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Outline
• Optimal operation
• Implememtation of optimal operation: Self-optimizing control
• What should we control?
• Applications

– Marathon runner
– KPI’s
– Biology
– ...

• Optimal measurement combination
• Optimal blending example

Focus: Not optimization (optimal decision making)
But rather: How to implement decision in an uncertain world
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Optimal operation of systems

• Theory:
– Model of overall system
– Estimate present state
– Optimize all degrees of freedom

• Problems: 
– Model not available and optimization complex
– Not robust (difficult to handle uncertainty) 

• Practice
– Hierarchical system
– Each level: Follow order (”setpoints”) given from level above
– Goal: Self-optimizing
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Process operation: Hierarchical structure

PID

RTO

MPC
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Engineering systems

• Most (all?) large-scale engineering systems are controlled using 
hierarchies of quite simple single-loop controllers 

– Large-scale chemical plant (refinery) 
– Commercial aircraft

• 1000’s of loops
• Simple components: 

on-off + P-control + PI-control + nonlinear fixes + some feedforward

Same in biological systems
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What should we control?

y1 = c ? (economics)

y2 = ? (stabilization)
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Self-optimizing Control

Self-optimizing control is when acceptable 
operation can be achieved using constant 
set points (cs) for the controlled variables c 
(without re-optimizing when disturbances 
occur).

c=cs
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Optimal operation (economics)

• Define scalar cost function J(u0,d)
– u0:  degrees of freedom
– d:  disturbances

• Optimal operation for given d:

minu0 J(u0,d)
subject to:

f(u0,d) = 0
g(u0,d) < 0
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Implementation of optimal operation

• Idea: Replace optimization by setpoint control

• Optimal solution is usually at constraints, that is, most of the degrees 
of freedom u0 are used to satisfy “active constraints”, g(u0,d) = 0

• CONTROL ACTIVE CONSTRAINTS!
– Implementation of active constraints is usually simple. 

• WHAT MORE SHOULD WE CONTROL?
– Find variables c for remaining 
unconstrained degrees of freedom u.
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Unconstrained variables

Cost J

Selected controlled variable 
(remaining unconstrained)

ccoptopt

JJoptopt
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Implementation of unconstrained variables is not trivial:
How do we deal with uncertainty?

• 1. Disturbances d
• 2. Implementation error n

cs = copt(d*) – nominal optimization

n
c = cs + n

d

Cost J  Jopt(d)
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Problem no. 1: Disturbance d

Cost J

Controlled variable ccoptopt(d(d**))

JJoptopt

dd**

d d ≠≠ dd**

Loss with constant value for c

⇒ Want copt independent of d
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Problem no. 2: Implementation error n

Cost J

ccss==ccoptopt(d(d**))

JJoptopt

dd** Loss due to implementation error for c

c = cs + n

⇒ Want n small and ”flat” optimum 
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Optimizer

Controller that
adjusts u to keep

cm = cs

Plant

cs

cm=c+n

u
c

n

d

u

c 

J

cs=copt

uopt

n

⇒ Want c sensitive to u (”large gain”) 
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Which variable c to control?
• Define optimal operation: Minimize cost function J

• Each candidate variable c:
With constant setpoints cs compute loss L for expected 
disturbances d and implementation errors n 

• Select variable c with smallest loss
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Constant setpoint policy:
Loss for disturbances (“problem 1”)

Acceptable loss ⇒
self-optimizing control
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Good candidate controlled variables c
(for self-optimizing control)

Requirements:
• The optimal value of c should be insensitive to disturbances (avoid problem 1)
• c should be easy to measure and control (rest: avoid problem 2)
• The value of c should be sensitive to changes in the degrees of freedom 

(Equivalently, J as a function of c should be flat)
• For cases with more than one unconstrained degrees of freedom, the selected 

controlled variables should be independent.

Singular value rule (Skogestad and Postlethwaite, 1996):
Look for variables that maximize the  minimum singular value of the 
appropriately scaled  steady-state gain matrix G from u to c
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Examples self-optimizing control

• Marathon runner
• Central bank
• Cake baking
• Business systems (KPIs)
• Investment portifolio
• Biology
• Chemical process plants: Optimal blending of gasoline

Define optimal operation (J) and look for ”magic” variable 
(c) which when kept constant gives acceptable loss (self-
optimizing control)
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Self-optimizing Control – Marathon

• Optimal operation of Marathon runner, J=T
– Any self-optimizing variable c (to control at constant 

setpoint)?
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Self-optimizing Control – Marathon

• Optimal operation of Marathon runner, J=T
– Any self-optimizing variable c (to control at constant 

setpoint)?
• c1 = distance to leader of race
• c2 = speed
• c3 = heart rate
• c4 = level of lactate in muscles
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Further examples
• Central bank. J = welfare. c=inflation rate (2.5%)
• Cake baking. J = nice taste, c = Temperature (200C)
• Business, J = profit. c = ”Key performance indicator (KPI), e.g. 

– Response time to order
– Energy consumption pr. kg or unit
– Number of employees
– Research spending
Optimal values obtained by ”benchmarking”

• Investment (portofolio management). J = profit. c = Fraction of 
investment in shares (50%)

• Biological systems:
– ”Self-optimizing” controlled variables c have been found by natural 

selection
– Need to do ”reverse engineering” :

• Find the controlled variables used in nature
• From this identify what overall objective J the biological system has been 

attempting to optimize
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Looking for “magic” variables to keep at constant setpoints.
How can we find them?

• Consider available measurements y, and evaluate loss when they 
are kept constant (“brute force”):

• More general: Find optimal linear combination (matrix H):
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Optimal measurement combination (Alstad)

• Basis: Want optimal value of c independent of disturbances ⇒
�  copt = 0 ·  d 

• Find optimal solution as a function of d: uopt(d), yopt(d)
• Linearize this relationship: yopt = F d  

• F – sensitivity matrix

• Want: 

• To achieve this for all values of  d:

• Always possible if
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Example: Optimal blending of gasoline
Stream 1

Stream 2

Stream 3

Stream 4

Product 
1 kg/s

< 1 % benzene> 98 octaneProduct

p4 = 0.185 $/kg2 % benzene99 octaneStream 4

p3 = 0.120 $/kg0 % benzene95 → 97 octaneStream 3

p2 = 0.200 $/kg0 % benzene105 octaneStream 2
p1 = (0.1 + m1) $/kg0 % benzene99 octaneStream 1

Disturbance

m1 = ?  (· 0.4)

m2 = ?

m3 = ?

m4 = ?
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Optimal solution
• Degrees of freedom

uo = (m m2 m
3

m4 )T

• Optimization problem: Minimize
J = i pi mi = (0.1 + m1) m1 + 0.2 m2 + 0.12 m3 + 0.185 m4

subject to
m1 + m2 + m3 + m4 = 1
m1 ≥ 0; m2 ≥ 0; m3 ≥ 0; m4 ≥ 0
m1 · 0.4
99 m1 + 105 m2 + 95 m3 + 99 m4 ≥ 98 (octane constraint)
2 m4 · 1 (benzene constraint)

• Nominal optimal solution (d* = 95):
u0,opt = (0.26  0.196  0.544  0)T ⇒ Jopt=0.13724 $

• Optimal solution with d=octane stream 3=97:
u0,opt = (0.20  0.075  0.725  0)T ⇒ Jopt=0.13724 $

• 3 active constraints ⇒ 1 unconstrained degree of freedom
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Implementation of optimal solution
• Available ”measurements”: y = (m1 m2 m3 m4)T

• Control active constraints:
– Keep m4 = 0
– Adjust one (or more) flow such that m1+m2+m3+m4 = 1
– Adjust one (or more) flow such that product octane = 98

• Remaining unconstrained degree of freedom
1. c=m1 is constant at  0.126 ⇒ Loss = 0.00036 $
2. c=m2 is constant at 0.196 ⇒ Infeasible (cannot satisfy octane = 98)
3. c=m3 is constant at 0.544 ⇒ Loss = 0.00582 $

• Optimal combination of measurements
c = h1 m1 + h2 m2 + h3 ma

From optimization:  mopt = F  d where sensitivity matrix  F = (-0.03  -0.06  0.09)T

Requirement: HF = 0 ⇒
-0.03 h1 – 0.06 h2 + 0.09 h3 = 0

This has infinite number of solutions (since we have 3 measurements and only ned 2):
c = m1 – 0.5 m2 is constant at 0.162 ⇒ Loss = 0
c = 3 m1 + m3 is constant  at 1.32   ⇒ Loss = 0
c = 1.5 m2 + m3 is constant  at 0.83   ⇒ Loss = 0

• Easily implemented in control system
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Example of practical implementation of 
optimal blending

• Selected ”self-optimizing” variable: c = m1 – 0.5 m2
• Changes in feed octane (stream 3) detected by octane controller (OC)
• Implementation is optimal provided active constraints do not change 
• Price changes can be included as corrections on setpoint cs

FC

OC

mtot.s = 1 kg/s

mtot

m3

m4 = 0 kg/s

Octanes = 98

Octane

m2

Stream 2

Stream 1

Stream 3

Stream 4

cs =  0.162

0.5

m1 = cs + 0.5 m2

Octane varies
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Conlusion
• Operation of most real system: Constant setpoint policy (c = cs)

– Central bank
– Business systems: KPI’s
– Biological systems
– Chemical processes

• Goal: Find controlled variables c such that constant setpoint policy 
gives acceptable operation in spite of uncertainty 
⇒ Self-optimizing control

• Method: Evaluate loss L = J - Jopt

• Optimal linear measurement combination:
 c = H  y where HF=0


