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Feedforward Design

5.1 Introduction

Feedforward is a simple and powerful technique that complements feedback.
Feedforward can be used both to improve the set-point responses and to reduce
the effect of measurable disturbances. Use of feedforward to improve set-point
response has already been discussed in connection with set-point weighting in
Section 3.4. We will now give a systematic treatment of design of feedforward
control and also discuss design of model-following systems. The special case of
set-point weighting will be discussed in detail, and we will present methods
for determining the set-point weights. We will also show how feedforward can
be used to reduce the effect of disturbances that can be measured.

5.2 Improved Set-Point Response

Feedforward can be used very effectively to improve the set-point response of
the system. By using feedforward it is also possible to separate the design prob-
lem into two parts. The feedback controller is first designed to give robustness
and good disturbance rejection and the feedforward is then designed to give a
good response to set-point changes.

Effective use of feedforward requires a system structure that has two de-
grees of freedom. An example of such a system is shown in Figure 3.10. It
is first assumed that the system has the structure shown in Figure 5.1. Let
the process have the transfer function P(s). We assume that a feedback con-
troller C(s), which gives good rejection of disturbances and good robustness,
has been designed, and we will consider the problem of designing a feedforward
compensator that gives a good response to set-point changes.

The feedforward compensator is characterized by the transfer functions
Mu(s) and My(s), where My(s) gives the desired set-point response. The sys-
tem works as follows. When the set point is changed the transfer function
Mu(s) generates the signal uf f , which gives the desired output when applied
as input to the process. The desired output ym is generated by My(s). Under
ideal conditions this signal is equal to the process output y. The control error e
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Figure 5.1 Block diagram of a system with two degrees of freedom.

is zero, and the feedback signal uf b remains constant. If there are disturbances
or modeling errors the signal ym and y will differ. The feedback then attempts
to bring the error to zero. The transfer function from set point to process output
is

Gyysp
(s) = P(CMy + Mu)

1 + PC
= My + PMu − My

1 + PC
. (5.1)

The first term represents the desired transfer function. The second term can
be made small in two ways. Feedforward compensation can be used to make
PMu−My small, or feedback compensation can be used to make the error small
by making the loop gain PC large. The condition for ideal feedforward is

My = PMu. (5.2)

Notice the different character of feedback and feedforward. With feedforward it
is attempted to match two transfer functions, and with feedback it is attempted
to make the error small by dividing it by a large number. With a controller
having integral action the loop gain is very large for small frequencies. It is
thus sufficient to make sure that the condition for ideal feedforward holds at
higher frequencies. This is easier than to satisfy the condition (5.2) for all
frequencies.

System Inverses

From (5.2) the feedforward compensator Mu is

Mu = P−1My, (5.3)

which means that it contains an inverse of the process model P. A key issue
in design of feedforward compensators is thus to find inverse dynamics. It is
easy to compute the inverse formally. There are, however, severe fundamental
problems in system inversion, which are illustrated by the following examples.

EXAMPLE 5.1—INVERSE OF FOTD SYSTEM

The system

P(s) = 1
1 + sT

e−sL

140



5.2 Improved Set-Point Response

has the formal inverse

P−1(s) = (1 + sT)esL.

This system is not a causal dynamical system because the term esL represents
a prediction. The term (1 + sT) requires an ideal derivative, which also is
problematic as was discussed in Section 3.3. Implementation of feedforward
thus requires approximations.

EXAMPLE 5.2—INVERSE OF SYSTEM WITH RHP ZERO

The system

P(s) = s − 1
s + 2

has the inverse

P−1(s) = s + 2
s − 1

.

Notice that this inverse is an unstable system.

It follows from (5.2) that there will be pole-zero cancellations when designing
feedforward. The canceled poles and zeros must be stable and sufficiently fast;
otherwise, there will be signals in the system that will grow exponentially or
decay very slowly.

The difficulties in computing inverses can be avoided by restricting the
choice of My. Since Mu = P−1My we can require that the transfer function My

has a time delay that is at least as long as the time delay of P. Further, My and
P must have the same zeros in the right half plane. To avoid differentiation,
the pole excess in My must be at least as large as the pole excess in P. One
possibility is to approximate process dynamics by a simple model and to choose
My as a model having the same structure. To design feedforward we thus have
to compute approximate system inverses with suitable properties.

Approximate Inverses

Different ways to find approximate process models were discussed in Sec-
tion 2.8. Here we will give an additional method that is tailored for design
of feedforward control.

Let P† denote the approximate inverse of the transfer function P. A common
approximation in process control is to neglect all dynamics and simply take the
inverse of the static gain, i.e.;

P†(s) = P(0)−1.

A number of results on more accurate system inverses have been derived in
system theory. Some of these will be shown here. Note that the inverse trans-
fer function only has to be small for those frequencies where the sensitivity
function is large.
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EXAMPLE 5.3—APPROXIMATE INVERSE OF FOTD SYSTEM

The system

P(s) = 1
1 + sT

e−sL

has the approximate inverse

P†(s) = 1 + sT

1 + sT/N
,

where N gives the frequency range where inversion is valid.

EXAMPLE 5.4—APPROXIMATE INVERSE OF SYSTEM WITH RHP ZERO

The system

P(s) = s − 1
s + 2

has the inverse

P†(s) = s + 2
s + 1

.

Notice that the unstable zero in P gives rise to a pole in P† that is the mirror
image of the unstable zero.

A simple model for systems with monotone step responses has the transfer
function

P(s) = K

(1 + sT)n
e−sL. (5.4)

We call this the NOTD model because it has one time delay and n equal lags.
The approximation can be made by fitting the transfer functions at a few rel-
evant frequencies. Assuming that we want a perfect fit at ω = 0 and ω = ω 0

we find that

P(0) = K

�P(iω 0)� = 1
(1 + (ω 0T)2)n/2

arg P(iω 0) = −n arctanω 0T − ω 0 L.

Solving these equations we find

K = P(0)

T =
√

�P(iω 0�−n/2 − 1
ω 0

L = −arg P(iω 0) + n arctanω 0T

ω 0
.

(5.5)

A good fit is required at the frequency ω ms of maximum sensitivity. Since this
frequency is known when the feedback controller C has been designed it is
natural to choose ω 0 = ω ms.

We will give an example to illustrate the accuracy of the approximation.
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Figure 5.2 Error when fitting NOTD models of different orders to the transfer function
P(s) = 1/(s + 1)4 for n = 1 (dotted), n = 2 (solid), and n = 3 (dashed).

Table 5.1 Parameters and maximum errors when fitting NOTD models of different or-
ders to the transfer function P(s) = 1/(s + 1)4.

n ω K L T emax ω max

1 0.5 1 1.9566 2.4012 0.1828 1.7400

2 0.5 1 1.1352 1.5000 0.0710 1.4500

3 0.5 1 0.5169 1.1773 0.0255 1.3300

1 1.0 1 1.8235 3.8730 0.2603 0.2800

2 1.0 1 1.0472 1.7321 0.1043 0.3400

3 1.0 1 0.4737 1.2328 0.0378 0.3600

EXAMPLE 5.5—FOUR EQUAL LAGS

Consider a process with the transfer function

P(s) = 1
(s + 1)4 .

In Figure 5.2 we show the error �P(iω )− P̂(iω )� for NOTD models with different
n, and in Table 5.1 we give the parameters and the maximum error for different
fits. Notice that relatively large errors, 20 to 30 percent, are obtained for first-
order models, and significant reductions are obtained by increasing the model
order.

For a process given by (5.4) it is reasonable to choose the response model as

My = 1
(1 + sTm)n

e−sL.

It then follows from (5.2) that the feedforward compensator is given by

Mu = 1
K

( 1 + sT

1 + sTm

)n

. (5.6)

143



Chapter 5. Feedforward Design

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

y
u

Figure 5.3 Responses to set points and load disturbances of the process P(s) = 1/(s+1)4

with a PI controller and a feedforward based on the FOTD model for desired response times
Tr = 10 (dashed line) and Tr = 2 (solid line).

In this particular case the feedforward compensator thus consists of a process
model and a lead-lag or lag-lead network.

There are situations where it is desired that a feedback loop should have a
set-point response with specified response time. A typical case is when several
substances coming from different sources are mixed. When making production
changes it is highly desirable that all systems react to production changes in
the same manner. It is very easy to accomplish this when the required process
dynamics are slow in comparison to the bandwidth of the feedback, because
it follows from (5.1) that the set-point response is not very sensitive to the
process model. We illustrate this with an example.

EXAMPLE 5.6—SLOW SET-POINT RESPONSE

Consider a process with the transfer function

P(s) = 1
(s + 1)4 ,

controlled with a PI controller with K = 0.775 and Ti = 2.05. This gives Ms = 2
and ω ms = 0.559. Approximating the process model with a first-order FOTD
model gives the parameters Kp = 1, T = 2.51, and L = 1.94, see (5.5). Assume
that the desired set-point response is given by

My(s) = 1
1 + sTr

.

Figure 5.3 shows set-point responses for different values of Tr. The figure shows
that the load disturbance response is the same in both cases and that the set-
point response has the expected behavior. Notice the distortions of the curves
for Tr = 2; they are due to the fact that the model does not fit so well for high
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frequencies. A rule of thumb is that the first-order model is reasonable for
ω msTr > 2. In this case this gives Tr > 3.6. More accurate models are required
to get the desired behavior for Tr = 2.

The advantage by using a controller with two degrees of freedom is that the
good disturbance attenuation can be maintained while making the set-point
response slower.

5.3 Set-Point Weighting

For simple PID controllers it may not be necessary to use a complete system
with two degrees of freedom. The desired set-point response can often be main-
tained simply by adjusting the set-point weights; see Section 3.4. To determine
the set-point weights we consider the transfer function from set point to pro-
cess output, and we choose set-point parameters so that the largest gain of this
transfer function is one or close to one. This gives a set-point response without
overshoot for most systems.

It follows from Figure 3.10 and Equation 3.20 that the transfer function
from set point to process output is

Gyysp
(s) = ki + bks + ckds2

ki + ks + kds2

P(s)C(s)
1 + P(s)C(s) = ki + bks + ckds2

ki + ks + kds2 T(s). (5.7)

One possibility to achieve the largest gain close to one is to specify that the
maximum sensitivity Mt is close to one. In such a case it may not be necessary
to use set-point weighting. For designs with larger values of Mt we can simply
compute maximum of �Gyysp

(iω )� and adjust the values of b and c that give a
value close to one. The weight c is often set to zero. In that case, there is only
one parameter to choose. If �Gyysp

(iω )� is larger than one for b = 0, a low-pass
filtering of the set point may be used to reduce the magnitude of �Gyysp

(iω )�
further. The set-point filter Fsp(s) can be determined in the following way. Let
ms be the maximum of the transfer function (5.7) with b = c = 0, and let ω sp

be the frequency where the maximum occurs. A first-order filter

Fsp = 1
1 + sTsp

,

has the magnitude 1/ms at the frequency ω sp if the time constant is

Tsp = 1
ω sp

√
m2

s − 1.

Feeding the set point through a low-pass filter designed in this way will reduce
the magnitude at the frequency ω sp to one.

A drawback with set-point weighting and filtering is that the set-point re-
sponse may be unnecessarily slow.
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5.4 Neutral Feedforward

A very simple choice of feedforward control for systems with monotone step
responses that satisfies (5.2) is given by

My = P

P(0) = P

Kp

Mu = 1
Kp

.

(5.8)

This means that the desired set-point response is the normalized open-loop
response of the system. Since Mu = 1/Kp the control signal is proportional to
the set point. At a step change in the set point the control signal thus changes
stepwise to the constant value that gives the desired steady-state, and remains
at that value. The design of a neutral feedforward is thus very simple.

A complicated process model can be replaced by an approximate model. For
PID control it is natural to base design of feedforward on the NOTD model.
One way to determine appropriate parameters is to match the model at the
frequency ω ms where the sensitivity function has its largest value. We illustrate
the design procedure with an example.

EXAMPLE 5.7—FOUR EQUAL LAGS

Consider a process with the transfer function

P(s) = 1
(s + 1)4 .

A PI controller with a specification on Ms = 2 for this system gives the pa-
rameters K = 0.775, Ti = 2.05, and ω ms = 0.56 of an approximate model.
Equation 5.5 gives the parameters K = 1, L = 1.94, and T = 2.50. Figure 5.4
shows the response of the system to step and load disturbances. Notice that
there is a dip in the control signal around time t = 2. The reason is the mis-
match between the process and the model used to design the feedforward. This
is illustrated in Figure 5.5, which shows the initial responses of the process
and the model. Notice that the process responds faster than the model initially.
There is then an error, which is compensated for by the feedback.

The set-point response can be improved by using a better approximation
of the process model. One possibility is to fit a second-order NOTD model.
Such a model has the parameters K = 1, T = 1.52, and L = 1.13. Figure 5.6
shows the responses of the system to step and load disturbances. Compared
with Figure 5.4 the control signal is closer to the ideal value u = 1 and the
set-point response is a little better. Figure 5.7 shows the comparison of the
model output ym and the process output. A comparison with Figure 5.5 shows
that the second-order model gives a better fit. A comparison of Figure 5.4 with
Figure 5.6 also illustrates that feedforward requires good modeling.

In temperature control it is often desirable to have a controller without over-
shoot to step responses. The next example illustrates how neutral feedforward
can be used to accomplish this.
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Figure 5.4 Responses to set point and load disturbances of the process P(s) = 1/(s+1)4

with a PI controller (dashed line) and feedforward based on the FOTD model (solid line).
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Figure 5.5 Step responses of the process P (solid line) and the model used to design the
feedforward (dashed line).

EXAMPLE 5.8—DISTRIBUTED LAGS

Consider a process with the transfer function

P(s) = 1
cosh

√
s

.

An aggressive PI controller with Ms = 2 has K = 2.66, Ti = 0.197, and ω ms =
9.68. Even with b = 0 this controller gives an overshoot as is shown by the
dashed curve in Figure 5.8. Fitting a FOTD model at the frequencies 0 and ω ms

gives K = 1, T = 0.408, and L = 0.0917. The error in the transfer function is
less than 5 percent. Figure 5.8 shows a simulation of the system with neutral
feedforward based on that model. The figure shows that neutral feedforward
achieves the desired response.

Oscillatory System

PID control is not the best strategy for oscillatory systems because much bet-
ter performance can be obtained with more complex controllers. PID control is,
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Figure 5.6 Responses to set points and load disturbances of the process P(s) = 1/(s+1)4

with a PI controller (dashed line) and feedforward based on a SOTD model (solid line).
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Figure 5.7 Step responses of the process P (solid line) and the model used to design the
feedforward (dashed line).

however, sometimes used for such systems, and the performance of a conven-
tional PID controller can often be improved by feedforward. Neutral feedfor-
ward, which gives a response similar to the uncontrolled system, can, however,
not be used because it will give a response that is too oscillatory. We will illus-
trate how feedforward can be used by an example.

EXAMPLE 5.9—OSCILLATORY SYSTEM

Consider a system with the transfer function

P(s) = 9
(s + 1)(s2 + 0.1s + 9) .

The oscillatory mode has a relative damping ζ = 0.03, which is quite low.
Reasonable PI controller parameters for the system are K = −0.167 and

Ti = −0.210. Since the controller has negative gain, set-point weighting with
b = 0 must be used to get a reasonable response. The overshoot is, however,
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Figure 5.8 Responses to set points and load disturbances of the process P(s) =
1/ cosh

√
s with a PI controller (dashed lines) and a neutral feedforward based on a first

order FOTD model (solid lines).
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Figure 5.9 Responses to set points and load disturbances of the process P(s) = 9/(s +
1)(s2 + 0.2s + 9) with a PI controller (dashed lines) and a feedforward (solid lines).

still substantial as is seen by the dashed curve in Figure 5.9. To design the
feedforward we choose a desired response given by the transfer function

My = 9
(s + 1)(s2 + 6s + 9) .

The dynamics of this system is essentially the same as for the process, but the
complex poles now have critical damping. It follows from (5.2) that

Mu = s2 + 0.1s + 9
s2 + 6s + 9

.
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This transfer is close to one for all frequencies except those corresponding to
the oscillatory modes where it has low gain. The transfer function thus blocks
signals that can excite the oscillatory modes. Figure 5.9 shows the response
of the system to set points and load disturbances. It is clear that the set-
point response is improved substantially by the use of feedforward. The load
disturbance response is still quite poor, which reflects the fact that PI control
is not appropriate for a highly oscillatory system.

5.5 Fast Set-Point Response

With neutral feedforward there is no overshoot in the control signal. It is pos-
sible to obtain more aggressive responses if we allow the control signal to
overshoot. This is accomplished simply by requiring a faster response. To do
this the model must also be accurate over a wider frequency range. The over-
shoot in the control signal may, however, increase very rapidly with increases
in response time as is illustrated by the following example.

EXAMPLE 5.10—FAST SET-POINT RESPONSE

Consider the system

P(s) = 1
(s + 1)4 .

Assume that it is desired to have a set-point response given by

My = 1
(sTm + 1)4 .

It follows from (5.3) that

Mu = (s + 1)4

(sTm + 1)4 .

For neutral feedforward we have Tm = 1, which gives Mu = 1. In general, we
have

Mu(0) = T−4
m .

The controller gain thus increases very rapidly with decreasing values of Tm.
This is illustrated in the simulation shown in Figure 5.10, which shows the
response for Tm = 1 (neutral feedforward), Tm = 0.5, and Tm = 0.2. The initial
values of the control signal are 1, 16, and 625, respectively. Notice that the
power 4 in the expressions is due to the fact that the process has a pole excess
of 4. In practice, saturation of the actuator determines what can be achieved.

Time Optimal Control

The example clearly illustrates that feedforward can be used to obtain fast set-
point responses but that it requires models that are valid over a wide frequency
range and that very large control signals may be required. The size of the
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Figure 5.10 Set-point responses of the process P(s) = (s + 1)−4 with feedforward com-
pensators designed to give My(s) = (sTm + 1)−4 for Tm = 1 (left), 0.5 and 0.2 (right).

control signal depends critically on the pole excess of the process. In practice, it
is also necessary to take account of the fact that the control signals have limited
range. It is therefore very natural to look for strategies that bring the process
output from one set point to another in minimum time. This problem is solved
by optimal control theory. It is known that for linear systems the solution is
bang-bang control which means the control signal switches between its extreme
values. An example is given in Figure 5.11, which shows the minimum time
solution for the process P = (s+1)−2 when the control signal is limited to values
between 0 and 2. The control is very simple in this case. There can, however,
be a large number of switches for high-order systems or for oscillatory systems.
Because of its complexity it is not feasible to use optimal control except in very
special situations. Approximate methods will therefore be developed.

Pulse Step Control

For stable systems with monotone step responses fast set-point responses can
often be achieved with control signals that have the shape shown in Fig-
ure 5.11. This means that the maximum control signal is used initially. The
control signal is then switched to its lowest value, and the control signal is
finally given the value that gives the desired steady state. If the initial pulse
is approximated with an impulse we obtain the situation shown in Figure 5.12.
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Figure 5.11 Time optimal set-point change for the process P = (s + 1)−2.
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Figure 5.12 Response to an impulse (dotted line) and a delayed step (dashed-dotted
line) for a system with monotone step response. The dashed line is the set point, and the
solid line is the process output, composed of the sum of the impulse and step responses.

Assuming that the system is initially at rest its output is then given by

y(t) = ag(t) + bh(t − L),

where h is the step response and g the impulse response of the system. The
parameters a, b, and L should be chosen so that the response matches the
desired response as closely as possible. To do this the parameter a should be
chosen as ysp/gmax, where gmax is the maximum of the impulse response g(t).
Parameter b should be chosen so that the desired steady state is obtained.
Hence, b = ysp/Kp where Kp is the steady-state process gain. The parameter
L should be adjusted to keep the output as close to the set point as possible.
These choices imply that the settling time of the system is equal to the time
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Figure 5.13 Comparison between the fast set-point response strategy (solid) and PI
control with Ms = 1.4 (dashed) and Ms = 2.0 (dotted) for P(s) = 1/(s + 1)4.

where the impulse response has its maximum. The closed-loop settling time is
thus matched to the natural response time of the system. It is of course not
possible to have an impulse as an input. The impulse is therefore approximated
by a pulse with an amplitude that corresponds to the maximum value of the
control signal. The duration is chosen so that the area under the pulse equals a.
The parameters given above can be fine-tuned by optimization. We illustrate
the procedure by an example.

EXAMPLE 5.11—FAST SET-POINT RESPONSE

Consider a system with the transfer function

P(s) = 1
(s + 1)4 .

Figure 5.13 compares the fast set-point response method with regular PI
control with two parameter settings. The fast set-point response has been com-
puted with umax = 4 and umin = −4, and the resulting rise time and settling
time are approximately 4 time units. The controllers have been designed with
loop shaping for maximum sensitivities Ms = 1.4 and Ms = 2.0. The cor-
responding controller parameters are K = 0.43, Ti = 2.25, and b = 1 for
Ms = 1.4, and K = 0.78, Ti = 2.05, and b = 0.23 for Ms = 2.0. Both PI designs
are clearly outperformed by the pulse-step method. The rise times are a factor
2–3 longer, and the settling times approximately 3 times longer. The reason is,
of course, that much less of the available control authority is used. If set-point
weight b and/or Ms is increased, the size of the control signal will increase.
This leads to a faster rise time, but at the expense of larger overshoot, so the
settling time may actually be even higher.
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Figure 5.14 Process output and control signal for fast set-point changes with rate limi-
tations �du/dt� < 2 for the process P(s) = 1/(s + 1)4.

Rate Limitations

The idea of fast set-point response can also be applied to the case when there
are rate limitations. This is illustrated in Figure 5.14, which shows a simu-
lation of the process with the transfer function P = 1/(s + 1)4 when there
are rate limitations �du/dt� < 2. It is also possible to combine rate and level
limitations.

5.6 Disturbance Attenuation

Disturbances can be eliminated by feedback. With a feedback system it is, how-
ever, necessary that there be an error before the controller can take actions
to eliminate disturbances. In some situations, it is possible to measure dis-
turbances before they have influenced the processes. It is then natural to try
to eliminate the effects of the disturbances before they have created control
errors. This control paradigm is called feedforward. The principle is illustrated
in Figure 5.15.

In Figure 5.15 process transfer function P is composed of two factors, P =
P1P2. A measured disturbance d enters at the input of process section P2. The
measured disturbance is fed to the process input via the feedforward transfer
function Gf f . The transfer function from load disturbance to process output is

Gyd(s) = P2(1 − P1Gf f )
1 + PC

= P2(1 − P1Gf f )S, (5.9)

where S = 1/(1+PC) is the sensitivity function. This equation shows that there
are two ways of reducing the disturbance. We can try to make 1 − P1Gf f small
by a proper choice of the feedforward transfer function Gf f , or we can make
the loop transfer function PC large by feedback. Feedforward and feedback can
also be combined.
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Figure 5.15 Block diagram of a system where a measured disturbance d is reduced by
a combination of feedback and feedforward.

Notice that with feedforward we are trying to make the difference between
two terms small, but with feedback we simply multiply with a small number.
An immediate consequence is that feedforward is more sensitive than feedback.
With feedback there is risk of instability; there is no such risk with feedforward.
Feedback and feedforward are therefore complementary, and it is useful to
combine them.

An ideal feedforward compensator is given by

Gf f = P−1
1 = Pyd

Pyu

, (5.10)

where Pyd is the transfer function from d to y and Pyu = P is the transfer
function from u to y. The ideal feedforward compensator is formed by taking
the inverse of the process dynamics P1. This inverse is often not realizable, but
approximations have to be used.

Feedforward is most effective when the disturbance d enters early in the
process. This occurs when most of the dynamics are in process section P2. When
P1 = 1, and therefore P2 = P, the ideal feedforward compensator is realizable,
and the effects of the disturbance can be eliminated from the process output
y. On the other hand, when the dynamics enter late in the process, so that
P1 	 P, the effects of the disturbance are seen in the process output y at the
same time as they are seen in the feedforward signal. In this case, there is no
advantage of using feedforward compared to feedback.

Applications

In many process control applications there are several processes in series. In
such cases, it is often easy to measure disturbances and use feedforward. Typi-
cal applications of feedforward control are drum-level control in steam boilers,
control of distillation columns, and rolling mills. An application of combined
feedback and feedforward control follows.

EXAMPLE 5.12—DRUM LEVEL CONTROL

A simplified diagram of a steam boiler is shown in Figure 5.16. The water in
the raiser is heated by the burners. The steam generated in the raiser, which
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Figure 5.16 Schematic diagram of a drum boiler with level control.

is lighter than the water, rises toward the drum. This causes a circulation
around the loop consisting of the raisers, the drum, and the down comers. The
steam is separated from the water in the drum. The steam flow to the turbine
is controlled by the steam valve.

It is important to keep the water level in the drum constant. Too low a water
level gives insufficient cooling of the raisers, and there is a risk of burning. With
too high a water level, water may move into the turbines, which may cause
damage. There is a control system for keeping the level constant. The control
problem is difficult because of the so-called shrink and swell effect. It can be
explained as follows. Assume that the system is in equilibrium with a constant
drum level. If the steam flow is increased by opening the turbine valve, the
pressure in the drum will drop. The decreased pressure causes generation of
extra bubbles in the drum and in the raisers. As a result, the drum level
will initially increase. Since more steam is taken out of the drum, the drum
level will of course finally decrease. This phenomenon, which is called the
shrink and swell effect, causes severe difficulties in the control of the drum
level. Mathematically, it also gives rise to right-half plane zero in the transfer
function.

The problem can be solved by introducing the control strategy shown in
Figure 5.16. It consists of a combination of feedback and feedforward. There is
a feedback from the drum level to the controller, but there is also a feedforward
from the difference between steam flow and feed-water flow so that the feed-
water flow is quickly matched to the steam flow.

5.7 Summary

Design of feedforward has been discussed in this chapter. Feedforward can be
used to reduce the effect of measurable disturbances. Design of feedforward is
essentially a matter of finding inverse process models. Different techniques to
do this have been discussed. The major part of the chapter has been devoted
to set-point response. A structure with two degrees of freedom has been used.
This gives a clean separation of regulation and set-point response and of feed-
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back and feedforward. It has been assumed that the feedback controller has
been designed. A simple way to modify the set-point response is to use set-point
weighting. If the desired results cannot be obtained by zero set-point weight-
ing a full-fledged two-degree-of-freedom can be used. This makes is possible
to make a complete separation between load disturbance response and set-
point response. The crucial design issue is to decide the achievable response
speed. For systems with monotone set-point responses the notion of neutral
feedforward has been proposed. Many other variants have also been discussed.
Finally, it has been demonstrated that very fast set-point responses can be
obtained by using nonlinear methods.

Special care must be taken when implementing feedforward control, oth-
erwise integrator windup may occur. Implementation of feedforward control is
discussed in Section 13.4.

5.8 Notes and References

Feedforward is a useful complement to feedback. It was used in electronic
amplifiers even before the feedback amplifier emerged as discussed in [Black,
1977]. Use of feedforward in process control was pioneered in [Shinskey, 1963].
The effectiveness of feedforward to improve set-point response using a system
structure with two degrees of freedom (2DOF) was introduced in [Horowitz,
1963]. Set-point weighting, which is a simple form of 2DOF, has been used to
a limited extent in early PID controllers where the weights have been 0 or 1.
The use of continuously adjustable weights appeared in the 1980s. Use of feed-
forward to reduce the effect of measured disturbances is cumbersome to apply
in the process control systems built on separate components but very easy in
modern distributed control system; see [Bialkowski, 1995] and [ABB, 2002].
Applications of feedforward are gaining in popularity. Methods for assessment
of potential improvements by using feedforward are also emerging; see [Peters-
son et al., 2001; Petersson et al., 2002; Petersson et al., 2003].
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