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As the maximum knock spark sctting for all compression ratios above
7 to 1 (octane numbers above 70) was 28°, it seemed logical to determine the
effect of a fixed advance of 28° at the lower ratios. The results, as shown
in Fig. 1, indicate that the effect is sufficiently small.to allow this setting to
be used from 40 to 120 O.N.

In the high-octanc range the effect of the first increments of advance of
spark from A.S.T.M. is to cnable very much lower compression ratios to be
employed. This becomes a rapidly diminishing effect as the spark timing
approaches 28°. At 100 O.N., for instance, a 3° advance from the A.S.T.M.
setting of 16° lowers the ratio by 0-5, but from 25° to 28° the ratio change is
only 0-1. Beyond the optimum setting further advance causes rapid
changes in performance. The above suggests that a fixed ignition setting
should be adopted which is within the zone of least influence from about
24° to 28°. The guide curve resulting from tests on two engines with a
fixed setting of 25° advance is shown in TFig. 1. This is reproduced in
terms of micrometer setting, as in the A.S.T.M. method, in Table I.

Pracricarn Tests v OToEr ENGINES.

In order to test the behaviour of a number of C.F.R. engines operating

under the proposed 25° modifications, participants in the I.P. C.TF.R.
correlation scheme agreed to test fuels for several months without the
throttle plate, first using the A.S.T.M. guide curve, then with 25° advance
and the 25° guide curve in Fig. 1.
- Eleven fuel samples of widely varying types were tested by the two
methods in cach of twenty engines over a period of four months, from
which it was noted that there was no sensible difference in the average
octane numbers in the range testcd—i.e., 79 to 103 O.N.—and the maximum
spread and average deviation were slightly less by the 25° method. That
the spread on twenty engines was less with the 25° method demonstrates
that the method is acceptable to the individual engines.

It is recommended that a fixed spark setting of 25° advance be con-
sidered for the I.P. and A.S.T.M. Motor Method through the range from
40 to 120 O.N. The 17° Motor Method would then become obsolete.

It is felt that this investigation should be given prominence at the
present time, as it provides a means for increasing the accuracy of rating
high octane fuels.
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FRACTIONAL DISTILLATION OF TERNARY
MIXTURES. PART 1.

By A. J. V. Unperwoop, D.Sec., M.I.Chem.E., A.M.I.Mech.E. F.R.IC.
F.Inst.T., F.Inst.Pes, ’ ’

SUMMARY.

An analytical mothod is presented for computation i
: e Ay : 4 z s relat 0t c-
tional distillation of ternary mixtures. It is I;Iso shown thlng to the frac

at tl inci
of the method can be extended to mixtures of moro than th > PRAEIS

rec components.

_ For ternar_y mixtures with components denoted by z, y, z the composi-
tions of the liquids on adjacent plates of a fractionating column are con-
nected by the following relations, derived from material balances.

may b= Y¥1
o+ Yo+ Ry 2 C T ()
By,

Yo+ By 42 T T (2)

B
u Yo+ By 4z 0 0 (3)

my, + ¢ =

For a rectifying = W ; .
g ifying column, m T where R is the reflux ratio; b -=

Tp ?/D,d

E¥1D °TEREU
of components « and y to component z and y>8>1.

>

_ Zp .
=pIT y and B. are the relative volatilities

—_ S
A 5 —_— z ¢ - ‘
Tor a stripping column, m = 5 where § is the “ rebojl ratio,” i.c.

the number of moles of vapour returned by the reboiler to the stripping
column per mole of bottom product withdrawn. For a stripping aoltinin

on which a rectifying column is superimposed, § = RPLQF = I,

———; b =
—Zw., . _ —Yw, — ifvi 4 ’
55 e=—g; d= SW' Tor both rectifying and stripping columns
btotd=l-m . . . .

Constant molal reflux and constant relative volatilitios throughout the
column are assumed. o ’

Equations (1), (2),- and (3) can be used to calculate compositions from
plate to plate. It will be shown that, by suitably transforming them, the
composition on any plate can be calculated without using a stzpwisc ,pro_
(‘.(\.dn_m from plate to plate. Previously such a direct calculation has been
possible only for the special case of total reflux where 7, — land b = ¢ —
d=0. o

The method of transformation whieh can be applied to equations (1)

TN/
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(2), and (3) to make them suitable for a direct calculation depends on the
usc of a parameter ¢ which is defined in the following manner. Let b, k,
and [ be the values of z, %, and z, respectively, which correspond to the
compositions on two adjacent plates when there is no change in composition
between these two plates.” %, k, and I represent the composition at which
no further fractionation takes place—that is, the composition for which
minimum reflux conditions obtain with the given reflux ratio. They are
defined by the equations

nm+b=ﬁj%%?r N ),

il - 9 = ﬂﬁ%ﬂ . (6)

mhd = ey ™

Let miyh ek +0)=¢ . . . . . . (T2
so that %:;ﬁ;b:”ﬁ56=@2§@ R ()
hen b e R T BRC

Now h, k, and [ are particular values of z, ¥, and z, and x 4y 4z = 1 for
all values, so that, also, & -k 41 = 1. Substituting from cquations .(9),

bp o 9o
y—¢ P—¢ 1—¢
by cp d
or —— + =1 . . . . (10
y—¢ B—¢ 1—¢
This is an equation of the third degree, so that there arc three values of ¢
which satisfy it.
Returning to equations (1), (2), and (3), an equation can be derived in
the form

mx, + 0 -F A(my, 4 ¢) + Ag(mzo + d) + 2=
vy + MBY1L + 221+ X(y%s + By +2) )
Yo, + Y1 471

This equation is obtained by multiplying equation (2) by 2, equation (3)
by %, and adding them to equation (1), and also adding 25 to both sides.
Equation (11) is satisfied by all values of z, 7, z which satisfy equations (1),
(2), (3). The indcterminate multiplicrs %, %y, 23 can be given any values
desired.

Rearranging cquation (11),

may - *myy + Aemzy + b 2o 4 2d + 23 =
y(1 -l 25)% - B+ 29)ys + (A + 29)% N 1)

v -+ Byt 2g

g, Ay ATC NOW chosen so that the function of xy, ¥4, %, on the left-hand

=—m=1—b—c—d

(11)

s
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side of the equation becomes cxactly the same function, except for a
constant multiplicr, as the function of x,, ¥, z;, which constitutes the
numerator of the right-hand side of equation (12). This requires that

y(L+25) By +2g) Xty

m AL T ) S
and that b4+2re+2rd+2=0 . . . . . (14
Using equations (13) and (14), equation (12) becomes

(L 4 2)(@; + 2yy + X2y
m(z‘ + A Y, + AeZn) = 1 1 271 X
0 170 20) yxl_l__ﬁyl_*_zl
Since this equation is satisfied by all values of z, y,, z, and 2, ¥, z;, which
satisfy equations (1), (2), (3), it is also satisfied by 2y = 2, = h; y, =y, =
k; z, =z, = [, which are particular solutions as defined by equations (5),
(6), (7). Substituting these values in equation (15), therefore

(15)

(L 2B+ Ak 4 )
mib A 4 Al) = W+wkil

14 2
and )—/(-;;———3) =vyh + Bk + 1= id from equation (7a).  Each of the

m

three terms in cquation (13) is therefore cqual to ¢ and, solving for
A 2o and 2g, m

] fo1 foy
Ag = — — 1 N Ay E= ; )\‘) e »
87T 1 9_5—1 2 =31 (16)
p
These values of A, Ay, 23 also satisfy equation (14) for
¢, 4,
LA O T SRR | SRR, S
56_ —1 p—1 vy
e

_ P\ by cB d
=f{1-% -

< 7HV—¢+3—¢+1~¢ 1}
= 0 from equation (10)

Substituting the values of A4, 2,, 25 in equation (15) gives

6, b ot o
1LY Y . Y
z, - Yo FE—— 2y =4 r___ . Y .
o f_ljo 95—le pou %1+é_1y1+¢_1.1
e g
or

s S 2 .
Y% BY  Fo m{y — s T E—3 + 1:1—;5} ]
A')’"‘f’ B_qé ! 1—93 vy, -+ By, + =, .. (1D
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There arc three values of ¢ given by equation (10). Denoting these by
b1, $o, Pa, there are three equations corresponding to equation (17), namely,

?il{ e By11+1i¢,1}

Y%o BYo &2 mly—¢, B—¢
— 18
y — 1 (3_¢1+1_¢1 yx + By1 + 21 (184)
ﬁ Y o By, %1
ny + Byo + z() — m{')/ - qs?. + B — ¢2 + 1 —— ¢2} . (18b)
Yy — ¢s B—¢s 1—¢ vy + By + 21 '
b3f Y% Y1 i
yx() + Byo + z0 = m{’y — ¢3 + B — 453 + 1 ‘_ ¢3} (186)
Yy — ¢3 B—ds  1—¢s vz, + BY1 + 21
Dividing equation (18a) by equation (180),
Y%o BYo ) YZ1 By 21
T T R oy Y N Il =T D Gt P

Y%o BYo 2y b2 YT Py 21
+ + == + +

Yy — b2 B—¢o 1 —¢o y—¢ B—¢ 1 — ¢
Applying this relation to successive pairs of -plates, there is readily obtained

. for the nth plate the equation

¥Zo Byo & Y% BYn Zn
+ ™ + n = i -
AT A Ty gt ) P T3 g0
'}’xo + B:l//() + ZO \¢2 '}’xn + Byﬂ _ Zn
Yy — s B—¢o 1— ¢ Yy — ¢ B—¢s 1—¢
By following the same procedure with the other pairs of equations (18a),
(18b), (18c) there are also obtained the equations

¥Zo BYo Zo , Y%n PYn Zn

y—d E—d 1 —¢2:<@>Ay—¢z+e—¢z+1 —% o)
Yo + BYo s %9 b3 YZn + BYn + Zn

y — 3 B—¢s 1 —¢s Yy — &3 B—¢s 1 — ¢

and
YZo + Yo + Zo YZn £ BYn + - %n

y—¢s  B—¢s 1“‘/’3:<¢;§>n_)’_4’3 B—¢s 1—¢s (20¢)
710 + Byo + & ¢ 1 ?’xn _Eyn + Zn

’}’—¢1 B—¢1 1—¢; ')’_4’1 B— ¢ 1_"‘}51

Equations (20a), (200), (20¢) provide a means for calculating the com-
positions on plate n when the compositions on plate 0 are given. ‘When
given values of %, ¥, %o ATC substituted, there are obtained three simul-
taneous equations of the first degree in x,, Y, 2,- Lhese three cquations
are only cquivalent to two independent equations, as any one of equations
(20a), (200), (20c) can be obtained from the other two by division. There
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is, how_ever, also th(? equation @, -+ ¥, + 2z, = 1, so that three equations
are available for solving for the three unknowis x,, ¥,, z,.

The left-hand side of equations (20a), (206), (20c) becomes unity when
Ty = Tp, Yo = Yp» %o = Zp-

b c d
F T o= 2 _—
or Xy 1 p—y Yo 1 m 2y = g
Then
Y%p Byn %p 1 b
+ + = Y _ 4 i
y—¢1 B—¢ 1—¢ 1—-—m<'y—q51 R 1_¢1>

1 ;
TE— from equation (10).

The same relation holds good for all three values of ¢. A similar simpli-
fication is obtained for a stripping column by putting x, = =, ¥ =I;
20 = Zu) and the right-hand side of equations (20a), (206’)3, (506) t}:'lﬂe’zn ;edchcws,
to unity. The simplified equations facilitate calculation of the com-
position on the nth plate from the top of a rectifying column or the nth
plate from the bottom of a stripping column. ‘

Constant molal reflux and constant relative volatility have been assumed
Variations in them can be taken into account by applying equations (20a).
(200), (20c) successively to sections of the column in which appropri to
values are used. FRAREEEE

Equations (20a), (20b), (20c) are similar in type to the equations for the
usual calculation in the special case of total reflux. In that case, equations
(1), (2), (3) give e

Ty _ )’>" Ty Y y
Fiatan =71 == d 20 — pn <"
Yo <f3 n an 25 Sl

Equations (20a), (20b), (20c) correspond, therefore, t
reflux in which the components are R, 0 %R B e

Y By z x .
+ ) ( i ey 2
<7_¢1 B_¢1+1—¢1 y—¢2+ﬁ__¢2+1__¢0 and
ol Py~ z .
(y — g + B — ¢, + 1 — ¢3> respectively
and the Felative volatilities are ¢,, $,, ¢5 respectively.
Equations (20a), (20b), (20¢) can also be written in another form. Denot-

ing by hq, kq, I; the values corresponding to ¢, and similarl
the use of equations (9) in equation (20a) gii(las llarly for ¢, and ¢,

“n

vhy Bk, I, vhy Bk 1

—_? L =2 .y0+3.,.0_<ﬁ>,, - .xn-}‘—cl-yn+(§-:n -
yhe Bk, ly | \¢s/ yh Bk B
2+ 2y + 2.2 ¥ O b

b 0 o 0 d 0 b q-n“*' c '3/71‘*‘3"'”

together with two similar equations.
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Tt has been mentioned that %, & and I represent the limiting composition

for which the reflux ratio represents conditions of minimum reflux. There
are threc such limiting compositions corresponding to the three sets of
values of &, k and I. The significance of these three compositions will be
discussed in the second part of this paper.

The method which has been outlined requires the solution of the cubic
equation (10) to find ¢, ¢y, #3. The process of solution is facilitated by the
following considerations. Equation (10) can be written

by(8 — $)(1 — ) + Bl — By — ¢) + dly — $)(B — %)
—(y—PB -l —¢=0. . (22)

Denoting the expression on the left-hand side of the equation by £ and
giving to ¢ the values 0, 1, B, y successively it is scen that

when ¢ =0, B =8y (b 4+ ¢+ d — 1) = — mpy, t.e. negative,
¢ =1, B = dpy, t.e. positive,
é=0,1=—cp(P— 1)y —B) 1.e. negative,

b =, B = by(y — B)(y — 1), i.c. positive.

Thus Z must become zero for a value of ¢ between 0 and 1, for a value
between 1 and p and for a value between p and y. Denoting these values
by ¢1, ps and ¢, respectively then

0<d, <13 1<y <B; B<<y

This gives a ready indication of the values of ¢ which satisfy equation (10).
A further indication can also be obtained. If equation (22) is multiplied
out, it becomes

$ — (L — d) + (L — o) +y(1 — D)} + {8 +y + by
— by 4 By) — (@ FBy) — A+ — (L —b—c—dEy=0 (23)

Since ¢, ¢s, ¢ are the roots of this equation,

bbby Fpy=0—d) +B(L—c)+yQ—d). . . . (24)
‘/’1‘?52 =1 ‘?52¢3 <+ ‘/’3‘/)1 =
By By —0ly+py) —c®+pBy)—dB+y) . - (249)
and oy =1 —b—c—dy . . . - . - - (25)
If we now assume as approximate solutions, )
by =1—d; ¢y=01—0); p3=7p(1—0) .. . (20)

these values satisfy cquation (24). They also approximately satisfy
equation (25) since, to a first approximation,

(1 —d)El —cy(l —d) =pyl—0—c—d)

as b, ¢ and d are fairly small compared with unity and, for a first approxi-
mation, powers above the first may be neglected. With the same approxi-
mation, equation (24a) is also satisfied. The procedure for solving equation
(10) or (22) is thercfore to assume the values given by equations (26) as a
first approximation and then to obtain a closer approximation by any of the
usual methods.
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In many cases the process of solution is facilitated through one or more
of the coefficients b, ¢, d in equation (10) being approximately zero when the
component in question is present in very small amount in the product.

In the second part of this paper it is planned to show the application of
the methods here presented to numerical cases.

MIXTURES OF MORE THAN THREE COMPONENTS.

The method of transforming the basic equations which has been described
can also be applied to mixtures of more than three components and this
application is briefly indicated below. ~Consider a four-component mixture.
Using the same symbols as before, let w be the fourth component, more
volatile than = and having a relative volatility of & referred to z. Then, as

before, <
mw, + a = o yf:‘ili TR C " (27)
mx, + b = S ¥ 'y”Ci/:l- e Es Y ¢ ¢ ¢ (28)
mys + ¢ = 5o nyjr e +-21 . 29)
mzg + d = e (30)

dwy + y2y + Byy + 21
Using the indeterminate multipliers Ay, %5, 23, 24, then
(mw, + @) + Ay(may -+ D) + (my, + ¢) + Kg(mzy + d) + 2y

_ dwy + Ayxy + XByy F X7y + NBwy 4y + By + )
Swy + vy + By + 2

or

mw, -+ Amay 4 MMy + AgMzp + @ - D 4 Aot 4 2d + 2y
_ S(1 + 2wy 4y + 22 + B0y + Myy + O + 202

dwy + v + By + 2 B1)
Choose Aj, X, Ag, Ay SO that
3(1 + 2y) — 'Z(}‘1 + N) _ B+ 2 A4y 59
m Am Ao Toagm (32)
and

a4+ 10 FreFrd42=0 . . . . (33)

$ is now defined by the equations
mg —l—a__lmh—i—b__mk—i—c_ml—{—d_1 (34)

dmg ymh — pmk ~ ml é
where ¢ is the corresponding value for component w and

¢=m@g+yh+Bk+0 . . . . . (35
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Since g + % +k 4+ 1 =1, the equation for ¢ corresponding to equation

(10) is
- ag b c$ dé

+ + + =m=1—a—b—c—d
s T —6 h—9 1—9¢

or

ad by cB d
+ + + =1 . . . (36
sty T E—9 T—% 9
This is an equation of the fourth degree giving four values of ¢.

As before it can be shown that each of the terms in equation (32) is equal

to é
m
Then 7, —% — b g Nt g Mg
3 ST Y 5 g A3

These values of Ay, %, Ag, A4 Will be seen to satisfy equation (33).
Equation (31) becomes
Y%o BYo %9
T e
y—¢ B=¢ 1—9¢
¢ [ dw, YT PY1 2!
R ST AR e
dwy + y21 + BY1 + 21

There are four of these equations corresponding to the four values of ¢.
From them can be derived four equations similar to equations (20a), (200),
(20¢) and they are equivalent to three independent equations. The fourth
equation required is w + @ +y +2z=1, and the final solution involves
the solution of four lincar simultaneous equations.

The general procedure can obviously be applied similarly to mixtures

of more than four components.

dw,

5§ —¢

(37)




