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“The goal of my research is to 
develop simple yet rigorous 
methods to solve problems of 
engineering significance” 
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Optimal economic operation

Minimize cost J = J(u,x,d)

Or: Maximize profit P=-J

• u = degrees of freedom

• x = states (internal variables)

• d = disturbances

J = cost feed + cost energy – value of products

J

uopt

Jopt

u
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Optimal economic operation

Minimize cost J = J(u,x,d)

Subject to satisfying constraints

• u = degrees of freedom

• x = states (internal variables)

• d = disturbances

J

uopt

Jopt

constraint

J = cost feed + cost energy – value of products

u
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Active constraints

• Active constraints: 

– variables that should optimally be kept at their limiting value.

• Active constraint region:

– region in the disturbance space with fixed active constraints 

Region 1
Region 2

Region 3

Disturbance 1

D
is

tu
rb

an
ce

2 Optimal operation:
How switch between regions?
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Control is about implementing optimal operation
in practice

• Many cases: Solution is fully constrained, but constraints change

→Key is to control the active constraints

• In practice: Don’t need to know regions

if we can measure and control the constraints Region 1
Region 2

Region 3

Disturbance 1

D
is

tu
rb

an
ce

2
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2. Control hierarchy in a process plant
Key idea: Time scale separation

• Optimization layer (RTO) (hour)
– Minimize economic cost J, satisfying constraints

• Supervisory layer (APC or MPC) (minutes)

– Follow set points (CV1) from optimization layer

– Switch between active constraints (CV1 change)

– Look after regulatory layer

• Regulatory control (PID) (seconds)
– Follow setpoints (CV2) from layers above

– Stabilize: Control drifting variables

• Key decisions: Select CV1 and CV2

CV = Controlled variable 
MV = Manipulated variable  (process input)
RTO = Real-time optimization
APC = Conventional Advanced process control
MPC = Model predictive control
PID = Propertional-Integral-Derivative

MV
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Optimal operation of process plants 

• Most people think
– You need a detailed nonlinear model and an on-line optimizer (RTO) if you want to optimize the process
– You need a dynamic model and model predictive control (MPC) if you want to handle constraints
– The alternative is Machine Learning

• No! In many cases you just need to measure the constraints and use PID control
– «Coventional advanced process control (APC)»

• How can this be possible?
– Because optimal operation is usually at constraints
– PID-controllers can be used to identify and control the active constraints
– For unconstrained degrees of freedom, one often have «self-optimizing» variables

• This fact is not well known, even to control professors
– Because most APC-applications are ad hoc
– Few systematic design methods exists



– Cost to be minimized, J=T

– One degree of freedom (u=power)

– What should we control?

Example: Optimal operation of runner

Sigurd Skogestad. «Near-optimal operation by self-optimizing control: From process control to marathon running and business systems», Comp.Chem.Engng. (2004)



A. Optimal operation of Sprinter

– 100m. J=T

– Active constraint control:

• Run as fast as you can (”no thinking required”)

• CV = power (at max)

Constrained optimum: Control active constraints



• 40 km. J=T

• What should we control? CV=?

• Unconstrained optimum

B. Optimal operation of Marathon runner

u=power

J=T

uopt

Unconstrained optimum: Not obvious what to control



• Any self-optimizing variable (to control at 

constant setpoint)?
• c1 = distance to leader of race

• c2 = speed

• c3 = heart rate

• c4 = level of lactate in muscles

Marathon runner (40 km)

Unconstrained optimum: Control self-optimizing variables
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Conclusion Marathon runner

CV1 = heart rate

select one measurement

• CV = heart rate is good “self-optimizing” variable

• Simple and robust implementation

• Disturbances (d) are indirectly handled by keeping a constant heart rate

• May have infrequent adjustment of setpoint (cs)

c=heart rate

J=T

copt

Control self-optimizing variables
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3. Unconstrained optimization

• Have unconstrained degree of freedom (u)

• Available measurements: y

• What should we control (c=CV1=Hy)?
– Not at all obvious

u

J

uopt



Self-optimizing control 

Self-optimizing control is when we can achieve an acceptable economic loss 
(between re-optimizations) with constant setpoint values for the controlled 
variables (c=CV1) 

Self-optimizing control is an old idea (Morari et al., 1980):

“We want to find a function c of the process variables which when held constant, leads 
automatically to the optimal adjustments of the manipulated variables, and with it, the 
optimal operating conditions.”

S. Skogestad ``Plantwide control: the search for the self-optimizing control structure'', J. Proc. Control, 2000.
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The ideal “self-optimizing” variable is the gradient, Ju

c =  J/ u = Ju

– Keep gradient at zero for all disturbances (c = Ju=0)

u

cost J

Ju=0

Ju<0
Ju<0

uopt

Ju 0

Problem: Usually no measurement of gradient
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H

Ideal: c = Ju

In practise, use available measurements: c = H y. Task: Select H!
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Self-optimizing variables: Model-based methods for c=Hy

Nullspace method for H
HF=0 where F=dyopt/dd

Proof: Want copt independent of disturbance d
Have. yopt = F d, so    copt = H yopt = HF d  -> HF=0

V. Alstad and S. Skogestad, ``Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables'', Ind.Eng.Chem.Res, 46 (3), 846-853 (2007)

Exact local method for H

V. Alstad, S. Skogestad and E.S. Hori, ``Optimal measurement combinations as controlled variables'', Journal of Process Control, Vol.19, 128-148 (2009).

https://folk.ntnu.no/skoge/publications/2007/alstad_iecr_nullspace
https://folk.ntnu.no/skoge/publications/2009/alstad_extended_nullspace_jpc
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Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees], J=Time

y1 = hr [beat/min], y2 = v [m/s]

c = Hy = h1 y1+ h2 y2

From model or data: F = dyopt/dd = [0.25  -0.2]’

HF = 0  -> h1 f1 + h2 f2 = 0.25 h1 – 0.2 h2 = 0

Choose h1 = 1 -> h2 = 0.25/0.2 = 1.25

Conclusion: c = hr + 1.25 v

Control c = constant -> hr increases when v decreases (OK uphill!)

13.06.2022
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BADGoodGood

Self-optimizing variables: What should we control? 

Engineering insight may be used if we don’t have model
1. The optimal value of c should be insensitive to disturbances

• Small Fc = HF = dcopt/dd

2. The value of c should be sensitive to the inputs (“maximum gain rule”)

• Large gain, Gc = HGy = dc/du

• Equivalent: Want flat optimum

I.J. Halvorsen, S. Skogestad, J.C. Morud and V. Alstad, ``Optimal selection of controlled variables'', Ind. Eng. Chem. Res., 42 (14), 3273-3284 (2003)

NEVER try to control a variable that reaches max or min at the optimum
In particular, never try to control directly the cost J

https://folk.ntnu.no/skoge/publications/2003/self2
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Example: Maximize growth of salmon fish (RAS)

• One unconstrained degree of freedom: 
Buffer/base addition

• What should we control?

• Self-optimizing variable (CV1): pH in Fish tank 
– Large gain (sensitive to changes in buffer/base)

– Small variations in optimal setpoint (7-7.5)

– Optimize with simple pH-controller

Allyne M. dos Santos et al., Soft sensor of key components in recirculation aquaculture systems, using feedforward networks, ESCAPE-32 Toulouse, 2022 (Poster today) 

pHC

pHC

Regulatory layer: pH-control also provides stabilization
• so we have CV2=CV!=pH, which is ideal
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4. Constrained optimization

• Obvious what we should control: Active constraints
– Can be measured in most cases and controlled with PID-controller

• Reason for change in active constraints are
– Disturbances (including changes in parameters and prices)

• Challenge control: Switch between active constraints
J

uopt

Jopt

constraint



26

Conventional advanced control structures (ACS)

• Used when single-loop PID is not sufficient. 

• Examples:
– Cascade control

– Feedforward control / Ratio control

– Decoupling

– Selectors

– Split range control (SRC)

– Input resetting or valve positioning control (VPC)

Can handle 
constraint changes
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Conventional APC for changing active constraints

• Four cases:
– MV-MV switching -> Split Range Control + 2 more options

– CV-CV switching -> Selectors

– Simple CV-MV switching -> Do nothing

– Complex CV-MV switching

MV = Manipulated Variable = Input (u)
CV = Controlled Variable = Output (y)
DV = Disturbance Variable (d)

Process

MV CV

DV

Adriana Reyes-Lua and Sigurd Skogestad, Systematic Design of Active Constraint Switching Using Classical Advanced Control Structures, Ind.Eng.Chem.Res, 2020
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Optimization with PI-controller

Example: Minimize heating cost (Norway)   
min u
s.t. y ≥ ymin

u ≥ umin = 0
(u=heating, y=temperature, ymin=22 °C)

• Disturbance (d): Outdoor temperature
• Optimal solution has two active constraint regions: 

1. CV=y = ymin
→minimum temperature (winter)

2. MV=u = umin
→ heating off (summer)

No unconstrained region

• Solved with PI-controller («thermostat»)
– ysp = ymin

ysp = ymin PI

This is simple CV-MV switching

u = input = manipulated variable (MV)
y = output = controlled variable (CV)

We satisfy the input saturation rule: 
«When the MV (u) saturates (at 0), control of the CV (y) can be given up»
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MVs:
1. AC (expensive cooling)
2. CW (cooling water; cheap)
3. HW (hot water, quite cheap)
4. Electric heat, EH (expensive)

y=T

Temeperature control with 4 inputs (MVs)

d=Tamb

CPI – same controller for all inputs (one integral time)
But get different gains by adjusting slopes α in SR-block

This is MV-MV switching

Objective: Minimize cost
• Use cheap MVs first and use only one MV at the time (difficult with MPC)

Solution: Split range control (SRC):
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Split-range control (SRC): Simulation of disturbances in ambient temperature.

• MPC: Similar output responses (y), BUT different inputs (u). Uses both heating and cooling in some cases
• MPC: Needs dynamic model + more difficult to implement and tune

y(t), d(t)

u(t)

A. Reyes-Lúa and S. Skogestad. “Multi-input single-output control for extending the operating range: Generalized split range control using the baton strategy”. Journal of Process Control 91 (2020)

This is MV-MV switching
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Optimization with PI-controller
Example: Drive as fast as possible to airport with small car

max y
s.t. y ≤ ymax

u ≤ umax

(u=power, y=speed)

Disturbance (d): Slope of road
Optimal solution has two active constraint regions: 

1. CV=y = ymax = 120 km/h    → speed limit 
2. MV=u = umax

→max power (steep hill)

• Solved with PI-controller («cruise controller»)
– ysp = ymax

– Anti-windup:  I-action is off when u=umax

ysp = ymax PI

This is simple CV-MV switching

u = input = manipulated variable (MV)
y = output = controlled variable (CV)

We satisfy the input saturation rule: 
«When the MV (u) saturates, control of the CV (y) can be given up»
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Optimization with safety constraint
Example: Drive as fast as possible but safely

max y
s.t. y1 ≤ y1

max

u ≤ umax

y2 ≥ y2
min

(u=power, y=speed, y2=distance to car in front)

Disturbances (d): Slope of road, other cars
Optimal solution has three active constraint regions: 

1. CV=y1 = y1
max = 120 km/h    → speed limit 

2. MV=u = umax
→max power (steep hill)

3. CV=y2 = y2
min

→minimum distance (busy road)

• Solved with two PI-controllers and min-selector («adaptive cruise control»)
– C1: Cruise controller with y1

sp = y1
max

– C2: Distance controller with y2
sp= y2

min

– Both controllers need anti-windup (turn off when inactive)

MIN

u1

u2

u=min(u1,u2)c1

c2

y1

y2

PI

All three constraints are satisfied with a small u

Selector: This is CV-CV switching
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Anti-windup
• All the controllers shown need anti-windup to «stop integration» during periods

when the control action (vi) is not affecting the process:
– Controller is disconnected (because of selector)

– Physical MV ui is saturated

Anti-windup using back-calculation. Typical choice for tracking constant, KT=1

KT,i

Selector or
saturation
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Design of selector structure

Rule 1 (max or min selector)

• Use max-selector for constraints that are satisfied with a large input

• Use min-selector for constraints that are satisfied with a small input

Rule 2 (order of max and min selectors): 

• If need both max and min selector: Potential infeasibility

• Order does not matter if problem is feasible

• If infeasible: Put highest priority constraint at the end

“Systematic design of active constraint switching using selectors.” Dinesh Krishnamoorthy , Sigurd Skogestad. Computers & Chemical Engineering, 2020

https://www.sciencedirect.com/science/journal/00981354


35

Valves have “built-in” selectors

• A min-flow (z=0) gives a “built-in” max-selector (to avoid negative flow) 

• A max-flow (z=1) gives a “built-in” min-selector

• So it’s not necessary to add these as selector blocks (but it will not be wrong).

– Both will always be satisfied because physical input constraints can never be violated. 

– There is no danger of infeasibility /inconsistency here because we cannot have both z=0 and z=1 at the 

same time.
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Anti-surge control

Minimize compression cost but keep safe operation (F>Fmin)
min u

s.t. y ≥ ymin (safety constraint)
u ≥ umin = 0 

(u= FR=recycle flow, y=F=flow in compressor)

Disturbance (d): Feed flow F0

Optimal solution has two active constraint regions: 
1. CV=y = ymin (for small F0)
2. MV=u = umin = 0   (for large F0)

Solved with PI-controller («anti-surge control»)
– ysp = ymin

– Anti-windup:  I-action is off when u=umin=0

F0 y=F

u=FR

FC
Fsp=Fmin

MAX
umin=0

MAX-block to avoid negative flow. 
Not needed because the input (valve) has «built-in» u ≥ 0.

ysp = ymin PI

This is simple CV-MV switching

We satisfy the input saturation rule: 
«When the MV (u) saturates, control of the CV (y) can be given up»
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TC

u=Fuel gas

Flue gas

Process fluid (water)

Air

T1s = 500C

TC
T2max=700C

y1=T1

uA

uB

u=min(uA,uB)

Input (MV)
u = Fuel gas flowrate

Output (CV)
y1 = process temperature T1

(with desired setpoint)
y2 = furnace temperature T2

(max constraint)

Rule: Use min-selector for constraints that
are satisfied with a small input

Furnace control

Selector: This is CV-CV switching

u = input = manipulated variable (MV)
y = output = controlled variable (CV)

MIN

“Systematic design of active constraint switching using selectors.” Dinesh Krishnamoorthy , Sigurd Skogestad. Computers & Chemical Engineering, 2020

with safety constraint

y2=T2

HP steam

https://www.sciencedirect.com/science/journal/00981354
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TC

u=Fuel gas

Flue gas

Process fluid

Air

T1s = 500C

TC
T2max=700C

LS y1=T1

y2=T2

uA

uB

u=min(uA,uB)

Example: Furnace control
Furnace control : Cannot give up control of y1=T1. 
What to do?

Inputs (MV)
u = Fuel gas flowrate
u2 = Process flowrate

Output (CV)
y1 = process temperature T1

(with desired setpoint)

u2

MIN
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TC

u=Fuel gas

Flue gas

Process fluid

Air

T1s = 500C

TC
T2max=700C

LS y1=T1

y2=T2

uA

uB

u=min(uA,uB)

TC

T’1s = T1s-5C=495C

u2

TC
Using Input-input 

switching

Inputs (MV)
u = Fuel gas flowrate
u2 = Process flowrate

Output (CV)
y1 = process temperature

(with desired setpoint)

Note: Standard Split Range Control is not good here.
Could be two reasons for too little fuel

• Fuel is cut back by override (safety)
• Fuel at max, 

So don’t know limit for MV1 to use in SRC-block.

This is complex CV-MV switching

u = input = manipulated variable (MV)
y = output = controlled variable (CV)

MIN

Cannot give up controlling T1

Solution: Cut back on process feed (u2) when T1 drops too low
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Cannot give up controlling T1

Solution: Cut back on process feed (u2) when T1 drops too low

TC

u=Fuel gas

Flue gas

Process fluid

Air

T1s = 500C

TC
T2max=700C

LS y1=T1

y2=T2

uA

uB

u=min(uA,uB)

Inputs (MV)
u = Fuel gas flowrate
u2 = Process flowrate

Output (CV)
y1 = process temperature

(with desired setpoint)

TC

T’1s = T1s-5C=495C

u2

This is complex CV-MV switching

u = input = manipulated variable (MV)
y = output = controlled variable (CV)

MIN

• Solution: Two controllers with
different setpoints
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Summary constraint switching: 
Only three different cases (or maybe four)
1. MV-MV switching

– Need many MVs to cover whole steady-state range 

– Use only one MV at a time

– Three options: 1. Split range control, 2. Different setpoints, 3. Valve position control (VPC) 

2. CV-CV switching («override»)
– Must select between CVs

– Only one option: Many controllers with Max-or min-selector

3. CV-MV switching (because MV saturates)

3A.  Simple: CV can be given up (follow «input saturation rule»)
– Don’t need to do anything (except anti-windup in controller)

3B.  Complex: CV cannot be given up
– Combine MV-MC switching (three options) with CV-CV switching (selector)

Process

Process

Process

Process
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Oops…out of time

• Because the timr for the plenary was reduced from 60 to 40 minutes because of 
delays, I only got to this point during my presentation in Toulouse

• But I think it was enough to give the audience the message:
– Put optimization into the control layer whenever feasible

– It’s a complement and not alternative to online model-based optimization
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5. Systematic procedure for designing control system 
that achieves optimal operation



Use of models and data

u = valves

RTO layer: 
• Nonlinear model of whole 

process
• usually physical and static

MPC layer:
• Multivariable dynamic 

linear model for each unit
• usually from data

PID-layer: 
• Dynamic linear model for 

each loop
• usually from data. 

PROCESS

H2

H

y1=CV1

y2=CV2

y1s

y2s

y = all measurements (online data)
d

ny

Data reconciliation (static)
Or

Estimator (e.g. EKF)

Nonlinear model

MPC
d, x
^  ^
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Systematic procedure for designing plantwide control system

Start “top-down” with economics: 

• Step 1: Define operational objectives and constraints

• Step 2: Optimize steady-state operation

• Step 3: Decide what to control (CV1 and CV2) 

• Step 4: Choose TPM location

Then design control system bottom-up:

• Step 5: Regulatory control 

• Step 6: “Advanced/supervisory control” system

• Step 7:  Real-time optimization (Do we need it?)

S. Skogestad, ``Control structure design for complete chemical plants‘’,  Computers and Chemical Engineering, 28 (1-2), 219-234 (2004). 
Process

MVs
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Example:  Bicycle riding
Note: Design starts from the bottom

• Regulatory control (step 5):
– First need to learn to stabilize the bicycle

• CV2 = y2 = tilt of bike
• MV = body position

• Supervisory control (step 6): 
– Then need to follow the road.

• CV1 = y1 = distance from right hand side
• MV=CV2s 

– Usually a constant setpoint policy is OK, e.g. y1s=0.5 
m

• Optimization layer (step 7): 
– Which road to follow? 
– RTO = GPS 

Hierarchical decomposition
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Systematic design of simple advanced controllers (APC)

• First design simple control system for nominal operation
– With single-loop PID control we need to make pairing between inputs (MVs) and outputs (CVs): 

– Should try to follow two rules

1. «Pair close rule» (for dynamics). Pair such that we have small effective delay and large gain

– This is to get fast control and avoid instability

2. «Input saturation rule»: «Pair MV that may saturate with CV that can be given up  (at least when the 
MV constraint is reached)”. 

– This avoids loss of control

– Gives simple CV-MV switching

Process
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• First design simple control system for nominal operation
– With single-loop PID control we need to make pairing between inputs and outputs: 
– Should try to follow two rules

1. «Pair close rule». Pair such that we have fast reponse and large gain
– This is to get fast control and avoid instability

2. «Input saturation rule»: «Pair MV that may saturate with CV that can be given up”. 
– This avoids loss of control
– Gives simple CV-MV switching

• Then make a list of possible new contraints that may be encountered (because of disturbances, parameter changes, 
price changes)

• Reach constraint on new CV
– Simplest: Find an unused input (simple CV-MV switching)
– Otherwise: CV-CV switching using selector

• Reach constraint on MV (which is used to control CV)
– Simplest (If we followed input saturation rule):

• Can give ip controlling CV (Simple CV-MV switching)
• Don’t ned to do anything

– Otherwise (if we cannot give up controlling CV)
• Simplest: Find an unused input 

– MV-MV switching

• Otherwise: Pair with a MV that already controls another CV
– Complex CV-MV switching
– Must combine MV-MV and CV-CV switching

• Is this always possible? No, pairing inputs and outputs may be impossible with many constraints.
• May then use MPC instead

Systematic design of simple advanced controllers (APC)
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Disturbance F2 [m3/s]

Example : Level control 

LC

SP

FC
F1,m

F1,s

F1 [m3/s]

u1 = z1 (inflow valve position)
u2 = z2 (outflow valve position) (likely to saturate)
y1 = F1 (inflow): Should be controlled at setpoint F1,s (if possible)
y2 = level: must always be controlled (at some SP)

Problem: outflow-valve may saturate at fully open (z2=1) and then we lose level control

Note: We did not following the “input saturation rule” which says: 

Pair MV that may saturate (z2) with CV that can be given up (F1)

z2

z1

Nomimal design with “pair-close” rule

Process



50

Disturbance

LC

Nominal design with Reverse pairing (follows “input saturation rule”):

FC

SP

F1,m

F2,s

BUT with Reverse pairing: Get “long loop” for flow control 
In addition: loose control of y2= level if z1 (F1-valve) saturates

F1 [m3/s]

F2 [m3/s]

«long loop»

This gives simple CV-MV switching (if z2 saturates at fully open)

«Long loop» = Works through other loops
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Disturbance

LC

FC

SP-L

F1,m

F1,s

Alternative solution: Follow “Pair close”-rule and use Complex CV-MV switching.
When z2 saturates at max, use the other MV (z1) for level control and give up controlling F1

Get: “Bidirectional inventory control”

LC

SP-H

MIN

F1 [m3/s]

F2 [m3/s]

• Avoid long loop for control of F1
• Works both when F1-valve or F2-valve saturate at open
Overall: seems to be the best solution

LC
Using

MV-MV 
switching

This is complex CV-MV switching
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Disturbance

LC

FC

SP-L

F1,m

F1,s

Recommended: Two controllers
SP-L = low level setpoint
SP-H = high level setpoint

LC

SP-H

MIN

F1 [m3/s]

F2 [m3/s]

Use of two setpoints is good for using buffer dynamically!!

Alternative solution: Follow “Pair close”-rule and use Complex CV-MV switching.
When z2 saturates at max, use the other MV (z1) for level control and give up controlling F1

Get: “Bidirectional inventory control”

This is complex CV-MV switching
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Generalization of bidirectional inventory control
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TPM = throughput manipulator
(located at bottleneck = flow constraint)

Radiation rule for
Inventory control
(Georgakis)

«Inventory loops are
radiating around given flow
(TPM)»
• Follows «pair-close» rule
• Avoids «long loops» for 

inventory control
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Very smart selector strategy: Bidirectional inventory control
Reconfigures automatically with optimal buffer management!!

F.G. Shinskey, «Controlling multivariable processes», ISA, 1981

Max flow:
Fs=∞

Cristina Zotica, Krister Forsman, Sigurd Skogestad ,»Bidirectional inventory control with optimal use of
intermediate storage», Computers and chemical engineering, 2022

,
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Example: Optimal control of a cooler

TH
FH

FC

TC
in

Main control objective:

y1=TH=TH
sp

Secondary objective (can be given up)

y2= FH=FH
sp

Manipulated Variables: 

u1=zC , u2=zH

Both valves may satúrate at max

Disturbance: 

TC
in

Cooling water
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Optimization of Cooler

max y2 (throughput)
s.t. y1 = y1

sp
 temperature

u1 ≤ u1
max

u2 ≤ u2
max

max. throughput
y2 ≤ y2

sp
 desired throughput

Active constraint regions:
1. y1 = y1

sp, y2 = y2
sp
 Nomimal = unconstrained

2. y1 = y1
sp, u2 = u2

max   

3. y1 = y1
sp, u1 = u1

max

Input saturation pairing rule: It’s not possible to follow this rule since both MVs may saturate…

• Will pair y1 with u1 for dynamic reasons («pair close rule»)

• And use «complex» CV-MV switching logic when u1 saturates
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Pairings at nominal «unconstrained» operating point

TC

FC

TH

FH
sp

TH
sp 

FH

FC

TC
in

FC  may saturate for a 

large disturbance (TC
in) 

Use FC to control TH
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Tuning of TC  using SIMC rule:
τc = 2θ = 88 s
Kc  = -0.55
τI =  74 s

SRC
TC min

TC
in

TH

1
2 FH

FH
spTH

spFC

Alt.1: Split range control with min-selector

Complex CV-MV switching

=26C
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Alt.2 . Two controllers/setpoints and min-selector

Complex CV-MV switching

=26C =27C
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Alt. 3 VPC with min-selector

Complex CV-MV switching
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Alt. 1 Split range control Alt. 3 Valve position controlAlt. 2 Two controllers/setpoints

Disturbances: Tcin +2◦C at t = 200 s, Tcin additional +4 ◦C at t = 2000 s. 

Complex CV-MV switching
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MPC for cooler

For represents the flow at the nominal point.

 Objective function
(CV constraints)

Model→

MV constraints→

Tuning trial and error
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MPC vs Split range Control (PI)

Disturbance
(TC

in)

t = 10 s;     + 2°C  

t = 1000 s; + 4°C

Yellow: MPC: 
Δt = 50 s 
ω₁ = 3
ω₂ = 0.1

FC

FH

TH

Red: Split Range 
Control (PI)
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Many people think they need to use MPC if they encounter
constraints

• True only for more complicated multivariable cases

• In most cases PI(D)-control is simpler and equallly good
– Need anti-windup on the controller

=26C
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6. Conclusion

• Put optimization into the control layer
– It’s much faster and more effective

• Conventional APC works very well in many cases
– Optimization by feedback 

• Self-optimizing control

• Active constraint switching

– Need to pair input and output.

• Advantage: The engineer can specify directly the solution

• Problem: May not be possible for complex cases

– Need model only for parts of the process (for tuning)

– Challenge: Need better teaching and design methods


