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are not communicated to the people who must apply them. Control
problems arise in the plant and must be solved in the plant. Until plant
engineers and control designers are able to communicate with each
other, their mutual problems await solution. | do not mean to imply
that abstract mathematics is not capable of solving control problems, but
it is striking how often the same solution can be reached by using good

common sense. High-order equations and high-speed computers can
be manipulated to the point where common sense is dulled.

Some months ago | was asked to give a course on process control to
a large group of engineers from various departments of The Foxboro
Company. Sales, Product Design, Research, Quality Control, and
Project Engineering were all to be represented. If the subject were
presented through the traditional medium of operational calculus, the
effort would be wasted, because too few of the students would have this
prerequisite. Rather than attempt to teach operational calculus, I
chose to do without it altogether. It then became necessary to approach
control problems solely in the time domain. Once the transition was
begun, | was surprised at the fresh point of view which evolved.  Some
situations which were clouded when expressed in frequency or in complex
numbers were now easily resolved. Dead time, fundamental to any
transport process, is naturally treated in the time domain.

The value of this new approach was evident at once. In the very
first session the student was able to understand why a control loop behaves
the way it does: why it oscillates at a particular period, and what deter-
mines its damping. The subject was tangible and alive to many students
for the first time. Interest ran high, and the course was an immediate
success. The great demand for notes prompted the undertaking of
this book.

Through the years, | have observed many phenomena about control
loops which have never been explained to my satisfaction. Why does
a flow controller need such a wide proportional band, whereas a pressure
controller does not? Why is derivative less effective in a loop contain-
ing dead time than in a multicapacity loop? Why are some chemical
reactors impossible to control? What makes composition control so
difficult? Why cannot some oscillations be damped? These and many
other observations are explained in this book and perhaps nowhere else.

It is always very satisfying to learn the reasons behind the behavior
of things which are familar, or to see accepted principles proven in a new
and different way. Therefore i expect that those who are accustomed
to the more conventional approaches to control system design will find
this treatment as interesting as those who are not familiar with any.

In spite of the simplicity of this presentation, we are not kept from
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applying the most advanced concepts of automatic control. Feedfor-
ward control has proven itself capable of a hundredfold improvement
over what conventional methods of regulation can deliver. Recent
developments in nonlinear control systems have pushed beyond tradi-
tional barriers-achieving truly optimum performance. These advances
are not just speculation-they are paying out in increased throughput
and recovered product. Although their impact on the process industries
is as yet scarcely felt, the revolution is inevitable. The need for economy
will make it so.

But the most brilliantly conceived control strategy, by itself, is noth-
ing. By the same token, the most definitive mathematical representa-
tion of the process, alone, is worthless. The control system must be
the embodiment of the process characteristics if it is to perform as
intended. Without a process, there can be no control system. Anyone
who designs controls without knowing what is to be controlled is fooling
himself. A pressure regulator cannot be used to control composition.
Neither can a temperature controller on a fractionator perform the same
function as one on a heater. For these reasons this entire text is written
from the viewpoint of the needs of the process. Each type of physical-
chemical operation which has a history of misbehavior is treated in-
dividually. Not every situation can be covered, because plants and
specifications differ, and so do people.  If for no other reason, this book
will never be complete. But enough attention is given to basic prin-
ciples and typical applications to permit extension to a broad area of
problems. The plant engineer can take it from there.

In appreciation for their assistance in this endeavor, I wish to express
my gratitude to Bill Vannah for providing the initiative, to Molly
Dickinson, who did all the typing, and to John Louis for his thoughtful
criticism.

Greg Shinskey
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CHAPTER

Wat makes control loops behave the way they do? Some are fast,
some slow; some oscillate, others loll in stability. What determines how
well a given variable can be controlled? How are the optimum controller
settings related to the process ? These questions must be answered before
the reader can feel he really comprehends the essence of the control prob-
lem. They will be answered in the pages that follow.

Negative feedback is the basic regulating mechanism of automatic
systems-but it is not the only mechanism. Feedback has certain limita-
tions which sometimes go unnoticed in the pursuit of better feedback con-
trollers.  Yet before progress can be made to more effective systems, the
properties of simple feedback loops must be well defined.

Fortunately, a process need not be very complicated before the prop-
erties of the typical feedback loop make their appearance. A rapid
introduction to loop behavior may be presented using the simplest
dynamic element found in the process-dead time. This chapter is
devoted exclusively to discussion of the control of simple dynamic ele-

3



4 1 Understanding Feedback Control

ments which may never exist. in the pure form.  But these elements do
exist in various proportions in every real process. Therefore a thorough
familiarity with the parts is essential for estimating the behavior of the
whole.

NEGATIVE FEEDBACK

There are two kinds of feedback possible in a closed loop: positive and
negative. Positive feedback is an operation which augments an imbal-
ance, thereby precluding &ability. If a temperature  controller with
positive feedback were used to heat a room, it would increase the heat
when the temperature was above the set point and turn it off when it was
below. Loops with positive feedback lock at one extreme or the other.
Obviously this property is not conducive to regulation and therefore will
be of no further concern at this time.

Negative feedback, on the other hand, works toward restoring balance.
If the temperature is too high, the heat is reduced. The action taken-
heating-is manipulated negatively, in effect, to the direction of the con-
trolled variable-temperature.  Figure 1.1 shows the flow of information
in a feedback loop.

Throughout the text, ¢ will refer to the controlled variable, 1 to the
reference or set point, e to the error or deviation, and n to the variable
manipulated by the controller. Note again that the effect of e, the con-
troller input, is opposite to that of c.  This can be looked on as a reversal
of phase taking place at the summing junction. All negative feedback
controllers exhibit this characteristic-a phase shift of 180" gives the
feedback its negative sense.

Oscillation in the Closed Loop

Rather than prove that, a feedback loop can oscillate sinusoidally, we
shall assume that it does (a common observation) and shall attempt, to
find out why. Oscillations are characterized by periodic applications of
force in phase with the effect of the last application. In order to bounce
a ball, a person must strike it repeatedly at the correct time, otherwise

Process

¢ FIG 1.1. The flow of information is
backward from process output

e - , through the controller to process

Controller == AN input.
+
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it will cease to bounce. The correct “time” turns out to be the correct
phase. If the ball is struck at any phase angle other than 360” (of motion)
from where it was last struck, the oscillation will be changed. It is
apparent, then, that if oscillations are to persist, the shift in phase of a
signal after proceeding through the entire loop must be exactly 360”.

It has already been pointed out that negative feedback, being negative,
introduces 180 of phase shift. This means that if a closed loop is to
oscillate, the dynamic elements in the controller and the process must
contribute an additional 180”.

The Natural Period

It has also been observed that the period of oscillation which a particu-
lar loop will exhibit is characteristic of that loop. The loop resonates at
that period. Furthermore, any disturbance not periodic, applied to the
loop but containing components near the natural period, will excite oscil-
lations of the natural period. A pendulum is a good example of a feed-
back loop. The controlled variable is the angular position of the mass,
and the set point is the vertical position. The mass of the pendulum,
acted upon by gravity, is the manipulated variable, which tries to restore
the angle to zero. Its natural period in seconds is

1 L
T o 09
where I = length, ft

g = acceleration of gravity, ft/sec?

A pendulum disturbed from rest by an impulse will proceed to oscillate
at its own period. Impulse, step, and random disturbances contain a
wide spectrum of periodic waves. The resonant system, however,
responds only to the component of its own natural period, rejecting the
rest. For this reason, we are interested in the response of the loop to a
wave of the natural period and are generally unconcerned about the rest.
The natural period of oscillation will be designated 7, and will be recog-
nized hereafter as a property peculiar to each control loop.

The natural period of any loop depends on the combination of all
dynamic elements within it, including the controller. Since the amount
of phase lag of most dynamic elements varies with the period of the wave
passing through them, there is one particular period at which the total
phase lag will equal 180”. This is the period at which the loop naturally
resonates.  The natural period is a dependent variable. We can make
use of its relation to the process dynamics in two ways:

1. If the characteristics of the elements in the process are known, the
natural period under closed-loop control can be predicted.

5
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2. If a process whose elements are largely unknown is under closed-loop

control, the characteristics of these elements can be inferred by observing
the natural period.

Damping

The gain of an element is defined as the ratio of the change in its output
to the change in its input.  If the controller gain were zero, it would not
contribute to oscillation. But if the controller gain were sufficient to
produce a second disturbance equal to the first, the loop would oscillate
uniformly.  Uniform oscillation requires that a wave travel completely
through the loop, returning to its starting point with its original ampli-
tude. For such a condition to exist, the gain product of all the elements
in the loop must equal unity. If the gain product is less than unity,
oscillations are damped.

To summarize, a loop will oscillate uniformly:

1. At a period at which the phase lags of all the elements in the loop
total 180~

2. When the gain product of all the elements at that period equals 1.0
The conditions for uniform oscillation will serve as a convenient reference
on which to base rules for controller adjustment.

THE DIFFICULT ELEMENT-DEAD TIME

Identification

As the name implies, dead time is the property of a physical system by
which the response to an applied force is delayed in its effect. It is the
interval after the application of a force during which no response is observ-
able. This characteristic does not depend on the nature of the applied
force; it always appears the same. Its dimension is simply that of time.

Dead time occurs in the transportation of mass or energy along a par-
ticular path. The length of the path and the velocity of motion consti-

output

FIG 1.2. The response of the weigh
cell to a change in solids flow is
Set delayed by the travel of the belt.

m

Controller -(—(
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P _J—\—/\/
input
Jur o »
i i Process
FIG 1.3. Pure dead time transmits output

the input delayed by 74,

Time

tute the delay. Dead time is aso caled “pure delay,” “transport lag,”
or “distance-velocity lag.” As with other fundamental elements, it
rarely occurs alone in a real process. But there are few processes where
it is not present in some form. For this reason, any useful technique of
control system design must be capable of dealing with dead time.

An example of a process consisting of dead time alone is a weight-
control system operating on a solids conveyor. The dead time between
the action of the valve and the resulting change in weight is the distance
between the valve and the cell (feet), divided by the velocity of the belt
(ft/min). Dead time is invariably a problem of transportation.

A feedback controller applies corrective action to the input of a process
based on a present observation of its output. In this way the corrective
action is moderated by its observable effect on the process. A process
containing dead time produces no immediately observable effect-hence
the control situation is complicated. For this reason, dead time is recog-
nized as the most difficult dynamic element naturally occurring in physi-
cal systems. So that the reader may begin without illusions about the
limitations of automatic controls in their influence over real processes,
the difficult clement of dead time is presented first.

The response of a dead-time element to any signal whatever will be the
signal delayed by that amount of time. Dead time is measured as shown
in Fig. 1.3.

Notice the response of the element to the sine wave in Fig. 1.3. The
delay effectively produces a phase shift between input and output.
Since one characteristic of feedback loops is the tendency toward oscilla-
tion, the property of phase shift becomes an essential consideration.

The Phase Shift of Dead Time

We are primarily interested in phase characteristics of elements at the
natural period of the loop. Assume, to begin, that a closed loop contain-
ing dead time is aready oscillating uniformly. The input to the process
is the sine wave

m = A sin 2r t + My

To
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FIG 1.4. The manipulated variable
is cycling with an amplitude of A at
the natural period.

ro/4

To/2 3ro/4 T
+

where m = manipulated variable whose average component is

A = amplitude
{ = time
1, = period

Phase angles will be expressed both in degrees and in radians for reasons
that will become clear later.

21rt/‘rn
/7 sin 2t /7,
Degrees Radians

0 0 0 0
14 90 /2 +1
14 180 x 0
3 270 3r/2 -1
1 360 2r 0

This wave, passing through a dead time, will be delayed by an amount
74, but will be undiminished, so that the output will be

I — 714

+ myp

¢ = A sin 2r

o

The input angle subtracted from the output angle yields the phase shift ¢g:

ba= 2T _op b
To To
= —9or 4 _ “36001—.4 (L)
To To

The negative sign indicates a lag in phase.
Because dead time does not alter the shape or amplitude of a signal, its
gain (7; is unity to all periodic waves:

Gd = 1.0 (12)
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Proportional Control of Dead Time

Having defined the process, the next step is the selection of a suitable
controller. A proportional controller will be chosen first, because of its
simplicity. It contains no dynamic elements. Output and input are
related by the expression

100

where P = proportional band, 9,

e = error or deviation of the measurement from set point

b = output bias
As P approaches zero, the gain of the proportional controller approaches
infinity. At 100 percent band, the gain is 1.0. The output of the con-
troller equals the bias when there is no error.

Because there are no dynamic elements in the proportional controller,

the entire 180 phase shift will take place in the dead-time element.
This determines the natural period:

d)d = —180° = -

Substituting for the previously determined ¢,

2+ = —pr  —360°2 =—180°
Ta To

Solving for ,,
Ty = 2Td (1-4)

The relationship is as plain as it appears. A 1-min dead-time process will
cycle with a 2-min period under proportional control. This is not an
approximation-it is exact.

Next it is important to estimate the proportional band necessary to
sustain oscillation. Dead time offers no gain contribution, so if the loop-
gain product’ is to be 1.0, the controller proportional band must be
100 percent. To dampen the oscillations, the band must be increased,
thus attenuating the input cycle.

Figure 1.5 illustrates how a proportional band of 200 percent reduces
the amplitude of each successive half-cycle by one-half, resulting in
“L7.amplitude-damping’”’ of each successive cycle. ~This degree of damp-
ing is generally accepted as nearly optimum throughout the industry.

Notice that ‘there is only one adjustment available, and it affect’s the
damping. Given a process consisting of a I-min dead time to be cow

9
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P=100% {

P=200% & 7 ~= e
N P —_—
m \\ /v
~ Fe

FIG 1.5. A loop gain of 0.5 will provide %4~
amplitude damping.

trolled by proportional only, adjusted to 1j-amplitude damping, the
natural period is fixed a 2 min, and the proportiona band must be 200
percent. The nature of the process determines the results.

Proportional ~ Offset

The prime function of a controller is that of regulation. The controller
is intended to change its output as often and as much as necessary to keep
the controlled variable at the set point. Every process is subject to
variations in load. In a well-regulated loop, the manipulated variable
will be driven to balance the load. Consequently, the load is often
measured in terms of the corresponding value of controller output.

In the equation describing the proportional controller, the bias b equals
the output when the error is zero. This bias may be fixed at the normal
value of output, usually 50 percent, or it may be adjusted by hand to
match the current load. This adjustment is called “manual reset.”
But because of the proportional relationship between input and output,
a change in output by any amount cannot be gained without a corre-
sponding change in error. Should the output of the proportional con-
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troller have to change to meet a new load condition, a deviation will
appear:

P(m — b
€= (nzoo i (15)

The deviation in this case is known as “offset,” and it increases with
proportional band. With a 200 percent band, which was necessary for
14-amplitude damping in the previous example, a 10 percent change in
load would produce a 20 percent offset-an intolerable amount.

The characteristics of a dead-time process under proportional control
may be observed in a simple algebraic simulation. Let the present out-
put of the controller equal the measurement one dead time later:

Cpn = Mp—1

where n ={/r;. This represents a process whose gain is unity and whose
dead time is r;, When the controller is introduced to close the loop,
_ 100
m, = T (7 b C,)

100 100
Mpp1 = P (r = €uy1) = P

(r = my)
With initial conditions of ¢; =0, b =0, », =0, and P = 200 percent, let

the looy be upset by a set-paint change to 50 gereent. Subsequent
Soues of ¢ at Tiervas ofF fead Anne w1t as SOhows.

o = 09 co= 0% my = 0 9

r1= 50 ci= 0 my = 0560 =0) =25
c2 = 25 me = 0.5(50 — 25) =125
¢;=12.5 ms = 0.5(50 12.5) = 18.75

¢ = 18.75 ms = 0.5(50 — 18.75) = 15.625
¢ = 15.625

€. = 16.667 My, = 16.667

Notice that c¢ exhibits a damped oscillation whose period is two calcula-
tions (two dead times). Notice also that the amplitude of successive
crests is diminished by one-quarter. Finally, there is an offset. The
controller output comes to rest at 16.667 percent above the bias. The
offset is

r —c = 33.333%
which equals

P

Top (M — b) = 2(16.667%)

11
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rcent

-
e — 1 — - —{

FIG 1.6. Proportional control of

pure dead time can oscillate in a

square wave.

The tabulated course of the controlled variable plots as a damped
square wave. This is entirely possible when a process of pure dead time
is excited by a step. The loop responds to higher harmonics as well as
to fundamental, since the process does not attenuate waves of any period.
Odd harmonics shift the phase in increments of 360° so as to permit
oscillation at these periods also, and square waves are made of odd
harmonics.  Although a square-wave response is possible, it is not likely
to occur in processes, because ordinarily energy cannot be delivered fast
enough to make the controlled variable rise steeply.

The kind of response more likely to occur is a load change, requiring a
different value of controller output. What could happen to a dead-time
process under proportional control in the event of a gradual load change
is plotted in Fig. 1.7.

Integral (Reset) Control of Dead Time

Proportional control is obviously rejected for most applications
demanding a band wider than a few percent. So another control mode
is needed. An integral controller is a device whose output is the time
integral of the deviation:

_ 1
m = ﬁf e dt (1.6)

where R is the time constant of the controller, known as “integral” or
“reset” time. As long as a deviation exists, this controller will change

| P=w

/P=200%

/,\\Am% FIG 1.7. The response to a load
‘/ P=100%‘/ change illustrates how the propor-
[/ r R tional band affects both damping
and offset.

Time
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Deviation ©
FIG 1.8. The output of an integrator

will change by an amount equal to / Am=e
its input in time R. Output mg R
Time

its output, hence it is capable of driving the deviation to zero. The rate
of change of output is proportional to the deviation:

dm e
m_t 1.7

Response to a step input is shown in Fig. 1.8.
Before using an integral controller in a closed loop, its gain and phase
characteristics must be defined. Again we are primarily interested in

these properties at the natural period of the loop, 7. Introducing a
sinusoidal input to the controller,

e=A sin21r£

To

The controller output mill be the time integral of the input:

_ 1 1 . 1
m —ﬁ/edt—ﬁf(A sin 27r7_0—>dt

Extraction of the appropriate item from a table of definite integrals
enables us to solve the above equation:

Ar, ¢
m = 27‘;{’ (—cos 27rT—o> + my

where m, is the output at time zero.
In order to evaluate phase and gain properties, the output must be
reduced to the same form as the input, using the trigonometric identity

—cosxzsin(—%-}—x)

We can convert # into a sine function:

A7, . T 2t
m = R SIn (— 5 + 7[,) + my
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The phase shift of the integrator is the angle of the output minus the
angle of the input:

( 7r+21rt_ _%r_t

2 To To

¢r =

— %r = -90” (1.8

An integrator exhibits a phase lag of 90" regardless of the period of the
input.
The gain of an integrator is the amplitude of the output over the ampli-

tude of the input:
Ga = A'ro£27rR

To
=55 (1.9)

FIG 1.9. Adjusting reset time affects the
damping.
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70 ﬁ= poy

60 JN\R=dr/m

/]

A\

Percent

FI G 1. 10. Increasing reset time
. e
trades recovery for damping, R=2rd/w\ /

N\
sol | N\ NX_ AT\

although 71, is unaffected. 40 ]

Time

In closing the loop, the sum of the phase shift of the dead time and the
integral controller must equal —r at the natural period r,:
—r= T2 180" = 90" — 360"

2 To To
Solving for r,,
70 -- 474 (110

Notice that the period is twice that for proportional control, because only
90" of phase shift was allowed to take place in the dead-time element.

To sustain oscillations, the loop gain must be 1.0. Since the dead-time
gain is aready 1.0, the integrator gain for this condition must also be 1.0.
Solving for reset time,

GR = To =1.0

2R (111
=To _oTd
27 2 T

To summarize, a dead time of 1 min would eycle with a period of 1 min,
sustained by a reset time of 2/x, or about 0.65 min. Quarter-amplitude
damping can be achieved by halving the gain, which means doubling the
reset time. Figure 1.9 shows the entire situation.

Again, the controller has but one adjustment, which only affects damp-
ing. The period of oscillation and the integral time for f/l-amplitude
damping have been established by the process. Use of the integral con-
troller has avoided the previously encountered proportional offset, but
at the cost of reduction in speed of response.

The response of a dead-time process under integral control to a gradual
load change is pictured in Fig. 1.10. The rate of recovery is slow when the
reset time is too long. With a proper amount of reset, the measurement
will cross the set point during the first cycle, exhibiting 14{-amplitude
damping.

Proportional-plus-reset Control

This controller combines the best features of the proportional and
integral modes in that proportional offset is eliminated with little loss



Reset

Sresmaustsl. e SN

=—=—== == =N Proportional +reset

Gr=1007,/2 #RP

¢ ==90° ¢pr=—tan" 1y /2nR
of response speed. The controller is represented as follows:
100 1

Having already found the performance characteristics of each of the
modes individually on a dead-time process, intuition dictates that the
performance of the combination will be somewhere in between, e.g.,

drg > 10 > 214
depending on the particular combination of settings of proportional and
reset. An infinite combination of settings can be found to provide con-
stant damping. We have already seen that for l4-amplitude damping,

100 T

—— =05 or — =05

P 2rR

depending on the control mode used. For the two-mode controller, then,
the sum of the gains must equal 0.5.

The proportional and integral components of gain are out of phase with
each other, however. So their resultant gain must be the vector sum of
the two components. Figure 1.11 shows the relationship between the
vectors.

200 —
3 P
A N e
¢ __/: -~ :
100 _ .z Proportional
P PR FZG 1.12. A plot of gain vs. 7, for the
-7 proportional-plus-reset controller
/// shows the contributions of the
0 05 1.0 15 20 Ccomponents.

FIG 1.11. The resultant gain is the
square root of the sum of the squares

GPR=1gO./1+(r°’2’R)2 of the conponents.
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TABLE 1 .1 Settings of Proportional and Reset for 14-amplitude Damping

ér, deg $a, deg  |tan (—~or) |  7o/Ta R/t P
0 -180 0.000 2.00 0 200
-15 -165 0.268 2.18 1.29 206
-30 -150 0.577 2.40 0.66 232
-45 -135 1.000 2.67 0.42 283
-60 -120 1.732 3.00 0.28 400
-75 -105 3.732 3.43 0.15 770
-90 -90 o0 4.00 1.27%

* The last row describes integral-only control.

The gain curve for the proportional-plus-reset controller (Fig. 1.12)
can be roughly approximated by the asymptotes:

~ 100 To

Gpr ~ 5 <27rR > 1) (1.13)
The largest departure occurs at 7, = 2rR, where Gpp = 100 1/2/P
versus 100/P.

This controller presents two adjustments, both of which affect the
stability of the loop. An infinite number of combinations of proportional
and reset settings exist which would provide 14-amplitude damping, the
only requirement being that (G, = 0.5. Several such combinations
appear in Table 1.1. Obviously an infinite reset time is undesirable,
because offset will result. Yet a very low value of reset forces the pro-
portional band to be set very high, and the controller acts very much like
a pure integrator. If the recovery characteristic of reset is to be com-
bined successfully with the higher speed of proportional action, the con-
tribution of each should be similar. Of course, this is not at all critical.
Reset time can deviate by 2 : 1 with little change in performance, as long
as the proportional band has been adjusted for proper damping.  This is
typically described as a “trade-off”situation: there is a very broad opti-
mum. Means for determining exact values of the optimum will be given
at the beginning of Chap. 4. Figure 1.13 describes the effect of a gradual
load change on the loop with proportional-plus-reset control.

70

&/@
FIG 1.13. Various combinations of £ 60 A i
proportional and reset values can § / x R=0421q, P=283
provide l4-amplitude damping, but & 5 y r \\ /@

with different rates of recovery from Integral, R=1.277_|
a load change.

40
Time
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THE EASY ELEMENT-CAPACITY

Identification

Capacity appears in many forms, but its properties are universal as far
as automatic control is concerned. Capacity is a location where mass or
energy can be stored. It acts as a buffer between inflowing and outflow-
ing streams, determining how fast the level of mass or energy may change.
In fluid systems, tanks have capacity to hold liquid or gas. In electrical
systems, capacitors are used to store nominal amounts of charge. Heat
capacity is a factor in thermal systems. And the mechanical measure
of capacitance is inertia, which determines the amount of energy that
may be stored in a stationary or a moving object.

Our principal concern is with fluids, so Fig. 1.14 is an appropriate
introduction to capacity. In the system shown in the figure, the meter-
ing pump delivers a constant outflow, while inflow may be manipulated.
The rate of change of tank contents equals the difference between inflow

and outflow:

d

a”f =F,—F, (1.14)
Solving for v,

v=[(F;,=F,)dt (1.15)

If the tank is vertical and of uniform inside area, its fractional liquid level
h will equal the fractional volume:

where V is the capacity of the tank.  Since we are interested in tank level,
1
= — i = Fo dt
7 [ = F)

In an effort to make the entire equation dimensionless, we can define f;
and f, as fractions of the maximum flow F which the valve can deliver.

s

: FIG 1.14. The rate of change of level
JL Metering is proportional to the difference

pump g between inflow and outflow.
%—

v
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Process
input 1‘il fo

FIG 1.15. The percent level change
Process

will equal the percent Aow change in

time VI/F. oufput
Then,
Fi=F,=F(fi =~ f)
and
=L g~
=7 / (fi =~ fo) dt (1.16)

This is called an integrating process. Notice its similarity to the inte-
grating controllers: %is the output, / ~ / is the input error, and V/# is
the time constant. The step response is given in Fig. 1.1.5.

The level in the tank could be controlled by manualy adjusting the
valve position, thereby setting inflow. But if inflow varied in the slight-
est from outflow, the tank would eventualy flood or run dry. This
characteristic is called “non-self-regulation.” It, means that the inte-
grating process cannot balance itself-it has no natural equilibrium or
steady state. The non-self-regulating process cannot be left unattended
for long periods of time without automatic control.

Most liquid-level processes are non-self-regulating; occasionally other
processes will exhibit this characteristic. In general, it is not harmful
as long as its peculiarities are taken into account. One of these pecu-
liarities is its phase shift. Like the integrating controller, the non-self-
regulating process exhibits a phase lag of 90° to any periodic wave.
Consequently:

1. Under proportional control, the loop cannot oscillate because its
phase lag never reaches 180". The proportional band therefore can be
set to zero.

2. Under floating (integrating) control, the loop will always oscillate
with uniform amplitude, because the total phase shift of process and
controller is 180" at all periods. The loop tends to oscillate at the period
where the gain product is unity; the reset time then only affects the period
and cannot change the damping. The gain of an integrating process is
like the integrating controller:

Gr = 2 (117)

277
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where r = V/F. If an integrating controller is used to close the loop,
GIGR =10

To To _
(5) () = 10

Solving for =,
7o = 2r \/Rr (1.18)

Self-regulation

Replace the metering pump in Fig. 1.14 with a valve. Then an increase
in liquid level would inherently increase the outflow. This action works
toward the restoration of equilibrium and is called “self-regulation.”
It is as if a proportional controller were at work within the process.  This
is a natural form of negative feedback.

Although the relationship is in fact not linear, assume for the moment
that flow out of the tank is proportional to the head of liquid above the
valve:

f, = kh

The level will remain steady when f, = f;, which indicates that every
condition of inflow will bring about a new steady-state level:

ki
h=1%

In proceeding from one steady state to another, however, the level will
vary with time. With a step increase in f;, the level will start to change
at the same rate as in the non-self-regulating case, because outflow has
not yet begun to increase. The rate of rise of level will then diminish
with time, as f, approaches fi. As a result, the final level will only be

reached in infinite time.

dh F
S Ui=h

Substituting for £,
dh _ F
“d_t - V (fl kh)
The next step is to solve for h, the controlled variable:

th__fi
Fledt = 1 (1.19)

This is known as a first-order differential equation. The controlled vari-
able 7 is related to the manipulated variable f;, both in the steady state
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and with respect to time. This particular differential equation is of the
form

c+ rlg—tc = Km (1.20)

which describes a first-order lag whose time constant is r; and whose
steady-state gain is K. In the level process, 7, = V/Fkand K = 1/k.
The solution of the equation for a step input is

c = Km(l = etm) (1.21)

which is plotted for the level process in Fig. 1.16. After an elapsed time
equal to 7, 63.2 percent, of the distance to the nest steady state will have
been traversed. After another r, has elapsed, G3.2 percent of what was
left will have been traversed, and so forth.

At the beginning of the step response, the self-regulating process resem-
bles the non-self-regulating or integrating process. But after sufficient
time, it resembles a process without dynamics. The first-order lag is
thus made up of two components, one responsive to a fast-changing input,
the other responsive to a steady input. This is apparent from examining
the differential equation

V dh
kh + Fa -~ i

The relation between level and inflow is the sum of two out-of-phase
components. The derivative term lends the steady-state term by Y0°,
just as integrating produced a 90° phase lag. The gain of the deriva-
tive term to a signal of period 7, is exactly the inverse of the gain of an
integrator:

_ 2aV/F
To

Gp

21

Input
o—h

h=%/k

.
2

FIG 1.16. The slope of the response % 63.2%

curve equals the departure from © h=f;/k

steady state divided by 7. Ty — e T —

Time
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2w V/F
Gy =5, 2 +(21rV/F)Z
. e

$o- tan~! 2w V/F
o k1g

FIG 1.17. The vector sum is the gain
of inflow with respect to level.

#p 4~|ﬁ_
"

The summation of the two components of h with respect to f; is d
grammed in Fig. 1.17. The only difficulty with this vector diagran
that the resultant is the ratio of inflow to level. The inverse of
resultant represents level vs. inflow, which is the response we are look

for:
G, = l:kz + (Q_VT_/_F>2]~%

The steady-state gain 1/k may be broken out separately:

—1%
Gi = l[1 + (21r’—‘)2] (1.0
k To

where 7y = V/Fk, as before.

A plot of 7, vs. 7, in Fig. 1.18 shows a curve which is complementa
to that of a proportional-plus-reset controller.

Because we are principally concerned with the dynamic behavior
the loop, the asymptote containing 7, is of prime importance.

1

Gl ~ < E (12~

To
2rV/F

Notice that this dynamic-gain asymptote does not contain k. In fa
it is identical to the gain of the non-self-regulating process. ~Althoug
the steady-state gain can be changed simply by turning the valve at tl
bottom of the tank, this does not affect the dynamic gain.

To

J //ZWV/F
A B R
/
Gy / ]
/
05/k 2

FIG 1.18. The gain of a first-order
0 05 10 15 20 lag is governed by the asymptotes.

10/2114
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This observation is of particular significance for two reasons:

1. Load variations are normally introduced by turning the valve in
the outflow line, thus changing k.

2. In most processes, including this one, %k would not be a constant
even if the load were fixed, because the relationship between input and
output is not linear. In a real liquid-level process,

fo=C~/h

where C is the flow coefficient of the valve opening. Then,
h_VE_1
oo C "k

Consequently k= ('/4/h, so even if C remains fixed, k still varies with
level.  Again, fortunately, this does not affect the dynamic gain.

The time constant 7, of such a process is not a constant, but varies
with }.  But this is of little consequence, because the dynamic gain is
constant.  The ratio V/F must be recognized as the determining factor.
It will appear again and again in different processes, with different forms
of variables, but it is the fundamental time constant of any flowing sys-
tem. Its units are those of time. For example, gal/(gal/min) =
minutes.

The phase angle between input and output of a first-order lag is the
negative of ¢p in the vector diagram of Fig. 1.17. As r, approaches zero,
¢ approaches +90° and therefore the true phase lag approaches 90”.
In the steady state, however, the vertical vector is zero, hence the phase
angle is zero. The phase of a first-order lag is mathematically described
as

2V /F
= — 1207 /5
¢ = —tan

Substituting for V/Fk,

¢1 = —tan! 27r:_1 (1.24)

Since the phase lag can never exceed 90°, the first-order lag cannot
oscillate under proportional control. This was also true of the integrat-
ing process. Therefore we can make a general statement that a single-
capacity process can be controlled without oscillation at zero proportional
band. This means that the valve will be driven fully open or fully closed
on an infinitesimal error, so that the loop is operating at top speed all the
time. Since the proportional band is zero, no offset can develop. A
single-capacity process must therefore be categorized as the easiest to
control.
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Y

Projected
Ve
'_____/ path
} ¢
; FIG 1.19. This is how a single-
capacity process would react to
zero proportional band.
Time

Figure 1.19 illustrates the set-point response of a single-capacity process
to zero proportional band. As soon as the set point is changed, the valve
will open wide, delivering maximum inflow. The level will rise as rapidly
as possible, which is a function of both k and the present value of level.
If no control were provided, the measurement would follow the projected
path. But when the new set point is reached, the inflow will be reduced
instantaneously to a value equal to the outflow. This assumes that all
elements in the loop, excepting the tank, are capable of instantaneous
response. If this is not so, the process is not single-capacity.

Examples of pure single-capacity processes are rare. The most com-
mon one is a tank being filled through a valve which is rigidly coupled
to afloat. The level is prevented from overshooting the set point because
the rigid coupling eliminates any delay in feedback action.

Whereas the non-self-regulating process cycled uniformly with an
integrating controller, the self-regulating will not. The phase shift of
the self-regulating process only reaches -90" at a period of zero. Asa
result, the loop could only oscillate at zero period, where the gain of both
process and controller are zero. The loop cannot, therefore, sustain
oscillations.

A Two-capacity Process

Having established the ease with which a single-capacity process may
be controlled, the complications involved in adding a second capacity
may be evaluated. Since each capacity contributes a phase lag approach-
ing 90°, the total phase lag in the loop can only approach 180". Asa
result, the loop can oscillate only at zero period. This is exactly like a
first-order lag with an integrating controller.

Adding another lag anywhere in the loop will change the previous level
process to two-capacity, as shown in Fig. 1.20. A chamber is attached
to the tank; athough we wish to control tank level, chamber level is
measured, which lags behind tank level. The time constant of the cham-
ber is its volume divided by the maximum rate at which liquid can enter.
This time constant will be designated r;, Control of a two-capacity
process is easiest to illustrate if one of the capacities is non-self-regulating.
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=

FIG 1.20. Because the displacement
chamber cannot fill instantaneously, Metering
pump

it introduces a second capacity. — & Fo
F o

So in this example, the metering pump is used as a load, and the time

constant for the vessel is 7, = V/F.
Let us study the effect of zero proportional band on this process. The

set-point response is given in Fig. 121. When the measurement is below

the set point, the fill valve will be wide open, delivering flow F. If the
load (outflow) is 50 percent of F, the rate of rise of level will be
dh _F
_ 50%
T1
But the measurement c lags behind the level by 7,:
de
c + To ?;‘ = h
It can be shown that if dc/di is constant, it is equal to dh/d{. Then

h—c=T2%]: 50 0%

Response

Time
FIG 1.21. Zero proportional band will cause
a two-capacity process to overrun the set
point.
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This is the difference in value between the intermediate variable £ and
the measurement. Their difference in time is simply the amplitude
difference divided by the rate of rise:

h—c
dh/dt ~

The controller will not close the valve until the measurement reaches
the set point. Notice that the intermediate variable has exceeded the
set point by 50ry/7; at this time. When the valve is shut, outflow will
exceed inflow by 50 percent and the level will descend at the same rate.
As long as the level is higher than the measurement, the measurement
will continue to rise. The measurement will stop rising when it equals
the level. The time elapsed between actuation of the controller and the
peak of the measurement represents l4-cycle. From inspection of the
figure, this time is somewhere between 0.5r, and 7; min. It has been
calculated at 0.7r,. This would make the period of the first cycle about
2.51,, because the later portions of the cycle are shorter.

Notice that the period is proportional to 7., and the amplitude propor-
tional to r,/r,. These relationships will appear repeatedly in subsequent
examples.

We know from phase and gain characteristics of the process that it
cannot sustain oscillations. This means that each cycle must be succes-
sively smaller. But because the inflow is either on or off, the rate of
change of level is constant for each cycle. Hence, the period must also
decrease. Finally the loop oscillates at zero amplitude and zero period
as was anticipated. This unusual property is found only in two-capacity

T2

processes.

0% flow

Proportional
bond
100 T2/74

h 50 % fiow

50 %/
N 100 % flow

Time

FIG 1.22. A proportional band of 100r:/r, is
not wide enough to prevent overshoot.
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Proportional ~ Control

If overshoot is undesirable, the proportional band must be widened.
So that there will be no offset at the normal load, the controller must be
biased accordingly. In this example the bias would be 50 percent.
When the error is zero, therefore, the inflow will be 50 percent.

With the lower edge of the proportional band 50r./7, percent away from
the set point, the tank level will just reach the set point as the valve
begins to throttle. This clearly will not prevent overshoot, for the valve
will deliver more than 50 percent flow as long as the measurement is
below the set point, raising the level farther. In order to bring the level
back down to the set point, the measurement must overshoot, so as to
reduce the inflow below 50 percent. Consequently a proportional band
of 1007s/7; (507s/71 on either side of 50 percent flow) is not wide enough.

In Fig. 1.23 the example is repeated with the proportional band at
2007./7,. Throttling begins when the intermediate variable is 50r,/7,
below the set point, where the rate of rise starts to decrease.  This alows
the measurement to overtake the tank level, and both will come to rest
at the set point. This “no overshoot” characteristic is called “critical
damping.”

In these examples the load was 50 percent. |If the load were instead
80 percent, the rate of rise of level would be only 20¢./r,. But the con-
troller would be biased by 80 percent, so that only 20 percent of the
proportional band would be below the set point. With a band setting
of 200r,/7, this would leave 4072/7; below the set point. ~This throttling

0% flow

50% fiow

27

100% flow

Response

L

7

Proportional
bond
200 1,/14

Time

FIG 1.23. If the proportional band is
widened to 200 r./r;, the intermediate
variable will not overshoot.
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zone is still twice the difference between tank level and measurement,
just as it was at 50 percent load, so the results will be the same. There-
fore the proportional band should always be 200ry/ry for critical damping,
regardless of the load. Only the bias need be changed.

Critical damping makes for sluggish response, however. In most cases,
some overshoot is not detrimental. It is important that we determine
what is necessary to achieve l4-amplitude damping. Knowing that the
period at which the two-capacity loop naturally oscillates is zero, we can
be sure that any oscillation at a period of 2.572 will be damped.  The
period of 2.5r, is chosen as it seems to be the natural period of the first
cycle (Fig. 1.21).  Since we know that oscillations cannot be sustained,
let the loop gain at 7, = 2.5r, be 1.0:

100

¢t =5 = 1.0

Substituting for the dynamic gains of 7, and rs,

ro 7 100 _
27I'T1 27!'1‘2 P N

1.0

Substituting 2.57, for =,

2.57’2 2.57'2
P=1 —_ 2
00 2111 217y
P = 16:—2 (1.25)
1

This is the proportional band which will produce 14-amplitude damping.
If the method of arriving at these conditions seems somewhat arbitrary,
compare the results against those previously established

Damping P, % of 7o/7
Zero . 0
>&amplitude 16
Overshoot.. 100
Critical. 200

The proportional band of 16r,/7, fits right in with the rest of the table.
Gross changes in P are required to affect the damping of the two-capacity
process. It is doubtful whether any difference would be discernible
between the response of a loop at 30 percent r./7;and that at 16 percent.
Unfortunately, this is not always so. The two-capacity process has more
tolerance for proportional band setting than any more difficult process.
Earlier in the chapter it was noted that the damping of the dead-time
loop is changed from zero to l4-amplitude by doubling the proportional
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band. With the two-capacity process, however, the multiplication is
infinite.

Another important factor must be brought out. By definition of the
primary and secondary capacities, 7, is never greater than r;, regardless
of their relative positions in the loop. This means that the most difficult
two-capacity process will be one where r,/r, = 1.0.  For lj-amplitude
damping, P would be 16 percent. By comparison, the dead-time process
is 2004 or 12.5 times more difficult to control than the most difficult
two-capacity process.

Notice also that as r, approaches zero, the process approaches single
capacity and P for any damping approaches zero. It is wise therefore,
in the design of the process, to make 7./7: as low as possible. Since the
natural period of the loop varies as 73 only, this should be done by reduc-
ing 7; where possible, instead of increasing 1.

Proportional-plus-derivative Control

Adding derivative to a proportional controller relates output to the
rate of change of error:

m——lgo( +p% >+b (1.26)

where D is the derivative time. The parenthetic part of this expression
is the inverse of a first-order lag-it is called a first-order lead. In the
two-capacity-level process,

d
C+T2£=h

where c is the result of changes inh. In the proportional-plus-derivative
controller, m is the result of changes in e-the derivative term is on the
input side of the equation.

Since ¢ = r — e, the lag may be written in terms of e:

dr de
T—6+T2<B~t—a>—

If the set point is constant, dr/dt = 0. Rearranging,
de
€ + Ta Ei =75 —h

If the derivative time of the controller is set equal to r., the above expres-
sion can be substituted into the proportional-plus-derivative controller
equation, with the result

m—lﬂ)(1—-h)+b

29
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We now have proportional control of the intermediate variable. Adding
derivative has caused cancelation of the secondary lag, making the process
appear to be single-capacity. In theory, the proportional band may then
be reduced to zero and still produce critical damping. In practice, it is
not possible.

The gain of a derivative term, 2=D/7,, approaches infinity as the period
of the input approaches zero. Noise is a mixture of random periodic
signals. A small amount of noise at a high frequency (low period) would
be amplified tremendously by a perfect derivative unit. In addition,
controllers are made of mechanical or electrical parts that have certain
inherent properties of phase lag. Consequently, a high limit is always
placed on (p, preventing high-frequency instability within the controller.
This high limit is usually about 10. A real derivative unit is actually a
combination of a lead whose time constant is D and a lag whose time con-
stant is D/10.

In the two-capacity process, then, setting D = 7, will not completely
cancel 7, but will replace it with a lag equal to 7,/10. The effect is con-
siderable, however, in that the characteristics of the same process under
proportional control are improved tenfold. For pi-amplitude damping
with proportional-plus-derivative control,

P = 1.6;-“’1- D=1 7= 0.25r (1.27)

Being able to reduce P by 10 also reduces offset by 10. And as a bonus,
the loop cycles 10 times as fast as before. Derivative always has this
effect, although nowhere else is it so pronounced as in a two-capacity
process.

There is one best value of derivative for a given control loop.  Too high
a setting can be as harmful as none at all. The object is to cancel the
secondary lag in the process. If D > 1, the controller will lead the
intermediate variable, causing premature throttling of the valve. Figure
1.24 shows the effect of three different derivative settings on the same

process.

FIG 1.24. Too much as well as too
little derivative degrades the
stability of the loop.

Time
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In most controllers, the derivative mode operates on the output rather
than on the error. Ordinarily, this presents no problem. But upon
startup, or following gross set-point changes, the measurement will be
outside the proportional band, causing the output to saturate. If
derivative operates on the output, which is steady, rather than on the
changing input, it is disabled. Derivative will suddenly be activated
again when the measurement reenters the band. So if overshoot is to
be avoided upon startup, the band must be wide enough to activate the
derivative before the primary variable crosses the set point. The band
will have to be at least as wide as that shown in Fig. 1.22:

P = 10077_2 D= 7 (1.28)
1

In controllers where derivative happens to operate directly on the meas-
urement or error, P should be 1{; what was required for proportional
control alone, that is, 207,/7..

The reduction in band allowed through the use of derivative can in
some applications eliminate the need for reset. If a choice between
derivative and reset should ever be presented, the former should be
selected because it can enhance both speed and stability at the same time.

COMBINATIONS OF DEAD TIME AND CAPACITY

Occurrences of either pure dead-time or ideal single-capacity processes
are rare. The reasons for this are twofold:

1. Mass has the capability of storing energy.

2. Mass cannot be transported anywhere in zero time.
Between the most and least difficult elements lies a broad spectrum of
moderately difficult processes. Although most of these processes are
dynamically complex, their behavior can be modeled, to a large cxtent,
by a combination of dead time plus single capacity. The proportional
band required to critically damp a single-capacity process is zero. For a
dead-time process, it is infinite. It would appear, then, that the propor-
tional band requirement is related to the dead time in a process, divided
by its time constant. Any proportional band, hence any process, would
fit somewhere in this spectrum of processes. A discussion of multica-
pacity processes in Chap. 2 will reaffirm this point.

Proportional  Control

Fortunately we already investigated this problem when we discussed
integral control of dead time. Iigure 1.25 indicates the similarity of the
loops. If the process is non-self-regulating (integrating), the representa-
tion is exact. Because the phase lag of the dead time is limited to 90°
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the period of the proportional loop is 4r;. In the former case, for %4-
amplitude damping, 2r;/xR was set equal to 0.5. Since the time con-
stant R is no longer adjustable, but is now ry, part of the process, propor-
tional adjustment must set the loop gain for l4-amplitude damping.

Therefore,
2 100
7r_T1‘ ? — 0.5
P = 400 % (1.29)
TT1

Notice that as r, approaches zero, P approaches infinity. This is much
worse than having no capacity at all, i.e., dead time alone.  The reason is
that this expression holds only for a non-self-regulating process whose
gain varies inversely with the time constant without limit.  Fortunately,
non-self-regulating processes dominated by dead time are virtually
nonexistent.

For the self-regulating process, gain is limited to that of the steady
state, nominally 1.0. (Actual contributions of steady-state gain will be
evaluated at length in the next chapter.) If the maximum gain of the
self-regulating process is 1.0, the proportional band required for 14-ampli-
tude damping with dead time in the loop will approach 200 percent as 7;
approaches zero. The proportional band setting can then be approxi-
mated by the asymptotes:

P~ 3907+ 900 (1.30)
™1

In Fig. 1.26, the locus of gain, (7,, of the capacity, and P for 14-amplitude
damping are plotted vs. 7,/7y; the asymptotes are indicated.

A point midway between the asymptotes is found where the phase con-
tribution of -, is 45”. This occurs where 7, = 2rr,. Here 135” of phase

Td

=/ dt

[

FIG 1.25. Zntegral control of dead

time (aboue) is the same as propor-

tional control of a dead-time plus
integrating process (below).
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10 va 200
/
FIG 1.26. The proportional band 6, (>/ P %
i 1/ i i !
required for ‘4 afnplltude darr_1p|ng 05 /// PYIES 100
for any combination of dead time / \ P= "qu
and capacity can be selected from G =2rd|
this chart. o AT o
1 2 3 4
4/ 7y

shift takes place in the dead-time element. As a result,

To = 2.67Td
Substituting,
Ta = 272%;— = 2.357,

This point lies on the abscissa of Fig. 1.26, at 7/71 = 235. It may be
recalled that the gain of a first-order lag at 7, = 2rry is 1/4/2. If the
loop is to be damped,

100 _
Gi = = 05

Therefore,

200 _
P vz 10042 = 141

It is interesting to note the comparison between the controllability of
this process and the two-capacity process. Taken on the basis of an
equal ratio of secondary to primary element, the dead-time plus capacity
process is 400/716 or 8 times as difficult to control.  Recall that the pure
dead-time process was 12.5 times as difficult to control as the most
difficult two-capacity process.

The Effect of Derivative

Derivative is the inverse of integral action. 1In theory, it is charac-
terized by a 90" phase lead, although because of physical limitations 45°
is about al that can be expected. If perfect derivative (90" lead) were
available, it could halve the period of the dead-time plus capacity loop
by allowing the dend time to contribute »]] 180°. Remember that perfect
derivative applied to the two-capacity process provided critical damping
with zero proportional band. But Iig. 1.27 indicates that perfect deriva-
tive is limited to zero damping at a period of 2y, with zero proportional
band.



Response

34 I Understanding Feedback Control

FIG 1.27. Perfect derivative cannot
overcome dead time as it does a
second capacity.

Time

Derivative is lead action, which has been described as the inverse of
lag. That is why it could nearly cancel the effect of the secondary lag
in a two-capacity process. But derivative is not the inverse of dead
time. Nothing is, since no one can make time. Derivative is a poor
substitute and consequently is only partially effective in improving the
performance of the loop. Limited to 45° of phase lead, furthermore,
proportional-plus-derivative controllers can only reduce the period of a
dead-time plus capacity loop to 2.677,.

As pointed out earlier, derivative contributes gain as well as phase lead:

GD =27l’—l2
T,

]

Since the gain of the process capacity decreases at the same rate,

’
Gl‘ ?

21!'71

Reducing 7, produces no net change in loop gain. Consequently, adding
derivative does not allow a reduction in proportional band, as it did with
the two-capacity process. Thus derivative is scarcely effective at al
in the presence of dead time.

The derivative mode exhibits a phase lead of 45° at 7, = 2aD. To take
advantage of this lead, the derivative time should be set to locate this

phase lead at the period of the loop after derivative has been added
(2.67’&1)1

2rD = 2.67rq

For 14-amplitude damping,

P=40"% D= 1.33:?" (1.31)

Ty

This derivative setting is contrasted with that recommended for the two-
capacity process, that is, D = ta.



Dynamic Elements in the Control Loop

SUMMARY

A careful reading of this chapter should disclose the dependence of
control performance on what have been termed the secondary dynamic
elements in the loop. The largest time constant has been defined as the
primary element, and all others as secondary.

The term “difficult” has been used to describe control of certain
processes.  The proportional band required for a particular damping
serves as an index of difficulty. There is good reason for this, for the
proportional band is a measure of how much influence a controller has
over a process. The derivation of proportional offset bears out this
relationship.  If the proportional band is 100 percent, the controller
and the load have equal influence over the controlled variable. At
200 percent band, the load has twice as much influence. Figure 1.7 is a
good illustration.

Control problems of principa interest are those involving two dynamic
elements. Loops comprised of only one element are nothing more than
limits of two-element loops. The difficulty of each of these processes is
found to be proportional to the ratio of the secondary to the primary
element. In addition, the period of the closed loop is a function of the
secondary element alone. A performance index can be envisioned which
would combine the sensitivity of the loop to disturbances with the time
required to recover from them. This index would vary as the square of
the secondary element. The significance of secondary elements is
paramount.

Settings of reset and derivative time are also directly related to the
value of the secondary element. This rule seems as illogica as that
governing the period of the pendulum, which varies with length, not with
mass. Visualize length as the secondary element and mass as the pri-
mary, as a memory aid.

Hopefully, the reader has observed how the open-loop characteristics
of a process determine its closed-loop response. And how [ittle influence
the controller has over this response. It is particularly true for processes
of increasing difficulty, where problems begin to appear.

PROBLEMS

1.1 The belt speed of the process described in Fig. 1.2 is 12 {t/min, and the
weigh cell is located 4 ft from the valve. Estimate the natural period under
integral control and the reset, time required for 1-amplitude damping.  Isthis
setting likely to be conservative? Why?

1.2 The same process is to be controlled with a proportional-plus-reset con-
troller, adjusted for areset phase lag of 60°, Calculate the settings required for
%-amplitude damping, and check your answer against Table 1.1.
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1.3 Figure 1.17 is an inverse vector diagram of a first-order lag.  Construct
atrue vector diagram, indicating the magnitude and phase angle of each vector.

1.4 Construct a vector diagram for the proportional-plus-derivative control-
ler described by Eq. (1.26). Indicate the magnitude and phase angle of each
vector.

1.5 Calculate the gain of a dead-time plus single-capacity process whose nat-
ural period under proportional control is 3.0 ;. What is the ratio of 7;/7,?
Does this point fall on the curve of Fig. 1.26?

1.6 A certain process consists of a 1-min dead time and a 30-min lag. Esti-
mate the period and settings for }4-amplitude damping under proportional-plus-
derivative control. Repeat for a proportional-plus-reset controller, assuming
45" phase lag in the controller.



CHAPTER

As pointed out in Chap. 1, it is doubtful whether any real process
consists exclusively of dead time or single capacity or even a combination
of the two. But having become familiar with the properties of these
elements, we now can proceed to identify their contributions to complex
processes. Some processes are difficult to control-particularly where
dead time is dominant. But many processes are poorly controlled
because their needs are not understood and therefore not satisfied.

Real processes consist of a combination of dynamic elements and
steady-state elements. When there are many dynamic elements present,
their combined effect is hard to visualize. Even worse, one or more of
these elements may be variable. The same is true for steady-state ele-
ments.  In fact, one could venture to say that many engineers have less
comprehension of the steady-state relationships in a complex process than
of the dynamic properties. This chapter is devoted to identifying these
characteristics for the general case and to putting them into a form in
which they can be readily recognized and handled.
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Nonlinearities naturally occurring in the process are cause for grave
concern. Most processes are nonlinear in some respect. Identification
of the source and nature of a nonlinearity is of the utmost significance.
Whether it is severe enough to be troublesome and how the trouble can
be corrected are important questions which will be answered in the pages
that follow. Genera rules and methods will be stipulated, with a con-
crete example to illustrate each point. Many more cases will bc cited
in later chapters as part of specific applications.

It is especialy important to keep in mind the prominence of nonlinear
characteristics when studying an unfamiliar process; the engineer must
know what to look for and what to expect. Tests improperly conducted
can give results that are meaningless, confusing, or atogether misleading.
The full significance of the “characteristics of real processes” must bc
appreciated before an intelligent program of testing and evaluation can
be undertaken.

MULTICAPACITY PROCESSES

Interaction

The principal distinction to be madec in multicapacity processes is the
manner in which the capacities are joined. If they are said to be isolated
or noninteracting, the capacities behave exactly as they would alone.
Rut if coupled, they interact with one another, in which case the con-
tribution of each is altered by the interaction. Itigure 2.1 compares the
two forms.

I T,

o—

FIG 2.1. Noninteracting (above) compared
to interacting (below) capacities.
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In the upper left, the two tank levels do not interact, because the flow
from the first to the second is independent of the level in the second.
The lower picture, however, illustrates the case where both. inflow and
outflow are a function of tank level. The levels interact, because any
change in the downstream level will affect the upstream level. An
electrical analog of each process appears on the right. The amplifier in
the upper figure isolates the two lags by preventing the voltage on the
second from affecting that on the first. The lower right figure, without
the amplifier, is a two-stage ladder network. A multistage ladder is
often used to simulate a transmission line.

The significance of interaction is that. it changes the effective time con-
stants of the individual capacities. The magnitude of the change is
striking.  The solution of the equation for determining the effective time
constants is irrational and unfortunately somewhat unclear” But for
the special case where two equal capacities with equal time constants r
interact, their combined response is that of two noninteracting lags with
the following values:

3+ /3
T12 = 2‘\/07'

T = 2.6187 and 79 = 0.3827

The following gencral rules apply to the principle of interaction:

1. The degree of interaction is proportional to the ratio of the smaller
to the larger capacity (not time constant). Where this ratio is low
(<0.1), the capacities may be assumed not to interact’.

2. Interaction always works toward increasing the larger time constant
and decreasing the smaller one.

3. Specifically with regard to the behavior of systems with equal time
constants =, of equal capacity, the effect. is a combination of one large and
the rest smal time constants whose normalized sum is

1=2‘U»T_i=liﬂ.i=n2+n (2
T 2
t=1 i=1
where 7 = each time constant’
n = number of capacities

and whose normalized product is

7

I
2

Q3

=10 (22

I
-

i

A case in point is the two-capacity process cited above:

y = 2618 + 0882 = 3

39
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Since n = 2,

PENo2FEoy and DTE= (2618)(0382) = 100

With three capacities of time constant r,

Ti

= = 5.0503

-

2 = 0.6403

-

773 = 0.3090
£.0000

and (5.0505) (0.6405) (0.3090) = 1.00.

The reasons for interaction can be visualized to some extent. For
example, in the interacting tanks of Fig. 2.1, the flow entering the first
tank must ultimately fill both tanks, whereas that entering the second
fills the second. The sum of the time constants then becomes three.

An important point to grasp is that interaction makes control easier.
Recall that the proportional band required to regulate a two-capacity
process varies with 7,/rpwith the most difficult case being 7. = 7.
Where capacities interact, however, it is impossible to make r2 = 7.
The ratio of two equal interacting time constants is 0.382 /2.618 = 0.146.
By this standard the noninteracting process is nearly seven times more
difficult to control!

At this paiiit it is worthwhile to review the examples of two-capacity
processes that have already been presented, from the aspect of interaction.
The process shown in I'ig. 1.20 is definitely interacting, because changes
in chamber level can cause changes in tank level. Hut the capacity of
the chamber is so much less than that of the tank, that the effect is
virtually nil. Tor practical purposes, then, the two capacities may be
considered noninteracting. 1t would even be possible to throttle the
valves to the chamber enough to make its { ime constant equal or exceed
that of the tank. This property is not representative of interacting
systems.

sut where the principal flow passes through coupled capacities, inter-
action is manifest. Thisis thr caseiii the lower pair of tanks in IFig. 2.1.
If cach of these tanks has a volume 1" and a discharge flow cocfficient k,
the response Of tever in the second tank to variations in don- in the first
will be charaeterized by 2 steady-state gain of 1 & and time constants of
2,618V /Fk and 0.3821/FL. 1t may be recalled that the time constant
of the individual tanks was V/Fk. The steady-state level in the second
tank cquals f;/k. The steady-state level in the first tank would be 2f:/k
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because it is discharging into a level that is already f;/k.  Consequently,
any change of inflow will change the combined steady-state levels by a
factor of 3/k. The volume change is therefore three times what it was
for a single tank-that is why the sum of the time constants is 3V /Fk,

whereas the total volume of the system is only 2¥. The dynamic gain
of the process is approximated as

To 1 To
GGz = (27r2.618V/F < %) (27‘0,3821//1?15 < 1.0)

Multicapacity

In a one-capacity process, interaction does not exist. The effect of
interaction on a two-capacity process has already been demonstrated. As
the number of capacities increases, this effect becomes more pronounced.

The behavior of n equal isolated capacities of time constant ; can be
estimated from phase relations. If the phase of each lag is

¢ = —tan—! 2r L
To

the total phase shift is n¢:

ng = -n tan™?! 2r¢ TI—
We are never concerned with phase shift in excess of 180°, at which point
¢ = —x/n. Ifnislarge, ¢ is quite small. The tangent of a small angle
is approximately equal to the angle:

Lim (-—- tan—! 27 1) = —or L

$— 0 To To

Stated a little differently,

Lim ne = —2mn

T
n— @ T

(2.3)

This indicates that a large number n» of isolated lags r approaches the same
phase characteristic as dead time of value nr.

The same is not true in the interacting case, because there remains one
very large time ¢onstant and successively smaller ones.  The large time
constant is always so much larger than the others, that it dominates the
response. The small time constants begin to approach dead time, how-
ever, because their values are close together.  The result appears equiva-
lent to a single-capacity plus dead-time process. The step response of
comparable isolated and interacting systems appears in Fig. 2.2.

A process with many isolated capacities is artificial, because isolation
must be intentionally forced. Witness the amplifier in Fig. 2.1. As a
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general rule, multicapacity processes contain a natural interaction,
responding in the manner of the lower set of curves in Fig. 2.2.  This form
of response is evident both in processes consisting of a large number of
discrete stages and in those embodying a continuum of distributed par-
ticles. Examples of multistage processes are plate columns for distilla-
tion, extraction,and absorption. Counterflow of the two phases produces
the interaction. Packed columns, on the other hand, are distributed sys-
tems which behave similarly. Diffusive processes such as heat transfer
by conduction, mixing in pipes and vessels, and flow through porous
media react in much the same manner. More attention will be devoted
to these operations when specific applications are investigated.

From Fig. 2.2 it can be seen that the interacting multicapacity process
differs from the dead-time plus single-capacity process in the smooth
upturn at the beginning of the step response. This curvature indicates
that the dead time is not pure, but instead is the result of many small lags,
and therefore the process will be somewhat easier to control. By the
same token, derivative action will be of more value than it was in the
case of dead time and a single capacity. Nonetheless, if we choose to
estimate the necessary controller settings on the basis of a single-capacity
plus dead-time representation we will err on the safe side.

The natural period of the loop can be predicted with surprising relia-
bility by noting where the maximum slope of the step-response curve
intersects the time base. This intersection, marked in Fig. 2.3, identifies
the effective dead time of the process. The effective dead time plus the

Lo

L]

0.5 10 1.5 20
t/nt .
/ FIG 2.2. The difference in step
hep response between isolated (above)
J 7=10 and interacting (below)_ lags becomes
05 10 15 2o More pronounced as n increases.

t(n®+n)/2
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e
FIG 2.3. The step response of a g
multicapacity process can be reduced &
to dead time plus a single capacity. (_,d_q
(o] Time

effective time constant equals the total lag in the process:

n? + n
2

Ta+ Ty= T (2.4)
Equation (2.4) requires that the step response of any number of equal
interacting lags reach 63.2 percent at time r(n? + n)/2, which is corrob-
orated by Fig. 2.2.

Ziegler and Nichols? noted that the period of oscillation will be four
times the effective dead time, whether the process is interacting or not.
So the technique of dealing with single capacity plus dead time takes on
added value in being applicable to these examples of complex dynamics.
This is an important insight-without it, numerical methods must be
rejected for use on any process containing more than two dynamic ele-
ments. And when on-the-spot analysis must be made, the shortcut
numericll method is invaluable. Fortunately, a single-capacity plus
dead-time process can be made to represent any degree of difficulty from
one extreme to the other, simply by varying the ratio r;/r;. Thus its
application is universal, if approximate.

As an example, the lo-capacity interacting process of Fig. 2.2 has an
effective dead time of about 0.15 of the total lag. Since the balance is
the dominant time constant, the ratio r;/r; = 0.15/0.85 = 018. The
proportional band needed for l4-amplitude damping of this process can
be found by referring to Fig. 1.26.

Figure 2.4 is a correlation of the ratio of effective dead time to effective
lag, against the number of interacting stages. Data from tests on sys-
tems of 2 to 10 capacities fal in a straight line on semilogarithmic coordi-

0.4 ]
f//
03 —1
Td ///
FIG 2.4. The ratio of effective dead 7, O2 -
time to effective lag of n equal oA 1
interacting capacities varies with L~
the logarithm of n. 0

1 2 5 10 20 50 100
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nates. This relationship is extremely useful in predicting the dynamic
behavior of any process with a discrete number of interacting stages.

Diffusive and distributed processes ought to consist of an infinite num-
ber of interacting stages. Their response does not correspond to n = ®
in Fig. 2.4, however, probably because their interaction is incomplete.
Transmission lines typically exhibit ratios of r4/71 in the range from 0.1
to 0.3.°

Predicting the Behavior of a Loop

The appearance of a piece of processing equipment often reveals the
nature of its dynamic characteristics. If al the dimensions are similar,
as in a cylindrical tank where the height is of the same magnitude as the
diameter, capacity will predominate—dead time, if any, being short.
But if the vessel has one dimension much greater than the others, dead
time may be dominant, though not without some capacity. Thus a
shell and tube heat exchanger will exhibit considerable dead time, com-
pared to a heated tank whose principal elements would be lags. Just
the appearance of a tower, whether it be distillation, absorption, or what-
ever, indicates the presence of dead time.

One could almost generalize to the extent of relating controllability
to dimension:

T length

T / (diameter)
Of course such an expression could only he written to apply within a
specific system, because many more factors are involved. Nonetheless,
if dead time is related to length, the natural period is similarly related to
length, as with a simple pendulum.

GAIN AND ITS DEPENDENCE

The damping of a feedback loop is a function of the gain product of all
the elements in the loop, both dynamic and steady-state.  Normally only
one of these elements is adjustable-the controller. All others are fixed
by the design of the process. For a given damping, the controller adjust’-
ments are a function of the gain of the fixed elements. Up to this point,
only dynamic gain has heen considered. But any clement whose output
differs from its input has a gain contribution:

Element Input output
vV a l v e . Signal Flow
Process, Flow Measurement
Transmitter, Measurement Signal
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Each of the three elements above changes the dimension of what is passing
through. In order to arrive at a dimensionless loop gain, the dimen-
sional gain of al three elements must be included in the product.

Transmitter Gain

In the liquid-level process presented in Chap. 1, the measurement » was
defined as representing the fractional contents of the tank. This trick
enabled us to find the time constant of the vessel in terms of its capacity V
and its nominal throughput F. When instrumenting a plant, however,
it is not necessary that every liquid-level transmitter be scaled to measure
the entire volume of the vessel. If, instead, the transmitter span repre-
sents only a small percentage of the vessel volume, the vessel will have
effectively shrunk to the span of the transmitter. To state it another
way: for control purposes, those parts of the vessel beyond the range of
the transmitter do not exist.

Reducing the span of a transmitter is equivalent to reducing the pro-
portional band of the controller. If a particular damping, hence a par-
ticular loop gain is to be achieved, the proportional band estimate must,
take into account the span of the transmitter.

In order to facilitate the evaluation of systems more complex than the
liquid-level process, the transmitter gain will be explicitly defined:

_ 1009,

= Span (2.5
Gain is the ratio of output to input. The numerator in Eg. (2.5) is the
output that will be produced for a full-span change in input. Obviously
(fr is not a pure number-it has the dimensions of the measurement.
Suppose a level transmitter were calibrated to a range of 20 to 100 in.
of water. Its gain would then be 1009,/80 in., or 1.259,/in.

The fact that Gy has dimension indicates that it is an incomplete term.
The other “gaing” around the loop must be multiplied by Gy in order to
make the loop gain dimensionless.

It is entirely possible that (7 is not constant. This would be the case
if the transmitter were nonlinear. Iew transmitters are sufficiently non-
linear to show any marked effect on control-loop stability. A change in
gain of at least 1.5/1 would be necessary to cause difficulty. Some tem-
perature measurements are nonlinear, but seldom to this extent. The
most, notable case of a nonlinenr transmitter is the differential flowmeter,
whose output varies with the square of flow through the primary element.

Fach flow transmitter has its own particular span. But in addition,
the differential flow transmitter has the nonlinear relationship. (4 can
be determined on the basis of transmitter span, with the nonlinearity
applied as a cocfficient. ILet h = dimensionless differential (fraction of

T
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1 FIG25. Thegain of a differential
flow transmitter is directly propor-
tional to Aow.

0.5 1.0

full scale) and f = dimensionless flow. Then,

h= f2 (2.6)
and
dh ‘

The derivative dh/df is the dimensionless gain of the transmitter. Its
dimensional gain is then
1009
span

(2.8)

Gr = 2f

As an example, look at a differential flowmeter whose scale is 0 to
500 gpm, (fp = 2/(0.2%/gpm). At full-scale flow, ¢, = 0.4%/gpm;
at 50 percent flow, Gy = 0.2¢;/gpm; at zero flow, G, = 0. 4

The result of the nonlinearity is that the control loop will not perform
consistently at different, rates of flow. If the proportional band is
adjusted for acceptable damping at 50 percent flow, the loop n-ill be
undamped at 100 percent flow and sluggish near zero flow. The problem
can be readily resolved, however, by inserting a sguare-root extractor,
whose output would be linear with flow.

Valve Gain

Referring again to the liquid-level process of Chap. 1, the time constant
of the vessel was based upon the rated flow F which the control valve was
capable of delivering. The time ¢onstant thus depends on valve size;
consequently, the proportional band is a function of valve size. Looking
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at it another way, an oversize valve would only be operated over part of
its travel-the span of stem travel would be less than 100 percent.
Therefore the proportional band must be wider to compensate.

The gain of a valve can be defined as the change in delivered flow vs.
percent change in stem position. The gain of a linear valve is simply
the rated flow under nominal process conditions at full stroke:

maximum flow (2.9)

G = 1009,

If a linear valve were able to deliver 500 gpm fully open at stipulated
process conditions, (7, would be 5 gpm/¢,. Notice that valve gain has
dimension, as did transmitter gain, but now the percent sign is in the
denominator. The valve is at the output of the controller, whereas the
transmitter is at the input.  Controller gain is therefore in terms of 9,/ 9,
hence dimensionless.

Valves cannot be manufactured to the same tolerance as transmitters.
So there is no such thing as a truly linear valve. But perfect linearity is
not essential, because a control loop does not demand it. Some valves
are deliberately characterized to particular nonlinear functions, in order
to better carry out certain specific duties. The most commonly used
characterized valve is the equal-percentage type.

The name “equal-percentage” is very subject to misinterpretation.
It means that a given increment in stem position will change the flow
by a certain percentage of the present flow, regardless of the value of the
present flow. To state it mathematically,

d
%ff = K dm (2.10)
where m = fractional stem position
K = constant

This constant for a typical equal-percentage valve is about 4. The
dimensionless gain of the valve then becomes

% = 4f (2.11)

Combining this with the maximum rated flow of the valve yields

maximum flow

1009

The equal-percentage characteristic has an interesting feature: chang-
ing the valve size does not affect the loop gain! Fractional flow f times
the maximum flow equals the actual flow being delivered. The valve

G, = 4f (2.12)
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10
£ 05 /
/ 1 FIG 2.6. The gain of an equal-per-
/ centage valve is directly proportional
V 1 to flow.
0 0.5 1.0
m
gain is consequently a function of the actual flow and has nothing to do
with valve size. This is one reason why equal-percentage valves are used
extensively-valve sizing is not critical.

Sometimes this valve characteristic is shown as a straight line on semi-
logarithmic coordinates. Integration of the differential expression for
valve gain does yield the logarithmic expression

= Inf= 401 = m) (2.13)

Other common valve types include the quick-opening (globe) and the
butterfly. Their characteristics are more a result of accident than
design. In other words, the nature of their construction is the reason
for their characteristics, not vice versa. They will generally be employed
regardless of, not because of, their nonlinearity. %

1.0

Quick

openin/

A*erﬂy
/|
/ FIG 2.7. Characteristics of quick-
opening and butterfly valves.

0 05 1.0
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Variable Pressure Drop

The equal-percentage valve was intentionally devised to compensate
for gain variations elsewhere in the control loop. The nearest source of
variable gain is the pressure loss in piping and fittings in series with the
valve. The flow of liquid which a valve can deliver is as much a function
of available pressure as it is of valve opening:

F=C, \/—Apl’ (2.14)

where (', = flow ¢pefficient of valve
Ap = drop across valve
p = specific gravity of flowing fluid

Should Ap change, F will also change. Choice of the valve is therefore
intimately connected with the associated piping and motive force for the
fluid. If Ap is constant, the valve will exhibit its inherent characteristic,
but if Ap varies with flow, the relation between flow and stroke will
change.

Figure 2.8 typifies an arrangement where a constant pressure source
drives fluid through a fixed resistance whose flow coefficient is C'r and
through a valve of variable resistance whose flow coefficient is ', into a
sink of constant pressure. As flow approaches zero, the valve will be
nearly closed and the entire pressure drop in the system will exist across
the valve. But at maximum flow, particularly if (s is less than (', the
drop across the valve will be reduced markedly. If the valve is linear,
the gain of the system will be high at low rates of flow (high Ap) and low

at high rates (low Ap).
Since the gain of the valve has been defined as flow in response to

stem position, the gain of the valve is affected by variable pressure drop.
If we consider a liquid of specific gravity 1.0,

2= C2pr=p) = Cr¥po = p)
Eliminating the variable pressure p,,

F? o= Po — D2
1/01)2 + 1/CR2

Let (', represent the maximum valve opening. Then, if the valve is
linear, its opening will be mC,, where i is the fractional stem position.

FIG 2.8. Pressure drop across the Po Py P2
control valve depends on losses Source

through the series resistance. Cr Cv

Sink
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linear characteristic toward that of a

quick-opening valve.
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/// FIG 2.9. Line resistance distorts a
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If we include stem position in the above,

2 _ Po — P2
(JF) (1/mC,)* + 1/Cp?
where f = fractional flow
F = maximum flow
Fractional flow can be related to stem position by extracting the square
root of the ratio of the last two equations:

s (C/Cr+ 1 P
f= [(er/mz] (2.15)

A plot of fvs. m for various ratios of C./Ck appears in Fig. 2.9.
The effect of an equal-percentage characteristic upon the nonlinearity
of line drop can be seen by combining these curves with the curves in

£l
S\
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~

v FIG 2.10. An equal-percentage valve
is able to remove most of the effect
of line drop.
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3

FIG 2.11. Discharge pressure from
a centrifugal pump varies with the
flow being delivered.

Discharge oressure py

51
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Flow F

Fig. 2.6. In Tig. 2.6, fractional flow is plotted vs. stem position for
conditions of constant Ap, which is the same as fractional valve opening
vs. stem position. In a linear valve, fractional valve opening is identical
to fractional stem position. Therefore, values of f from Fig. 2.6 entered
as values of m in Fig. 29 will result in the plot of flow vs. stem position
for an equal-perc’entagc valve with line drop, which is shown in Fig. 2.10.

The centrifugal pump is the most common motive force for transporta-
tion of liquids. But this type of pump is not a source of constant pres-
sure; instead, pressure varies with flow in the manner described by the
curve of Iig. 211. Frictional losses within the pump cause this variation,
much as internal resistance in a battery makes terminal voltage fal as
current drain is increased. The equation of* the curve is readily derived,
with (' representing the flow coefficient of the interna resistance. If
po is the “no flow” pressure, the drop within the pump is

0
2

Pem = we
and
F2
D1 = Po — % (2.16)

Equation (2.16) will be found to match most pump curves quite well.
But the outcome of this relationship is that a centrifugal pump looks just
like a constant pressure source with line drop and may be treated in the
same manner.

Process Gain

The output of a valve is flow; the process accepts this flow and converts
it into the controlled variable. If the controlled variable is also flow, as
in a flow-control loop, the process gain is unity. But if the controlled
variable has any other dimension—pressure, temperature, composition,
etc.-the process has a dimensional gain.

If the controlled variable is an integral of flow, such as pressure or level,
dimensional gain is included in the integrating time constant V/F. The
self-regulating liquid-level process of Chap. 1 was found to have a steady-
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state gain of 1/k. But it was pointed out that this steady-state gain had
no influence whatsoever on the dynamic gain of the process. The
dynamic gain of the process can be considered identical to that of the
integrating process. Conversion of units of flow into units of volume
takes place in the integration. The horizontal sectional area A of the
vessel then converts volume into level:

v

h=7 (217)
If the horizontal area is not uniform, the relationship between level and
volume becomes nonlinear. This would be the case for a sphere or a
horizontal cylindrical tank.

In processes where the transfer of mass or energy takes place, gain is a
function of many fartors, making generalization impossible. These
processes are not only difficult, to control, because of their dynamic
behavior, but they are also difficult to understand. Lack of understand-
ing looms as the greatest single factor contributing to the failure of con-
trol systems applied to these processes. They are usualy nonlinear in
more than one respect, and compensation improperly applied can aggra-
vate the situation. The steady-state relationships that prevail among
manipulated, load, and controlled variables take on paramount impor-
tance. To give them the consideration they deserve, four entire chapters
are devoted to processes involving energy and mass transfer.

An introductory example of what may be encountered is the neutraliza-
tion process, where pH of the product is to be controlled. A typical
neutralization curve is presented in Fig. 2.12. The effluent pH is plotted
against the ratio of acid to influent flow, where acid flow is manipulated.

The principal factor in a pH loop is the shape of this curve. Its slope
is the process gain, in that it converts changes in acid flow to changes in
pH. But the slope varies markedly with pH. The curve is exponential
in nature, changing in slope as much as 1,000 : 1 between the extremes.
The set point is usually somewhere in the steepest region of thd curve.
Achievement, of damping requires a very wide proportional band. A

3\
%
\
N
FIG 2.22. Changing the ratio of acid
rA 5 #  to influent adjusts the pH of the
Gpm  acid effluent.

1,000 Gpm influent
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load change of any magnitude can then drive the pH far enough up the
curve to reduce the loop gain to the point where recovery is extremely
slow. Compensation for such a severe nonlinearity is essential if a satis-
factory degree of performance is to be obtained. The nonlinearity is so
severe that even poor compensation is noticeably effective. Reduction
in loop-gain variation from 100: 1 to 5 : 1, for example, is bound to improve
the situation.

The shape of the neutralization curve is a function of the reacting sub-
stances. If the ingredients of the influent are subject to change, the
slope of the curve at a given pH may also change. This amounts to a
second gain variation superimposed on the first. This is not a predictable
characteristic.

The response of a typical uncompensated pH loop to a load change is
pictured in Fig. 2.13. Oscillations are flattened by the change in gain.
Recovery is considerably retarded by the reduced loop gain away from
the vicinity of the set point. More space is devoted to pH control in
Chap. 10.

Variable Dynamic Gain

Figure 2.14 is a record of temperature and flow of a product streani
leaving a heat exchanger. Temperature was being controlled by manipu-
lating the flow of steam to the exchanger. Notice that the temperature
record at 80 percent flow is overdamped, whereas at 40 percent flow,

Y]

¢ 180

5 "
3 140 >
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5 u[

F 100

FIG 2.14. Both magnitude and

damping of the transient are 80
functions of flow. 40

Flow

Time
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damping is slightly heavier than l{-amplitude. (It appears that the
loop will be only marginally stable at 20 percent flow.) It is as if the
proportional band had been changed. But the more lightly damped
curve departs farther from the set point-contrary to the effects of chang-
ing proportional band as in Fig. 1.7. Therefore it is the process gain
which has changed: the process is more lightly damped and more sensitive
to disturbance at low rates of flow.

The problem has been identified as variable dynamic gain. It is a
common problem, not often recognized, still less often anticipated. It
occurs in processes where the values of the secondary dynamic elements,
principally dead time, vary with flow. These variations cause propor-
tionate changes in the period of the loop, which affects the dynamic gain
of the principal capacity.

Consider the heat exchanger as a single-capacity plus dead-time process
where the dynamic gain of the capacity is expressed as

To
Gy = orV/F

Let dead time vary with flow through tubing of volume v:

-2
Td — fF
where f = fractional flow
F = maximum flow of product
The period of oscillation varies with 7a:

'r,,=47',1=;,1—Fv

Dynamic gain is then

_ 4/fF 2
eH =5:V/F 77 (2.18)

Dynamic gain is inversely proportional to product flow. As flow
approaches zero, gain approaches infinity.  If uncompensated, this gain
variation will cause serious problems, particularly during startup, when
flow is low. If adjusted for low flow, the controller will perform poorly
at higher rates, as Fig. 2.14 substantiates. Notice that the response is
in no way similar to that of Fig. 2.13, the nonlinear process. To dis-
tinguish between the two, this characteristic will be referred to as variable
gain. It is more like the response that would be encountered with a
nonlinear valve, or valve-plus-piping characteristic-a function of flow,
not of the measurement.



Characteristics of Real Processes |

Fortunately, the correction is so readily applied that in most cases the
correction is inadvertent and there is little evidence of the problem’s ever
having existed. The gain of the process varies inversely with product
flow. The gain of an equal-percentage valve varies directly with the
manipulated flow. As long as the ratio of the two is constant, the gain
product will be constant. Let f, be the fraction of maximum steam flow
F,. Then f/F, is proportional to product flow by the temperature rise
AT of the product as it passes through the exchanger:

fF.= fFC AT

where C is a constant. The gain of the equal-percentage steam valve is
G, = 4fF, = 4fFC AT

Gain product, is then

8fFC AT v _ 8C AT v
6,6, = ¥ =St 219)
The loop gain is no longer a function of product flow, because of the
compensating nonlinearity of the equal-percentage valve. But a trade
has been made: loop gain is now a function of AT, where it was not before.
In most heat exchangers, however, AT never varies as much as 2: 1,
whereas flow commonly does. So the trade is distinctly in the best
interests of the loop. Equal-percentage valves are so widely used to
combat line drop, that in many cases they are also compensating for
variable dynamic gain without the user being aware of it.

When the period of oscillation varies, derivative time ought to be
changed accordingly. But stable control can be achieved with an incor-
rect value of derivative if the gain is appropriately adjusted. Conse-
guently gain compensation for the variable dynamic element is manda-
tory, whereas derivative compensation can only be classified as desirable.

TESTING THE PLANT

In the late 1950s there was much tg]lk of extensive tests on processes
using frequency-response analysis. In fact some tests were conducted
on reactors, heat exchangers, and distillation columns. Although a certain
amount of information was obtained using this method, two major
objections stand out:

1. The tests are unbelievably time-consuming.

2. They assume that the process is linear and invariant.

The first objection rules out testing in most plants because of the
unwillingness of operating personnel to tolerate upsets for long intervals
and because of the expense of manpower and equipment. The second
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objection indicates that the results of tests on a process with nonlinear
elements may be not only invalid, but aso misleading. Freguency
response is only suitable for fast, linear devices like instruments, con-
trollers, amplifiers, etc.

The author has been called upon many times to investigate a process
which was in trouble. In these instances it was impossible to bring an
extensive array of test, equipment’ or to spend days gathering information.
In most cases the process was nonlinear in some respect and not well
understood by the operating pecople—otherwise it would not have been
in trouble. A simple test procedure was decided on, independent of
linearity, from which the dominant properties of the system could be
determined. A properly conducted test should pinpoint problem areas
with a minimal upset to the process.

To keep testing to a minimum, all available knowledge of the process
must be employed. The volume of vessels and flow rates are always
available, from which time constants may be calculated. The length
and diameter of piping runs can serve to locate dead-time elements. By
identifying al the known or knowable elements in this way, any tests
will be of more value in defining the unknown elements which make
up the balance of the loop.

The author has always reacted strongly to any test procedure that is
based uon knowing nothing about a process. Many things about an
unfamiliar process can be learned by observing the vessels and piping,
examining the chemistry and physics involved, and talking to the opera-
tors. Preliminary information like this is of inestimable help in indicat-
ing what to look for and where. It is surprising how much can often be
learned about a particular process without even making a test. Occa-
sionally the tests will not substantiate the expectations, which provides a
challenging opportunity to learn.

A Simplified Test Procedure

Before describing how to conduct a test, it is important to point out
how not to conduct a test, in order to avoid some serious pitfalls.

1. Do not test for steady-state gain. In Chap. 1 it was pointed out
that the steady-state gain of a single-capacity liquid-level process is not
constant. It varies with both flow and level. Yet the dynamic gain is
constant. Because the process is in a control loop, only the dynamic
gain-the loop gain at r,—ig of real consequence.

2. Do not test for time constants. There arc several methods available
for finding the time constants in a linear system. But, as in the single-
capacity level process, the time constant may vary with flow without
affecting dynamic gain. The likelihood of a nonlinear element in a
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troublesome process is extremely high, rendering these tests meaningless.
The tests also require the process to come to rest after a disturbance. A
non-self-regulating process will not come to rest and therefore cannot be
treated in this way. Furthermore these tests require the control loop
to be open until a new steady state has been reached, which could be a
long time.

Fortunately there is a quick and easy method for obtaining enough
information to suggest corrective measures in most instances. The
method consists of one open-loop and one closed-loop test. In the latter
case, the proportional mode of a controller serves as the test instrument.
The procedure is as follows:

1. With the controller in manual, step or pulse the control valve suffi-
ciently to produce an observable effect’. M easure the time elapsed
between the disturbance and the first indication of a response. This is
the dead time r,.

2. Transfer control to automatic, with minimum derivative and maxi-
mum reset time. Adjust the proportional band to develop nearly
undamped oscillation. Note the period of oscillation r, and the propor-
tional band setting.

In this test, it was only necessary to leave the loop open (manual con-
trol) long enough to measure the dead time. Any other type of open-loop
test would consume more time. The closed-loop test describes the process
under those conditions that are of greatest significance, that is, at the
natural period. Two complete cycles are enough to measure 7, If it
is not practical to induce uniform oscillations, damped oscillations will
suffice, although the proportional band reading should be corrected for
the damping.

I'rom the data obtained, a representation of the dynamic elements in
the process may be constructed:

If 7./7¢ = 2, the process is pure dead time.

If 2 <7,/rq < 4, dead time is dominant.

If ro/7¢ = 4, there is a single dominant capacity.

If 7./7¢ > 4, more than one capacity is present.

Furthermore, the setting of proportional band responsible for uniform
oscillation equals the gain product of the other elements in the loop at 7.

When these bits of information are combined with the characteristics
of the known elements, a remarkably accurate picture of the process can
he asscmblcd.  Tor example, if the process is known to contain one prin-
cipa capacity, and r,/r, = 4, no other time constants nced be sought’.
If the time constant of this capacity is known, its dynamic gain (; at 7,
can be caculated. Combining this with known values of transmitter
and valve gain, together with the controller proportional band, yields
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the process gain:

P
P = 100G.GrG,

Since these tests are made only at one operating point, they will not
disclose any nonlinear properties. Closed-loop response should be
observed at other flow conditions to detect any change in damping. If
the period changes with flow, a variable dynamic element is present. An
extremely nonlinear measurement, such as pH, is identified by the dis-
torted waveform it produces, as in Fig. 2.13. A less severe nonlinear
measurement may not be detected without changing the set point. In
short, if a thorough analysis is to be made, the closed-loop test should be
repeated at other values of flow and set point.

G (2.20)

Testing a Neutralization Process

This is an actual case history of the process upon which this test pro-
cedure was first tried. It was a neutralization process in which a reagent
was being added to bring the effluent leaving a reactor to pH 7. The
pH controller was in manual, simply because automatic control was
unsatisfactory.

The open-loop test gave a dead time of 40 sec. The volume of the
sample piping divided by the sample flow was 15 sec. The remainder
was probably distributed through the reactor and associated piping.

With a proportional band of 150 percent, the loop sustained uniform
oscillation of 2.8-min period. The ratio r,/rs = 2.8/0.67, or 4.2, indi-
cated essentially a single capacity along with the measured dead time.

The reaction vessel contained 200 gal of material, flowing at 2.5 gpm.
Therefore V/F = 200/2.5, or 80 min. The dynamic gain of an SO-min
capacity at a 2.8-min period is

2.8
2780
Yet the proportional band for zero damping was 150 percent. This can
mean only one thing-extremely high process gain. Dividing (7; into
P/100 yields the gain product of valve, process, and transmitter:

150
100(0.004) ~ 37°

Again the familiar problem of the pH curve appears:: high gain near the
control point, low gain elsewhere. But, the situation could be helped.
Repiping the sample line reduced its dead time to 5

G, = = 0.004

G.G.Gr =

5 see, bringing the
total dead time to 30 sec. This reduced the period to 2 1 min and the
proportional band by the same factor of 34. So the controller was
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adjusted for damping at the new conditions. (A procedure for adjusting
three-mode controllers is described in Chap. 4.)

A later observation revealed that the loop had become more heavily
damped. The only noticeable change since the controller was adjusted
was a lower value of output. The loop gain apparently had decreased
with load. An inquiry about the valve characteristic produced the
answer: reagent was being delivered through an equal-percentage vave
under constant pressure drop. The loop gain therefore varied directly
with flow, as did the valve gain.

Although a pH process is nonlinear, its characteristic curve cannot be
corrected with an equal-percentage valve, because the valve acts on the
output of the controller, not on the input.* The valve characteristie,
in fact, made matters worse. Sot only did the loop gain become variable,
but it was higher than it would have been with an cquivnlcnt linear valve.
The gain of an equal-percentage valve is four tumes the fractional flow;
fractional flow in excess of .25 will cause the gain to exceed unity. |[f
the normal flow is 50 percent of the valve's capacity, the equal-percentage
characteristic will contribute twice the gain of a linear valve. This
necessitates a proportional band twice as wide.

The time required to test this process at one operating point was only
a few minutes. Yet together with known facts about the plant, and one
subsequent observation, the process was thoroughly defined and two
recommendations made to improve control. Any other test procedure
would have taken longer and might not have achieved comparable results.
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PROBLEMS

2.1 Given two processes consisting of 10 identieal time constants, in one of
which they interact, in the other they do not: stimate the dynamic gain of each
process at its natural period under proportional control; compare the natural
periods of each.

2.2 The composition of & product leaving a 50-tray distillation column
exhibits a dead time of 10 min following a change in reflux flow.  Under propor-
tional-plus-reset control. estimate (@) the period of oscillation, (b) the reset time,

(¢) the dynamie gain of the process.
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2.3 The process in Prob. 2.2 has a linear valve whose capacity is 50 gpm.
A changein flow of [ gpm causes 0.5 percent change in product quality, analyzed
over a span of 10 percent. Estimate the proportional band required for ¥%-
amplitude damping.

2.4 If adifferential Aow controller is adjusted for 14-amplitude damping at
30 percent flow, at what flow is it likely to be undamped?

9.5 What value of Cin relation to the C, of alinear valve will provide rea-
sonable compensation for the nonlinear characteristic of a differential flowmeter?
If the value of Cp existing in a pipeline is too high, how can it be adjusted? What
is the effect of (' on valve size requirements.?

2.6 A process exhibits a dead time of 23 sec. At 50 percent flow, propor-
tional control with a 20 percent band causes undamped oscillations of 1.5-min
period. At 25 percent flow, however, its natural period increases to 2.9 min.
Draw some conclusions about the process and make suitable recommendations.



CHAPTER

3

Classiﬁcation of processes into broad areas with certain common
characteristics is both desirable and informative. We know, for exam-
ple, that a temperature-control loop behaves very differently from a
level-control loop. Why it does so is the essence of the classification.

The first control loop to’be considered is flow. It has the distinction
that the manipulated variable and the controlled variable are the same.
They may not have the same range or the same linearity, nevertheless
they are the same variable. For this reason the flow loop is the easiest
to understand, as far as steady-state characteristics are concerned. '

We will now analyze the control of variables that are the integral of
flow.  Liquid level is the integral of liquid flow, whereas the integral of
gas flow in a constant-volume system is pressure. These loops have
certain features not common to other classifications. For example they
can be non-self-regulating. This is never true of flow and rarely true
of other variables. Second, the rate of change of measurement is a
function of the difference between inflow and outflow; either inflow or
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outflow will be load-dependent, while the other is manipulated. Fur-
thermore these processes are dominated by capacity; dead time will
rarely be found, because pressure waves travel through the process at
the velocity of sound.

The third group includes energy and mass transfer processes, where
control is exercised primarily over temperature and composition. The
controlled variable here is aways a property of the flowing stream, as
opposed to being the flowing stream or its integral. These processes
ordinarily have a steady state in which the controlled variable is a func-
tion of the ratio of the manipulated flow to the load. (Note the abscissa
of Fig. 2.12, expressed in terms of this ratio.) Because the controlled
property travels with the fluid, it must be transported to the measuring
element. Transportation involves dead time. Hence loops in this
category are usually dominated by dead time, which makes control diffi-
cult and response slow.

In this chapter, five typical control loops will be analyzed: flow, level,
pressure, temperature, and composition. The principa dynamic ele-
ments of each process will be derived and will be related to the closed-loop
response, Constraints and nonlinearities will be included, as well as
means for coping with them. A few additional comments will serve to
distinguish those control problems which are not typical or which appear
to cross into other areas.

FLOW CONTROL

Flow is the manipulated variable as well as the controlled variable, so
it seems as though the process is unity. But this is not the case. Open-
ing a valve does admit flow, but the response is not quite instantaneous.
If the fluid is gaseous, it is subject to expansion upon a change in pressure;
therefore the contents of a pipe vary somewhat with pressure drop, hence
with flow. In a liquid stream, inertia is significant-flow cannot be
started or stopped without accelerating or decelerating. To demonstrate
the dynamic character of inertia, the time constant of a column of liquid
in a pipe will be derived.

Inertial Lag of a Flowing Liquid
In the steady state, the velocity of flow in a pipe varies with pressure
drop :

‘LLZ:CngéE

P
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where » = velocity, ft/sec
C = flow coefficient
g = gravity, ft/sec?

Ap = pressure drop, 1b/ft?

p = density, 1b/ft?
But velocity is proportional to flow:

U F
A

where F = flow, ft3/sec
A = inside area, ft?
Therefore the pressure drop due to flow in the steady state is

u%p F?p

Ap = 290 = 2gAC?
If the applied force A Ap exceeds resistance to flow, acceleration takes
place. An equation can he written for the unsteady state: net force
equals mass times acceleration.

AR oy MdF
A =5 M@= a

where M = mass, slugs
{ = time, sec
The mass of fluid in the pipe is

_ L4
g

M
where L = length in feet.
Rearranging,

F% LApdF

g dCE T g @ AAp

To find the time constant, the differential equation must be reduced to
its standard form:

2LAC? (dF 242
Py BAC () uCAap
= [4

dt

The time constant is then the coefficient of dF/dt:

;= 2LA'/:102 (3.1)
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Flow coefficient ('? can be replaced by its steady-state equivalent:

¢ Lo
= 2947 Ap
leaving
r= gﬁF A”p (3.2)

example 3.1
To test the significance of the last expression, a numerical example is
presented. Consider a 200-ft length of I-in. Schedule 40 pipe, containing

mater flowing at 10 gom with a 20-psi drop.

L =200 ft

F = 10 gpm = 00223 ft3/sec
p = 62.4 Ib/ft3
g = 32.2 ft/sec?

4 =0.006 ft?

Ap = 20 Ib/in? = 2,880 Ib/ft?

200)(0.0223)(62.4) _
= (—ﬂ_j(:az.zggo.ooes )5,880 = 0.50 sec
Notice that the time constant varies with both flow and pressure drop,
because of the square relation between the two. Nevertheless, the deri-
vation permits evaluation of the dynamic response at a nominal flow and
at least a qualitative indication of the response elsewhere. As may have
been anticipated, the time constant is small, but not zero, except, at zero

flow.

Dynamic Elements Elsewhere in the Loop

This time constant is fundamentally the only dynamic element in the
process. But its response is of the same order of magnitude as the
instruments in the control loop, and therefore the entire loop must be
analyzed.

Figure 5.1 describes a pneumatic flow-control loop consisting of trans-
mitter (2), controller (4), valve (8), and two transmission lines (3,73).
The flow transmitter contains an amplifier with certain dynamic prop-

FIG 3.1. At least six elements

9___1 1 contribute to the dynamic response
of the flow-control loop.
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erties. Because of the amplifier, the lag of the transmission line is isolated
from that of the flowing fluid. The transmission line is terminated by a
controller, isolating it from the second transmission line. The figure
shows no isolating amplifier between the output line and the valve, how-
ever, allowing interaction there. Transmission lines can be conveniently
represented by dead time plus a first-order lag. The value of each is
naturally a function of length and diameter.!

The control valve cannot be so casily represented, however. If 3 valve
motor were a constant-volume device, it would behave like a first-ordet
lag. But every change in pressure is accompanied by a change in volume
of the motor. This property causes the motor to operate at a limited
velocity, based on the maximum rate of flow of air that can be delivered
into the expanding volume. In effect, a valve seems to exhibit a smaller
time constant for small changes than for large changes, because the
velocity of stroke is not a function of the magnitude of the change. Con-
sequently, a valve cannot be adequately represented by a single time
constant.

example 3.2

Let us analyze the response of the flow loop whose inertial lag was esti-
mated in Example 3.1, The flowmeter has a range of 0 to 15 gpm, both
transmission lines are 100 ft of 1i-in. tubing (0.188 in. inside diameter),
the valve is a 1-in. size, with a linear characteristic. The combination of
transmission line and valve motor will be assumed to be about 3 see, which
limited tests? indieate to be reasonable.  The dead time associated with the
tubing ought not to be neglected, however,

A elosed loop Of this description will be found to oscillate at a period of
about 6.5 see, under proportional-plus-reset control. The period is deter-
mined by the phase contribution of all the clements.  Table 3.1 lists the
phase and gain contribution of each at the 6.5-sec period.

The Toop phase was found by first selecting 6.5 see as the natural period;
reset action must then contribute 28° t0 bring the total to 180°. (A dif-
ferent value Of reset time would change 7,.) The gain contribution of reset
at that phase angle is1.11 . Notice that all elements contribute some phase
lag, but only those whose phase lag approaches 45° affect the loop w i n
noticeably.
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TABLE 3.1 Dynamic Elements in the Flow Loop

T, 86C — ¢, deg G
1 . Pr oce s s 0.5 26 0.93
2. Transmitter’ 0.16 9 0.98
3. Transmission line:
T 0.5 26 0.92
7 T 0.18 10 1.0
5. Transmission line r;| 0.18 10 10
+
6. Valve T.. .| 3.0 71 0.35
Loop minus controller.. Sum 152 Product 0.29
4. Controller reset,| 2.2 28 1.11
Loop minus proportional. Sum 180 Product 0.33

To determine what the proportional band will be, valve and transmitter
gain must be combined with the dynamic loop gain of 0.33, calculated above.
In the given example, 200 ft of pipe and fittings produce about an 8-psi
drop at 10 gpm, leaving 12 psi across the valve. A 1.O-in. valve has a C,
rating of 10. At 12-psi drop, the gain of the linear valve nould be

¢ _C.vAp 1012
v 100, 1009,

At 10 gpm, the gain of the 15-gpm differential meter is

Gr = 2 (%g) %):8.9%/gpm

=0.35 M %

Since the flow process itself has no dimensional gain, G, may be multiplied
directly by G, to remove dimensions:

G.Gr = (0.35 gpm/9%)(899%/gpm)=23.|

The proportional band required for 14-amplitude damping is then 200
times the gain product of the dynamic and steady-state components of the
loop :

P = 200(0.33)(3.1) = 205%

Thisis quite typical for aflow controller.

Notice by comparing Figs. 2.5 and 2.9 that the resistance of the piping
is helpful in that it shapes the gain of the valve in a direction complemen-
tary to the flowmeter. Valve gain is higher at low flow, where the trans-
mitter gain is lower, yielding a gain product that tends more toward
uniformity than either of the multiplicands. Note also that an equal-
percentage valve characteristic (Fig. 2.6) is of the opposite form, tending
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to augment the nonlinearity of the flowmeter except in cases of unusually
severe line drop (Fig. 2.10).

Increasing valve speed by means of a booster is helpful in reducing 7,
although the proportional band may not be affected. Mounting the
controller at the valve helps even more by eliminating both transmission
lines.

Flow Noise

In an equivalent electronic flow loop, absence of the transmission lines
reduces the natural period to the vicinity of 2 sec. Noise, however,
becomes more prominent. “Noise” means disturbances, either periodic
or random, occurring at frequencies too high for control action. Figure
3.3 is a record of noise in an electronic flow loop. Turbulence in the
stream and vibration from pumps are the chief sources of this noise.
Even in pneumatic systems, flow noise is invariably present in sufficient
magnitude to prevent the use of derivative. Phase lead is useful, but
unfortunately the increase in high-frequency gain which accompanies it
actually explodes the loop into instability.

Summary

The purpose of the analysis is not to show how an analysis should be
made, but rather to explain why a flow loop behaves the way it does.
Because many dynamic elements are present, al] of the same order of
magnitude, dynamic gain is high. The proportional band of a flow con-
troller is rarely less than 100 percent, making reset mandatory. Where
the valve and transmitter are in the same line, the period of oscillation
will invariably fall within 1 to 10 sec. The presence of noise precludes
the use of derivative. As long as these factors are appreciated, there is
little reason to spend time analyzing flow loops.

PRESSURE REGULATION

The thermodynamic state of a system can be defined from its pressure,
enthalpy, and volume. If a gas phase aone is present, pressure and
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TABLE 3.2 The Significance of Pressure as a Measurement of Specific Volume
and Enthalpy of Steam and Water at 100 psia

Spec. vol. change, % | Enthalpy change,%
System
Pressure change, % | Pressure change, %
Superheated vapor at 1000°F. -1.006 -0.00163
Saturatedvapor................ -0.945 +0.0158
Compressed liquid at 100°F. . -0.0003 +0.00395

volume are inversely proportional, with enthalpy playing a relatively
minor role. When a vapor is in equilibrium with its liquid, however, a
change in enthalpy of the system will produce a pronounced pressure
change, while volume variations will have less effect. Liquids, moreover,
are virtually incompressible, with the result that neither pressure nor
enthalpy have much influence over system volume.

The thermodynamic properties of gas, vapor, and liquid systems have
been brought out expressly to establish that the properties of system
pressure are decidedly a function of state. It is extremely important to
attach the correct significance to the pressure measurement, if acceptable
performance of a control loop is to be gained. Table 3.2 gives an example
of each of the three states listed above, where water is the substance
under pressure. It indicates the conditions under which pressure is a
suitable measurement of the material content (specific volume) and
energy content (enthalpy) of the system.

The table points out that pressure is an adequate measurement of the
material content of a system which contains only gas. Enthalpy of a
gas, on the other hand, is more a function of temperature than of pressure.
Consequently gas pressure should be controlled by manipulating the
material content of the system, i.e, inflow or outflow. But in a system
where vapor and liquid are in equilibrium, pressure could be controlled
by adjusting the flow of either material or heat. Finally, pressure is a
poor measure of either heat or mass content of a liquid, so another
approach must be taken in stipulating its control.

Gas Pressure

The perfect gas law states that

pV = MRT
where p = system pressure
¥ = volume
M = mole content
R = gas constant
T = absolute temperature
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The rate of change of pressure in a constant-volume system is related to
the change in material content of the system:

dp _ dM RT
dt — dt V

If R and T are both constant, the rate of change of mass content of the
system is the difference between mass inflow and outflow:

dp F
W_V(fi_fo)

where F = nominal mass flow
fi = fractional inflow
fo = fractional outflow
Integration of the last equation places pressure in terms of flow:

1
P= Y/F / (fi = fo) dt (3.3)

For dimensional conformity, p would be in units of atmospheres, V in
cubic feet, and F in standard efm, that is, cfm a 1.0 aam. Thus the time
constant V/F is expressed in minutes.

Just as level control was used to close a liquid material balance around a
tank, pressure control is used to close a gas material balance. The gas-
pressure process is ordinarily self-regulating, except at zero flow, because
pressure aways influences inflow and outflow. The process is funda-
mentally single-capacity, athough the pressure transmitter and valve
can add very small secondary lags. If there is no transmitter, as with a
self-contained regulator, one secondary lag is eliminated.

Pressure of a gas is easy to control, even when the volume of the system
is small, e.g., only piping. In fact, the narrow-band proportional action
of self-contained regulators is sufficient for most applications. They are,
for the most part, as sensitive as their simple construction will allow,
indicating that loop gain is not a problem. Pressure acting on the
diaphragm compresses the spring, moving the plug within the valve.
Each position of the seat corresponds to a given pressure on the dia-
phragm.  |nitial compression of the spring sets the pressure at which the
valve begins to open.

Because pressure will vary with flow, as in Fig. 3.4, a regulator is said
to exhibit “droop.” Regulators differ, but a typical proportional band
would be 5 percent. Near zero flow, extra pressure is needed for shutoff;
at the other extreme, the valve is wide open and acts as a fixed resistance.
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Flow

FIG 3.4. The characteristic curve for a pressure
regulator indicates proportional action.

Vapor Pressure

In a system containing liquid and vapor in equilibrium, the difference
between inflow and outflow of vapor would change the pressure, from a
material-balance standpoint:

But if the enthalpy of inflow and outflow differ, flow of material between
the vapor and liquid phases will also affect system pressure.  An energy
balance shows the relationship:

FiH, = F,+ Q= Q= VH, 2 (34)

The terms H; and [, represent enthalpy of inflow and outflow respec-
tively, Q: and Q, represent transfer of heat in and out, and H, is the heat
of vaporization.

Both mass flow and heat flow affect pressure. But where the net
change of enthalpy across a process is zero, mass flow alone is sufficient
for control. An example of this situation is pressure reduction of satu-
rated or wet steam—there is no change in enthalpy across the reducing
valve.

In a boiler, or distillation column, or evaporator, transfer of heat is an
integral part of the operation, and system pressure can be used to close
the heat balance. In this role, the pressure controller has much the
same type of dynamic and steady-state relationships as a temperature
controller normally does. Therefore the propertics of this sort of pres-
sure-control loop will be covered for the most part under considerations
of temperature control.
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Liquid Pressure

Pressure control of a liquid stream is exactly like flow control. The
pressure at the origin of a pipeling, for example, is directly related to flow
in the line. The process's only dynamic contribution is that of inertia
of ‘the flowing fluid.

The process gain (, in a flow loop is, by definition, 1.0. But in a
pressure loop there must be a conversion from flow into units of pressure.
Liquid pressure upstream of a resistance (g, like differential pressure,
varies with flow sguared:

2

F
p= D0t o (35)

The intercept p, is the static pressure at no flow. Differentiating, we
obtain the process gain:

dp  2F
dl’ = CRZ

Ordinarily pressure moves less than full scale for full-scale change in
valve position, resulting in a lower proportional band than for a flow loop.
Other characteristics, including noise, are similar.

Self-contained regulators are sometimes used for liquid pressure and
perform moderately well on quiet streams. Recalling that the dynamic
elements which caused most of the problems in the flow loop were instru-
ments and transmission lines, the application makes good sense. But
where accurate regulation and tight shutoff are important, these simple
devices are insufficient.

(36)

LIQUID LEVEL AND HYDRAULIC RESONANCE

Control of liquid level is not as easy asthe examples given in Chap. 1
indicate. The descriptions of Figs. 1.14 and 1.20 were intentionally
oversimplified to aid understanding of single- and two-capacity processes.
But the existence of waves in any body of water as large as a bay or as
small as a cup, gives rise to the speculation that any liquid with an open
surface is capable of sustaining oscillation. While average level responds
to flow as an integrator, level responds to level in a resonant manner.
Consequently the liquid-level process is not single-capacity, even with a
directly connected measuring element.

The Period of Hydraulic Resonance

To analyze this resonance, let us take the case of the vessel with a
measuring chamber shown in Fig. 3.5, neglecting resistance to flow. If

11
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FIG 3.5. The period of hydraulic
resonance varies with the distance
between the bounded surfaces.

ha

the level in the measuring chamber momentarily exceeds that in the
tank, the differential force developed causes a downward acceleration
in that leg:

dug duy
ph2A2 — phlAl = —M2 ~d—t— [— Z[f1 Td_t_ (37)

where he, 4., M., and wu, are the head, area, mass, and velocity, respec-
tively, of the fluid in the measuring chamber. As before, p is the fluid
density. Furthermore

Uy = z—luz
and
M= pL——;A‘ My = p A

Substituting for y;, 47y, and Jf, in Eq. (3.7) yields
hads — hid, = — FeArdie Ly dus (3.8)
Level in the measuring chamber, #%., is related to average level h by
- A,
h = hi=(hy = h) i

Including this in Eq. (3.8) yields the response of measured level k, to
average level 4:

2hy = h<1+j1) ~ Lot L du,
2

g dt

But velocity u- is the rate of change of level, dh,/dt. Therefore a differ-
ential equation can be written eliminating «.:

Lo+ Ledh b, , A
bt Eﬁ'?z(“rfz) 39

This differential equation is descriptive of a second-order undamped
system. The U tube resonates at a natural period established by the
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square root of the coefficient of the differential:

ro = 2 (L_—l + L?)” (3.10)
29

Notice that the period is unaffected by density, area, or any property
other than the distance [, + L, between the bounded surfaces. Com-
pare it to that of a pendulum, also a function of length and gravity only.

Liquid in a vessel may also oscillate without the benefit of a U tube.
The period of oscillation of the surface of diameter L is:

14
7o = 21 (2%) (3.11)

Rectangular vessels can oscillate at two different periods. Vessels with
an attached measuring chamber can oscillate with at least two different
periods.

The natural period of any control loop containing a resonant element
cannot exceed that of the resonant element. The phase shift of a resonant
element is exactly -90” at its natural period, no matter how heavily
damped it may be. Since the integration of flow into average level
represents an inherent phase shift of —90°, the process, from flow to
measured level, will exhibit -180” at the natural period of the vessel.
To damp the measuring chamber by throttling its connecting valves will
not change this period, but will only reduce the amplitude of the resonance.

example 3.3

As an example of a liquid-level control problem, consider a vessel with a
measuring chamber of the following description:

Volume ¥: 100 gal
Maximum flow F: 50 gpm
Diameter [: 2.0 ft

Normal level L.: 36 ft
Chamber L.: 4.4 ft

The liquid can oscillate on the surface and in the T tube.  Rut since the
largest resonant period is always the limiting one, only the period of the
T tube is important

_ [3.6 ft + 4.4 ft
To = 2T | 2(32.2 ft/sec?)
The dynamic gain of the integrator is

1, (2.2/60) _
G = 5ev7F = Gas) (g - 00
This control problem can be accommodated with a proportional band of
200G = 6 percent.

1% = 2.2 sec

13
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Since dimensions of process vessels generally fall hetween 2 and 200 ft,
liguid resonance lies principally in the region from 1-to 10-sec period.
Hence it is only of serious consequence, from the standpoint of control-
loop stability, in vessels with time constants of less than 1 min.

Liquid-level Noise

Measurement of liquid level is usually noisy, because of splashing and
turbulence of fluids entering the vessel. As we have seen, loops that
resonate respond to random disturbances by oscillating at their natural
period. As a result, level measurements are rarely quiet, often fluctuat-
ing 20 or 30 percent of scale. This is particularly true in vessels con-
taining boiling liquids, where turbulence is high.

Although a narrow proportional band, like the one determined in the
example, may be sufficient, for control-loop stability, random fluctuations
of only a few percent will drive the control valve to its limits. This may
be unobjectionable in some cases, but too severe in others. Often the
liquid level in a tank is used to control flow into another part of the
process. It is certain that wide fluctuations in feed rate are not tolerated
in most operations. To provide steady flow in these instances, the
proportional band is widened and reset is relied uponto maintain control.

In many applications, exact regulation of liquid level is not important.
In fact, a surge tank does not fulfill its purpose if tight control is imposed
onit. Asaresult, control adjustments are often relaxed, and the process
is sometimes left to be operated manually, if its time constant is long
enough.

In some applications, a special controller whose proportional band
changes with deviation is warranted.  This type of controller is devised
to deliver smooth flow while level is normal, but to change flow radically
in the event that high or low limits are approached.  Chapter 5 discusses
more details of this function.

Boiling Liquids and Condensing Vapors

Whenever level control is to be effected on a boiling liquid or condensing
vapor, properties more typical of thermal processes appear. Transfer
of both heat and mass is involved, which, combined with the integration
of flow into level, renders control surprisingly difficult.  Level control in
boilers and distillation columns is sufliciently problematic to warrant
special consideration, which is given in Chaps. 8, 9, and 11.

TEMPERATURE CONTROL

Temperature-control problems are really heat transfer problems,
whether the mechanism is radiation, conduction, or convection. Al-
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FIG 3.6. The thermal process contains four
interacting lags.

though an entire chapter is devoted exclusively to energy control, it is
important at this time to assay the general features of the temperature
loop in order to establish its place in the classification that has been made.

Example of a Constant Parameter System

Because most heat transfer processes have variable parameters-heat
transfer coefficient, dead time, etc.-which vary with flow, care has
been taken to choose an example free of these complications, to better
introduce the subject. The example chosen is that of a stirred tank
reactor cooled by a constant flow of liquid circulating through its jacket.

The temperature controller, as shown in I'ig. 3.6, adds cold water to
the circulating coolant, in order to remove the heat of reaction. There
are five important dynamic elements in the process:

Heat capacity of the contents of the reactor
Heat capacity of the wall

Heat capacity of the contents of the jacket
Lag in the temperature bulb

Dead time of circulation

agrwWDNpR

Because all the heat leaving the reactor flows through the walls and into
the coolant, the capacities of reactants, walls, and coolant interact. But
in view of the slight heat capacity of the bulb, its time constant does not
significantly interact with the others. Basically the process is four-
capacity plus dead-time.

Finding the Time Constants

To determine the values of the time constants, an unsteady-state heat
balance must be written across each heat transfer surface. The equation

15
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takes the form heat in equals heat out plus heat capacity times rate of
temperature rise. Assuming a constant rate of heat evolution (the case
of a variable rate will be taken up later), the heat balance at the surface

of the reactor wall is

LA
Q = klA(T - T + chl—d? (312)

where § = rate of heat evolution, Btu/hr

k1 = heat transfer coefficient, Btu/(hr) (ft?) (“F)

A = heat transfer area, ft?

T = reactor temperature, °F

T, = wall temperature, °F

W, = weight of reactants, Ib

C, = specific heat of reactants, Btu/(lb)(°F)
Rearranging in the standard form,

wW,C,dT

at _ Q
A Al T '+ b4 (3.13)
The thermal time constant is
W,
o= kllA‘ (3.14)

Reactor temperature responds to wall temperature with a time constant
of 7, and a steady-state gain of 1. If ;A is not directly known, Q/(T —
T1) may be substituted:

Wil
Q

"= (T =Ty (3.15)
By the same token, the temperature of the outside wall of the reactor
responds to that of the inside wall with a time constant of

WaCol _ WoC
m=hd g (T

where W, = weight of wall, Ib
('y = specific heat of wall, Btu/(lb){(°I")
k, = thermal conductivity, Btu/(hr) (ft*) (°F/in.)
{ = wall thickness, in.
T, = outside wall temperature
Next, outside wall temperature responds to coolant temperature with
a time constant of

m&_wa
IC 3A -

(3.16)

(Ty — T.) (3.17)

T3 —
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where W; = weight of jacket contents
(', = specific heat of jacket
k;, = heat transfer coefficient
T, = average coolant temperature
The lag of the temperature bulb can be calculated in the same way as
the other time constants:

Wi,
= i
T4 k1A4 (3 8)
where W, = weight of bulb

(', = specific heat of bulb

A, = surface area of bulb
For most types of thermal systems and heat transfer conditions, data on
bulb response are already available.?

Process Gain

Each of these lags forms one link in the chain from average coolant
temperature to the measured reactor temperature. But since the manip-
ulated variable is the flow of water added to the coolant stream, a suitable
equation converting water flow to coolant temperature must be included.
Adding a stream Fy at temperature Ty to the coolant recycle stream
F = Fy at temperature T, produces a mixture F at temperature T,
returning to the reactor. The heat balance is

FT“ = FpTw + (F — FW)Tcz

Rearranging,

T = Tor = (Tex — Ty) CFE (3.19)

But, related to the heat load,
- _Q
Tcg Tcl = ch

Since the response of average coolant temperature T, is sought, substitu-
tion is made for 7,,:

Tc? = Tc + Tﬂ % 701 = Tc + Q (320)

Combining Egs. (3.19) and (3.20),

Q Py Q .
ch'T(T°+2F03 T“>

77
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Solving for T,
_ Q1L _ 1

T.,=Tw + o <Fw 2F> (3.20)
Process gain is the derivative of temperature with respect to flow:

ar Q

—l = 3.22

dFw C:Fw? ©.22)

The adjustment of coolant temperature by water flow is demonstrably
nonlinear.  An equal-percentage valve should be used to deliver the
water, to partially correct this situation.

example 3.4

If a reactor contains 40,000 Ib of material of specific heat of 0.8 Btu/
(Ib) (°F), evolving 20000 Btu/min a 200°F aith a wall temperature of
170°F,

. = (40,000 (Oé%é(o%oo ~ 170 _ 48 min

72 can be estimated from the weight of the reactor wall, 8,000 Ib, of specific
heat 0.15 and a temperature gradient of 10°F:

Te = 8 0003080105)(10) =0 6 min

Jacket contents of 500 gal (4,160 Ib) of water at an average temperature of
140°F exhibits a time constant of

(4,160)(1.0)(160 — 140)

50000 = 4.2 min

A typical value for lag in a temperature well is7, = 05 min.  Findly, cir-
culation through the jacket at a rate of 250 gpm yields a dead time

It happens that a reactor of this description will oscillate at a period
of about 35 min in a closed loop. Even if al the secondary elements con-
sisted of pure dead time, they could not cause the period to exceed 29 min.
Therefore, some secondary element remains hidden, and the only place
it could hide is in the reaction mass. The assumption has been made, in
calculating its time constant, that the reaction mass was perfectly mixed
-that it was al at the same temperature. This, of course, is a fase
premise, because it is impossible to transport fluid, hence heat, from the
wall of the vessel to the temperature bulb in zero time. Heat is trans-
ferred both by convection and by conduction-conduction would be the
mechanism if the fluid were motionless. It has been pointed out that
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heat transfer by conduction is a distributed process, involving some
effective dead time. So it does not seem unreasonable that a small per-
centage of the 48-min primary time constant is dead time due to imperfect
mixing. An examination of the mechanism of mixing will be taken up
under composition control.

example 3.5

The dynamic gain of the process is principally that of the primary time
constant:

The response of average coolant temperature to water flow is plottedin
Fig. 3.7 for values of F = 250 gpm (2,080 Ib/min) and T, = 80°F at a
constant load of 20000 Btu/min. Because of the change in slope with
flow, an equal-percentage valve characteristic is recommended. From Fig.
3.7, the required flow of water to produce an average coolant temperature
of 140°F isfound to be 37 gpm. Gain of the processis

ar. _ _

dF CiFwt
_ 20000 Btu/min _
= 7 [1.0 Btu/(Ib) CF)][37 gpm]?[8.33 Ib/gal] ~

Gain of an equal-percentage valve is simply four times the flow being
delivered

~1.75°F/gpm

37 gpm
G, =4 10%% =15 gpm/Y

If atransmitter span of 200°F is selected, Gy = 100 9,/200°F, or 0.5 %/°F.
The gain product can then be found:

G = (0.116)(1.5 gpm/%)(—1.75°F /gpm)(0.5%/°F) = -0.152

(The negative sign indicates the sense of control action.) For !4-amplitude
damping, P must be 200G, therefore

P = 200(0.152) = 30%

[T

°.250

[

2200 -

5 Q=20,000 Btu/min

g150———t——+ P~

g 140 = —
FIG 3.7. The slope of the process- 1 100
characteristic curve decreases with _g 37
increasing flow. § 5 00 10 20 30 20 50

Woter flow Fy gpm
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Derivative is extremely useful in a temperature loop, to compensate for
the secondary lags in the heat transfer media and temperature bulb. A
derivative time of 35/2x or 5.6 min on this process would reduce the period
to about 20 min, and the required proportional band to the vicinity of
20 percent.

Summary

The most important points to be grasped from this analysis of a simple
heat transfer process are:

1. Time constants in a temperature-control loop are not easy to identify,
and they interact.

2. The presence of distributed lags makes the exact performance of
the loop difficult to predict.

3. Processes involving heat transfer are always nonlinear in at least-one
respect. Each process ought to be evaluated on its own merits to be
sure correct compensation is applied.

If the rate of heat evolution in the example had been made a function
of temperature, as it is in a rea reactor, a second nonlinearity would
have made its appearance. Obviously much further consideration must
be given to each individual heat transfer application as it is encountered.
Although certain characteristics are common, many others are not. In
short, there is no such thing as a“typical” temperature-control loop.

CONTROL OF COMPOSITION

By far the greatest single contributor to the problems of a control
engineer is the composition loop. Composition is a property of a flowing
stream, therefore it travels with the stream. This means that dead time
is always in the loop. Further, sampling difficulties, incomplete mixing,
and intermittent analyses lend the measurement a certain amount of
random character, often making tight controller adjustment nadvisable.
Most significant of all the composition of a stream is a function of the
performance of the processing equipment producing it, which many
control engineers do not fully understand.

As in the case of temperature control, the process within a composition
loop may be extremely complex. In fact, most mass transfer operations
require multiple control loops to cope with the number of variables which
affect product quality. But for the moment it is important to examine
the properties of a composition loop apart from the intrigues of mass
transfer.  Therefore a simple blending system will be anayzed.

The Problem of Mixing

A simple composition-control loop is depicted in Fig. 38. Its object
is to control the percentage of a single component in the effluent solution
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Diluent = Concentrate X

FIG 3.8. This composition loop is
dominated by the transportation of
the concentrate to the analyzer.

Dﬁiﬁ

IAnolyzer %

F,x

by adding the required amount of concentrate to the tank.  Assume that
no chemical reaction takes place-the problem is then only one of mixing
to the desired composition.

Anyone who has tried to control composition in a stirred tank knows
that it is not a single-capacity process. It would only be single-capacity
if the contents of the vessel were perfectly mixed. But no mixer can
move material from the inlet pipe to the exit pipe in zero time-it is
impossible. Conseguently some dead time must exist, i.e, that time
required for the agitator to transport a particle of fluid from inlet to
outlet. The presence of any dead time changes the control situation
entirely, for now the process is capable of oscillating in a closed loop,
which places a limitation on both controller gain and speed of response.

If the vessel in Fig. 3.8 had no mixing whatever taking place, the
streams entering the top would flow downward as a plug, reaching the
exit a time V/F later. In this case 7, = V/F, whereas the lag r, = 0.
If the vessel were perfectly mixed, 7, would equal O but 7, would equa
V/F. All rea situations fall between these two limits.

The performance of an agitator is frequently rated by its pumping
capacity. In this way it is treated as if it were a pump circulating fluid
from the bottom back to the top of the vessel at a uniform rate.  This
rate of circulation is labeled F, in Fig. 3.8. It will then be seen that the
time required for a particle to travel from top to bottom of the vessd,
i.e, the dead time, is

\Y

- 57 (3.23)

Td

The completeness of mixing may be described as the ratio of upflow to
downflow, that is, ¥,/(F, + F). Then the time constant of the vessel
can be looked upon as that part of the vessel's capacity, which is com-

Solution
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pletely mixed
vV F
-0 % 3.24
T1 F Fa + F ( )
Placing 7, in the same terms helps to compare the two components:
S L.
T FF +F

There are several observations to be made from these two derivations.
First, it may be noted that

s (3.25)

F
This is reasonable, because it confirms that the average particle cannot
be retained in the vessel longer than its residence time V/F, whether
mixed with the rest of the contents or not. Furthermore it concurs
with Eq. (2.4).
Second, the difficulty of control, 74/, varies only with F and F;:

Tq F

HT T (3.26)
Notice that difficulty is not a function of volume.  This contradicts the
commonly accepted rule that relates controllability to volume. In fact,
increasing the volume of a system while retaining the same flow and agita-
tion serves only to reduce its speed of. response, because r; would be
increased proportionately. The effect can be more readily visualized
if carried to extremes: it would be no easier to control composition in a
lake than in a small tank, using the same agitator, and response would
certainly be slower.

The actual mechanism by which mixing takes place is obviously not
discrete, as the dead-time plus lag model would suggest. Flow from the
agitator is not in a single direction, as it would be in a pipe, and even if
it were, the velocity profile could not be perfectly flat. Furthermore,
turbulence is what produces the actual mixing, and turbulence seems to
be an omnidirectional effect. Even without an agitator, some mixing
always takes place through diffusion and a token amount of turbulence
resulting from flow through the vessel.

Testst conducted on stirred tanks show that the response of the effluent
to a step change in concentrate flow resembles that of a system comprised
of multiple interacting capacities. Figure 3.9 shows the response a
typical vessel might produce both with and without agitation.

These response curves are typical of diffusive and distributed processes,
as was mentioned in Chap. 2. It was also pointed out how capably this




Analysis of Some Common Loops | 83

100
< //
5 /
) =
g ¢ [Agitated A gitated

FIG 3.9. Agitation reduces the & o 9

effective dead time while increasing //

the eflective time constant. 0 vF VIF

Time

sort of response could be represented by dead time plus a single capacity.
Thus the simple model just postulated is quite valid, if imperfect.

The Analyzer

Dynamics associated with the analysis play an important role in the
performance of the loop. The foremost limitation in the speed of analysis
is generaly that of transporting the sample to the detector.  Fortunately
some composition measurements can be made without withdrawing a
sample: electrolytic conductivity, density, and pH are notable examples.
But any analysis requiring the withdrawal of a sample, particularly if
that sample must undergo a certain amount of preparation, results in a
significant accumulation of dead time (see the example cited at the close
of Chap. 2). Naturally any effort spent in minimizing the sampling
time will be rewarded by hoth tighter control and faster response.

Some analyzers are discontinuous. They produce only one analysis
in a given time interval. This characteristic is worthy of much more
attention, because it periodically interrupts the control loop. Process
chromatographs are the principal, but not sole, constituents of this
group. The response of this kind of control loop will be given extensive
coverage in Chap. 4, and methods for coping with it will be presented.

A few analyzers exhibit a time lag in addition to the dead time asso-
ciated with sample transport. Sormally this property is of little conse-
guence, except when the process itself consists of nothing but the volu