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Abstract: The problem of optimizing a dynamic system under uncertainty is
typically tackled using measurements. The methods widely used in the literature
are based on repetitive optimization of a process model. Recently, tracking of
the Necessary Conditions of Optimality (NCO tracking) has been proposed as a
computationally less expensive alternative, which is based on the adaptation of
a solution model using measurements. So far, the solution model, which contains
information on the structure of the input profiles and the set of active constraints,
has been derived manually using physical insight and intuition. In this paper, based
on recent results on the numerical optimization of dynamic systems, we present
a systematic and automated approach to generate a solution model. This concept
provides the first step towards an entirely automated procedure for dynamic
optimization under uncertainty via NCO tracking. Copyright(© 2005 IFAC
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1. INTRODUCTION

The optimization of dynamic processes has re-
ceived growing attention in recent years, because
it is essential for the process industry to strive
for a more efficient and agile manufacturing in
the face of saturated markets and global compe-
tition. In practical situations, with uncertainties
like model mismatch and process disturbances,
it is not sufficient to determine numerically an
optimal solution by a mominal optimization and
apply it to the process. Rather, uncertainties have
to be taken into account either by robust opti-
mization (e.g. Zhang et al. (2002)), which typ-
ically leads to quite conservative solutions, or
by measurement-based optimization (Srinivasan et
al., 2003a; Kadam and Marquardt, 2004).

In measurement-based optimization, process mea-
surements are used to adapt the optimal trajec-
tories to compensate for uncertainty. Typically,
this is done by on-line re-optimization of the dy-
namic optimization problem (Kadam and Mar-
quardt, 2004). At each sampling time, the initial
conditions are updated by means of process mea-
surements. Furthermore, the model parameters
might also be updated using measurement infor-
mation. In most cases, not all required process
variables are accessible through measurements.
Suitable estimation techniques are then required
for the computation of unmeasurable quantities
(e.g. Lee and Ricker (1994)). Based on these up-
dates, the repetitive optimization can adjust the
control variables to the current process state.



A conceptually different way of tackling this prob-
lem has been proposed recently by Srinivasan
et al. (2003a). Here, a tracking scheme is de-
rived from the necessary conditions of optimality
(NCO) and, thus, the approach is referred to as
NCO tracking. The NCO-tracking scheme uses the
concept of solution model that is essentially de-
rived by dissecting the optimal input profiles and
relating them to the different parts of the NCO
(Srinivasan and Bonvin, 2004). So far, the deriva-
tion of the solution model requires experience and
physical insight into the process. Current practice
is to perform numerical optimization studies of the
given problem and then interpret the solution pro-
files by visual inspection. However, recent results
on the numerical optimization of dynamic systems
allow not only to compute a nominal optimal
solution, but also to extract important structural
information such as active path and terminal con-
straints and the type and sequence of intervals
(Schlegel and Marquardt, 2004). The goal of this
contribution is therefore to present and illustrate
the idea of linking automated structure detection
to the generation of solution models. This is a
first step towards a fully automated procedure for
dynamic optimization under uncertainty.

2. PRELIMINARIES
2.1 Problem formulation and numerical solution

We consider the following terminal-cost dynamic
optimization problem
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where x(t) € R" denotes the vector of state
variables with initial conditions axy. The process
model (1) is formulated as the smooth vector
function f. The time-dependent control variables
u(t) € R™ and possibly the final time are the
decision variables for optimization. Furthermore,
there are path constraints h on the states and
control variables (2) and endpoint constraints e
on the state variables (3).

There are various solution techniques available for
dynamic optimization problems of the form (P1)
(Srinivasan et al., 2003b). In this work, we use the
sequential or single-shooting approach, a direct
method that solves the problem by conversion
into a nonlinear programming problem (NLP)
through discretization of the control variables
u(t). We employ the software tool DyOS (Schlegel
et al., 2004) for this purpose.

For the parameterization of the control profiles
u;(t), piecewise-polynomial approximations (e.g.
piecewise-constant or piecewise-linear) are often
applied. The profiles for the state variables x(t)
are obtained by forward numerical integration
of the model (1) for a given input. With the
discretization parameters & as degrees of freedom
(DOF), problem (P1) can be reformulated and
solved as the NLP
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with the path constraints being evaluated at dis-
crete time points contained in A.

2.2 Necessary conditions of optimality (NCO)

By employing Pontryagin’s Minimum Principle
(Bryson and Ho, 1975), (P1) can be reformulated
with the Hamiltonian function H(t) as

min H(t) = AT f(x,u) + p"h(z,u) (P3)
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Here, A(t) # O denotes the adjoint variables,
p(t) > 0 and v > 0 the Lagrange multipliers for
the path and terminal constraints, respectively.
The complementarity conditions (8)-(9) indicate
that a Lagrange multiplier is positive if the corre-
sponding constraint is active and zero otherwise.

An optimal solution of problem (P3) fulfills the
necessary conditions of optimality:

OH(t) \r0f  pOh _
ou =A 8u+u 8u_07 (10)

If a free final time is allowed, an additional
transversality condition has to be also satisfied:

2.8 NCO tracking using a solution model

NCO tracking adjusts the manipulated variables
by means of a decentralized control system in
order to track the NCO in face of uncertainty.
This way, optimal operation is implemented via
feedback without the need for solving a dynamic
optimization problem in real time. The real chal-
lenge lies in the fact that four different objectives



(i.e. eqns. (8)-(11)) are involved in achieving op-
timality. These path and terminal objectives are
linked to active contraints (eqns. (8), (9)) and to
sensitivities (eqns. (10), (11)). Hence, it becomes
important to appropriately parameterize the in-
puts using time functions and scalars and assign
them to the different objectives. This assignment,
which corresponds to choosing the solution model,
is a way of looking at the NCO through the inputs.

The generation of a solution model includes two
main steps (Srinivasan and Bonvin, 2004):

e Input dissection: Based on the effect of uncer-
tainty, this step determines the fixed and free
parts of the inputs. In some of the intervals, the in-
puts are independent of the prevailing uncertainty,
e.g. in intervals where the inputs are at their
bounds, and thus can be applied in an open-loop
fashion. The corresponding input elements can be
considered fixed in the solution model. In other
intervals, the inputs are affected by uncertainty
and need to be adjusted for optimality. All the
input elements affected by uncertainty constitute
the free variables of the optimization problem.

e Linking the input free variables to the NCO:
The next step is to provide an unambiguous link
between the free variables and the NCO. The
active path constraints fix certain time functions
and the active terminal constraints certain scalar
parameters or time functions. The remaining de-
grees of freedom are used to meet the path and
terminal sensitivities. Note that the pairing is
not always unique. An important assumption here
is that the set of active constraints is correctly
determined and does not vary with uncertainty.
Fortunately, this restrictive assumption can often
be relaxed (Srinivasan and Bonvin, 2004).

Once the solution model has been postulated, it
provides the basis for adapting the free variables
using appropriate measurements. However, the so-
lution model does not specify whether a controller
needs to be implemented on-line or in a run-
to-run fashion. On-line implementation requires
reliable on-line measurements of the parts of the
NCO used in the particular controller. In most of
the applications, measurements of the constrained
variables are available on-line. When on-line mea-
surements of certain NCO parts are not avail-
able (e.g. sensitivities and terminal constraints), a
model is used to predict them. Otherwise, a run-
to-run implementation becomes necessary.

3. SOLUTION STRUCTURE

Optimal control profiles are typically discontinu-
ous, but are continuous and differentiable within
each arc. The types of arcs that can exist are:

(1) u; = i path : u; is determined by an active
path constraint (constraint-seeking arc), or

(2) wi = Ui sens © U; 1S DOt governed by an active
path constraint, it is sensitivity seeking.

Among the constrained-seeking arcs, various cases
can be distinguished depending on what type of
constraint is active:

(1) w; = Ui min : u; 1s at its lower bound,

(2) w;i = Ui mas : w; is at its upper bound,

(3) u; = U state : U; is determined by an active
state path constraint.

This information on the type of arcs can be de-
duced from the numerical solution of the NLP
(P2). Schlegel and Marquardt (2004) have pro-
posed a method that automatically detects the
control switching structure and exploits it for an
efficient reparameterization of w(t).

Due to space limitations, we refer to the afore-
mentioned reference for details about the partic-
ular steps in the algorithm. Without going into
details, the key is to note that each discrete con-
straint in (P2) has an associated discrete Lagrange
multiplier, f; or 7;. They are related to the La-
grange multipliers p(t) and v of the continuous
problem (P3). The value of each of the discrete
multipliers provides information about the status
(active or inactive) of the particular constraint at
the optimal solution. This information is used for
structure detection, reparameterization, and later
generation of the solution model.

As a result of this procedure, the optimal control
profiles can be parameterized with a minimum
number of parameters

u(t) =Un(), A, T,t). (12)

where n(t) € RL are the time-variant arcs, 7 € RY
the time-invariant switching timess, and L the
total number of arcs. The boolean set A of length
L describes the type of each particular arc, which
can be one out of {Umin, Umaz, Ustates Usens ;s S
explained above.

4. FROM SOLUTION STRUCTURE TO
SOLUTION MODEL

The NCO-tracking approach presented in Section
2.4 requires a flexible and robust solution model.
For this, (P1) is solved for several uncertainty
scenarios to compute optimal solutions along with
their corresponding structures. If the structure of
the solution — the number, type and sequence of
arcs — varies with uncertainty, then a solution
model that combines the structural results from
various uncertainty realizations is required. How-
ever, the assumption of invariant structure has
been found to be valid for many examples of batch
operation.



The sequence of decisions for formulating a solu-
tion model is described generically next, while the
specificities will be discussed in connection with
the illustrative example of next section.

(1)

(2)

Classification into bounded, state-constrained,
and sensitivity-seeking arcs: The detected so-
lution structure available in A provides the
desired classification.

Determination of fixed and free variables:
The inputs variables at their bounds are
considered fixed. Optionally, certain input
elements that do not vary with uncertainty
can also be considered fixed. All other input
elements are treated as free variables.
Parameterization of the free variables: The
input arcs determined by state constraints
are considered as time-dependent infinite-
dimensional profiles. The sensitivity-seeking
arcs can be either treated as infinite-dimen-
sional objects or parameterized with a small
number of scalar variables. The resulting
parameter vector 7 includes 7 and these
additional parameters.

Linking to state constraints: m(t) in an inter-
val with an active state constraint is linked
to that constraint. Let the constraint h; be
active during the interval . Then,

nz(t) =S K:z(hj(t)),t S [7'1',7'1'4_1], (13)

where IC; is an appropriate path controller.
Certain switching times are determined by
the activation of the constraints and this is-
sue will be discussed in detail in the example.
Linking to terminal constraints: After remov-
ing the variables that keep the path con-
straints active, most of the other free vari-
ables have an influence on the terminal con-
straints. Assigning them to the terminal con-
straints is clearly non-unique. It is proposed
to choose the most sensitive variables, i.e.
those who have the largest influence on the
terminal constraints. For this, the sensitivity
matrix g—z is computed. Then, a relative gain
array analysis can be used to determine the
pairing. If the pairing is not satisfactory, then
singular value decomposition can be used to
find combinations of free variables that can
keep the terminal constraints active.

Let the parameter m; be determined by the
terminal constraint e;. Then, the adaptation
of m; is given by:

T =R;(e;) (14)

where R; is an appropriate (possibly run-to-
run) controller for the adaptation of ;.
Linking to path sensitivities: The remaining
unparameterized sensitivity-seeking arcs are
linked to the sensitivities of the Hamiltonian.
Let the interval ¢ be a sensitivity-seeking
arc without any further parameterization.

On such an arc, the sensitivity of the Hamil-
tonian should be pushed to zero for optimal

operation:
wo=0,(29) g

where G; is an appropriate controller for the
path sensitivity in the interval i.

Alternatively, a neighboring-extremal ap-
proach can be used to approximately push
the path sensitivities to zero (Kadam and
Marquardt, 2004). This consists of following
a reference trajectory with a controller de-
signed based on the linear approximation of
the system around that trajectory:

771(75) :M(wawref) (16)

where N is the neighboring-extremal con-
troller.

(7) Linking to terminal sensitivities: All remain-
ing parameters are linked to terminal sensi-
tivities. Once all time functions and active
terminal constraints have been tackled, the
problem can be treated as an unconstrained
static optimization problem with a vector of
scalar decision variables. NCO tracking then
corresponds to pushing the terminal sensitiv-

ities to zero:
0o
aen(2)
J J 87'(']‘

where 7; is an appropriate controller for the
terminal sensitivity.

5. ILLUSTRATIVE EXAMPLE
5.1 Bioreactor with uncertainty

The example used in this paper is a fed-batch bio-
reactor with inhibition and a biomass constraint
(Srinivasan et al., 2003b). Two reactions S —

X S X P. are considered. The objective is to
maximize the product concentration at a given
final time, by manipulating the feed rate. The
path constraints consist of the bounds on the
substrate feed rate u and an upper bound on the
biomass concentration X. The model equations
are:

X:MX—%X X(0) = X,
X vX v _
P:uX—%P P(0) = P,
V=u V(0) =V,
with p(S) = #@7 v(S) = S”J"r"lfo, where

S, X, P: concentrations of substrate, biomass,
and product, respectively, V: Volume, u: Feed



flowrate, S;,: Inlet substrate concentration, i,
Vm, Km, K;, K,: Kinetic parameters, and Y, Y}:
Yield coefficients. Numerical values: Table 1.

fim 053 1/h[vm 05 1/h] [umin 0 I/h] [X, 1 g/1
Km 12 g/1|K; 22 g/1| |umaez 11/h| |So 0 g/l
Y, 04 Y, 1 Xomaz 3 g/1| |P» 0 g/l
K, 001 g/1|S;, 20 g/1| |t; 8 h| |V, 2 1

Table 1. Model parameters, operating
bounds and initial conditions

5.2 Solution model

The uncertainty considered is the variation of the
growth parameter Y,, between the bounds [0.3, 0.6]
with the nominal value of 0.4. As the structure of
the solution does not change with this variation,
the solution model is derived directly from the
nominal solution and the detected structure.

Using the steps given in the previous section, the
following solution model is derived:

Umaz 0<t<n
No(S, Srep2) T <t <
; <
U(t) _ Umin T2 > t < T3 (18)

K:4(X7 Xmaa:) T3 S t< T4
N5(S, Srefs) Ta<t<Ts
Umin T5 <t< tf

7 =t st S(t) = Sresoa (19)
To =1t 8.t Xpreda(t) = 0.95X 40 (20)
3 =1t s.t. X(t) = Xpnae (21)
Ty =1tst. S(t) = Sress (22)
75 =7.93 (23)
Xpred(t) = X (t) — a(1.258e5,2 — S(t)) (24)

The steps are discussed below:

1. Classification: Fig. 1 shows the optimal solution
profiles for the feed rate u, the substrate concen-
tration S and the biomass concentration X.

We recognize a complex switching structure con-
sisting of L = 6 arcs of type A = [tUmaz, Usens,
Umins Ustates Usenss Wmin) With the switching times
7=[0.86,3.84, 5.43, 6.23,7.93] h.

2. Fized parts: The input in intervals 1, 3, and 6 is
on one of the bounds and is considered fixed. The
optimal value of the switching time 75 is nearly
constant for different realizations of the uncertain
parameter. Therefore, it is also fixed at 7.93 h.

3. Parameterization: There are no arcs that are
parameterized. All free arcs are adapted on-line.

4. State constraint: The switching time 73 is de-
termined upon activation of the constraint on X.
Note that the third arc w,,;, is required to reduce
S so that X can reach X,,,, without overshoot.
An empirical model is developed for predicting X
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Fig. 1. Optimal nominal profiles.

at the end of the w,,;, arc. It can be observed
from the nominal optimal profiles of S and X that,
after u is switched to u.mnin, the ratio a between
the changes in S and X is almost constant even
in the presence of uncertainty. This fact is used
for the prediction of X in (24). 7o (eq. (20)) is
updated such that Xp,.q reaches 95% of X,z
(back-off). On the constraint-seeking arc ustqte,
is given by the controller K4 that keeps X at its
bound X,,.;- Due to sensitivity issues, a cascade
type controller is used that calculates a set point
for S which is tracked by manipulating u(¢) using
a PI controller.

5. Terminal constraints: There are no terminal
constraints in this problem.

6. Sensitivity-seeking arcs: The two sensitivity-
seeking arcs are adapted by tracking a reference
trajectory. On these arcs, the optimal values of S
corresponding to different realizations of the un-
certain parameter are nearly constant. Therefore,
Sref,2 and Sycf 5 need not be necessarily updated.
Their values 5.14 and 0.2 g/1 are chosen constant
over time. The switching times 7, and 74 are
assigned according to (19) and (22) as the time
at which S reaches S;cf2 and S, 5, respectively.

7. Terminal sensitivities: There are no free vari-
ables to be associated with terminal sensitivities.



5.8 NCO-tracking results

The solution model (18)-(24) is adapted using on-
line measurements of X and S. The process is
simulated for two realization of the uncertain pa-
rameter, Y, = 0.3 and Y, = 0.6. The performance
of NCO tracking for these two cases is reported in
Fig. 2 as dashed and dotted lines, respectively.
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Fig. 2. Optimal profiles with NCO tracking for the
perturbed parameter values Y, = 0.3, 0.6.

It can be observed that the operation is feasible
with respect to the state constraint on X, which
is not the case with open-loop implementation of
the nominal control to the perturbed process. The
empirical model (24) is sufficiently accurate for
the perturbations in Y. The reference tracking
on Arc 2 and Arc 5 has significantly improved
the objective function. For Y, = 0.3, the control
saturates on Arc 2.

The objective function values using the open-loop
implementation of the nominal control, the NCO
tracking solution model and re-optimized control
are given in Table 2. Using the solution model, the
loss in optimality is very minimal, which can be
further reduced by run-to-run updates.

Table 2. Objective function values using
different control strategies

Y,z | Open-loop | Solution model | Re-optimization
0.3 infeasible 5.47 5.66
0.6 infeasible 6.73 6.76

6. CONCLUSIONS

This paper presents a systematic procedure for
deriving a solution model for the optimal oper-
ation of dynamic processes from a numerical so-
lution. The solution model is used to track the
NCO in order to retain a feasible and optimal
operation under uncertainty. Even though the ex-
ample used for illustration shows a fairly complex
solution structure, the latter can be automatically
detected and systematically converted into a solu-
tion model. Investigations of various uncertainty
scenarios confirmed the robustness of the solu-
tion model. The suggested procedure still requires
physical insight and experience to derive the NCO
control law from the automatically detected so-
lution structure. The objective of future work is
to formalize this process in order to support the
control system design to the extent possible.
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