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Outline

* Optimal operation

* Implememtation of optimal operation: Self-optimizing control
* What should we control?

* Applications

— Marathon runner
— KPI’s
— Biology

* Optimal measurement combination

Optimal blending example

Focus: Not optimization (optimal decision making)
But rather: How to implement decision in an uncertain world




Optimal operation of systems

e Theory:
— Model of overall system
— Estimate present state
— Optimize all degrees of freedom

* Problems:
— Model not available and optimization complex
— Not robust (difficult to handle uncertainty)

» Practice
— Hierarchical system
— Each level: Follow order (”setpoints”) given from level above
— Goal: Self-optimizing




Process operation: Hierarchical structure
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Engineering systems

* Most (all?) large-scale engineering systems are controlled using
hierarchies of quite simple single-loop controllers

— Large-scale chemical plant (refinery)
— Commercial aircraft

« 1000’s of loops

* Simple components:
on-off + P-control + PI-control + nonlinear fixes + some feedforward

Same 1n biological systems




What should we control?
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Self-optimizing Control

Self-optimizing control is when acceptable
operation can be achieved using constant
set points (c,) for the controlled variables ¢
(without re-optimizing when disturbances
occur).
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Optimal operation (economics)

» Define scalar cost function J(u,,d)
— u,: degrees of freedom
— d: disturbances

* Optimal operation for given d:

min, J(u,,d)
subject to:
f(u,,d)=0
g(uy,d) <0




Implementation of optimal operation

Ildea: Replace optimization by setpoint control

« Optimal solution is usually at constraints, that 1s, most of the degrees
of freedom u,, are used to satisfy “active constraints”, g(u,,d) = 0

« CONTROL ACTIVE CONSTRAINTS!

— Implementation of active constraints is usually simple.

« WHAT MORE SHOULD WE CONTROL?

— Find variables ¢ for remaining icsmmnt
unconstrained degrees of freedom u.
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Unconstrained variables

>

opt  Selected controlled variable
(remaining unconstrained)




Implementation of unconstrained variables 1s not trivial:

How do we deal with uncertainty?

e ]. Disturbances d

e 2. Implementation error n
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Problem no. 1: Disturbance d

Loss with constant value for ¢

Copt(d?)

>

Controlled variable

= Want ¢, independent of d




Problem no. 2: Implementation error n

Loss due to impfementation error for ¢

= Want n small and “flat” optimum
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Which variable ¢ to control?

Define optimal operation: Minimize cost function J

Each candidate variable c:

With constant setpoints ¢, compute loss L for expected
disturbances d and implementation errors n l o

L(d) = J(es+n,d) — Jopt(d)

Controller -

Select variable ¢ with smallest loss l

— Process L




Cost ]

Constant setpoint policy:
Loss for disturbances (“problem 17)

Acceptable loss =
self-optimizing control

C, ;= constant

oy

C = constant

[Loss

Reoptimized J EJPtl(d)

Disturbance d




Good candidate controlled variables ¢
(for self-optimizing control)

Requirements:

« The optimal value of ¢ should be insensitive to disturbances (avoid problem 1)

» ¢ should be easy to measure and control (rest: avoid problem 2)

» The value of ¢ should be sensitive to changes in the degrees of freedom
(Equivalently, J as a function of ¢ should be flat)

» For cases with more than one unconstrained degrees of freedom, the selected
controlled variables should be independent.

Singular value rule (Skogestad and Postlethwaite, 1996):
Look for variables that maximize the minimum singular value of the
appropriately scaled steady-state gain matrix G from uto c




Examples selt-optimizing control

e Marathon runner

* Central bank

« (Cake baking

* Business systems (KPIs)

* Investment portifolio

* Biology

* Chemical process plants: Optimal blending of gasoline

Define optimal operation (J) and look for magic” variable
(c) which when kept constant gives acceptable loss (self-
optimizing control)




Self-optimizing Control — Marathon

* Optimal operation of Marathon runner, J=T

— Any self-optimizing variable ¢ (to control at constant
setpoint)?
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Self-optimizing Control — Marathon

* Optimal operation of Marathon runner, J=T

— Any self-optimizing variable ¢ (to control at constant
setpoint)?
 c, = distance to leader of race
* c,=speed
* c;= heart rate

 c, = level of lactate in muscles
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Further examples

* Central bank. J = welfare. c=inflation rate (2.5%)
e (Cake baking. J = nice taste, ¢ = Temperature (200C)

* Business, J = profit. ¢ = ”Key performance indicator (KPI), e.g.

— Response time to order

— Energy consumption pr. kg or unit

— Number of employees

— Research spending

Optimal values obtained by ”benchmarking”

* Investment (portofolio management). J = profit. ¢ = Fraction of

investment in shares (50%)
» Biological systems:

— ”Self-optimizing” controlled variables ¢ have been found by natural
selection
— Need to do ’reverse engineering” :
» Find the controlled variables used in nature

« From this identify what overall objective J the biological system has been
attempting to optimize




Looking for “magic” variables to keep at constant setpoints.
How can we find them?

« Consider available measurements y, and evaluate loss when they
are kept constant (“brute force”):

Single measurements, e.g. pressure, temperature, composition
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Combinations of measurements (e.g flow ratios)
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e More general: Find optimal linear combination (matrix H):

c=hqiy1 + hoyo + ...+ hpyn = Hy




Optimal measurement combination (Alstad)
Ac= HAy

« Basis: Want optimal value of ¢ independent of disturbances =
7 Ac, . =0-Ad

opt
* Find optimal solution as a function of d: u,,(d), y,,(d)

* Linearize this relationship: Ay, = F Ad
* F — sensitivity matrix

*  Want:
Acopt — HAyopt = HFAd=0

 To achieve this for all values of A d:
HF =0 = HeN(FD

» Always possible if
#Y > #u + #d




Example: Optimal blending of gasoline

m,=? (<0.4
Stream 1 >
m, =?
Stream 2 >
Stream 3 ™=t > Product
m, = g 1 kg/s
Stream 4 >
Stream 1 99 octane 0 % benzene p, =(0.1 +m,) $/kg
Stream 2 105 octane 0 % benzene p, = 0.200 $/kg
Stream 3 95 — 97 octane | 0 % benzene p; =0.120 $/kg
Stream 4 99/0ctane 2 % benzene p, = 0.185 $/kg
Product //> 98 octane <1 % benzene

/L

Disturbance




Optimal solution

Degrees of freedom
u, = (m; m, m, my )
Optimization problem: Minimize
J=2.p;m=(0.1+m)m, +02m,+0.12m; + 0.185 m,
subject to
m, +m, + my+m, =1
m >0m,>0,m;>0,m, >0

m, <04
99 m, + 105 m, +95 m; +99 m, > 98 (octane constraint)
2m, <1 (benzene constraint)

Nominal optimal solution (d* = 95):
Ugop = (0.26 0.196 0.544 0)T = J,=0.13724'$
Optimal solution with d=octane stream 3=97:
Ugop = (0.20 0.075 0.725 0)T = J,=0.13724 $
3 active constraints = 1 unconstrained degree of freedom




Implementation of optimal solution

. D) M. — T
Available “measurements”: y = (m; m, m; my)

Control active constraints:
- Keepm,=0
—  Adjust one (or more) flow such that m;+m,+m,+m, = 1
—  Adjust one (or more) flow such that product octane = 98

Remaining unconstrained degree of freedom
1. c=m, is constant at 0.126 = Loss = 0.00036 $
2. c=m, is constant at 0.196 = Infeasible (cannot satisfy octane = 98)
3. c=m, is constant at 0.544 = Loss = 0.00582 $
Optimal combination of measurements
c=h,m +h,m,+h,m
From optimization: A m_ = F A d where sensitivity matrix F=(-0.03 -0.06 0.09)"
Requirement: HF =0 =
-0.03 h, - 0.06 h, +0.09h, =0
This has infinite number of solutions (since we have 3 measurements and only ned 2):
c=m, —0.5m, 1s constant at 0.162 = Loss =0
c=3m, +m, isconstant at1.32 = Loss=0
¢=1.5m, +m,is constant at 0.83 = Loss=0

Easily implemented in control system




Example of practical implementation of
optimal blending

Stream 1 N—>
Stream 2 N > Mo

v

Stream 3 N >

Octane varies

Stream 4 N

m, = 0 kg/s

\ 4

* Selected “’self-optimizing” variable: ¢ =m, — 0.5 m,

» Changes in feed octane (stream 3) detected by octane controller (OC)
 Implementation is optimal provided active constraints do not change
* Price changes can be included as corrections on setpoint c




Conlusion

Operation of most real system: Constant setpoint policy (¢ = ¢,)

— Central bank

— Business systems: KPI’s

— Biological systems

— Chemical processes
Goal: Find controlled variables ¢ such that constant setpoint policy
gives acceptable operation in spite of uncertainty

= Self-optimizing control

Method: Evaluate loss L=1J-J

Optimal linear measurement combination:
A c=H Ay where HF=0




