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Abstract: Models for the production, storing and distribution elements of supply
chains are proposed based on linear differential equations. The models consider
the dynamics of inventories and production rates. A bounded control for the
inventories of the mentioned elements is introduced for regulating the inventory
level to a desired value manipulating production or incoming rates. Stability
conditions are provided together with tuning rules. A simulation of a multi-product
petrochemical supply chain illustrates the application of the dynamic models and
the performance of the proposed controller. Copyright c© 2005 IFAC
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1. INTRODUCTION

Supply chains characterize the behavior, integra-
tion and relations between the players of a market
network: suppliers, producers, distribution centers
and customers. Figure 1 shows a typical arrange-
ment. The network includes all activities related
with the flow and transformation of goods from
the raw material stage to the end user, and the
associated information flows.

The study and control of supply chains have arisen
interest on the research community because of
implicit economic benefits. The markets, in which
the supply chains are involved, demand a large
variety of products, complying with high quality
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Fig. 1. Material flows in a supply chain.

standards and competitive prices. These markets
present quick changes on costumers demand, fast
development of new products and high competi-
tiveness of the players. Thus, new challenges for
the participants on the global market environment
have arisen, which run from minimizing invento-
ries of raw material and finished products to quick



distribution networks. A way to successfully ad-
dress those challenges is to study and characterize
the dynamic behavior of enterprise systems and
all the elements on the market network, and to
control the entire system to achieve a desired goal.

Most of the work on control of supply chains
has been done on the planning and scheduling
of the inventories and orders handling. For ex-
ample, (Perea-Lopez et al., 2001) introduced a
decentralized control with a production policy. An
extension to this scheme is presented by (Perea-
Lopez et al., 2003), where model predictive control
is used to improve the forecast of the planning of
inventories and handling of orders in a horizon
of time. Few works have addressed the stability
analysis of supply chains and the control of their
elements as dynamic systems. (Nagatani and Hel-
bing, 2004) propose a bounded controller for the
production rate based on hyperbolic functions. It
regulates the production rates up to a maximum
of magnitude 1, while inventories are free to evolve
in a bounded region, thus limiting the kind of
systems for which the proposed controller applies.

This paper addresses the modelling of supply
chains and inventory control to a desired value,
by regulating the production or incoming rate.
Different to the hyperbolic functions considered in
(Nagatani and Helbing, 2004), exponential func-
tions bounded between [0, 1] are used. Thus a nor-
malized production or incoming rate is controlled,
then an scaling factor is introduced to recover the
physical limitations of the system.

Section 2, following (Helbing, 2003), presents
models for the dynamics of inventories and pro-
duction rates of the elements of supply chains,
based on linear differential equations. In section 3
a bounded control to regulate the inventory levels
by manipulating the production or incoming rates
is introduced. Stability conditions are provided in
section 4. A simulation of a multi-product petro-
chemical supply chain illustrates the applicability
and performance of the proposed controller.

2. DYNAMIC MODELS
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Fig. 2. Nodes in a supply chain path.

Consider an n-nodes path of a supply chain, Fig-
ure 2. Each node i (for i = 1, . . . , n) is modeled
by its inventory level Ni, and its production or
incoming rate λi depending if it is a producer,
warehouse, supplier or distribution center. Follow-
ing (Helbing, 2003) and (Perea-Lopez et al., 2003),
the elements/nodes of the linear supply chain are
modeled by linear differential equations as follows.

2.1 Model for producer nodes

The dynamics of a producer node i ∈ Cp, (with Cp

the set of indexes of producer nodes of the supply
chain) is given by the change of its inventory level
Ni and production rate λi

dNi

dt
= λi − λd p,i (1)

dλi

dt
=

1
Ti

(Wi − λi) (2)

where Ti models the adaptation time of the pro-
duction rate λi. Wi is the control action manipu-
lating the production rate λi. λd p,i represents the
total demand of products for the producer i, and
it is given by

λd p,i =
∑

j∈Cd p,i

Fi,jλj (3)

where Cd p,i is the set of indexes of all nodes
demanding products from producer i, λj is the
production or incoming rate of demanding node j,
and Fi,j is the stoichiometric ratio of the product
of node i that is required by node j ∈ Cd p,i.

2.2 Model for non producer nodes

The dynamics of a supplier, warehouse or distri-
bution center i ∈ Cnp, (Cnp the set of indexes of
non producer nodes on the supply chain) is given
by the change of its inventory level Ni, because
they do not produced anything, thus is given by

dNi

dt
= λi − λd np,i (4)

where λi is the incoming rate on non producer
node i, and it is the control action to regulate the
inventory level Ni. λd np,i represents the total de-
mand of stock products in the supplier, warehouse
or distribution center node i

λd np,i =
∑

j∈Cd np,i

Fi,jλj (5)

whit Cd np,i the set of indexes of all nodes de-
manding products from the supplier, warehouse
or distribution center i. λj is the production or
incoming rate of the demanding node j. Fi,j repre-
sents the stoichiometric ratio of the stock product
in node i that is required by node j ∈ Cd np,i.

3. INVENTORY LEVEL CONTROL

The controller is designed to keep inventory levels
at a desired value by regulating the production or
incoming rate. To capture the characteristics and
limitations of the supply chain, there are some
conditions to be considered on the control design.



Condition 1. Considering dynamic models (1),
(2) and (4), the inventory levels Ni are to be
controlled indirectly through the production or
incoming rates λi.

Condition 2. The inventory levels Ni, production
and incoming rates λi are bounded such that they
hold the physical limitations on the producers,
suppliers, warehouses and distribution centers.
This means that

0 ≤ Ni ≤ Ni,max (6)

0 ≤ λi ≤ λi,max (7)

where Ni,max, λi,max are the maximum inventory
level on stock and maximum production or incom-
ing rate respectively.

Condition 3. The control action to regulate the
inventory level Ni is performed by the production
or incoming rate λi (see (1), (2) and (4)). Since
the production or incoming rate λi is bounded
(7), then the control action must be bounded
accordingly, such that for a producer node Wi

must hold that 0 ≤ Wi ≤ λi,max, where λi,max

is the maximum production rate. While for a
supplier, warehouse and distribution center the
incoming rate λi must hold that 0 ≤ λi ≤ λi,max,
where λi,max is the maximum incoming rate.

3.1 Inventory level control for producer nodes

The control action Wi, (see 2), for a producer node
i (for i ∈ Cp) is given by

Wi = λi,max ×(
2 − 1

1 + e−αi(Ne,i−Nc,i)
− 1

1 + e−αiNc,i

)
(8)

where λi,max is the maximum production rate, αi

is a parameter that regulates the convergence rate
of Ni. Ne,i is a feedback term depending on the
inventory levels accordingly to a policy strategy,
as proposed by (Nagatani and Helbing, 2004) it
is taken that Ne,i = Ni. The term Nc,i is a
parameter that sets the maximum bound for the
inventory level Ni (Nagatani and Helbing, 2004).
In this paper the term Nc,i is used to induce
regulation of the inventory level Ni to a desired
value Nd,i, and is proposed as

Nc,i = Nd,i−Kp,i(Ni − Nd,i)−
KI,i

∫
(Ni − Nd,i)dt (9)

where Kp,i and KI,i are the positive proportional
and integral control gains respectively.

In order to produced a smooth control action
exponential functions are considered in (8), where

the parameter αi provides a fast responses. The
transient response is shaped by the proportional
gain Kp,i, whilst the steady state error conver-
gence is settled through the integral gain KI,i.

3.2 Inventory level control for non producer nodes

The dynamics of a supplier, warehouse or distri-
bution node i (for i ∈ Cnp) is controlled through
its incoming rate λi (see 4) as

λi = λi,max ×(
2− 1

1 + e−αi(Ne,i−Nc,i)
− 1

1 + e−αiNc,i

)
(10)

where λi,max is the maximum incoming rate in
the node, αi is a parameter that regulates the
convergence rate of Ni, Ne,i and Nc,i are given
as for the control of producer nodes (8).

Remark 1. Notice that the term in between paren-
thesis in (8) and (10) is bounded such that it can
take values in [0, 1]. Therefore this term regulates
the normalized production or incoming rate of the
corresponding node. After multiplying this term
by λi,max the node recovers the physical limita-
tions on its production or incoming rate, such
that, different to (Nagatani and Helbing, 2004)
systems with production rates larger than 1 can
be considered.

4. STABILITY ANALYSIS

The goal of this section is to establish stability
equilibrium conditions for the supply chain system
in closed loop form.

4.1 Stability for producer nodes

Lets first determine the equilibrium point (λ∗
i , N

∗
i )

for the producer node modeled by (1) and (2) in
closed loop form with the controller (8), (9).

From (1) it follows that the equilibrium condition
is given by 0 = λ∗

i − λd p,i. This means that the
production rate in the equilibrium point is λ∗

i =
λd p,i. The equilibrium point in the production
rate is obtained from (2) as 0 = 1

Ti
(Wi − λ∗

i ).
This happens if and only if Wi = Wi(N∗

i ) = λ∗
i

such that Wi(N∗
i ) is equal to a constant. Then

by considering the definitions of Wi and Nc,i,
equations (8) and (9), it follows that Wi(N∗

i ) is
constant if and only if N∗

i = Nd,i.

In order to obtain stability conditions in system
(1) and (2) in the equilibrium point (λ∗

i , N
∗
i ), the

closed loop system is linearized as



dδNi

dt
= δλi (11)

dδλi

dt
=

1
Ti

(W ′
i (N

∗
i )δNi − δλi) (12)

where δNi and δλi denote small deviations from
the equilibrium point (λ∗

i , N
∗
i ). System (11), (12)

can be written in compact form as

dx

dt
= Ax (13)

where x = (δNi, δλi)
T , with

A =


 0 1

1
Ti

W ′(N∗
i ) − 1

Ti


 (14)

The matrix A is stable, i.e. has both eigenvalues
on the left half plane of the complex space, if the
derivative of the control function W ′

i (N
∗
i ) fulfills

the stability condition

W ′
i(N∗

i ) ≤ − 1
4Ti

(15)

Inequality (15) imposes conditions on the con-
troller gains named αi, Kp,i, KI,i. By replacing the
regulation inventory control function (9) in the
control action Wi, (8), it follows that

W ′
i(N∗

i ) = αiλi,max

(
−1

4
(1 + KP,i + tKI,i) +

(KP,i + tKI,i)e−(αiNd,i)

(1 + e−(αiNd,i))2

)
(16)

where t represents the integration time. Consid-
ering that at the equilibrium point (N∗

i = Nd,i)
there is no integral action, then it can be taken
that t = 0. From (16) sufficient conditions for the
positive proportional gain are provided as follows

KP,i ≤
∣∣∣∣(1 + e−(αiNd,i))2(αiλi,maxTi − 1)

αiλi,maxTi(e(−αiNd,i) − 1)2

∣∣∣∣ (17)

To obtain conditions on the integral gain KI,i the
regulation of the inventory level Nc,i is evaluated
at the equilibrium point. By defining the regula-
tion error ei,1 = (Ni−Nd,i), replacing it in (9) and
taking the first derivative with respect to time as

dNc,i

dt
= −Kp,i

dei,1

dt
− KI,iei,1 (18)

Because it is desired that at the equilibrium point
the regulation inventory level Ni → N∗

i , (18) is
set equal to zero and Laplace transform is applied
to obtain the pole induced by the controller, i.e.

s = −KI,i

KP,i
(19)

Considering that the pole in (19) must not be
greater than the value settled in (15), then the
sufficient condition on the integral gain is

KI,i ≤ 1
4

KP,i

Ti
(20)

The last parameter left for tuning corresponds to
the convergence regulation αi, which can be cho-
sen as αi ≥ 1. With this it is ensured a minimum
velocity in the convergence to the equilibrium
point. This parameter can be done sufficiently
large. However this may introduce overshoot prob-
lems in the convergence of the supply chain.

4.2 Stability for non producer nodes

The stability conditions for the inventory level
control for suppliers, warehouses and distribution
centers are obtained as in the previous section.
Considering equilibrium conditions for the inven-
tory level control of the supplier, warehouse or
distribution center (10), first the system (4) is
linearized in the equilibrium point λ∗

i = λd np,i

and N∗
i = Nd,i to obtain

dδNi

dt
= λ′(N∗

i )δNi (21)

where δNi denote small deviations from the equi-
librium point. The stability condition in system
(21) implies the following constraint on the inven-
tory level control λi for the non producer nodes

λ′(N∗
i ) < 0 (22)

Which imposes conditions for the controller gains
αi, Kp,i, KI,i, as follows from λ′

i,

λ′
i(N

∗
i ) = αiλi,max

(
−1

4
(1 + KP,i + tKI,i) +

+
(KP,i + tKI,i)e−(αiNd,i)

(1 + e−(αiNd,i))2

)
(23)

Now, by setting integration time t = 0 in (23) it
can be proved that for the positive proportional
gain KP,i, the following inequality must be satis-
fied

KP,i <

∣∣∣∣∣
(
1 + e−αiNd,i

)2

(e−αiNd,i − 1)2

∣∣∣∣∣ (24)

The condition on the integral gain is obtained
as in the regulation inventory level function Nc.i,
(19), thus s = −KI,i

KP,i
. Since KP,i > 0, then KI,i >

0. As in the producer nodes the convergence
regulation parameter αi must be chosen equal or
greater than 1.



5. SIMULATION EXAMPLE

The dynamic models proposed in (1), (2), (4), and
the inventory level controls (8), (10), are applied
to the supply chain of a typical multi product
petrochemical company proposed in (Lababidi et
al., 2004). Figure 3 shows the supply chain net-
work and Table 1 identifies each of the partici-
pating nodes. Hexene and catalyst are ordered,
whereas ethane is obtained from a local refinery.
The production of ethylene and butene is carried
out in separate production plants. Intermediate
storages are available for the hexene, ethylene, and
butene feedstocks. There are two reactors, R1 and
R2, which can produce different products denoted
by A1 and A2 for reactor R1, and B1 and B2 for
reactor R2. Production volumes are shipped to
retailers D1 to D5, and stock volumes are kept in
the warehouses and storage facilities in each one
of the production plants and reactors.

Fig. 3. Node diagram of the petrochemical plant.

Table 1. Node nomenclature.

node element node element

1 hexene ship 2 hexene store
3 reactor R1 4 store A1, A2

5, 6, 7 client D1, D2, D3 8 refinery
9 ethylene plant 10 ethylene store
11 butene plant 12 butene store
13 catalyst store 14 reactor R2
15 store B1, B2 16, 17 client D4, D5

The set of producer nodes Cp is given by Cp =
{3, 8, 9, 11, 14}, while for non producer nodes
Cnp = {1, 2, 4, 5, 6, 7, 10, 12, 13, 15, 16, 17}.
To clarify the modeling strategies presented in
Section 2 lets consider the warehouse node 2 and
the producer node 9. For the non producer node
2 (i = 2) accordingly to (4) and (5)

dN2

dt
= λ2 − λd np,2 (25)

with Cd np,2 = {3, 14}, such that

λd np,2 = F2,3λ3 + F2,14λ14 (26)

and from (1) - (3) for the node 9

dN9

dt
= λ9 − λd p,9

dλ9

dt
=

1
T9

(W9 − λ9)

with Cd p,2 = {10, 11}, such that

λd p,9 = F9,10λ10 + F9,11λ11 (27)

The dynamic models for the rest of the elements
are obtained in a similar fashion.

The dynamic models of the supply chain elements
for the petrochemical plant have been programed
in SIMULINK (MATLAB). The simulated period
corresponds to 24 hrs. Originally the plant pro-
duces A1 and B2, then at t = 8 hrs. Reactor R1
changes from A1 to A2, and at t = 12 hrs reactor
R2 changes from B2 to B1. The stoichiometric
ratios for the four considered products are listed
in Table 2.

Table 2. Stoichiometric ratios for pro-
ducts A1, A2, B1 and B2.

Factor A1 A2 Factor B1 B2

F2,3 0.25 0.4 F2,14 0.6 0.4
F10,3 0.15 0.2 F10,14 0.15 0.1
F12,3 0.5 0.3 F12,14 0.1 0.3
F13,3 0.2 0.1 F13,14 0.15 0.2

For warehouses the stoichiometric ratios are 1,
therefore F1,2 = F3,4 = F9,10 = F11,12 = F14,15 =
1. Since warehouses send only the amount of prod-
ucts required by the consumers, then the stoichio-
metric ratios for the costumer sources are 1, then
F4,5 = F4,6 = F4,7 = F15,16 = F15,17 = 1. Finally,
accordingly to the production plant requirements
the stoichiometric ratios for the refinery and the
ethylene plant are F8,9 = 0.9 and F9,11 = 0.8
respectively.

The plant capacity per reactor is 34.24 [MT/hr].
The demands of product A1, A2, B1 and B2 (in
[MT/hr]) from the consumers during the simu-
lated period of time are listed in Table 3. Note
that the demanded product is supplied to the
costumer only during the production time of the
corresponding product.

Table 3. Consumer demands D1, D2,
D3, D4, D5 in [MT/hr].

Product D1 D2 D3 D4 D5

A1 5 3 12
A2 8 6 6
B1 9 13
B2 14 8

The storage capacity is 2000 [MT] for nodes 2,
10, and 12; 10000 [MT] for nodes 4, 13 and 15,
and 500 [MT] for the storage in the producer
elements (nodes 3, 8, 9, 11 and 14). According
to a monthly schedule with daily resolution, it
has been determined that the inventory levels in
nodes 1 and 13 at the beginning of the day must
be of 3000 [MT] and 2500 [MT] respectively. The
inventory levels for the other nodes must be kept
during the day in the values listed in Table 4.



Table 4. Desired inventory levels [MT].

Node 2 3 4 8 9

Inv. level 1000 400 7500 370 450

Node 10 11 12 14 15

Inv. level 1800 360 1600 420 5300

The initial values at t = 0, the maximum pro-
duction and incoming rates and the adaptation
parameter Ti for the production rates are listed
in Table 5. The initial values for the inventories
are close to the desired ones during operation (see
Table 4), to generate curves with small oscillations
and fast convergence. Nevertheless, the proposed
controller can deal with large differences between
the initial inventories and productions rates with
respect to the desired ones.

Table 5. Initial values of Ni [MT],
Ti [hr] and λi,max [MT/hr].

Node 1 2 3 4 8 9

Ni(0) 3000 992 405 7495 377 443
λi(0) 24 36 39

Ti 0.008 0.001 0.001
λi,max 120 34.24 60 120 120

Node 10 11 12 13 14 15

Ni(0) 1808 356 1555 2500 415 5310
λi(0) 33 22.8

Ti 0.003 0.001
λi,max 120 120 120 34.24 60

For brevity of space only results for the producer
nodes 3, 11 and 14 are presented.

Note that the production rates for the producer
nodes, see Figure 4, satisfy the physical bounds
of the system (condition (7) and Table 5), while
the inventories converge to their desired values as
shown in Figure 5
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As a result of changing the production from A1
to A2 and from B2 to B1, at t=8 and t=12 hrs.
respectively, the production rate λ11 (4) changes
its value. Therefore the proposed controller keeps
the desired inventory levels by manipulating the
production or incoming rates. Also notice how the
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Fig. 5. Inventory levels of production nodes.

production rates evolve during the transient pe-
riod (approximately for t ∈ [0, 5)) always holding
condition (7), and in an smooth way due to the
exponential functions in (8).

6. CONCLUSIONS AND FURTHER WORK

Dynamic linear models for the different elements
of supply chains (suppliers, producers, ware-
houses, distribution centers and costumers) have
been proposed together with a regulation control
for inventory levels, by manipulating the produc-
tion or incoming rates. The proposed modeling
approach has been applied to a multi product
petrochemical plant, showing the applicability of
the proposed models and controller. The stability
of the closed loop system has been validated based
on a linearized system.

Supply chains considering recycle systems and
nonlinearities will be address in future works.
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