu-

te the worst-case loss obtained from controlling single measure-

ents: 

c 1 = H 1 �y = 

[
1 0 0 0 

]
�y = �y 1 

c 2 = H 2 �y = 

[
0 1 0 0 

]
�y = �y 2 

c 3 = H 3 �y = 

[
0 0 1 0 

]
�y = �y 3 

c 4 = H 4 �y = 

[
0 0 0 1 

]
�y = �y 4 (46) 

he worst-case loss obtained with a constant setpoint policy

 �c = 0 ) is evaluated using (38) as L wc (c 1 ) = 100 , L wc (c 2 ) =
 . 0025 , L wc (c 3 ) = 0 . 26 , L wc (c 4 ) = 2 . Therefore, controlling c 3 is the

est choice, as it yields the smallest worst-case loss for the given

et of noise and disturbances. 

We further observe that the loss varies by orders of magnitude,

epending on the selected control structure. This shows that sig-

ificant economic benefits can be achieved by simply designing a

ood control structure for a process. 

emark 3. Alstad (2005) showed that the loss for a given control

tructure is locally independent of the chosen setpoint. In partic-

lar, as long as the quadratic approximation of the cost and the

inearized model do not change, the best control structure remains

he best, even when the setpoint is not optimal. 

emark 4 (Maximum scaled gain rule) . Before the exact local re-

ults presented above were found, Skogestad and Postlethwaite

1996) described an approximative method, called the “Maximum

caled Gain Rule” (also known as “minimum singular value rule”)

or ranking CV candidates. Since the exact methods presented in

his section are just as easy to apply, we do not present the Max-

mum Scaled Gain rule here. However, for completeness sake we

escribe it in Appendix A . 

.4. Finding optimal measurement combinations 

Using the results above, it is easily possible to evaluate the av-

rage and worst-case loss corresponding to a given control struc-

ure represented by H . This gives rise to the question of how to

nd a control structure which results in a minimal loss. Loosely

peaking this can be formulated as an optimization problem to

inimize the loss for a set of implementable control structures. For

xample, for finding a measurement combination �c = H�y that

inimizes the average loss for normal distributed disturbances and

oise we could write 

in 

H 
L = 

1 

2 

∥∥J 1 / 2 uu (H G 

y ) −1 H Y 
∥∥2 

F 

s.t. HG 

y invertible . (47) 

n principle, any of the local loss expressions (38), (40), (42) given

n the previous section may be used in the cost function of (47) to
Please cite this article as: J. Jäschke et al., Self-optimizing 
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nd combination matrices. In general, these loss expressions lead

o non-convex optimization problems, which may have multiple

ptima, and are difficult to solve. However, in the case where H

ay take arbitrary values, or when the structure of H is preserved

pon left-multiplication with any non-singular matrix, the non-

onvex problem (47) may be simplified to a convex problem, such

hat the optimal measurement combination H is easy to find. These

ases will be discussed later in this section. 

.4.1. Null-space method 

In the Null-space method ( Alstad & Skogestad, 2007 ) for find-

ng the optimal measurement combination H , we assume that

he measurement noise can be neglected ( W n = 0 ), so we only

eed to compensate for disturbances d . Moreover, we assume that

e have n y ≥ n u + n d independent measurements. Under these as-

umptions, it is possible to find a matrix H that gives zero loss

 wc = L a v = 0 , by simply selecting H in the left null-space of F , such

hat 

F = 0 . (48) 

o show this, consider the worst-case loss L wc = 

1 
2 σ̄ (J 1 / 2 uu 

(H G 

y ) −1 H Y ) 2 . Without noise W n = 0 , such that Y = [ F W d 0 ] ,

nd the resulting worst-case loss is simplified to L wc =
1 
2 σ̄ (J 1 / 2 uu (H G 

y ) −1 H F W d ) 
2 . Selecting H such that HF = 0 will then

esult in zero worst-case and average loss L wc = L a v = 0 (as long as

G 

y is non-singular). 

emark 5. Alternatively we may arrive at this result by requir-

ng the optimal setpoint change to be zero. From (22), (29) and

31) the optimal change in the CVs can be expressed as 

c opt = H�y opt = HF W d d 
′ = 0 . (49)

electing H in the left null-space of F will make the optimal vari-

tion �c opt = 0 . This means that keeping the setpoint constant

c = 0 will result in the optimal change in the measurements,

hich in turn implies that the inputs assume their optimal values.

emark 6. There exists an interesting relationship between the

ull-space method and the gradient ( Jäschke & Skogestad, 2011b ).

sing J u = [ J uu J ud ] 

[
�u 

�d 

]
from (14) , and setting n y = 0 and defin-

ng ˜ G 

y = [ G 

y G 

y 

d 
] , we can write (21) as 

y = G 

y �u + G 

y 

d 
�d = 

˜ G 

y 

[
�u 

�d 

]
. (50)

ince we have n y ≥ n u + n d , we can invert the measurement rela-

ionship (50) and inserting in the gradient (14) gives 

c = �J u = [ J uu J ud ] 
[

˜ G 

y 
]† 

�y. (51)

herefore, controlling �c to zero forces the gradient to become

ero, J u = 0 . It can be verified that 

 = [ J uu J ud ] 
[

˜ G 

y 
]† 

(52)

s in the left null-space of F , which from (28) can be written as 

 = 

˜ G 

y 

[
−J −1 

uu J ud 

I 

]
, (53) 

here I denotes the identity matrix. 

Considering the optimal sensitivity matrix F in (53) more

losely, we can see that the null-space of F can be decom-

osed into two parts. The first component is given by H =
J uu J ud 

][
˜ G 

y 
]† 

and the second component is given by the left

ull-space of ˜ G 

y . The directions corresponding to this second part
control – A survey, Annual Reviews in Control (2017), 
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with 

˜ H 

˜ G 

y = 0 correspond to invariant output directions, that can-

not be controlled and that are always zero. 4 When applying the

null-space method, it must therefore be verified that the selected

measurement combination is not in the null-space of ˜ G 

y . 

The null-space method is not optimal in a realistic setting, be-

cause it does not take measurement noise into account. Further-

more, the requirement of at least as many measurements as the

sum of number of inputs and disturbances leads to complex con-

trol structures involving many variables. However, the derivation

of the null-space method in Remark 6 can be used as a starting

point for approaching a more difficult problem, where measure-

ment polynomials are used as CVs, see Section 6.1 . 

Example 2 (Null-space method) . Consider F = [0 20 5 1] 
T 

from (45) in Example 1 . A measurement selection matrix in the

left null-space of F is H 1 = 

[
1 0 0 0 

]
, corresponding to se-

lecting the CV c 1 = y 1 . However the left null-space of F is spanned

by three basis vectors, so we may also chose different measure-

ment combinations, such as given by H 2 = 

[
0 1 −4 0 

]
, and

H 3 = 

[
0 1 0 −20 

]
. 

Without measurement noise ( W n = 0 ) controlling c 1 and c 2 
gives L wc (c 1 ) = L wc (c 2 ) = 0 , yielding optimal operation in spite of

disturbances. However, the measurement combination c 3 lies in

the left null-space of F , but also in the left null-space of ˜ G 

y , and

hence G 

y . This “controlled variable” is therefore not controllable

because the gain HG 

y from inputs to CVs is zero. Consequently, the

loss L wc = 

1 
2 σ̄ (J 1 / 2 uu (H G 

y ) −1 H Y ) may assume arbitrarily large values.

Next we show that if measurement noise is present ( W n � = 0)

the loss can depend significantly on the choice of the basis vec-

tors from the left null-space. Given measurement noise and distur-

bances of magnitude W n = I 4 and W d = 1 , we evaluate the worst-

case loss for the different alternatives to be 

L wc (c 1 ) = 100 

L wc (c 2 ) = 0 . 04250 

L wc (c 3 ) = ∞ . (54)

4.4.2. Extended Null-space method 

As shown in the example above, the choice of vectors in the

left null-space of F does have a significant influence on the perfor-

mance in presence of noise. If n u + n d > n y , the H -matrix can be

chosen such that beside perfectly rejecting disturbances, the effect

of noise is minimized. That is, after all disturbance effects are re-

jected, the remaining measurements are used to minimize the ef-

fect of noise. Next, we give a new derivation of the results in Alstad

et al. (2009) . First use the scaling matrix W n to define scaled mea-

surements y ′ , such that 

y ′ = W 

−1 
n �y. (55)

In presence of measurement noise n y , the expression for the scaled

measurement is calculated using (21) and 

˜ G 

y = [ G 

y G 

u 
d 
] as 

y ′ = W 

−1 
n �y = W 

−1 
n 

˜ G 

y 

[
�u 

�d 

]
+ W 

−1 
n n 

y . (56)

Rearrangement gives 

 

−1 
n n 

y = −W 

−1 
n �y + W 

−1 
n 

˜ G 

y 

[
�u 

�d 

]
(57)

The least squares solution [ �u �d ] T for (57) , which minimizes the

sum of squares of the weighted noise n y T W 

−1 
n W 

−1 
n n y is given by [

�u 

�d 

]
= (W 

−1 
n 

˜ G 

y ) † W 

−1 
n �y. (58)
4 When ˜ H is selected such that ˜ H ̃  G y = 0 , then also ˜ H G y = 0 , and we have selected 

a measurement combination that is uncontrollable. 

A  

(  

H  

Please cite this article as: J. Jäschke et al., Self-optimizing 
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nserting this least squares solution into the expression for the gra-

ient (14) we obtain 

 = 

[
J uu J ud 

]
(W 

−1 
n 

˜ G 

y ) † W 

−1 
n �y, (59)

nd the corresponding H -matrix is 

 = 

[
J uu J ud 

]
(W 

−1 
n 

˜ G 

y ) † W 

−1 
n . (60)

xcept for a constant scaling factor that does not affect the loss,

his is the same expression as originally derived in Alstad et al.

2009) . 

Note that the matrix H from (60) is in the left null-space of F .

o see this, we write F as in (53) , and obtain 

F = 

[
J uu J ud 

]
(W 

−1 
n 

˜ G 

y ) † W 

−1 
n 

˜ G 

y 

[
−J −1 

uu J ud 

I 

]
= − J ud + J ud = 0 . (61)

y selecting H as in (60) , the basis vectors in the left null-space of

 are chosen to minimizes the effect of noise. 

xample 3 (Extended Null-space method) . Inserting the values for

xample 1 into (60) yields 

 4 = 

[
0 . 0085 −0 . 0997 0 . 3998 −0 . 0050 

]
, (62)

nd controlling c 4 = H 4 y at a constant value leads to a loss of

 wc (c 4 ) = 0 . 04247 . This loss is significantly lower than L wc (c 1 ) =
00 that is obtained by selecting H 1 = 

[
1 0 0 0 

]
. Note that

oth, H 1 and H 4 are in the left null-space of F . 

.4.3. Minimum Loss method (Explicit solution) 

In practice the assumption of exact measurements is not valid,

nd the optimal measurement combination matrix H must take the

easurement noise n y into account. Although this is done in the

xtended Null-Space Method described above, there are two draw-

acks in this approach. (1) it only works when we have more mea-

urements than the sum of number of inputs and disturbances, so

he number of required measurements can become very large, and

2) the Extended Null-Space Method will generally not give an op-

imal trade-off between noise and disturbance rejection. For exam-

le, in some cases it may be beneficial to not reject a disturbance

ompletely in order to compensate for the even more detrimental

ffect of noise. 

In the literature there are several derivations to the solu-

ion of finding a locally optimal measurement combination ma-

rix H , that finds the optimal trade-off between rejecting the dis-

urbances and measurement noise. Kariwala (2007) and Kariwala

t al. (2008) present methods which are based on determining

igenvalues of a matrix, while Heldt (2010) gives a related method

ased on a generalized singular value decomposition. Alstad et al.

2009) reformulate the problem of minimizing the nonlinear loss

xpression to obtain a convex quadratic optimization program. All

hese approaches lead to the same solution, so for brevity we only

resent the last approach by Alstad et al. 

We start by recalling that pre-multiplying H by any invert-

ble matrix Q will not affect the value of the loss matrix M =
 

1 / 2 
uu (H G 

y ) −1 H Y, see (36) . Thus, we may select Q to make HG 

y =
 

1 / 2 
uu . This cancels the nonlinearity in M , and a matrix H that min-

mizes the average loss can be found by solving the convex opti-

ization problem ( Alstad et al., 2009 ) 

min 

H 
‖ 

HY ‖ F 

.t. HG 

y = J 1 / 2 uu . (63)

n explicit solution to this problem was found by Alstad et al.

2009) , and later simplified by Yelchuru and Skogestad (2012) to

 = ( G 

y ) 
T 
(
Y Y T 

)−1 
. (64)
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Fig. 2. Optimal setpoint adaption to measured disturbances. 
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q. (64) provides the locally best measurement combination for a

iven set of measurements, provided YY T is invertible, which al-

ays is the case when all measurements are affected by noise. It

as found by Kariwala et al. (2008) that the H -matrix that min-

mizes the average loss, also minimizes the worst-case loss. Note

hat the full loss expressions for the worst-case loss (38) or the

verage loss (40), (42) must be used for evaluating the value of

oss that is obtained with H from (64) . 

xample 4 (Exact local method) . Using (64) for calculat-

ng the measurement combination matrix for the system in

xample 1 with the noise and disturbances magnitudes W n = I 4 
nd W d = 1 , gives 

 5 = 

[
0 . 10 0 0 −1 . 1241 4 . 7190 −0 . 0562 

]
, (65) 

nd the corresponding loss is L wc (c 5 ) = 0 . 0405 . 

This is the measurement combination which gives the best per-

ormance locally. We observe that the loss is slightly lower than

n the case of the Extended Null-space method. This is because an

ptimal trade-off between disturbance rejection and noise rejec-

ion is found. Here again, we see that the measurements with the

argest weights are y 2 and y 3 . 

.5. Incorporating measured disturbances 

To improve the self-optimizing properties of the control struc-

ure in presence of known (measured) disturbances, e.g. prices or

eed quality, a straightforward approach proposed by Jäschke and

kogestad (2011) is to include the measured disturbances into the

easurement vector, and use e.g. (64) to calculate the optimal

easurement combination. The augmented measurement vector

 

aug becomes 

 

aug = 

[
y 

d m 

]
, (66) 

here d m denotes the measured disturbances. The corresponding

ptimal CV can then be found by any of the methods described

bove, and written as 

c aug = H 

aug �y aug = 

[
H H 

d 
][ �y 

�d m , 

]
= H�y + H 

d �d m . (67) 

nstead of keeping this CV at a constant setpoint, �c aug = H�y +
 

d �d m = 0 , one may use the measured disturbance to change the

etpoints of the CVs, and instead control 

c = H�y, (68) 

o the setpoint 

c s = −H 

d �d m . (69)

he concept is illustrated in the block diagram in Fig. 2 , and has

lso been applied in Umar, Cao, and Kariwala (2014) . 
Please cite this article as: J. Jäschke et al., Self-optimizing 
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.6. Selecting subsets of measurements 

In most practical cases, using a combination of all available

easurements in the H matrix is neither desired nor required.

sually, controlling a combination of a subset of the available mea-

urements results in a performance which is similar to when using

ll available measurements ( Kariwala, 2007; Kariwala et al., 2008 ).

he result is a simpler control structure at a usually insignificant

ncrease in loss. 

Selecting the best subset of n variables from n y variables leads

o a combinatorial optimization problem, where the loss L has

o be evaluated individually for each CV. The number of possi-

le combinations can become very large, and selecting n vari-

ble combinations as CVs from a set of n y measurements leads

o C n n y 
= 

(
n y 
n 

)
= 

n y ! 

(n y −n )! n ! 
possible structures. In the literature, the

roblem of selecting the best subset of measurements has been

pproached in two ways: The first one is to develop tailor-made

ranch and bound algorithms ( Cao & Kariwala, 2008; Kariwala &

ao, 2009; 2010 ) , and the second approach formulates the selec-

ion problem as a mixed integer quadratic optimization problem

MIQP), and uses standard MIQP solvers to obtain the best mea-

urement set ( Yelchuru & Skogestad, 2012 ). 

.6.1. Tailor-made branch and bound methods 

These methods exploit monotonicity of the optimal loss value

s a function of the number of variables. This means that when

emoving one measurement from the CV, the optimal loss cannot

ecrease. Here we present the general idea for minimizing the av-

rage loss for normally distributed disturbances and noise. For a

ore detailed description and treatment of the worst-case, we re-

er to Cao and Kariwala (2008) , and Kariwala and Cao (2009; 2010) .

Denote by X the index set describing the selected measure-

ents, and by | X | its cardinality. Further, let G 

y 
X 

denote the gain

atrix corresponding to the selected measurements, i.e. the rows

f G 

y corresponding to the indices in X . Analogously Y X denotes the

atrix consisting of the rows in Y corresponding to the index set

 , and H 

∗
X 

∈ R 

n u ×| X| denote the optimal H -matrix corresponding to

he chosen subset of measurements. The matrix H 

∗
X corresponds to

he optimal solution of problem (63) , when using G 

y 
X 

and Y X 
Then, for given noise and disturbances that are normally dis-

ributed, the optimal average loss is a function of the index set X :

 a v (X ) = 

1 

2 

∥∥∥J 1 / 2 uu 

(
(H 

∗
X G 

y 
X 
) 
)−1 

H 

∗
X Y X 

∥∥∥2 

2 
(70) 

his optimal average loss is monotonously decreasing with increas-

ng number of measurements, because adding a measurement to

he combination can only improve the optimal performance. 

Using the monotonicity properties, an efficient algorithm can be

eveloped for selecting the best subset of measurements. Now de-

ote by X all the index set for all available measurements, and let

 n be any set corresponding to a selection of n measurements. The

ptimal index set for the best CV containing n variables is 

 

∗
n = arg min 

X n ⊂X all 

L a v (X n ) (71)

he monotonicity property implies that if one index set X n is con-

ained in another index set X m 

( X n ⊂ X m 

) then the optimal loss of

he superset must be less or equal to the optimal loss of the sub-

et: 

 (X m 

) ≤ L (X n ) . (72)

ssuming that B is a known upper bound to the minimum loss for

he case when n variables are selected, such that 

 ≥ L (X n ) , (73)
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Fig. 3. Branch and Bound solution tree for selecting 2 out of 6 measurements 

(Adapted from Cao & Kariwala, 2008 ). The number beside each node denotes the 

measurement which is discarded for that particular node and all nodes below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h  

t  

C  

a

4

 

t  

(  

s  

r

H  

a

h  

w  

a  

(

s  

w  

o

 

s  

s  

c  

o  

a  

t  

l  

Y

c

σ  

w  

t  

i  

n  

e  

a

P  

w  

n  

m  

s

−
 

H  

t  

5 http://www.mathworks.com/matlabcentral/fileexchange/?term=authorid:22524 
then this upper bound can be used to exclude (prune) sets of mea-

surements. In the case where X n ⊂ X m 

, whenever we find 

L (X m 

) > B (74)

such that 

L (X m 

) > L (X n ) , (75)

all n -index subsets included in X m 

can be excluded from evalua-

tion, because they will not lead to a lower optimal loss. Eq. (74) is

called “pruning condition”. This pruning condition can be used in

an algorithm for systematically eliminating suboptimal measure-

ment subsets from consideration. 

We briefly describe such an algorithm for the case where we

select 2 out of 6 measurements, for a more general description, we

refer to Cao and Kariwala (2008) . If we were to evaluate all possi-

bilities for selecting 2 out of 6 measurements, we would need to

evaluate C 2 
6 

= 15 combinations of measurements. Using the prun-

ing condition (74) , we can organize the search for the best com-

bination in a tree structure, see Fig. 3 . Each node corresponds to

a measurement that is eliminated from further consideration, be-

cause including it will not reduce the loss along a path. 

At the (initial) root node in Fig. 3 , the indices corresponding to

all six measurements are included, and the loss is evaluated. This

gives the best current upper bound. Next, a branch is selected, and

we move down the branch to the next node on that branch and

exclude the corresponding measurement. If the loss of this node is

higher than the loss of any other node on the same level, this node

and all its sub-nodes may be pruned, because the loss on the lower

nodes (where more measurements are excluded) must be higher or

equal to the loss of the current node. Then one may proceed along

the same branch, or alternatively select another branch either to

obtain a new lower bound, or to prune the branch. This procedure

is repeated until the optimal measurement set is identified at the

leaf of the final remaining branch. 

Example 5 (Branch and Bound) . Consider the case in Fig. 3 , where

we want to select the 2 best measurements out of 6 candidates. On

the first level, we evaluate the losses for the cases where we ex-

clude measurement 1, 2, and 3. Assume that the loss corresponding

to the node where y 1 is excluded is L (X = { 2 , 3 , 4 , 5 , 6 } ) = 100 $,

and the loss with y 2 excluded L (X = { 1 , 3 , 4 , 5 , 6 } ) = 59 $, and y 3
excluded L (X = { 1 , 2 , 4 , 5 , 6 } ) = 25 $. In this case we can immedi-

ately disregard (prune) the branches corresponding to the two left

nodes (where y 1 and y 2 , respectively, are excluded). Considering

the remaining branch, it is seen that only two measurements re-

main at its leaf, X = { 1 , 2 } . So selecting a combination of y 1 and y 2
will give the best performance. Thus we have efficiently found the

optimal solution while evaluating only 3 of all 15 possible combi-

nations. 
Please cite this article as: J. Jäschke et al., Self-optimizing 
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More sophisticated bidirectional branch and bound methods

ave been developed, which prune both from the top and the bot-

om of the tree, thus becoming even more efficient ( Kariwala &

ao, 2009; 2010 ). Free software implementations for these branch

nd bound methods can be downloaded from the internet. 5 

.6.2. MIQP formulation 

Alternatively, Yelchuru and Skogestad (2012) propose to find

he best measurement subset by modifying the quadratic problem

63) to a mixed integer quadratic problem (MIQP), which can be

olved by standard MIQP solvers. The MIQP may be formulated by

ewriting 

 = 

⎡ 

⎣ 

h 1 , 1 · · · h 1 ,n y 

. . . 
. . . 

. . . 
h n u , 1 · · · h n u ,n y 

⎤ 

⎦ (76)

s a vector by stacking the rows of H in a column vector 

 δ = 

[
h 1 , 1 · · · h 1 ,n y , h 2 , 1 · · · h 2 ,n y , · · · h n u , 1 · · · h n u ,n y 

]T 
(77)

ith dimension R 

n u n y ×1 . By restructuring the other matrices in

 similar fashion, an equivalent vectorized version of problem

63) can be stated as: 

min 

h δ

h 

T 
δY δh δ

.t. G 

y 

δ

T 
h δ = j δ (78)

here G 

y 

δ
, j δ , and Y δ are the corresponding re-structured versions

f G 

y , J uu and Y , respectively. 

To modify problem (78) for selecting the best subset of mea-

urements, we use the property that controlling a subset of mea-

urements is equivalent to setting all columns associated with ex-

luded measurements to zero. Therefore the problem of selecting

nly a subset of all available measurements can be formulated as

 mixed integer quadratic program, where a constraint is included

hat enforces the usage of a given number of measurements, while

etting the optimizer choose which ones to include in the set. In

elchuru and Skogestad (2012) these are implemented as “big-M”

onstraints. Here, a vector of binary variables is defined as 

= [ σ1 σ2 · · · σn y ] , σ j = { 0 , 1 } , (79)

here σ j = 1 corresponds to a measurement that is included in

he measurement combination (nonzero weight in the correspond-

ng elements in H ), while σ j = 0 corresponds to variables that are

ot included in the measurement combination, and have a zero el-

ment in H . The constraints on the binary variables can be written

s 

 σ = s, (80)

here P = 1 T 1 ×n y 
is a n y dimensional vector of ones, and s is the

umber of measurements that we want to include in the measure-

ent combination. Then the problem of selecting the optimal mea-

urement subset can be written as 

min 

h δ ,σ
h 

T 
δY δh δ

s.t. G 

y 

δ

T 
h δ = j δ

P σ = s 

Mσ j ≤ h i, j ≤ Mσ j j = 1 . . . n y , i = 1 . . . n u 

σ ∈ { 0 , 1 } . (81)

ere, M ∈ R 

n u + is a vector of positive constants which are used in

he big-M constraints for ensuring that whenever σ j is zero, the
control – A survey, Annual Reviews in Control (2017), 

http://www.mathworks.com/matlabcentral/fileexchange/?term=authorid:22524
http://dx.doi.org/10.1016/j.arcontrol.2017.03.001


J. Jäschke et al. / Annual Reviews in Control 0 0 0 (2017) 1–25 11 

ARTICLE IN PRESS 

JID: JARAP [m5G; April 4, 2017;1:26 ] 

Fig. 4. Optimal average loss value that is obtained for the best subsets of measure- 

ments. 
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orresponding elements in the H matrix are zero, too. The values

n the M vector are upper bounds on the elements in H . Selecting

ppropriate values for the elements in M is not straightforward,

ecause a too large value causes the computational load to become

ery high, while a too small value may result in a falsely active

onstraint, and a suboptimal solution. In practice, to find the right

alue of M , one can solve the Problem (81) with reduced values of

 iteratively, until no changes are seen in the solution. 

Solving (81) , results in a H matrix, which minimizes the av-

rage and worst-case local loss, (38) and (42) , respectively. This

s guaranteed by the constraint G 

y 

δ
h δ = j δ, which ensures that

 

1 / 2 
uu (HG 

y ) −1 = I. The main advantage of casting the problem as

IQP is that it allows for usage of standard MIQP solvers, such

s e.g. CPLEX ( International Business Machines, 2014 ) or Gurobi

 Gurobi Optimization, 2015 ). 

emark 7. From a mathematical point of view it is not required to

rite the MIQP (81) in terms of vectors, as shown above. It may as

ell have been stated in terms of matrices. However, for numerical

oftware it is often convenient to have the optimization problem in

he form given above. 

emark 8. The best subset of measurements may not be the same

or worst-case and average loss minimization. While the tailor-

ade branch and bound approaches can find the best measure-

ent subset for worst-case and average loss minimization, the

IQP method will only find the measurement set that minimizes

he average loss. However, for most cases it is recommended to

inimize the average loss, as the worst-case may not occur very

ften in practice. 

xample 6 (Selecting subset of measurements) . We consider the

roblem from Example 1 with W d = 1 and W n = I 4 , and find the

est measurement combinations for the case where we include

,2,3, and 4 measurements in H . Fig. 4 shows the value of the op-

imal loss that can be achieved when including the different num-

ers of measurements into the CV. We observe that the loss is re-

uced significantly when increasing the number of measurements

rom 1 to 2, while adding more than 2 measurements does not

ave a significant impact on the loss. In this case controlling a

easurement combination of more than 2 measurements would

asically only add capital cost without improving operation. 

This behavior, that the loss decreases very much initially and

hen flattens out, is found frequently in chemical processes, where
Please cite this article as: J. Jäschke et al., Self-optimizing 
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here are typically many measurements that could potentially be

ncluded in H . 

.7. Structured H 

The problem described in the previous section, where we

earch for the best measurement subsets to include in H can be

onsidered a special case of a more general problem, where we im-

ose a certain structure on the measurement combination matrix

 . For example, it may be undesirable to combine measurements

hat are located far away from each other, in order to avoid com-

ining variables with very different dynamics and long time-delay.

lso, combining e.g. similar measurements (e.g. 3 pressure mea-

urements) may give CVs that have an intuitive physical meaning,

nd thus increased acceptance among operators. 

In such cases a structure is imposed on H . For example, when

ooking for the best single measurements to control, we require

hat there is only one non-zero element in each row of H , simi-

arly, if we want to find a subset containing 5 measurements, this

orresponds to the requirement of having 5 non-zero columns in

 . 

The special type of structural constraints for picking optimal

ubsets of measurements ( Section 4.6 ) have in common that the

olution (when the optimal measurements to be included are

nown) can be re-formulated in terms of (63) . Equivalently, the

ptimal H (with the imposed structure) does not change struc-

ure when pre-multiplied by any invertible matrix Q . In particular,

ny zero column in H will remain zero upon multiplication with

 . Therefore solving the MIQP with convex cost, (81) gives the

 that also minimizes the exact non-convex loss expression L =
1 
2 

∥∥∥J 1 / 2 uu (H G 

y ) −1 H Y 

∥∥∥2 

F 
. Similarly, the monotonicity property which

tates that the optimal loss cannot decrease when adding more

easurements is preserved in that case. 

However, when more general structural constraints are re-

uired, such that H has e.g. a block-diagonal structure, the problem

ecomes more complicated. In this case, pre-multiplying H with

ny non-singular matrix Q does not preserve the structure of H , so

inimizing the convex re-formulation will not result in a solution

hat minimizes the loss expression L = 

1 
2 

∥∥∥J 1 / 2 uu (H G 

y ) −1 H Y 

∥∥∥2 

F 
. Also

ote that for such general constraints the monotonicity property

hat is used in the branch and bound algorithm, may not hold any

onger. For a collection of structural constraints that can be han-

led with currently available methods, we refer to Heldt (2010) ,

nd Yelchuru and Skogestad (2012) . 

Currently there are no simple and tractable methods for han-

ling cases with structural constraints that are not preserved upon

re-multiplication with a non-singular matrix, and that do not sat-

sfy the monotonicity property required for the branch and bound

lgorithm. These cases result in mixed integer optimization prob-

ems with non-convex subproblems for every possible variable

ombination. 

.8. Conclusion 

The local methods presented in this section are all based on a

inearization around the nominally optimal operating point. They

re subject to the following main limitations: 

1. The results are only guaranteed to be valid in a vicinity of the

nominal point 

2. The disturbances must not change the set of active constrains 

3. Only structures that are preserved upon pre-multiplication by

any non-singular matrix can be imposed on H . 

The methods only give candidate sets of CVs, which have to

e evaluated and tested over the whole region using the nonlin-
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ear model. However, the advantage of these local methods is that

they can be used for efficient screening of candidate sets of CVs,

because CVs that give a large loss close to the expected (nominal)

operating point can be excluded immediately from further con-

sideration. Moreover the local methods can handle measurement

noise in a systematic manner. 

The problem of selecting a subset of measurements to include

in the CVs, leads to a difficult combinatorial optimization problem.

Simple structural constraints (e.g. selecting the optimal subset of

measurements), can be addressed using off-the shelf MIQP solvers

and tailor-made branch and bound methods. However, more com-

plicated structures that are not preserved upon pre-multiplication

with a non-singular matrix remain an open problem. 

5. Constraint handling 

The methods described so far assume that the disturbances do

not change active constraints. However, in general the disturbances

can cause the active set to change, and the plant may be operated

in different regions that are defined by the active constraints. Re-

cently some approaches have been proposed in the literature for

overcoming this problem. In this section we present the multi-

parametric programming approach ( Manum & Skogestad, 2012 ),

the integrated approach ( Hu, Umar, Xiao, & Kariwala, 2012 ), and

the cascade control approach ( Cao, 2004 ). 

5.1. Parametric programming approach 

In this method, every active constraint region has its separate

control structure. The main idea is that controlling self-optimizing

CVs is equivalent or similar to controlling the optimality conditions

in the regions. On the boundary between two regions the optimal-

ity conditions of both adjacent regions are satisfied, and the CVs

and constraints of both regions assume their optimal values. Thus,

whenever a constraint or self-optimizing variable of a neighbour-

ing region assumes its optimal value, we switch the control struc-

ture to the corresponding region. 

This idea was used in Jäschke and Skogestad (2012b) , and was

further refined to require only monitoring certain carefully de-

signed scalar descriptor functions in each region ( Manum & Sko-

gestad, 2012 ). Below, we give a brief outline of the ideas, and for a

more detailed presentation, we refer to the paper by Manum and

Skogestad (2012) . 

In this method it is assumed that there is no measurement

noise n y = 0 . Starting from the reduced problem (11) , the cost

function J̄ r is approximated by a quadratic cost function, as in (13) ,

and the constraints g( ̄u , d) ≤ 0 are linearized: 

min 

ū 

[
J r 
ū 

J r 
d 

][�ū 

�d 

]
+ 

1 

2 

[�ū 

T �d T ] 

[
J r 
ū ̄u 

J r 
ū d 

J r 
d ̄u 

J r 
dd 

][
�ū 

�d 

]

s.t. �g = A 

[
�ū 

�d 

]
≤ 0 . (82)

Here �g = g − g nom 

is the deviation of constraint from the nominal

(linearization) point, and A = 

[
∂g 
∂ ̄u 

∂g 
∂d 

. 
]

denotes the constraint Ja-

cobian. It is assumed that the constraints �g , can be measured and

controlled using the available degrees of freedom. 

For each set i of active constraints, one can find (by eliminat-

ing the active constraints for this region and using the null-space

method) a CV �c (i ) = H 

(i ) �y, such that the optimality conditions

can be written as 6 

�c (i ) = H 

(i ) �y = 0 (83)
6 Note that controlling �c to zero corresponds to controlling the reduced gradi- 

ent for that region to zero. 

g  

 

o  

s
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g (i ) = A 

(i ) 

[
�u 

�d 

]
= 0 . (84)

ere A 

( i ) denotes the rows of A that correspond to the active set

n region i . Combining the vectors �y and �g into an augmented

easurement vector 

y aug = [�y, �g] 
T 
, (85)

e can write the optimality conditions as 

c (i ) ,aug = H 

(i ) ,aug �y aug = 0 , (86)

here 

 

(i ) ,aug = 

[
H 

(i ) 0 

0 α(i ) 

]
. (87)

ere α( i ) is a diagonal matrix with α(i ) 
j, j 

= 1 if �g j is an active con-

traint, and zero otherwise. In every region, optimal operation can

e achieved by controlling �c (i ) ,aug = H 

(i ) ,aug �y aug to zero, that is,

y controlling the corresponding CVs and constraints at their opti-

al values. 

Starting by controlling �c (i ) ,aug = 0 in region i , a naive approach

or detecting active set changes is to simply monitor �c ( k ), aug in

ll the neighboring regions k � = i . When a disturbance moves the

rocess from region i to region k , we have �c (i ) ,aug = �c (k ) ,aug =
 at the boundary (i.e. the optimality conditions of region i and

 are both satisfied), and the control structure must be changed

o region k . This requires to monitor n ū (n neighbours,i ) scalar variable

alues in each region i , where n ū is the total number of degrees of

reedom including active constraints, and n neighbours, i is the number

f regions neighbouring region i . This number may become quite

arge for real systems. 

To reduce the number of variables to be monitored, Manum and

kogestad (2012) proposed to construct a scalar descriptor function

 Baoti ́c, Borrelli, Bemporad, & Morari, 2008 ) in each region. This

unction is monitored in each neighboring region, and active set

hanges are identified by comparing its value in the current region

ith the values of the descriptor functions of the neighbouring re-

ions. This reduces the number of variables to be monitored from

 ū (n neighbors ) to n neighbors + 1 , which can be a significant reduction. 

The scalar valued descriptor function f i ( y ) for each region i is

onstructed by pre-multiplying the CVs by a non-zero constant

ector w 

(i ) ∈ R 

n u , such that 

f i (y ) = w 

(i ) T H 

(i ) ,aug �y aug . (88)

aoti ́c et al. (2008) show that any vector w 

( i ) may be used for con-

tructing a scalar piecewise affine descriptor function, as long as

t is not in the left null-space of (H 

(i ) ,aug − H 

( j) ,aug ) , where i and j

enote two neighboring regions. However, from a numerical point

f view, one would desire vectors w which are robust to small er-

ors, and an algorithm for systematically constructing such a vector

s presented in Baoti ́c et al. (2008) ; Manum and Skogestad (2012) . 

Whenever the difference between the value of the descriptor

unction of the current region and a neighbouring region changes

ign, an active set change occurs, and the control structure is

witched to the corresponding neighbouring region. An example

or such a descriptor function is given in Fig. 5 . Assume that the

rocess is initially operated in Region 3, where f 3 ( y ) takes values

ithin the interval [2, 3]. It can be seen that the function values

f the neighbouring functions f 2 (y ) = 2 and f 4 (y ) = 2 y − 9 evalu-

ted in Region 3 are below the function value of f 3 ( y ). Thus we

ave sign ( f 3 − f 4 ) = 1 , and sign ( f 3 − f 2 ) = 1 . When moving to Re-

ion 2, the sign of f 3 (y ) − f 2 (y ) changes to −1 , while the sign of

f 4 (y ) − f 2 (y ) remains unchanged at 1. Thus, by monitoring the sign

f the differences in the descriptor functions, the new region to

witch to can be detected. 
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Fig. 5. Illustration for changing regions (Figure adapted from Baoti ́c et al., 2008 ). 
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Fig. 6. Cascade structure for handling active set changes (Adapted from Cao, 2004 ). 
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.2. Integrated approach 

The parametric programming approach described above can

esult in complicated control systems with many different CVs

one for each region) and corresponding switching laws. Especially

hen the number of regions is large, the complexity of this ap-

roach can render it practically infeasible. In contrast, the inte-

rated approach aims at finding a single control structure, which

akes sure that all variables remain in the pre-specified bounds,

egardless of the value of the disturbance or the noise. Although

here will be a loss due to not satisfying active constraints, the

dea is that the simplicity of the control structure outweighs this

isadvantage. 

In the local integrated approach proposed by ( Hu, Umar, Xiao,

 Kariwala, 2012 ), a new constraint variable z ∈ R 

n g is introduced

hat corresponds to the value of the inequality constraint in (11) ,

o that 

 = g( ̄u , d) ≤ 0 , (89)

here z may also contain inputs u and states x . Linearizing g z ( z, d )

round the nominal operating point yields 

z = G 

z �ū + G 

z 
d �d ≤ 0 . (90)

rom equations (21) –(23) , keeping �c = H�y at a constant set-

oint ( �c = 0 ) we obtain upon solving for �ū 

u = −(H G 

y ) −1 H [ G 

y 

d 
W d W n ] 

[
d ′ 
n 

′ 

]
. (91)

nserting (91) into (90) yields 

z = 

(
−G 

z (H G 

y ) −1 H 

[
G 

y 

d 
W d W n 

]
+ G 

z 
d [ W d 0 ] 

)[d ′ 
n 

′ 

]
≤ 0 . (92) 

e observe that here again, the term (H G 

y ) −1 H appears in (92) .

hus, following the argument in Section 4.3 , pre-multiplying H

ith any invertible matrix Q will not change the value of �z . Us-

ng this information, Q may be selected to make (HG 

y ) −1 = I. Then

e define 

 = −G 

z H 

[
G 

y 

d 
W d W n 

]
+ G 

z 
d [ W d 0 ] . (93)

nder the assumption of a uniform distribution of [ d ′ n ′ ] the el-

ments of z assume their largest values when the elements of [ d ′ 
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′ ] are at their bounds, i.e. either +1 or −1. Thus, the constraints

92) can be rewritten as 

 

B i ‖ 1 ≤ 0 i = 1 . . . n g (94) 

here B i denotes the i th row of B . 

The problem of finding H that minimizes the average loss L a v =
1 
2 

∥∥∥J 1 / 2 uu (H G 

y ) −1 H Y 

∥∥∥2 

F 
can thus be formulated as: 

in 

H 

1 

2 

∥∥J 1 / 2 uu HY 
∥∥2 

F 

.t. 

G 

y = I 

(
−G 

z H 

[
G 

y 

d 
W d W n 

]
+ G 

z 
d [ W d 0 ] 

)
i ︸ ︷︷ ︸ 

= B i 

∥∥∥∥∥∥∥
1 

≤ 0 , i = 1 ..n g (95) 

his is a convex problem which is either infeasible, (then there

s no variable combination that satisfies the constraint over the

hole region), or has a unique solution, and the CV that minimizes

he loss without violating the constraints is �c = H�y . 

emark 9. The problem (95) does not minimize the loss exactly

hen constraints that are nominally active become inactive. This

s because J uu depends on the active set of the linearization point,

nd the curvature will change when constraints become active or

nactive. However, when there are no active constraints at the lin-

arization point (or they do not become inactive), this approach

an be expected to represent the true local loss well. 

emark 10. Note that in (95) we have a slightly different cost

unction as previously in the convex formulation (63) . That is, be-

ause in (63) the additional degree of freedom was used to make

G 

y = J 1 / 2 uu . In the case presented in this section, we use the addi-

ional degree of freedom for setting HG 

y = I. Therefore the J uu term

oes not cancel, and J uu remains in the objective of the optimiza-

ion problem for finding H . 

.3. Cascade control approach 

The cascade control approach by Cao (20 04; 20 05) is an option

hen only few constraints can become active. It is based on

he assumption that the process is operated in an unconstrained

egion most of the time, and that the number of constraints that

an become active, is lower or equal to the number of CVs. The

ontrol structure is implemented in a cascade fashion, see Fig. 6 .

he setpoint c s of the inner loop acts as manipulated variable for

he outer loop. As long as the constraint does not become active

he outer loop with controller K 1 will manipulate the setpoint

f the inner loop such that a self-optimizing CV is kept at its

etpoint. However, when a new constraint becomes active, the

aturation block will limit the setpoint of the inner loop such that

he constraint is not violated. 

Since the self-optimizing control variables are selected for the

nconstrained nominal case, this approach will lead to losses when

he constraints become active. If the process is operated in the
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to u = d, which makes the gradient zero, J u = 0 . 
nominal region most of the time, then the loss may be negligi-

ble. However, when the set of active constraints is likely to change

frequently, other approaches, like the integrated approach or the

parametric programming approach are better suited. 

5.4. Constraint matching 

Approximating nonlinear plant constraints linearly, as done in

(82) and (90) can lead to feasibility problems, because the nonlin-

earity of the plant is not taken into account for the control struc-

ture selection ( Manum & Skogestad, 2012 ). One way of addressing

this problem is to measure the real constraint values, and to treat

the distance to the constraints as a measured disturbance. In effect,

this adapts the constraints in the model to match the real bounds.

5.5. Conclusion 

Handling changing sets of active constraints is still one of the

difficult issues when using self-optimizing control. The cascade and

the multiparametric programming approaches are limited in appli-

cability when the number of constraint regions is large. The num-

ber of potential regions grows exponentially with the number of

constraints, and although the regions may be tracked by scalar

functions, it can easily become infeasible in practice. The cascade

approach, although very simple and pragmatic, is limited because

the number of constraints, which can become active, has to be less

than the number of CVs. 

The integrated approach, because of its simplicity, is very much

in the spirit of self-optimizing control. However, it may be impos-

sible to find a single control structure, which is feasible for all dis-

turbances. If a feasible H matrix can be found, the corresponding

loss can be used to judge if it is indeed self-optimizing. If this is

not the case, then one may divide the disturbance space, and de-

sign two separate control structures. This can be done until the

loss is acceptable. A similar procedure can be used when the over-

all H is infeasible. 

6. Self-optimizing CVs for larger operating windows 

Most approaches reviewed so far are based on linearization

around a nominally optimal operating point, and result in locally

optimal control structures. If disturbances cause the plant to oper-

ate far away from the nominal point, the resulting loss of a local

self-optimizing control scheme may become very large. CVs that

perform well only locally may not be desirable in this case. Below

we summarize some of the approaches that address this issue. 

6.1. Polynomial zero loss-method 

Using CVs that are linear combinations of measurements may

result in an unacceptable loss because of strong curvature at the

optimum. To handle these cases, the null-space method has been

generalized by Jäschke and Skogestad (2012b) to systems described

by polynomial equations. This method gives optimal CVs which

are independent of a linearization point, and gives zero loss under

the assumption of no measurement noise and no active constraint

changes. As the method does not rely on a selected linearization

point, this may be considered a “global” approach. 

The point of origin is the steady-state optimization problem (1) .

Assuming that the active set does not change, the problem can be

written as an equality constrained optimization problem 

min J̄ ( ̄u , x, d) 

s.t. g( ̄u , x, d) = 0 , (96)
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ogether with the corresponding measurement relations (assuming

ero noise) 

 = m ( ̄u , x, d) . (97)

urthermore, we assume that J̄ ( ̄u , x, d) and g( ̄u , x, d) are polyno-

ials in the polynomial ring R [ x, d] . Loosely speaking this can be

onsidered as polynomials in the variables x and d with coefficients

n R . Moreover, it is assumed that Problem (96) has an optimal so-

ution in the region, and the linear independence constraint qual-

fications (LICQ) and sufficient secondary conditions for optimality

 Nocedal & Wright, 2006 ) are satisfied in the region. Then the first

rder necessary optimality conditions are 

 ̄J ( ̄u , x, d) + ∇g( ̄u , x, d) T λ = 0 (98)

( ̄u , x, d) = 0 , (99)

here the variables λ ∈ R 

n g denote the Lagrangian multipliers, and

denotes the derivative with respect to u and x . 

For obtaining the CVs, the Lagrange multipliers λ may be elim-

nated analytically by pre-multiplying (98) by a matrix N( ̄u , x, d) ∈
 

n ū ×(n ū −n g ) which is in the null-space of ∇g( ̄u , x, d) , such that

( ̄u , x, d) T ∇g( ̄u , x, d) T = 0 . Then (98) becomes 

 red = N( ̄u , x, d) T ∇ ̄J ( ̄u , x, d) = 0 . (100)

 red is called the reduced gradient. Unlike in the null-space method,

he matrix N( ̄u , x, d) is not constant, it is a function of the operat-

ng point ū , x, d, and has to be calculated analytically. 

Having eliminated λ, it remains to eliminate the unknown

tates x and disturbances d . It is shown in Jäschke and Skogestad

2012b) that if 

( ̄u , x, d) = 0 

 − m ( ̄u , x, d) = 0 (101)

as a finite number of solutions when considered as equations in

he variables x and d , and d i � = 0 and x j � = 0, then it is possible to

nd functions R k ( ̄u , y ) ∈ R , such that for k = 1 ..n u we have 

 k ( ̄u , y ) = 0 ⇔ 

{ 

[ N( ̄u , x, d) T ∇J( ̄u , x, d)] k = 0 

g( ̄u , x, d) = 0 

y − m ( ̄u , x, d) = 0 . 

(102)

ere, the notation [ · ] k denotes the k th element of a vector. In

ords, it is possible to eliminate the disturbances d and inter-

al states x from the reduced gradient without explicitly solving

101) for x and d . The function R k ( ̄u , y ) is called sparse resultant or

oric resultant ( Cox, Little, & O’Shea, 2005 ) of the system (102) . It

an be calculated using computer algebra software. A freely avail-

ble software package for Maple ( Waterloo Maple Inc., 2014 ) is de-

cribed in Busé and Mourrain (2003) . 

The polynomial zero loss method gives a CV, which is zero if

nd only if the reduced gradient is zero. Since all computations

re analytical, the resulting CV expressions can become very com-

lex, rendering them useless in practice. However, in some practi-

al cases they have a very simple structure ( Jäschke & Skogestad,

012c; 2014 ). 

xample 7. We consider again the cost function J = 

1 
2 (u − d) 2 , but

his time we assume nonlinear measurements: 

 1 = 

d 2 + u 

d 

 2 = ud, (103)

or this case, the gradient is J u = u − d, and we can write the mea-

urements as polynomials y 1 d − d 2 − u = 0 and y 2 − ud = 0 . Apply-

ng the above method to eliminate u and d we obtain the CV 

 = y 2 + 2 y 1 − y 2 1 − 1 . (104)

he reader may verify that for a given d � = 0, controlling c = 0 leads
control – A survey, Annual Reviews in Control (2017), 

http://dx.doi.org/10.1016/j.arcontrol.2017.03.001


J. Jäschke et al. / Annual Reviews in Control 0 0 0 (2017) 1–25 15 

ARTICLE IN PRESS 

JID: JARAP [m5G; April 4, 2017;1:26 ] 

6

 

b  

a  

e  

a  

g  

d  

s

 

c  

b  

w  

J  

t  

l  

g

L

T  

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

g  

g

 

o  

p  

i  

d  

r  

h  

i  

s  

H  

b  

b

 

s  

m  

a  

(  

m  

i  

o

6

 

r  

fi  

w  

n  

T  

C  

o

 

p  

m  

c  

s  

p  

t  

o  

i  

a  

t  

t  

r  

c  

t  

c  

e  

c  

f

6

 

t  

C  

d  

t  

d  

d

 

a

m

s

w  

a  

n  

J

J  

F

c

 

a  

m  

c  

a  

Y  
.2. Regression approach 

Another approach for finding self-optimizing CVs was proposed

y Ye, Cao, Li, and Song (2013) . This approach can be considered

 surrogate model approach, where first a model is used to gen-

rate “gradient measurements” for a wide range of disturbances,

nd then a linear or polynomial function is fitted to this data. If a

ood fit is obtained, this fitted function will approximate the gra-

ient well over all the operating envelope, and may be used as a

elf-optimizing CV. 

In Section 4 it was shown that under the assumption that the

orrect active set is known and does not change, the local loss can

e expressed as the weighted norm of the gradient (20) , where the

eighting factor is the inverse square root of the reduced Hessian,

 

−1 / 2 
uu . By using a controller with integral action, the CV will be con-

rolled to its setpoint h (y ) = c s , or equivalently h (y ) − c s = 0 . The

oss for a given operation point is then given by ( Jäschke & Sko-

estad, 2011 ) 

 = 

1 

2 

∥∥J −1 / 2 
uu ( J u − ( h (y ) − c s ) ) 

∥∥2 

2 
. (105) 

his expression is used in the regression method proposed by Ye,

ao, Li, and Song (2013) , which consists of the following steps: 

1. The process is simulated for N different values of inputs u , dis-

turbances d , and noise n y over the whole operating range. The

sample points should be chosen such that they are representa-

tive of the noise and disturbance distribution. At each of these

i = 1 , . . . , N sample points, the gradient J (i ) 
u and the correspond-

ing measurement values y ( i ) are recorded together with the re-

duced Hessians J (i ) 
uu . 

2. The sampled gradient values are used to fit a regression model

of form 

ˆ J u = h (y ) , which describes the relationship between the

measurements and the gradient. In its simplest form h ( y ) is lin-

ear, i.e. h (y ) = Hy, and the regression procedure calculates the

elements in the H -matrix and the optimal setpoint c s . (Alterna-

tively a nonlinear function such as a polynomial function may

be used to capture nonlinear effects.) The objective to be mini-

mized by the regression is based on (105) : 

φ = 

1 

2 N 

N ∑ 

i =1 

∥∥∥J (i ) 
uu 

−1 / 2 
(J (i ) 

u − (Hy (i ) − c s )) 

∥∥∥2 

2 
. (106) 

The regression gives the matrix H and the setpoints c s , such

that the average loss is minimized. 

3. The resulting CV is then an approximation of the gradient, c =
Hy = 

ˆ J u ≈ J u , which is to be controlled at a constant setpoint c s .

In order to obtain the model of the gradient in terms of the

easurements, Ye, Cao, Li, and Song (2013) use least squares re-

ression and a neural network. However, any other regression that

ives a good fit may be used as well. 

The evaluation of the gradient at the different sam ples in the

perating space can be done analytically, if the model is very sim-

le. In more complicated cases, the gradient must be evaluated us-

ng finite differences, or possibly automatic differentiation proce-

ures. Large-scale systems with many inputs and disturbances will

equire a lot of sampling points. To reduce the amount of data that

as to be generated and saved, one may replace J uu in (106) by the

dentity matrix I . This approximation was found to give good re-

ults, while simplifying the procedure ( Ye, Cao, Li, & Song, 2013 ).

owever, the challenge with this approach is still that the num-

er of sampling points grows exponentially with number of distur-

ances and noisy measurements. 

In principle, all measurements y could be used in the regres-

ion model. However, as it is typically desired not to include more

easurements than necessary into the CV, the regression based

pproach can also be combined with a branch and bound method
Please cite this article as: J. Jäschke et al., Self-optimizing 
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 Kariwala, Ye, & Cao, 2013 ) for finding best subsets of measure-

ents. The idea of fitting a measurement function to the optimal-

ty conditions has also been applied for finding CVs for a dynamic

ptimization problem ( Ye, Kariwala, & Cao, 2013 ). 

.3. Controlled variable adaptation 

In the regression based approach from Section 6.2 , a simple

egression function is generally preferable in order to avoid over-

tting. Therefore, a certain level of regression errors is inevitable,

hich may make the operational range with an acceptable eco-

omic loss relatively narrow even though the approach is “global”.

o address this issue, a CV adaptation scheme was proposed by Ye,

ao, Ma, and Song (2014) , where the CVs are adjusted depending

n where the process is operated. 

In this scheme, a plant model is simulated off-line on sample

oints distributed over the entire operating region. The resulting

easurements, manipulated variables and gradient variables are

ollected and stored in a database. Based on the collected data

et, a non-optimality monitoring model is built up using statistical

rocess monitoring approaches, where the non-optimality status is

reated as a special process “fault”. When applying this scheme

nline, the new measurements are first checked by the monitor-

ng model to determine whether current operation is optimal. If

 non-optimal status is identified, the current measurements are

hen used to find a subset of neighbourhood sampling points in

he database to apply the so called “just-in-time” regression. The

esulting CVs together with their setpoints determined as coeffi-

ients of regression functions are then applied to the control sys-

em for CV adaptation. Numerical case studies show this scheme

an significantly reduce economic loss in a wide operational range

ven with simple linear CVs of a few measurements. However, the

ontrollers may have to be re-tuned in order to obtain a good per-

ormance over the whole operating region. 

.4. Global approximation of controlled variables 

Recently, another approach for solving the self-optimizing con-

rol problem over the whole operation range was proposed by Ye,

ao, and Yuan (2015) . The idea is to separate the loss contribution

ue to disturbances L d , and the contribution due to noise L n , such

hat the total loss is L = L d + L n . As in the regression approach, the

isturbance space is sampled, and for each disturbance realization

 

( i ) , the values of y ∗(i ) , J (i ) 
uu and G 

y ( i ) are stored. 

Then an optimization problem is formulated to minimize the

verage loss over all disturbance realizations i = 1 . . . , N, 

in 

H 

1 

N 

N ∑ 

i =1 

(L (i ) 
d 

+ L (i ) 
n ) 

 . t . HG 

y 
nom 

= J uu,nom 

, (107) 

here L (i ) 
d 

= 

1 
2 y 

∗(i ) T H 

T J (i ) 
cc Hy ∗(i ) denotes the loss due to disturbance

nd L (i ) 
n = 

1 
2 trace (W 

2 H 

T J (i ) 
cc H) the loss resulting from measurement

oise. For independent noise W = E(nn T ) is a diagonal matrix, and

 

(i ) 
cc is defined as ( Halvorsen et al., 2003 ) 

 

(i ) 
cc = (HG 

y, (i ) ) −1 J (i ) 
uu (HG 

y, (i ) ) −1 . (108)

urther, G 

y 
nom 

and J uu, nom 

are the gain and the Reduced Hessian 

orresponding to a chosen nominal operating point. 

However, even with the simplified loss evaluation derived

bove, to solve (107) the optimal CV as linear combinations of

easurements is still not easy. The optimization problem is non-

onvex due to the dependence of J cc on the combination matrix, H

s shown in (108) . In addition to a direct optimization approach,

e, Cao, and Yuan (2015) proposed a short-cut approach by fixing
control – A survey, Annual Reviews in Control (2017), 
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J cc at a nominal point. It is interesting to note that the short-cut

approach leads to an analytic solution of H similar to the local ap-

proaches, although matrices involved in the global solution have to

be constructed based optimization data obtained from the whole

operation space. For further details of this derivation, readers are

referred to the original paper by Ye, Cao, and Yuan (2015) . 

6.5. Conclusion 

There have been a number of attempts to find CVs that give

good operation over a wide operating range. The polynomial zero

loss method is a generalization of the null-space method, that is

capable of handling higher order curvature in the system. How-

ever, it is only suitable for small problems, as the complexity of

the measurement combination tends to grow with variable num-

ber and degree of the polynomials. The complexity of the invariant

is difficult to know a-priori. Depending on the problem structure,

it may be very simple, or very complicated. Especially when high

order terms are present in the resultant, the CV may become very

sensitive to model error and measurement noise. 

The regression based approach makes it possible to design CVs

that are obtained from model data from the whole operating range,

as long as the active constraints do not change. Moreover, it al-

lows for finding polynomial measurement combinations, that are

simpler than the exact ones found by the polynomial method de-

scribed in Section 6.1 . Since the data is obtained from offline sim-

ulations, it is possible to run it with a large number of sample

points, such that a good approximation of the gradient can be

found in terms of measurements. 

The CV adaptation scheme adopts a just-in-time regression ap-

proach on-line in order to enlarge the operational range with ac-

ceptable economic loss particularly associated with relatively sim-

ple CV functions. It is worth pointing out that in a traditional hi-

erarchical process automation scheme, an optimization layer only

updates set-points of feedback control loops in the low layer to

achieve real-time optimization. In such a scheme, without adapting

the CVs, such updating has to be executed very regularly in order

to achieve optimal operation. The CV adaptation scheme, however,

may require less frequent updates, because the CVs are designed

such that they are self-optimizing around the current operating

point, and they are only updated when necessary. 

Finally, for finding global self-optimizing CVs it simplifies the

calculations significantly to separate the loss contributions due to

noise ( L n ) and due to disturbances ( L d ). Thus only the disturbance

space must be sampled, while the noise contribution can be calcu-

lated without sampling all noise realizations. This derivation may

facilitate further development in this field. Moreover, the similar-

ity of the results obtained by the ‘global’ approach and the local

methods may be worth further investigation. 

7. Model-free approaches for self-optimizing control 

The previously described methods all rely on an accurate model

for finding self-optimizing CVs. This may be considered a draw-

back, because the cost of modelling can be very high. To address

this issue, model-free approaches have been developed. These

methods rely on plant measurement data instead of a-priori model

information. Often historical data are readily available, and can be

analyzed to study the behavior of the plant. Both approaches de-

scribed below are local methods that rely on the same assumptions

as the developments in Section 4 . 

7.1. Historical data approach (using non-optimal data) 

This approach was proposed by Jäschke and Skogestad (2013) ,

and the idea is to use historical measurement data to find a
Please cite this article as: J. Jäschke et al., Self-optimizing 
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uadratic model of the operating cost. In particular, historical data

f the plant measurements is used to fit parameters J nom 

, J y and J yy 

o obtain the following model of the operating cost 

 = J nom 

+ J y �y + 

1 

2 

�y T J yy �y. (109)

hen, considering the previously derived quadratic approximation

f the cost (13) , 

 ≈ J nom 

+ 

[
J u J d 

][�u 

�d 

]
+ 

1 

2 

[
�u 

T �d T 
][ J uu J ud 

J du J dd 

][
�u 

�d 

]
, 

(110)

nd assuming that the measurement equations (50) are invertible,

uch that 

�u 

�d 

]
= 

[
˜ G 

y 
]† 

�y, (111)

e can eliminate �u and �d from (110) and obtain 

 ≈ J nom 

+ 

[
J u J d 

][
˜ G 

y 
]† ︸ ︷︷ ︸ 

= J y 

�y + 

1 

2 

�y T 
[

˜ G 

y 
]† T 

[
J uu J ud 

J du J dd 

][
˜ G 

y 
]† 

︸ ︷︷ ︸ 
= J yy 

�y. 

(112)

Considering the term J yy more closely it can be seen that 

 yy = 

[
˜ G 

y 
]† T 

[
J uu J ud 

J du J dd 

][
˜ G 

y 
]† 

(113)

= 

[
˜ G 

y 
]† T 

[ [
J uu J ud 

]
˜ G 

y 
† [

J du J dd 

]
˜ G 

y 
† 

] 

(114)

= 

[
˜ G 

y 
]† T 

[
H [

J du J dd 

]
˜ G 

y 
† 

]
, (115)

here the matrix H = 

[
J uu J ud 

][
˜ G 

y 
]† 

is the same as in the ex-

ression for the null-space method (52) . Therefore, if the matrix

 yy is known, the H -matrix from the null-space method can be re-

overed by multiplication from the left with G 

y T , 

 = G 

yT J yy . (116)

The above results can be used for finding CVs from historical

ata by the following steps: 

1. Run plant experiments to obtain G 

y . 

2. Analyze historical plant data and the plant experiment data to

determine J nom 

, J y , and J yy . 

3. Compute the optimal measurement combination as H = G 

y T J yy . 

In general Step 1 will require plant test experiments where the

nputs u are changed, and G 

y is approximated using finite differ-

nces. Step 2 requires to measure and record historical the oper-

tion cost J together with all available measurements at different

ample times, and to fit the parameters J nom , J y , and J yy to the mea-

ured cost. Also closed loop operation data should be included in

he data set for finding J yy , because the relationship between the

ost and the measurements will not change when a feedback-loop

s closed. However, in order to obtain a good estimate of J yy , it

s necessary to also include open-loop test data (for example the

ata that is used to find G 

y ) as this also includes directions in y

hat may not occur when using only closed-loop data. In contrast

o the method described in Section 7.2 , it is not required that the

ata is obtained from optimal operation. It is rather desirable that

he data comes from many suboptimal points that are not very far
control – A survey, Annual Reviews in Control (2017), 

http://dx.doi.org/10.1016/j.arcontrol.2017.03.001


J. Jäschke et al. / Annual Reviews in Control 0 0 0 (2017) 1–25 17 

ARTICLE IN PRESS 

JID: JARAP [m5G; April 4, 2017;1:26 ] 

f  

t  

i

 

p  

i  

d  

f

R  

G  

m  

o

7

 

p  

t  

w  

i  

b  

t

Y

T  

i  

r  

a  

o  

W

Y

w  

i

n  

w  

t

 

t  

s  

o  

Y  

t  

t  

m  

c  

p  

“  

7

 

o  

i  

f  

a  

D  

o  

2

 

d  

a  

m  

a  

p

8

 

i  

t  

t  

s  

fi  

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

b  

s  

t  

o  

s  

B  

v  

w  

m  

h  

l  

o  

o  

n  

t  

P  

s  

w

 

o  

(  

g  

t  

m  

b  

f  

t  

(

 

p  
rom the optimal point. Since only disturbances that are present in

he measurement data will be accounted for in the fitted model, it

s beneficial to collect the data over a long operation period. 

The measurements y are not independent data, therefore a sim-

le least squares regression will give poor results. However, by us-

ng partial least squares (PLS) regression which can handle depen-

ent and collinear data, better results can be achieved and the cost

unction parameters in (109) can be estimated quite well. 

emark 11. Note the similarity between the expressions H =
 

y T (Y Y T ) −1 from (64) and H = G 

y T J yy from (116) . From this, the

atrix YY T may be interpreted as an approximation to the inverse

f J yy . 

.2. Optimal data approach 

In contrast to the more general approach described in the

revious section, the optimal data approach ( Jäschke & Skoges-

ad, 2011a ) requires measurements from optimal data points. One

ay to obtain these data points is to apply an extremum seek-

ng method ( Krstic & Wang, 20 0 0 ). All the measurements that has

een collected from periods of optimal operation at sample times

 1 , t 2 , . . . , t N is collected into a large data matrix 

 = 

[
�y (t 1 ) �y (t 2 ) . . . �y (t N ) 

]
. (117) 

he exact cost function or its value need not be known, as long as

t is known that the data is optimal. We further assume a linear

elationship from the inputs �u and disturbances �d to the data

s in (21) , and that the measurement noise n y is negligible. More-

ver, as in the null-space method, it is assumed that n y ≥ n u + n d .

e then have 

 = 

[
∂y opt 

∂d 
�d(t 1 ) 

∂y opt 

∂d 
�d(t 2 ) · · · ∂y opt 

∂d 
�d(t N ) 

]
= F 

[
�d(t 1 ) �d(t 2 ) . . . �d(t N ) 

]
, (118) 

here �d (t 1 ) , . . . , �d (t N ) are the disturbances, which where act-

ng on the process when the samples where taken. Since n y ≥
 u + n d , and we assume optimal data with no measurement noise,

e may simply select H in the left null-space of F , which happens

o be the null-space of Y . 

Because in practice the data will contain some degree of noise,

he left null-space of Y will be empty. However, we may find mea-

urement combinations that are only minimally changing under

ptimal operation, by performing a singular value decomposition

 = U	V T , and selecting H as the n u columns corresponding to

he smallest singular values. If the optimal data is consistent in

he sense that disturbances have been rejected optimally, then the

ethod can give quite good measurement combinations, which

an be used for a feedback implementation. Of course, this ap-

roach will only reject disturbances which also are present in the

learning data” Y , other disturbances will not be handled optimally.

.3. Conclusions 

The data methods have the advantage that they do not rely

n a model. The optimal data approach is relative restrictive, since

t requires that the process has been brought to optimality be-

ore recording the data. This may be done by plant perturbations

nd a gradient descent method (Experimental optimization ( Box &

raper, 1998; Jäschke & Skogestad, 2011b )), or other model-free

ptimization approaches such extremum seeking ( Krstic & Wang,

0 0 0 ). 

The general historical data approach does not require optimal

ata. Its main advantage is that it requires limited plant testing,

nd that readily available historical data can be used to obtain

ore information about the optimal behavior of the plant. As with

ll data-based methods, the quality of the results will be very de-

endent on the quality of the data. 
Please cite this article as: J. Jäschke et al., Self-optimizing 
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. Towards self-optimizing control for dynamic problems 

Considering the progress of self-optimizing control approaches

n the context of steady-state optimization, it is a natural question

o ask if the concepts can be extended towards dynamic optimiza-

ion problems such as e.g. batch processes or product grade tran-

itions. This problem is found to be much more complicated than

nding self-optimizing variables for steady-state optimization, be-

ause of several complicating issues: 

• The system is constantly changing, and finding variables (or

variable combinations) that remain constant under optimal op-

eration, even without disturbances affecting the system, can be

very difficult. 

• The time scale separation between optimization of the eco-

nomic cost and control is not as clear as for steady-state op-

timization. That is, optimization and control cannot be con-

sidered separately as in steady-state optimization, where tran-

sients are assumed to have negligible impact on the operating

cost. 

• The CVs need to be controllable, during the overall operation

period. For instance, in batch processes, the gain from inputs to

outputs can change orders of magnitude over the batch, making

it difficult to control these variables. 

• Active set changes in dynamic optimization are more difficult to

handle than in steady-state optimization. For instance, endpoint

constraints require action ahead of time, and also switching be-

tween different active path constraint sets must be done at the

right point in time. 

• The active set is dependent on both, initial conditions and dis-

turbances that may happen at any time during the process. In

contrast to the steady-state case, where only the disturbance

magnitude has an effect on the active set, also the timing of

the disturbance will affect active set changes. 

Nevertheless there has been work reported in the literature

o find simple implementation strategies for optimal operation in

atch processes. However, as the main focus of this paper is on

teady-state optimal operation, we only give a brief overview of

he main approaches. Generally, the self-optimizing control meth-

ds for dynamic systems are very close to the concept of neces-

ary conditions of optimality (NCO) tracking ( Srinivasan, Biegler, &

onvin, 2008; Srinivasan & Bonvin, 20 04; 20 07; Srinivasan, Bon-

in, Visser, & Palanki, 2003; Srinivasan, Palanki, & Bonvin, 2003 ),

here the necessary optimality conditions of the process are either

easured directly or approximated by a “solution model”. Because

andling active set changes in dynamic optimization is more chal-

enging than in steady-state optimization, previous work on self-

ptimizing control for dynamic optimization problems has focused

n cases where the active set does not change. However, this is

ot as restrictive as may seem at first sight, because the optimal

rajectories are typically composed of continuous arcs ( Srinivasan,

alanki, & Bonvin, 2003 ), during which the active set remains con-

tant. Therefore, the self-optimizing variables can be controlled

ithin each arc, if a suitable switching strategy can be found. 

One of the first to consider self-optimizing control for dynamic

ptimization problems was Dahl-Olsen, Narasimhan, and Skogestad

2008) . An approach by Ye, Kariwala, and Cao (2013) uses the re-

ression method described in Section 6.2 to find an approximation

o the optimality conditions in terms of measurements: First the

odel is simulated and optimized over the entire expected distur-

ance space, and the data samples are saved. Then a measurement

unction that approximates the optimality conditions is fitted to

his data. This kind of approach was applied by Grema and Cao

2016) to the case of waterflooding in oil reservoirs. 

Another paper by Jäschke, Fikar, and Skogestad (2011) uses the

olynomial method described in Section 6.1 . The method is appli-
control – A survey, Annual Reviews in Control (2017), 
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Table 1 

Overview over applications of self-optimizing control in the literature. 

Process References Comments 

Tennessee Eastman process Larsson et al. (2001) Large-scale case study, 

heuristics 

Heat exchanger networks Girei, Cao, Grema, Ye, and Kariwala (2014) ; Jäschke and Skogestad (2012a) ; 2014 ); Jäschke and 

Skogestad (2014) 

Linear, polynomial method and 

regression methods 

Heat integrated distillation Engelien, Larsson, and Skogestad (2003) ; Engelien and Skogestad (2004) With and without a 

pre-fractionator 

Lee & Neville Evaporator Cao (2005) ; Heldt (2010) ; ( Hu, Umar, Xiao, & Kariwala, 2012 ); Kariwala et al. (2008) ; Umar 

et al. (2012) 

Frequently studied test case 

Reactor/separator with recycle Baldea, Araujo, Skogestad, and Daoutidis (2008) ; Larsson, Govatsmark, Skogestad, and Yu 

(2003) ; Larsson et al. (2001) ; Seki and Naka (2008) ; Skogestad (2004a) 

Exothermic reactor Jäschke and Skogestad (2011b) ; Kariwala (2007) ; Ye, Cao, Li, and Song (2013) Small case study 

Gas lift allocation Alstad and Skogestad (2003) 

Gasoline blending Skogestad (2004b) 

HDA process de Araújo, Govatsmark, and Skogestad (2007) ; de Araújo, Hori, and Skogestad (2007) ; Cao and 

Kariwala (2008) 

Distillation columns Graciano, Jäschke, Le Roux, and Biegler (2015) ; Hori and Skogestad (2008) ; Kariwala and Cao 

(2010) ; Yelchuru and Skogestad (2013) 

Also regulatory layer selection 

Petlyuk column (3 products) Alstad and Skogestad (2007) ; Khanam, Shamsuzzoha, and Skogestad (2014) 

Kaibel column (4 products) Ghadrdan, Skogestad, and Halvorsen (2012) 

Refrigeration cycles Jensen and Skogestad (2007a) ; 2007b ); Verheyleweghen and Jäschke (2016) 

HVAC system Yin et al. (2015) Cooling system, lab 

experiments 

Ammonia Process Araújo and Skogestad (2008) ; Graciano et al. (2015) ; Manum and Skogestad (2012) Constraint handling Manum 

and Skogestad (2012) 

Waste water treatment de Araujo, Gallani, Mulas, and Skogestad (2013) ; Francisco, Skogestad, and Vega (2015) 

Catalytic Naphta reformer Lid and Skogestad (2008) 

Waste incineration plant Jäschke, Smedsrud, Skogestad, and Manum (2009) 

Off-gas system de Araujo and Shang (2009) 

CO 2 -capturing process Panahi and Skogestad (2011) ; Schach, Schneider, Schramm, and Repke (2011) ; 2013 ); Zaman, 

Lee, and Gani (2012) 

Advanced flash stripper Walters, Osuofa, Lin, Edgar, and Rochelle (2016) 

LNG process Husnil, Yeo, and Lee (2014) ; Michelsen, Lund, and Halvorsen (2010) 

Stryrene Monomer plant Vasudevan, Rangaiah, Konda, and Tay (2009) 

Natural Gas to liquids process Panahi and Skogestad (2012) 

IRCC HMR unit Michelsen, Zhao, and Foss (2012) 

IRCC acid gas removal unit Jones, Bhattacharyya, Turton, and Zitney (2014) 

IRCC air separation unit Roh and Lee (2014) 

Diesel hydrosulfurization plant Sayalero, Skogestad, de Prada, Sola, and Gonzlez (2012) 

Cumene process Gera, Kaistha, Panahi, and Skogestad (2011) ; Gera, Panahi, Skogestad, and Kaistha (2013) 

Sewer system Mauricio-Iglesias, Montero-Castro, Mollerup, and Sin (2015) Combined with Stochastic 

programming 

Batch-reactor-optimization de Oliveira, Jschke, and Skogestad (2016) ; Ye, Song, and Ma (2015) Batch-to-batch optimization, 

regression method 

Solid oxide fuel cell Chatrattanawet, Skogestad, and Arpornwichanop (2015) 

Oxy-fuel circulating fluidized 

bed combustion 

Niva, Ikonen, and Kovcs (2015) 

Water flooding of oil reservoirs Grema and Cao (2016) Regression method 
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cable to simple input-affine dynamic systems that are described by

polynomials. First the optimality conditions are formulated analyt-

ically, and then all unknown state and disturbance variables are

eliminated using measurement relations. 

A third method has been reported by Hu, Mao, Xiao, and Kari-

wala (2012) , where candidate CVs were evaluated by the solution

of a bi-objective optimization problem. In this approach, also a

controller is designed, and the bi-objective optimization program

attempts to simultaneously find the best CVs and minimize the

tracking error of the controller. 

Self-optimizing control concepts for dynamic optimization

problems are still an immature research field, the time-varying na-

ture of the optimal solution, and the difficulties in handling active

set changes remain the biggest challenges. Although strictly speak-

ing it is not possible to separate control and optimization, in prac-

tical cases this can often be done with a negligible loss. For exam-

ple, a batch temperature can be controlled in a time scale of min-

utes, while the complete batch runs for hours. This has been suc-

cessfully exploited also in the NCO tracking framework ( Srinivasan

et al., 2008 ) , where a “solution model” is developed, and a simpli-

fied near-optimal solution is implemented using simple controllers.

T  

Please cite this article as: J. Jäschke et al., Self-optimizing 
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. Applications of self-optimizing control 

.1. Overview of self-optimizing control applications reported in 

iterature 

Methods and concepts from self-optimizing control have been

uccessfully applied to many processes reported in the literature.

n Table 1 we have compiled an overview of processes for which a

elf-optimizing control structure has been used. 

.2. Related applications 

The idea of keeping a certain variable constant in order to

chieve a superior goal is also found elsewhere. For example, in

ndirect control ( Skogestad & Postlethwaite, 2005 ) the objective is

o operate the process such that some unmeasured primary vari-

bles y are at given setpoints. Here, only the secondary measured

ariable is controlled, while the primary variable is not controlled

irectly. In a self-optimizing control framework, one may consider

he secondary variables in indirect control as self-optimizing CVs.

hese should be kept at their optimal setpoints such that the pri-
control – A survey, Annual Reviews in Control (2017), 
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ary variables assume their optimal values. Using self-optimizing

ontrol concepts, Ghadrdan, Grimholt, and Skogestad (2013) de-

igned a static estimator that minimizes the closed-loop prediction

rror for such a case. 

The self-optimizing control ideas have also been applied for de-

igning regulatory control structures ( Yelchuru & Skogestad, 2013 ).

owever, in contrast to the approaches described above, the objec-

ive for the regulatory layer is not to minimize the economic loss,

ut rather to minimize state drift under the effect of uncertainties.

hat is, the control structure is designed in such a way that the

rocess states are affected as little as possible when disturbances

nter the plant, and the control layer above is affected minimally. 

0. Discussion on the relationship of self-optimizing control to 

ther approaches 

To achieve self-optimizing control, one needs a methodology for

esigning the control structure , i.e. selecting which variables to con-

rol with the available degrees of freedom. Once a control struc-

ure has been decided on (for example using the approaches and

ools presented previously in this paper), we may control the CVs

o their setpoints by any suitable controller. Thus, the problem of

esigning the controller and optimizing the plant can be consid-

red separately. Indeed, the idea of self-optimizing control may be

onsidered as an approach to separate the time-scales of the eco-

omic optimization and the controller design, such that the tasks

f optimization and controller design can be decoupled as much as

ossible. This paradigm distinguishes self-optimizing control from

ther methods for achieving optimal operation, such as neighbor-

ng extremal control ( Bryson & Ho, 1975; Jazwinski, 1964 ), NCO

racking ( Srinivasan & Bonvin, 2004 ), or extremum seeking control

 Ariyur & Krstic, 2003 ), where control and optimization are done

imultaneously. 

Neighboring extremal control (see e.g. Bryson & Ho, 1975;

azwinski, 1964 ) was introduced to obtain an optimal feedback law

o compute the input trajectories for perturbed optimal control

roblems. Neighboring extremal control shares with the local self-

ptimizing control methods from Section 4 that it is based on a

inearization of the nonlinear model and a quadratic approxima-

ion of the cost function. However, in neighboring extremal con-

rol this information is used to determine a state feedback law (or

utput feedback law ( Gros, Srinivasan, & Bonvin, 2009 )), while the

ocal methods for self-optimizing control in Section 4 find an op-

imal approximation of the optimality conditions in terms of the

easurements y . The controller design is then considered at a later

tage. 

We note that the term “neighboring extremal control” has also

een used to describe the way of calculating an approximation of

he gradient ( François, Srinivasan, & Bonvin, 2012 ). However, go-

ng back to the original references on neighboring extremal control

 Breakwell, Speyer, & Bryson, 1963; Bryson & Ho, 1975; Jazwinski,

964 ), it seems that the goal is to compute a feedback law, which

appens to be based on a linearization of the optimality condi-

ions. 

Extremum seeking control ( Krstic & Wang, 20 0 0 ) was also in-

roduced as a controller design methodology. The goal is to design

 controller which generates an input that maximizes the value of

 given measurement. A small sinusoidal perturbation is continu-

usly added to the input signal in order to obtain gradient infor-

ation which is used by the controller to generate an input that

rives the measurement to its maximum value. The large body of

iterature that studies the stability of extremum seeking control

chemes ( Ariyur & Krstic, 2003; Guay & Dochain, 2017; Guay &

hang, 2003; Krstic & Wang, 2000 ) reflects the fact that extremum

eeking control is a controller design methodology , and not a control

tructure design methodology. 
Please cite this article as: J. Jäschke et al., Self-optimizing 
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Moreover, to design an extremum seeking controller the cost

ust be measured online, while this is not necessary for most of

he self-optimizing control approaches. Note also that the mea-

urement to be maximized would be a very poor choice of a

elf-optimizing variable, because it has zero gain at the optimum.

oreover, if the setpoint is chosen below the optimum, there are

ultiple solutions, while if the setpoint is chosen too high, it is

nfeasible. 

NCO-tracking (Necessary conditions of optimality tracking) 

 Srinivasan et al., 2008; Srinivasan & Bonvin, 20 04; 20 07 ) is sim-

lar in spirit to self-optimizing control. The idea is simply to se-

ect the optimality conditions as controlled variables, and to make

ure they are tracked under plant operation. Here, too this ap-

roach was developed initially for dynamic optimization problems,

here the controller design and the optimality cannot be strictly

eparated, but was later also applied for optimizing steady state

rocesses ( François et al., 2005 ). While the optimality conditions

re the ideal self-optimizing controlled variables, they are typically

ot measured, such that it is necessary to express them in terms

f measurements. This is indeed the approach used in the method

or systems described by polynomials ( Jäschke & Skogestad, 2012c ).

owever, it is not always possible to express the optimality condi-

ions exactly in terms of measurements, and in this case the loss

 used in Section 4 is a natural criterion for assessing the qual-

ty of the approximation. The local self-optimizing control meth-

ds ( Alstad & Skogestad, 2007; Alstad et al., 2009; Halvorsen et al.,

003 ) were developed directly based on the loss L . The connection

o the optimality conditions was established later by Jäschke et al.

2011) . 

1. Current status and future work 

1.1. Summary of the status of self-optimizing control 

In recent years, the problem of finding self-optimizing con-

rolled variables has been approached rigorously, and mathemat-

cal formulations for local methods have been developed. These

ethods are based on an approximation of the nonlinear problem

round a nominal operating point, such that they are essentially

ocal results. Nevertheless, they are useful for finding good can-

idate control structures, that then can be evaluated on a larger

peration region. Based on the local methods, tailor-made branch

nd bound methods were proposed to efficiently search all possi-

le combinations of variables for the best subset of measurements

 Kariwala & Cao, 2009 ). 

The local methods were extended towards model-free, data-

ased approaches, where the optimal self-optimizing CVs are

ound by analyzing measurement data. Moreover, there have been

ignificant effort s to obt ain variables that are near-optimal in a

arger operating region. These include possibilities for handling ac-

ive set changes, but also smooth nonlinearities. Connections to re-

ated methods such as NCO tracking were established ( Jäschke &

kogestad, 2011b ), and were used to develop approaches for find-

ng CVs that are not based on linearization around a nominal oper-

ting point. In particular the polynomial approach ( Jäschke & Sko-

estad, 2012b ) and data driven approaches ( Ye, Cao, Li, & Song,

013 ) may be used for finding CVs that can be used within a larger

perational envelope. A different approach to cover larger opera-

ion regions is described by Manum and Skogestad (2012) , where

he authors propose switching the control structure for each active

et region. 

Self-optimizing control ideas were also applied to dynamic opti-

ization problems. However, they apply to very specific cases, and

ore general results are currently not available. 
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11.2. Future work – open issues 

Despite the significant progress in the field of designing self-

optimizing control structures, there remain challenges and open

questions that need to be addressed in future research: 

Industrial applications. Considering that self-optimizing con-

trol has been applied in many simulation studies, it seems surpris-

ing that there has been little application in experiments and in-

dustry. The only experimental work that we are aware of was was

performed by Yin, Li, and Cai (2015) . While many industrial pro-

cesses are controlled by self-optimizing CVs, it seems that the pre-

dominant way to design a control structure is still based on engi-

neering insight. A successful industrial application and verification

of the approaches presented in this paper could pave the way for

more wide-spread industrial acceptance, and operational savings.

In addition this may lead to interesting practical and theoretical

challenges, as well as new insights. 

Integration of self-optimizing control ideas into the process

design phase. Many decisions that affect the operation of the plant

are made during the plant design phase. In order to reach the max-

imum potential it is necessary to study how the design will affect

later performance during operation. Although there has been work

on integrating process control and design, see e.g. Sharifzadeh

(2013) , there has been no work on systematically integrating self-

optimizing control concepts into the plant design phase. Results in

this area could have a large impact, because modern plant design

is generally based on process models, and including operational as-

pects into the plant design can lead to significant savings later dur-

ing operation of the plant. 

Structural constraints on the H -matrix. Beside not using all

available measurements in a CV, see Section 4.7 , it is often desir-

able to design the control structure such that measurements of a

certain part of the plant are controlled by inputs that belong to the

same part. This imposes a structure on the measurement selection

matrix. Although some special structures (the ones that are pre-

served upon premultiplying H by a non-singular invertible matrix)

can be handled with the present approaches, finding control struc-

tures with general structural constraints still is a difficult problem

that requires finding a H matrix of the desired structure that mini-

mizes the Frobenius or 2-norm of M = J 1 / 2 uu (H G 

y ) −1 H Y . This results

in non-convex optimization problems that are difficult to solve. 

Robust self-optimizing control. Most current methods for se-

lecting self-optimizing CVs are based on availability of a model

that reflects the true plant behavior. In particular, all uncertainty

of the plant is assumed to be modelled as parametric uncertainty.

In reality there will be uncertainty in the model and its structure,

as well as unmodelled parametric disturbances. If the models are

poor, this may lead to an unacceptable economic loss. Currently

there are no systematic methods for addressing uncertainty in the

model structure within the self-optimizing control framework. Fu-

ture research may address this for example by probing the system

to handle unmodelled disturbances. Similar to the ideas in Jäschke

and Skogestad (2011b) , one may combine self-optimizing control

ideas with extremum seeking methods ( Krstic & Wang, 20 0 0 ) or

dual control approaches ( Heirung, Foss, & Ydstie, 2015 ). 

Self-optimizing CVs from operating data. Although there has

been preliminary work on finding self-optimizing controlled vari-

ables based on plant data ( Section 7 ) there are still open ques-

tions. One issue is how to systematically handle noise in the data.

Other topics of interest are methods for analyzing the data, and for

extracting information that is relevant for finding self-optimizing

CVs. Finally, it would be desirable to develop methods for com-

bining model information with measurement data in order to ob-

tain improved performance. Potential research directions may in-

clude combining model based methods with data, using e.g. mod-

ifier adaptation techniques ( Marchetti, Chachuat, & Bonvin, 2010 ). 
Please cite this article as: J. Jäschke et al., Self-optimizing 
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Active Set changes. An issue that often makes it difficult to ap-

ly self-optimizing control ideas to real systems is that the opti-

al solution may become very complex with many active set re-

ions and complicated measurement combinations involving many

ariables. Possible future research may therefore consider ways for

urther simplifying the results that have been outlined in this pa-

er. For example, if we allow only p number of partitions of the

perating range (i.e. p control structures), what are the p optimal

easurement combinations? 

Short-cut methods. At present, finding a self-optimizing con-

rol structure requires modelling the plant and optimizing the

odel to find the nominal operating point. This can be very cum-

ersome, and it would be useful to be able to suggest “standard”

olutions that can be shown to be near-optimal in most practically

elevant cases. This could take the shape of a “control structure li-

rary” which contains building blocks for a self-optimizing control

tructure. These building blocks could then be put together to yield

n overall self-optimizing control structure. 

Self-optimizing variables for dynamic optimization prob-

ems. For dynamic optimization problems, the time-dependency of

he optimal operation strategy may result in extremely many pos-

ible scenarios and active constraint regions, and finding ways to

eal with this complexity is an open question. Moreover, within a

egion, finding variables or variable combinations that give near-

ptimal operation when kept at their constant setpoints is not

traightforward for dynamic optimization problems. Also, handling

easurement noise has not been considered systematically for

uch cases. 

Including controllability considerations in the CV selection.

ypically, only the steady state economics are taken into account

n the present methods for CV selection. However, in practice

he dynamic behavior of the CVs and controllability are impor-

ant selection criteria, too. A potential research direction is to in-

lude these dynamic controllability considerations into the self-

ptimizing framework in a systematic manner. 

Self-optimizing control with continuous and integer vari-

bles. In practice there often occur situations, where units are

urned on or shut down. This gives rise to optimization problems

ith both integer and continuous variables. There are currently no

ethods to address such kind of problem systematically. 

General nonlinear combinations of measurements as CVs Al-

hough there has been work on finding polynomial measurement

ombinations as CVs for polynomial systems, there are no sys-

ematic ways for finding CVs that consist of more general nonlin-

ar measurement combinations. Moreover, it would be desirable to

ave tools to help the engineer decide if a nonlinear measurement

ombination is required or not. 

Applications in other disciplines. Self-optimizing control has

een developed in the process control community. However, the

dea of keeping certain key variables constant at a given set-

oint when disturbances occur, is applied in other fields as well

 Skogestad, 2004b ). For example in portfolio management, where

 constant percentage of the value is invested in stocks, and the

emaining part is invested in government bonds. Another example

s the central bank, which aims to maximize welfare by adjusting

he interest rate such that the inflation rate remains at a constant

alue. It would be interesting to apply the self-optimizing control

pproaches described in this paper to rigorous studies in other dis-

iplines, such as economy or social sciences. This could open up

ew research fields, and at the same time provide support for de-

ision and policy makers. 
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ppendix A. Approximated loss expression & minimum 

ingular value rule (Maximum gain rule) 

The minimum singular value rule was described by Skogestad

nd Postlethwaite (1996) and may be used as an approximation

o evaluating the local loss described in Section 4 . It gives a good

ntuition about what variables are good CV candidates. The loss L

ssociated with a given control strategy is caused by two factors:

he first factor is referred to as the setpoint error , 

(d) = c s − c ∗(d) , (A.1)

here c s is the actual setpoint, and c ∗( d ) denotes the optimal set-

oint. The setpoint error can be directly related to Requirement

) listed in Section 1.4 , because a CV whose optimal value is very

ensitive to disturbances will have a large setpoint error. 

The second factor causing suboptimal operation is referred to

s implementation error e . It accounts for the fact that it is not pos-

ible to keep the CVs at their optimal values because of measure-

ent noise n y or the use of a controller without integral action,

 = c − c s . (A.2)

ere c denotes the actual value of the CV, and c s denotes the set-

oint. Note that if controllers with integral action are used, we

ave that 

 = n 

y . (A.3) 

he implementation error e is related to Requirements 1) and 3)

n Section 1.4 . Requirement 1) states that the inputs should have a

ufficiently strong effect, so that c can be kept close to its optimal

alue. Requirement 3) states that the CV should be easy to keep at

ts setpoint. This in turn requires a small implementation error. 

The total error e c which causes the loss L during operation, is

hus 

 c = c − c ∗(d) 

= ν(d) + e. (A.4) 

 self-optimizing structure will aim to reduce the control error e c 
uch that the loss is acceptable. 

Now, for every disturbance direction, we may calculate the set-

oint error ν( d j ) by 

(d j ) = HF �d j (A.5)

here �d j is a vector with the maximum value of the distur-

ance component d j on the j th position, and zeros otherwise. Us-

ng (23) and (A.4) , and assuming integral action (i.e. e = n y ) we

ave that the total error for a given control structure given by the

atrix H is 

 c = �c − �c ∗(d) 

= HG 

y �u + HG 

y 

d 
�d + Hn 

y 

−H G 

y �u 

∗ − H G 

y 

d 
�d − H n 

y 

= HG 

y (�u − �u 

∗) . (A.6) 

ssuming that HG 

y is invertible, we can solve for (�u − �u ∗) , and

nserting into (18) yields the following expression for the loss vari-

ble: 

 = J 1 / 2 uu (HG 

y ) −1 e c . (A.7)

o obtain an approximation of the loss, it is assumed that a scaling

atrix S c exists, such that 

 c = S c e 
′ 
c , (A.8)
Please cite this article as: J. Jäschke et al., Self-optimizing 
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here 
∥∥e ′ c 

∥∥2 

2 
= 1 . Note that the diagonal elements of S c satisfy 

 c,ii = diag 

( 

n d ∑ 

j=1 

| ν(d j ) | + | n 

y 
i 
| 
) 

. (A.9) 

sing the scaling matrix S c , the loss variable z from (A.7) can be

ritten as 

 = J 1 / 2 uu (HG 

y ) −1 S c e 
′ 
c . (A.10)

efining the “scaled gain” G 

′ as 

 

′ = S −1 
c HG 

y J −1 / 2 
uu , (A.11)

e have 

 = G 

′ −1 
e ′ c . (A.12) 

ow the worst-case loss corresponding to a given set of CVs rep-

esented by H can be estimated by 

 wc = max 
‖ e c ‖ ≤1 

1 

2 

‖ 

z ‖ 

2 
2 = 

1 

2 

σ̄ 2 ( G 

′ −1 
) = 

1 

2 

1 

σ 2 (G 

′ ) . (A.13)

ased on (A.13) the maximum gain rule states that good CVs

hould be selected such as to maximize the scaled gain matrix G 

′ ,
r more precisely to maximize the minimum singular value of the

caled gain. 

emark 12. The minimum singular value rule combines nicely the

equirements for a good CV. Selecting CVs corresponding to a large

caled gain will be easy to control (large gain from the inputs to

V), and will have a low optimal variation (since we are scaling by

he small optimal variation). 

emark 13. In the original work ( Halvorsen et al., 2003; Skogestad

 Postlethwaite, 1996 ), the scaled gain is defined as ˆ G 

′ = S −1 
c HG 

y ,

nd it is assumed that J uu can be expressed as αU , where α is

calar and U is an orthogonal matrix. Then the worst-case loss can

e written as L wc = 

α
2 

1 

σ 2 ( ̂ G ′ ) . However, the assumption that J uu can

e written as a constant times an orthogonal matrix is not valid

n general, and may lead to an additional loss ( Hori & Skogestad,

008 ). 

xample 8 (Minimum Singular Value Rule) . We continue consider-

ng the process from Example 1 . Here we have ν(d) = F W d d given

or a disturbance with maximum value ( d = 1 ) as 

(d = 1) = 

[
0 20 5 1 

]T 
, (A.14)

nd the scaling matrix S c = diag(F W d ) + W n =
iag 

([
1 21 6 2 

])
Thus, the scaled gains for the four

easurements become 

 

′ 
1 = 0 . 1 / (1 ·

√ 

2 ) = 0 . 071 (A.15) 

 

′ 
2 = 20 / (21 ·

√ 

2 ) = 0 . 673 (A.16) 

 

′ 
3 = 10 / (6 ·

√ 

2 ) = 1 . 179 (A.17) 

 

′ 
4 = 1 / (2 ·

√ 

2 ) = 0 . 354 . (A.18) 

he scaled gain is largest for y 3 , so according to the minimum sin-

ular value rule, this is the best single measurement that should be

elected as a CV. This is in correspondence with the results from

xample 1 , where y 3 was shown to give the smallest loss. 

A key limitation for the maximum gain rule is the assump-

ion of the existence of S c , with the property that 
∥∥e ′ c 

∥∥ = 1 . The

asis for this assumption is that the errors for each element in
control – A survey, Annual Reviews in Control (2017), 

http://dx.doi.org/10.1016/j.arcontrol.2017.03.001
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e c = v (d) + n y are independent of each other. However, this as-

sumption is generally not satisfied, because the setpoint errors for

different CVs are not independent. Therefore the maximum gain

rule may lead to misleading results ( Hori & Skogestad, 2008 ). 
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