

Optimization Using Feedback Control

Did you know that optimization problems can be solved online using feedback control?
Consider the task of minimizing a scalar cost function J, or equivalently, maximizing the
profit −J. Typically, J represents an economic quantity with units such as [$/s]. We
assume that we can influence J through a manipulated input variable u, and that we
may also have access to measurements y. Furthermore, we assume the system is static
(i.e., without dynamics), so we can write J=J(u).

Our objective is to minimize J(u) in real time using feedback control. There are three
main approaches to doing this: purely data-based, model-based, and self-optimizing
control (offline model based). In addition, there are hybrid methods and combinations.
Actually, all three methods can be combined.

1. Purely Data-Based Feedback Optimization (ESC)
Also known as extremum seeking control (ESC), hill-climbing, greedy search, or perturb-
and-observe.

This method relies entirely on measurements of the cost J (which may not always be
available) and does not use a process model. It is simple, but generally slow, especially
when gradient estimation is involved. In classical ESC, sinusoidal perturbations are
used to estimate the gradient, but this is not always an efficient method.

A simpler and often more intuitive version is the perturb-and-observe algorithm
(commonly used, for example, to optimize the position of wind turbines):

• Step 1: Apply a perturbation Δu to the input:
u(k)=u(k−1)+sign(k)⋅ Δu
where k is the current time sample and sign(k) alternates between +1 and -1.

• Step 2: Observe the cost J(k+1). If J(k+1)<J(k), then the system is moving in the
right direction so keep the same sign; otherwise, reverse the direction (change
sign(k)). Repeat from Step 1.

This method has two main tuning parameters:

• The step size Δu: Larger steps speed up convergence but cause larger
oscillations around the optimum.

• The sampling time Ts: This must be long enough to let the system respond. A
rule of thumb is Ts≈3τ, where τ is the system’s time constant.

This method can be combined with faster model-based optimization methods like RTO
by letting u be the bias for the RTO-gradient. This hybrid approach is often called
modifier adaptation.

2. Standard Model-Based Optimization (RTO)
Real-Time Optimization (RTO) uses a detailed nonlinear model and does not require that
the cost J is measured.

The system model is used to compute the input u(k) that minimizes the cost J.
Measurements y are used online to update selected model parameters (e.g.,
efficiencies). RTO minimizes the cost J while explicitly handling constraints.

3. Self-Optimizing Control (SOC)
Here, the model is used offline to find good “self-optimizing” variables c. The online
implementation uses a simple PID controller to keep c and its setpoint cs.

The goal of SOC is to find a "magic variable" c to control—ideally one where a constant
setpoint cs leads to near-optimal performance despite disturbances. This allows the
optimization to be embedded into the fast control layer.

In its simplest form, c=y is a single measurement. The variable c is chosen such that its
setpoint cs is insensitive to disturbances, yet c is sensitive to input changes (i.e., has
a large gain from u to c).

More generally, we can use combinations of measurements: c=Hy where H is a matrix.
Ideally, this corresponds to the gradient: c=Ju. See the paper by Bernardino and
Skogestad (2024) for methods to estimate this gradient.

3C. Self-Optimizing Control with Constraints

SOC can be extended to handle constraints by incorporating Lagrange multipliers into
the control strategy. In this approach, the multiplier acts as a manipulated variable in
an upper slow control layer. Constraint violation can be avoided using override logic
(Dirza and Skogestad, 2024). In essence, this is a clever trick where a PI controller is
used to iteratively solve a set of equations numerically.

Combinations

These approaches can be combined:

• 1 + 2: ESC (slow) sends bias for gradient Ju (modifier adaptation) to RTO. The bias
means that the RTO-gradient will not be zero. This is to correct for model errors,
unmeasured disturbances and measurement errors in the RTO-layer.

• 1 + 3: ESC (slow) updates setpoints to SOC (fast).

• 2 + 3: RTO (slow) updates setpoints to SOC (fast).

• 1 + 2 + 3: ESC (slow) sends bias for Ju to RTO (faster), which updates setpoints to
the SOC layer (fastest).

There needs to be a time scale separation between the layers, typically about 10.

References

* Optimal switching of MPC cost function for changing active constraints.
LF Bernardino, S Skogestad. Journal of Process Control 142, 103298. 2024

* Optimal measurement-based cost gradient estimate for feedback real-time
optimization LF Bernardino, S Skogestad. Computers & Chemical
Engineering, 108815 2024

* Primal-dual feedback-optimizing control with override for real-time
optimization R Dirza, S Skogestad. Journal of Process Control 138, 103208
3 2024

* Decentralized control using selectors for optimal steady-state operation
with changing active constraints LF Bernardino, S Skogestad. Journal of
Process Control 137, 103194 5 2024

