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FRACTIONAL DISTILLATION OF TERNARY
MIXTURES. PART II.
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,Eg Jj (w The basic equations derived in Part T are employed to determine the con-

a2 =1 ditions for a state of minimum reflux. Equations are presented by which
D 1 \ | the minimum reflux ratio for ternary mixtures can be readil calculated when

m y y
@ — /s ! the fractionation between tho key components is a sharp one.
@ C i . : .

“': < | IN Part I of this aper I equations were resented for computing the
C D r e Faber = equatio P puting
@) > ﬁcomposmon on any plate in a fractionating column for ternary mixtures.
=3 — | Since it appeared an alternative method of making these computations has
m | been described by Harbert,.2
P | An alternative, and rather more elegant, derivation of the basic equations
m

1 "‘1 presented in Part I is the following.
i # The compositions of the liquids on adjacent plates are given by the

relations
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As previously, for a rectifying column, m = Ri—+—1’ where R is the reflux

ratio; b :Rz_ﬁ i c:ﬁj; (ZZRZ—I])— -y and B are the relative
volatilities of components z and Y to component zand y > 8 > 1. For a
stripping columm, m — S where § is the “reboil ratio “—i.e., the
number of moles of vapour produced in the reboiler per mole of bottom
product withdrawn; b — —x—W; c= — g%/; = —%7. Tor a stripping
column on which a rectifying column ig superimposed, S = R—Pjﬂ‘p — ]Y

W ’
Tfor both rectifying and stripping columns

b—{—6+d::1——m.

Constant molal reflux and constant relative volatilities are assumed.

Now multiply equations (1), (2), and (3) by _r_ B and -
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and

respectively (where ¢ is a quantity as yet undetermined), ana
Then
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Equation (4) is of the third degree, and gives three values of ¢, denoted by
s $a, b3, it being understood that ¢ < qS} < ¢bs. )

¢IS(1€2bstftuting these values in equation (5) and applying the method used

in Part I, there are obtained, for the composition on the nth plate, the three

equations
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In the above derivation the only property assumed for ‘_ohe parameter ¢
Is that it should satisfy equation (4). The other properties of this para-
meter, stated in Part I, can be readily deduced. Assume the composition
of the liquids on any two adjacent plates in the column to be the same, as
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600 UNDERWOOD :

is the case under minimum reflux conditions.

If this composition is
denoted by (h, k, 1), then, from equation (5)

g{;:m(yh—{—ﬁk—}—l)‘ N ()
Equations (1), (2) and (3) then give
mh+b_mk—}—c_ml+d_ 1 _m
yh T BE T T 1 S yh+BEF1T §
and
N cp dé

h=—=T _. —_— s = .. (8
m(y — ¢) m(B — ¢) m(l — ¢) ®)
For the three values of ¢—i.e., $15 b, p3—which satisfy equation (4) there
are three values of (h, k, I) which will bo denoted by (ky, &y, 1,), (hg, &y, 1,)
and (hg, ks, ly), respectively.

For a rectifying column b, ¢, d are positive, and it has been shown in
Part T that, in this case,

0<d <L 1 <¢<p; B<gy <7y

For ¢,, equation (8) will give positive values for by, ki, and 1. For b,
hy and k, will be positive and I, will be negative. For #3, ey will be positive
and k, and I, will be negative. ‘

Fer a stripping column, it will be convenient to write §, g, 7 instead of b,

¢, d and ¢ instead of ¢ and %, %, 7 instead of h, k, 1. In this case §, g, g are
negative and it can be readily shown that

1<y, <p; P<dp<y; y < iy

For ¢,, equation (8) will give %1 and %, negative and 1, positive. For by,
ke will be negative and Tes and I positive. TFor b3, hi3s k3 and I, will all be
positive.

For both a.rectifying column and a stripping column there are thus three
cases where compositions on adjacent plates are the same, and each of these
cases will correspond to minimum reflux conditions. Equation (4)
applied to a rectifying column, can be written in the form

)

YZp Byp 2p
OB A —_ \:R = . . 5
)’—¢'+B-¢+1—¢ +1 (9)

For any given value of R, equation (9) gives the corresponding value of ¢,
and those of 4, k, | are then obtained from equation (8). These values of
h, k,  represent the limiting compositions which can be attained with the
given reflux ratio when the number of plates is infinite.

The various types of cases which arise can be illustrated by the following
three examples which all deal with a rectifying column. In all three
examples y =4, 8 =2 R = 3.

Lzample 1. All three components are present in substantial amounts in
the top product. z, — 04; yp=04; zp =0-2. Equation (9) gives
$1 = 0-9267; 4, = 1774 ; ¢, = 3-649. Equation (8) gives

hy = 0-040; k, = 0-115; 1, = 0-843
hy = 0-106; k, = 1-046; I, = —0-153
hy = 1-386; k, = —0-295; 1, = —0-092.
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Exzample 2. The heaviest component is present in only a small amount
in the top product. xp = 0-599; ¥, = 0-400; 2p = 0-001.

Then

= 0-999583; ¢y = 1720; ¢, = 3473
}fi = 00664; k, =0-1333; I, = 0-8003
hy = 0-152;  ky = 0-850; I, = —0-000791

by =1315;  ky= —0-3145; ;= —0-000468

Example 3. The two heavier components are present in (;)18})3(7) 0:(3)1{1&11
amounts in the top product. x, = 0-999; y, = O-QOl; zp =0 00 ho;
1 X 10, An extremely small amount of the heaviest compm}on ‘,nen,ts,
included. In any fractionation of a ternary mixture all tl)ﬁce compo ncﬁt
will be present in the top product. Where the second heaviest }cor;'ipo‘rimt
(y) is present in small amount in the pro_duct., the amoun.t of the 18:; qr.;d
component in the product is quite negligible for all prav'ctlca.l .purl?tosin (fho
is not normally taken into account. 'The effect of including i
calculation will be discussed later.

Then
=1- 0376 x 105; ¢, = 1-999; ¢y = 3-0015_
21 =011 ; ky = 0-00033; 1, = 0-88867 .
hl = 0-333; ko = 0-667; ly = —0-67 X 106'
by = 1:001; kg = —0-001; Iy = —0-5 x 10-

The results for Examples 2 and 3 have been caleulated to a degrctq oil
accuracy which is obviously greater than wou‘]d be required in any pr{mo 10;;
problem. The many decimal places shown in some of the results (;) ltl_o s
however, mean that the calculations require an accuracy in compu a loré
greater than that of a slide-rule. When any of the componcnts are p11c;‘;m:1
in the product in small amount the calculations are considerably simp 19@ L.

For instance, in Example 2, z; is small. The root ¢, of equfmtrlo}n (f) is
therefore very nearly equal to 1. Equations (8) can be written in the form

— P g B g 3 (g
"SRo—9 FTRE-p TRI-9
Zp
As ¢, is very nearly equal to 1, the values of A; and k; become R —1) and
Y2 Since hy +T%; 41, =1, the value of I; can be found by
R —1) ;
difference.

Alternatively, putting ¢; = 1 in the first two terms of equation (9), we
have '

Y% Byn - Y

This gives the value of the small quantity (1 — ¢,) and also the value of

which can then be used to find 7; from equation (10). For this

<D
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602 UNDERWOOD :

example the other two roots by and ¢, are found by neglecting the term

Zp 0 . .
]7‘;?5 n equation (9) and solving the resulting quadratic equation.

Tn Example 3 b(_)th Yp and z, are small. In this case # is very nearly
equal to 1 and ¢, 1s very nearly cqual to . Tor finding ¢, and A, k,, I
the same procedure is used as for Example2. For ¢,a second approximation

is made as follows. Since ¢2 Is very nearly cqual to B, the term —-2

4 1 —d
Ea‘n b)e neglected, and equation (9) can be written (with g for $, in the ﬁrsz
erm) as

YZp Byp
?’_B—}_ﬁ*%

This gives the small quantity (8 — ¢,) and the value of g e

:R+1-

o

for finding %, from equation (10). It has been shown in Part I of this
paper that ¢ d,ds = mPy, and when ¢, = 1 and ¢ = B approximately,

then ¢y = my = 1—3% approximately. A sccond approximation for é,

cavr}t.be found by a similar procedure to that already described for ¢y by
WT1 ng
YEn Byn
Y= B — By
41

=R+1

Most discussions of calcul

; ations for minimum reflux conditions have
dealt with the case of a ree

e tifying column superimposed on a stripping
colun‘m.’ This is obviously the most important type of case in practice, but
certaln_ Important principles can be illustrated more clearly by considering
a rectllfymg column or a stripping column alone. TFor the following
discussion a rectifying column alone is considered, and is assumed to be
mounted on a still kettle containing liquid of composition (zp, yr, zr).
We now have to find the limiting kettle composition for a given reflux ratio
when the number of plates is infinite.

A method which has been used by Colburn,® by Gilliland ¢ and by the
author ® for the case where the top product contains one component in

small amount is the following. If the compositions on two adjacent plates
are the same, cquations (2) and (3) give

myp + ¢ — g Yr
mzp +d

. Zp

and if d is negligible, then yp=—S__ _ Y _ Similarly

mB —1)" "RE —1)
. zp . . .
Tp _ Ry —1) ‘Thls method obviously gives the values (hys Ky, 1)
lobta.med' by putting ¢, = 1 in cquations (10).
If yp is small as well as zp, the usual procedure h

altogether—a very natural thing to do,
and, if a small value Yp is specifi

as been to neglect z,)
as zp must be very small indeed,
ed in the product, the value of 2p cannot

- required
3 q
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also be specified ab initio. Neglecting =, and also neglecting ¢ in the
equation

maxp +b v

myy +c¢  Byr

we obtain
b Xp 1

971.(%—1>:R<%-1>:R<%—1>'

(It is obvious that this represents the limiting composition under minimum
reflux conditions for the binary mixture of components x and y.) Itis
then assumed that, with this value of @, a ¢ pinched-in region ” occurs in
which zz is negligible and ¥ = 1 — 2. The values so obtained are those
of (g, ks, ,) obtained by putting ¢, = 8 in equations (10) and neglecting the
small value of /. The calculation can be carried farther by adding in a
small amount of component z and carrying out a plate-to-plate calculation
down the column.

It would, however, be equally legitimate to base the calculation on Zp
instead of yp, and there would then be obtained the limiting compositions
(hy, Ky, 1) corresponding to ¢,. As will be seen from the results of
Example 3, where z; = 1 x 10-6, the final cffect of including it in the
caleulation is very marked. The values of hy, kq, 1y caleulated for this
example can, of course, also be arrived at by making a plate-to-plate
calculation down the column, including the component z in the calculation.

The method just described does not give a correct conception of minimum
reflux. It fails to provide answers to the following questions :—

(1) In the apparently straightforward case where only zp is small the
Yp

)

_’UF =

limitine Gt o o by 2 — ay 1 .
miting compositions are given by ap = =2 ang Yp =

E(y —1)
wp(f — 1) which is independent of R. It therefore
Yoly — 1)
depends only on the composition of the product and the relative volatilities
of components & and y, and is the same for any reflux ratio. If the still
kettle contains a charge in which the ratio of these components is other than
zp( — 1)
Yp(y —1)

(2) If both yp : nd zp are small, very different results are obtained for the
limiting composit ions, according as zj is omitted from or included in the
calculation. Which of these results is correct ?

It is believed that the following analysis clarifies the position.

It has been shown in Part I that if we put z, 7y, z equal to xp, yp, 2z,
respectively, the left-hand side of equations (6a), (60) and (6c) becomes
unity. TFrom cquations (6a) and (6¢) the composition on the nth plate
below the top of the column is given by

The ratio of a5 to yp is

how does this method of calculation apply ?

VT, BYn Zn
+

Y — ¢ T B— ¢y 1 — ¢, — <§é1.)n .. (11a)

Vi By e ‘
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and
YTy @yn Zn
+ +
')/_¢3 B _953 1 _‘?53: <¢_1>n (1]b)
VIn B?/n _+_ Zn ¢3
y—¢1 . B— é1 1 —¢
Since ¢, < ¢, and ¢; < ¢5, when n becomes infinite
YTn B?/n Zn
+ =0s s « « (20
'}’_G{’z B_¢’z+1—¢2 ( )
and
YZn Byn *Zn
+ =0. . . . (12
=% % T 12)

It is necessary that the values of x,, #,, 2, which satisfy equations (12a)

and (12b) should not make the denominator —/°" 4 BYn S ...
Y — 9”1 B — ¢’1 1— 951

The values of z,, y,, 2, which meet these requirements are

equal to zero.

hy, kq, 1.
The condition that %y, &y, I; should satisfy equation (12a) is
vh Bley L
=+ . =0 . . . . (I3
y—h P& TI-4 %)
" . bo ch dé
From equations (8), by = —2 . =— "1 ] — "1 anq
Py =) T mE— ) T ml — )

equation (13) becomes

b-y cB d
=@ — ) B ) T A= =gy -

Now, from equation (4)

by cB d by cB a
N W e S Sl e
or
by(dy — ¢s) cB(P1 — ¢o) + dpy —bs) 0

(y — ?52)('}’ —¢1) (B — )8 — é1) (1 — ¢o)(1 — ¢y) o

which is the same as equation (14), so that hy, k;, I, satisfy equation (12a).

In exactly the same way it can be shown that they satisfy equation (12b).
Also

yhy Ry L by, By dé,
= B T f =g T B =g T =

All th..ree terms in this expression are positive for a rectifying column or
negative for a stripping column, and therefore their sum cannot be zero.

. It can similarly be shown generally that the threc equations of the type
of (12a) are satisfied as follows :—

baed Py z .
y_¢1+B_¢l+l_¢l—0byh2,k2, lza‘ndﬁs, kg, 1.

zeaid
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ye Py 2
Y—¢2 {_5—952_{—1_‘?52

Y By
ey L vEr N

=0 by hy, ky, 1 and 2y, Ry, 1

: = g = 0by iy By, Ly and g, By Ty

If any two of the equations are satisfied simultancously the solution is
the values of &, k, I, which correspond to the value of ¢, which does not
appear in the two equations.

Suppose now that a plate-to-plate calculation is made starting from the
top and proceeding upwards. This can be done by putting » = —N (where
N is positive) to give the composition on the nth plate above the top. From
equation (6a), (6b), and (6¢) the following equations can be derived in the
same way as equations (11la) and (110).

YX-n Py-x Zx
+ e
.V—¢1+B_¢’1 1—¢1:(<ﬁ>‘\ ... (15a)
Y¥-N + By-x + _Fy b5
y —¢3 B—¢s 1 — ¢
and
'y"l’—N __B Y-N + N
Yy—$s B —¢y 11—y _ (fg)h . . . (15D)
YET-x Py 4. B b3
Y —és3 B —¢y 1 — ¢y
When N becomes infinite,
YN BY-w oy H
- =0 . . . . (16
y —¢é1 B —¢y ! I —¢, (tha)
and
YE-N S oy 3
LR e Y 0 . . . . (leb
y — bs B~¢o+1—<ﬁg S

The solution of these equations is then (hs, ks, I,).

Thus, if a plate-to-plate calculation is started at the top (including all
components) and continued downwards, the limiting composition finally
reached is (hy, kq, 1;). If the calculation is made upwards, the limiting
composition finally reached is (k,, ks, I,).

We now have to consider how the limiting composition (hy, ks, ly) can be
reached. Suppose now that the values of (v, ¥, z) on any plate are such
that they satisfy the equation

VT By P
= I =
y—¢3 B—¢3 1—¢y
but do not satisty the other two equations, so that these values of (x, 7, 2)
do not represent limiting compositions. From cquation (5) it is seen that,
if equation (17) holds good for a plate it will also hold good for the next plate
above or below ii, and therefore for all plates above or below it.  From

0o . . . . 17
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equation (6a) it will be seen that, as 2 inereases, the left-hand side of the
equation continuously decreases, and finally becomes zero when 7 is
ioa _ . X 7 z

infinite. This requires that —Y~_ - by :

4 ————— = 0. Ascquation
— 5 B 13 :

(17) is also satisfied, this mcyans that the limiting com}}osition (ho, ko, 1y) s
reached as the calculation is made up the column.  Note that hg, ks, I, do ot
make the denominator of the left-hand side of cquation (6a) zero. In
exactly the same way it can be shown that the limiting composition
(hy, &y, 1;) is reached as the calculation is made down the column.

Thus, if the composition of the charge in the still kettle is such that it
satisfles equation (17), a plate-to-plate calculation up the column, starting
from the kettle, will finally rcach the limiting composition (hy, k,, I,). A
slight increase in the reflux ratio will result in an increase in the values of ¢
which satisfy equation (9), for, differentiating this equation, we have

Y% . Byp Zp _
{w—wﬁ*m—wzlu—&&“ 2

With an increase in the value of ¢, the expression L 2 + =

. y—$s B—d¢y 1—¢
will no longer be zero, but will have a positive value. The plate-to-plate
calculation up the columm will then no longer pass into and remain stuck at
the limiting composition (hy, k,, 1), but will be capable of being continued
until the composition corresponding to the top product is reached. Thus
any composition of the kettle charge which satisfies the equation (17)
will be a composition for which the reflux ratio used in calculating
the values of ¢ from cquation (9) is the minimum reflux ratio. The two
limiting compositions (hy, &y, I;) and (ho, ko, 1,) are merely particular values
which satisfy the general cquation (17). This conception of minimum
reflux appears to answer satisfactorily the two questions which were stated
carlier in this paper.

Examples 1, 2, and 3 show that the value of I, is always negative.

Although aslight inereasc in the reflux ratio tomake ‘}/9«¢ +B Byqﬁ - i z‘i;
positive will permit of a plate-to-plate cmlculatiog/ behfg contimied to thg
top of the column, it does not necessarily follow that this calculation will
not pass through a negative value of z when plate compositions approaching
ho, kq, Iy are reached in the calculation. A plate-to-plate caleulation which
passes through a negative value of one of the components obviously does
not represent a practical case. In a case like Example 1, where all three
componcnts are present in substantial amounts in the top product, I, has a
substantial negative value, and when the reflux is increased slightly over
the minimum, a plate-to-plate calculation could still pass through a
negative value of z. This case is, however, an unusual one. In the normal
cases, such as Examples 2 and 3, where one or two of the components arc
only present in small amount in the top product, I,, although negative, is
very small. A quitc minute increase in the reflux ratio above the minimum
will ensure that the plate-to-plate calculation does not pass through a
negative value. In other words, the theoretically correct minimum reflux
ratio is that which will give a value of z (at the appropriate point in the

s dAY

N

FRACT AL DISTILLATION OF TERNARY MIXTURES. PART 1. 607
column) of —0-000791 in Example 2 or —0-67 x 10 % in Kxample 3. The
minimum reflux ratio for practical purposes is that which gives a value of
zero instead. The difference is obviously outside the range of normal
calculations.

It is to be noted that, as in the case of a binary mixture, as long as the
amount of a component in the product is small, the actual amount does not
affect the minimum reflux ratio appreciably, as tho limiting compositions
do not,occur in the neighbourhood of the product composition. If, however,
a calculation is made for a finitc number of plates, the actual amount of a
component present in small quantity will appreciably affect the number of
plates required for a given separation.

It has been shown that, for a rectifying column, if the composition at any
s, . : X 7
point in the column satisfies the cquation —Y by

T S ST A

there is a possible range of compositions between (ky, &y, 1;) and (hy, ka, o).

z

It can be similarly shown that, if the oqua.tionAlv—(/)— -} Bfﬁj/?) -+ =g
Y — P2 93

2
is satisfied, there is a possible range of compositions between (7, &y, 7;) and

(hg, kg, I5), and that if the cquation sl -+ by 42 =0
Y —¢1 —¢1 L —d

is satisfied there is a possible range of compositions between (hy, ko, I5) and
(hy, kg, Ig). It appears, however, that these other two cascs are not
significant for practical problems of fractionation.

The analysis has been given in detail for a rectifying colunm.
made in exactly the same way for a stripping columu.
column, cquation (4) becomes (writing ¢ instead of ¢)

It can be
For a stripping

’y.lf"v—
y— ¥
Here also ¢; < ¢, << ¢s.
For a stripping column, the limiting composition (f3, s, I5) corresponding
to ¢; is the one reached by calculating up the column from the reboiler,
using all three components in the calculation. The limiting composition
(h1s %y, 11) corresponding to ¢, is the one reached by calculating downwards
below the reboiler. The limiting composition (J, kg, Io) is the intermediate
one, and corresponds to that reached by calculation upwards from the re-
boiler when two of the components are present in small amount in the
reboiler and the lightest component is not taken into account in the
calculation.
For any given value of S in equation (18) minimum reflux conditions will

obtain in the st:ipping column if the composition at any point satisfies the
equation

p P B g s

VT By Z
=0 B

and this equation represents a range of compositions between (7, &, I5) and
(hes ko» I5)- Similar relations can be obtained for the other equations, but,

as in the case of a rectifying column, they do not correspond to practical
cases.

L — L 9
I —d, 0 ()
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It should be noted that cquation (17) for a rectifying column contains
?3, the value of which lies between g and y, while equation (19) for a stripping
column contains ¥y, the value of which lics between 1 and p.

For a stripping column, equations (8) hecome

- by = b1y < bz
h=— k=W .5 Y2y
"TT® +1)(y — ) f (S+1)(p—1)’ ! S +1)T =19 (20)

For ordinary purposes it is not necess
several decimal places, as was done in E
in considerable simplification.
Then, from equations (20)

ary to calculate compositi'ons to
xamples 2 and 3, and this results
When 2y, = 0, equation (18) gives ¢, = y.

7 YYw - VZ

3= e —

S+ =8 5~ §F D=1
and, by difference,

')/: [!v‘

1 — . Yw  vEw
S+ Dy —8)  §F)py =1y

If, in addition, 4y = 0, then equation (18) gives ¢, = B and Tia =10

ﬁ:} =

bl

_____ Pzy B

S+HDE=T)

since z;y = 1.

By difference, Ay R . N
) (541 —1y
If both z; and 7, are zero, equation (18) gives
_Ew . o 1
1—4"1_ —Sor 4)l:_‘AS‘"

and 2y = 0, ki =0, and lLi=1.
Similarly for a rectifying column, if z, — 0, equation (9) gives py=1
and equations (10) give

Tp Yp

= E =i R = mT

and, by difference,

L=1—_% _ Y _
L Ry —1) T Rp =1y
If, in addition, %, = 0, equation (9) gives ¢, = p and, from equations (10)
B 2 bl
hy=—=-C 1 _q |, r differ y = B
2 R =@y L and, by difference, kg =1 — RT}/—TB) Also,

for this case, equation (9) gives

Yap y
=——r-=R 41 =
Y= 7 f- 1 and ¢,

Then h, = 1, k3 =0,1, = 0.

_YE
RIT
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When a rectifying column is superimposed on a stripping column, true
minimum reflux conditions obtain for the system when minimum reflux
conditions obtain in both the rectifying column and the stripping column.
With a mixture of three components, of which two are key ”’ components,
one component will be small in the top product and two components will be
small in the bottom product or vice versa. (The following analysis is
limited to such sharp separations.)

Consider the former case, in which the third component is lighter than the
key components y and z. The top product contains component x and
component y with a small amount of component z. For minimum reflux
conditions in the rectifying column, by calculating downwards, the limiting
composition %y, ky, I; is reached. For the stripping column, the bottom
product is component z with a negligible amount of & and a small amoun
of y. If on any plate below the feed-plate the equation ;

Y By z
+ g
y—91 B —d — %1
is satisfied, minimum reflux conditions will obtain in the stripping column.

If, at the feed plate, the values hy, k;, I, for the rectifying column satisfy the -
cquation

=0

X 1
v By o

e =0
Yy — ¥ B —1d 1 — ¢y

for the stripping column, then minimum reflux conditions will obtain in

-

both columns. The condition for minimum reflux is therefore
h l

'l_ B ll + 1 —

Y — ‘-Pl B — Y1 1— 4)1

Now it has been shown previously that A;, &, I, is a solution of two
equations for the rectifying column—namely,

')’hl

0

vhy ofe phy + ly 0

Yy—¢s B — ¢y 1_952:7
and
vhy Bk, L
s + =0
y—¢s B —¢3 1 —¢s
There are thus three equations to be satisfied, and there are actually only
hy and k,

two variables in these equations—namely, The condition that

Iy by
the three cquations are satisfied simultancously is that the determinant

¥ P 1
y—¢1 B— b 1 — ¥y

Y B 1

=0 . . & @

Yy—d B—¢y 1—4,

Y B 1
y—¢3 B—dy 1—4
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This fleb(’rxnilmnt becomes zero if any two rows are the same, and this
oceurs if &; = ¢, or ¢; = ¢ or $s = ¢3. Now, ¢, cannot equal ¢, because
$5 lics between 1 and 8 and ¢4 lies between B :md“y. Also ¢, cannot equal
$5 because ¢, lies between 1 and p and ¢4 lies between g and y. But ¢,
and ¢, both lic between 1 and g, so that y; = ¢, is the only possible solution.
This, therefore, is the condition for minimum reflux in the case where the
thied component is lighter than the key components. Tt is to be noted
that ¢, is the root corresponding to the light key component in the rectifying
column, the components being regarded in the order of increasing volatility
anq the values of ¢ in the order of increasing magnitude. In thoosa.me way,
1 s the root corresponding to the heavy key component in the stripping
column. i

The other case to be considered is that in which the third component is
heavier than the key components. In this case the key components are
x and y. The top product is component x with a small amount of
component y and a negligible amount of component z. The bottom
prod.uct.ls components i and z, with a small amount of component x.  TFor
a stripping column the limiting composition, proceeding upwards, is reached
at hy, kg, ;- For the rectifying column, minimum reflux conditions obtain
if the equation

=B _Py R
y=ts B $s L —dy
is satisfied, and this cquation must be satisfied by s, T3 13 for minimum

r(;ﬂu}g conditions to obtain in both seetions of the column. Now, Tug, Tegs I3 1s
given by the cquations s

y—b o B—d
and

e Py x

Y — Uy B—dy L —dy
By the same reasoning as before, the condition that all three cquations are

satisfied is by = 5. H.erg‘. again the value of ¢ corresponds to the light key
component in the rectifying column and the value of ¥ to the heavy key
component in the stripping column.

The general condition for both casos is that equation (9) for the rectifying

CO]llml.l a‘nd.equation (18) for the stripping column have a common root.
Denoting this common root by 0, then

YZp Byp zZn >
0+B 0—}—1_—6——~1L—+-1. ... (22)
and

Y BYw Zy
y___0+\[3_0+m: =S . . .. (23

Multiplying the first cquation by P

and the sc ati 3
noting that cond cquation by 17 and

Pxp + Way = Fayps Pyp - Wiy = Fiyp; Pz 4 Wz = Fzp

s

S —
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where 2y, yp, zp are the composition of the feed, then

’}/F.'?:F BB"?/],V F:p
y—0 T p—0 1=

s=(R4ADP -8 . . (24

Now, SW =RP 4+ qF — W= (R + 1P — (1 —q)F
since W = I — P.
Equation (24) then becomes

_Yrr 4 _E/_I_ g Er L—q. . . . (25)

If the feed is liquid at boiling point, ¢ = 1 and cquation (25) reduces to a
quadratic. 1f the feed is all vapour, ¢ = 0. In this case equation (25)
obviously has one solution 8 = 0 since ap 4 75 - 2 = 1 and equation (25)
again reduces to a quadratic.

If ¢ = 1, equation (25) becomes

(yxr 4 Byr + 2p)0% — {y(B + Dy 4 Bly - Dyr -I- (y -1- £)z4}0
: 1By =0 . (25a)
If ¢ = 0, equation (25) becomes

02— {(8 -+ L + ( + Dyp + ( + BIze}0 + 8o -+ yr )
4 Pyzp =0 . (25D)

We thus have a simple method of calculating the minimum reflux ratio.
Equation (25) is used to find 0, and this value of 0 is then substituted in
cquation (22) to find R, which is the required minimum reflux ratio.
Alternatively, S, the minimum reboil ratio, can be found from equation (23).
Where y and z are the key components, 0 = ¢; = ¢, and lies between 1
and B. Where v and y are the key components, 0 = ¢, = ¢, and lics
between p and y. In both cases the value of 0 required from equation (25)
is the one which lies between the relative volatilities of the key components.

The method of calculation is illustrated by the following examples taken
from the paper by Colburn.?

Example 4. Third component lighter than the keys.

Tp=06; yp=02; 2 =02; ¢= 1.
xp=0T5; yp =025; zp =0; ap =0; yy=0; zp = L.
vy=4; B =2.

Equation (25) or (25a) becomes

2-4 0-4 0-2

- ] 302 — < 4 8 ==
4_0—}—2_0—{1_0 0 or 30 10-40 -

The desired value of 0 is that which is between 1 and 2. The solution is
found to be 1-152.
Equation (22) then gives

3 0-5
4—LMQ+Q—LM2

=R - Tand R — 0-643.
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Fxample 5. Third component heavier than the keys.

Tp=102; yp=02; 2, = 0-6; ¢ =0.
Tp=1; yp=0; z, = 0; Ty =0; yw = 025; zyp = 0-75.
vy =10; p = 2.
Equation (25) or (25b) becomes

2 0-4 0-6
memee of, R g PO 2 _ 4 —
10_0—%—2_0—[—1_0_1&0 100 4 14-4 = 0.

The desired value of 0 lies between 2 and 10, and is found to be 8-255.
Then from cquation (22)

)

10
m =R -{- 1 and R = 4-73.

In a paper by Mayficld and May ¢ a method was given for calculating
minimum reflux ratio which was based on the hypothesis that the minimum
reflux ratio of a ternary mixture was the same as the minimum reflux ratio
of two binary mixtures into which the ternary mixture was resolved. The
hypothesis was not proved, but was demonstrated to give results correspond-
ing to the results obtained by other methods for a number of examples in
which the condition of the feed was ¢ =1 or ¢ = 0. It can, however, be
proved rorrect for the general case by means of the equa*ions which have
been derived in this paper.

Consider the case where the third component is heavier than the key
components, which are x and 5. 'The feed composition is xp, ¥y, zp. Let
the ternary mixture be divided into two binary mixtures. 'The first binary

mixture contains part of component z, say x,’, and all of component y.

The second binary mixture contains the rest of component z, say a;"" and
all of component z.

The feed composition for the first binary mixture is x5 Yr

xp + yr xp + Yr

The relative volatility of the two components is %’ Applying equation (25)

to this binary mixture, the term i = g corresponding to the third com-

ponent, disappears. The equation becomes

Y
p T Yr
r ‘}“m: =@y +yp) . . . . (26)
e
For this binary mixture, with 2z, — 1, equation (22) becomes
y
B / T -
S R + 1, and substituting this value of R’ in cquation (26) gives

B

SR A1) 4 PYR(R 1)
p(R 4-1) + E—G =g = (=)@ +yr) . . (27)
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Similarly for the other binary mixture, with relative volatility y, there is
obtained the cquation
1 z,,'(R" "}__‘1)_ =i (] ! + z ) . (28)
xp'(R +1)+1‘Ty_l)R/,—( Q) (@ F

Now, by the hypothesis, if the minimum reflux ratios for the two binary
mixtures are made equal to each other, they should also be equal to the
minimum reflux ratio for the ternary mixture. )

Putting B" = R = R in equations (27) and (28) and adding them, we
have, since @'y + a''p = xp and xp + yp + 2p =

1,
Bys(R +1) | 2R+ 1)
B—(y—BR 1—(y—DE
For the ternary mixture, the minimum reflux ratio is given by equations

(25) and (22). From the latter equation we have, since ap = 1,

R
r S S
y~0_R+lor‘“‘0 Eil

(B + 1) + —1—g¢ . (29)

With this value of 0, equation (25) becomes

Byr(B + 1) 2p(R + 1)
B—(y—BR 1—(y—D1R

which is the same as cquation (29) derived from the two bipary mixtures.

A similar proof can be given for the case where the third con}ponent is
lighter than the key components. For this case it is more convenient to use
equation (23) with equation (25) to give the final result in terms of the
minimum reboil ratio. ' _

It will be noted that equation (29) can be used to give a dx.rcct solution
for R, instead of following the procedure previously des_cr]bed of first
finding 0 from equation (25) and then finding R fr'om equation (2_2). This
latter procedure is the more convenient one, as it readily permits of t_,he
correct value of 0, and therefore of R, being selected. The use of equation
(29) involves finding the various values of R which satisfy 1t' z.md then
deciding which value correctly represents minimum reflux conditions.

Tp(R + 1) + =1-—q
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