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Controller Design

4.1 Introduction

Control system design is a very rich field. There have been substantial advances
over the past 50 years that have resulted in much insight and understanding as
well as specific design methods. This development has been augmented by the
advances in computing and the development of computer-based design tools.
Broadly speaking, PID controllers have been designed using two different ap-
proaches; model-based control and direct tuning. The model based approaches
start with a simple mathematical model of the process. Very simple models
have been used, typically a first-order system with a time delay. In direct tun-
ing a controller is applied to the process, and some simple experiments are
performed to arrive at the controller parameters. Because of the simplicity of
models and the controller special methods have been developed for PID control.
From 1990 there has been a significant increase in the interest in design of
PID controllers, partially motivated by the needs of automatic tuning devices
for such controllers.

To develop design methods it is necessary to realize that there is a very wide
range of different types of control problems even if the controller is restricted
to PID. Some typical examples are:

• Design of a simple controller for a non-critical application.

• Design of a controller for a special process that minimizes fluctuations in
important control variables.

• Development of a design technique that can be used in a universal auto-
tuner for PID control.

There are also a number of important non-technical issues that should be
considered: What is the time and effort required to apply the method? What
is the knowledge level required of the user? A solution to the design problem
should also give an understanding of when it is beneficial to add derivative
action to a PI controller and when even more complex controllers should be
considered.

This chapter gives an overview of ideas and concepts that are relevant for
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PID control. It is attempted to bring design of PID controllers more into the
mainstream of control design.

4.2 A Rich Variety of Control Problems

Before discussing specific tuning methods it is useful to realize that there is
a wide range of control problems with very diverse goals. Some examples are:
steady-state regulation, set-point tracking and path following, and control of
buffers and surge tanks.

The goal of steady-state regulation is to keep process variables close to
desired values. The key problems are caused by load disturbances, measure-
ment noise, and process variations. Steady-state regulation is very common in
process control.

In set-point tracking it is attempted to make process variables follow a
given time function or a given curve. These problems typically occur in mo-
tion control and robotics. In some cases, for example, machine tool control or
robotics, the demand on tracking precision is very severe. In other cases, for
example, moving robots, the requirements are less demanding. There is a sig-
nificant difference between tracking a given time curve and path following,
which typically involves control of several variables.

Buffers are common in the industrial production. They are used to smooth
variations between different production processes, both in process control and
in discrete manufacturing. In process control they are often called surge tanks.
Buffers are also common in computing systems. They are used in servers to
smooth variations in demand of clients, and they are used in computer net-
works to smooth variations in the load. Buffers are also key elements in supply
chains where effective buffer control has a major impact on profitability. The
buffer levels should fluctuate; otherwise the buffer does not function. Ideally,
no control should be applied unless there is a risk of over- or underflow. An
integrating controller with low gain and a scheduling that gives higher gains
at the buffer limits are commonly used.

The key issues in many of the control problems are attenuation of load dis-
turbances, injection of measurement noise, robustness to process variations,
and set-point following. The relative importance of these factors and the re-
quirements vary from application to application, but all factors must be con-
sidered.

4.3 Feedback Fundamentals

A block diagram of a basic feedback loop with a controller having two degrees
of freedom is shown in Figure 4.1. The process is represented by the block
P. The controller is represented by the feedback block C and the feedforward
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Figure 4.1 Block diagram of a basic feedback loop having two degrees of freedom.

part F. For an ideal PID controller with set-point weighting we have

C(s) = K
(

1 + 1
sTi

+ sTd

)

F(s) = b + 1
sTi

+ csTd

1 + 1
sTi

+ sTd

.

(4.1)

Compare with (3.7) and (3.20). The signal u is the control signal, and the signal
x is the real process variable. Information about x is obtained from the sensor
signal y, which is corrupted by measurement noise n. The signal d represents
load disturbances that drive the system away from its desired state. This signal
can enter the process in different ways; in Figure 4.1 it is assumed that it acts
on the process input.

The goal of control design is to determine the transfer functions C and
F so that the process variable x is close to the set point ysp in spite of load
disturbances, measurement noise, and process uncertainties. The feedback can
reduce the effect of load disturbances. Because of the feedback measurement
noise is fed back into the system. It is essential to make sure that this does
not cause large variations in the process variable. Since the process model is
never accurate it is essential that the behavior of the closed-loop system is
insensitive to variations in the process. The feedforward transfer function F is
designed to give the desired response to set-point changes.

Fundamental Relations

The feedback loop is influenced by three external signals, the set point ysp,
the load disturbance d, and the measurement noise n. There are at least three
signals x, y, and u that are of great interest for control. This means that there
are nine relations between the input and the output signals. Since the system
is linear these relations can be expressed in terms of the transfer functions.
Let X , Y, U , D, N, and Ysp be the Laplace transforms of x, y, u, d, n, and
ysp, respectively. The following relations are obtained from the block diagram
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in Figure 4.1:

X = PCF

1 + PC
Ysp + P

1 + PC
D − PC

1 + PC
N

Y = PCF

1 + PC
Ysp + P

1 + PC
D + 1

1 + PC
N

U = CF

1 + PC
Ysp − PC

1 + PC
D − C

1 + PC
N .

(4.2)

There are several interesting conclusions we can draw from these equations.
First, we can observe that several transfer functions are the same and that all
relations are given by the following six transfer functions, called the Gang of

Six.
PCF

1 + PC

PC

1 + PC

P

1 + PC

CF

1 + PC

C

1 + PC

1
1 + PC

.

(4.3)

The transfer functions in the first column give the response of process variable
and control signal to the set point. The second column gives the same signals in
the case of pure error feedback when F = 1. The transfer function P/(1 + PC)
in the third column tells how the process variable reacts to load disturbances,
and the transfer function C/(1 + PC) gives the response of the control signal
to measurement noise.

Notice that only four transfer functions,

PC

1 + PC

P

1 + PC

C

1 + PC

1
1 + PC

,

(4.4)

are required to describe how the system reacts to load disturbance and the
measurement noise. These transfer functions are called the Gang of Four. They
also capture robustness, as will be discussed in Section 4.6. Two additional
transfer functions are required to describe how the system responds to set-
point changes.

The special case when F = 1 is called a system with (pure) error feedback.
In this case, all control actions are based on feedback from the error only. In
this case, the system is completely characterized by the Gang of Four (4.4).

We are often interested in the magnitude of the transfer functions given by
Equation 4.4. It is important to be aware that the transfer functions PC/(1 +
PC) and 1/(1 + PC) are dimension free, but the transfer functions P/(1 + PC)
and C/(1 + PC) are not. For practical purposes it is therefore important to
normalize the signals, for example, by scaling process inputs and outputs to
the interval 0 to 1 or −1 to 1.

A Practical Consequence

The fact that six relations are required to capture properties of the basic feed-
back loop is often neglected in literature, particularly in the papers on PID
control. To describe the system properly it is thus necessary to show the re-
sponse of all six transfer functions. The transfer functions can be represented
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Figure 4.2 Representation of the properties of a basic feedback system by responses to
a step in the reference, a step in the load disturbance, and measurement noise. The full
lines are for set-point weight b = 0 and the dashed line is for set-point weight b = 1.

in different ways, by their step responses or by their frequency responses. Most
papers on control only show the response of the process variable to set-point
changes. Such a curve gives only partial information about the behavior of the
system. To get a more complete representation of the system all six responses
should be given, for example, as shown in Figure 4.2. This figure shows the
responses in process variable and control signal to an experiment with a step
change in set point followed by a step in the load disturbance, and measure-
ment noise. The solid lines show the response when F = 1 and the dashed lines
show the response when feedforward is used. Figure 4.2 thus gives a complete
characterization of all six transfer functions in Equation 4.3.

Many Variations

The system shown in Figure 4.1 is a prototype problem. There are many vari-
ations of this problem. In Figure 4.1 the load disturbances act on the process
input. In practice the disturbances can appear in many other places in the sys-
tem. The measurement noise also acts at the process output. There may also
be dynamics in the sensor, and the measured signal is often filtered. All these
variations can be studied with minor modifications of the analysis based on
Figure 4.1. As an illustration we will investigate the effects of a sensor filter.
Figure 4.3 shows a block diagram of such a system. A typical example is a PID
controller with set-point weighting and a second-order measurement filter. The
transfer functions F(s) and C(s) in Figure 4.3 are given by (4.1) and the filter
transfer function Gf (s) is

Gf (s) = 1
1 + sTf + s2T2

f /2
. (4.5)

The relations between the input signals and output signals in Figure 4.3 are
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Figure 4.3 Block diagram of a basic feedback loop having two degrees of freedom and
filtering of the measurement.

given by

X = PCF

1 + PCGf

Ysp + P

1 + PCGf

D − PCGf

1 + PCGf

N

Y = PCF

1 + PCGf

Ysp + P

1 + PCGf

D + 1
1 + PCGf

N

U = CF

1 + PCGf

Ysp − PCGf

1 + PCGf

D − CGf

1 + PCGf

N .

(4.6)

Equation (4.6) is identical to (4.2) if the transfer function C(s) and F(s) are
replaced by

C̄(s) = C(s)Gf (s), F̄(s) = F(s)
Gf (s) , (4.7)

The modifications required to deal with filtering are thus minor, and it suffices
to develop the theory for the configuration in Figure 4.1.

Separation of Responses to Disturbances and Set Points

In early work on PID control it was a tradition to have two tuning rules, one
for good set-point response and another for efficient attenuation of load distur-
bances. This practice still continues. A strong advantage of a controller with
two degrees of freedom is that the responses to disturbances and set point can
be designed separately. This follows from (4.2), which shows that the response
to load disturbances and measurement noise is given by the C(s), or from (4.6)
by C̄(s) = C(s)Gf (s) when the measurement is filtered. A good design proce-
dure is thus to determine C(s) to account for robustness and disturbances. The
feedforward transfer function F(s) can then be chosen to give the desired set-
point response. In general, this requires that the feedforward transfer function
can be chosen freely. Simply choosing the set-point weights often give satisfac-
tory results. Notice that there are some situations where only the error signal
is available. The decoupling of the design problem then is not possible, and the
design of the feedback then has to consider a trade-off between disturbances,
robustness, and set-point response.
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Fundamental Limitations

In any design problem it is important to be aware of the fundamental limita-
tions. Typical sources of limitations are

• Process dynamics

• Nonlinearities

• Disturbances

• Process uncertainty

Process dynamics is often the limiting factor. Time delays and poles and zeros
in the right half plane are relevant factors. It is important to be aware of these
limitations. Time delays are the most common factor for PID control. It seems
intuitively reasonable that it is impossible to have tight control of a system
with a time delay. It can be shown that for a process with a time delay L

the achievable gain crossover frequency ω gc, which is defined in Section 4.4, is
limited by

ω gc L < 1. (4.8)
Since

e−sL 	 1 − sL/2
1 + sL/2

,

it also seems reasonable that right-half plane zeros also limit the achievable
performance. It can be shown that a right-half plane zero at s = b limits the
gain crossover frequency to

ω gc < 0.5b. (4.9)
A right-half plane pole s = a in the process limits the achievable gain crossover
frequency ω gc to

ω gc > 2a. (4.10)
Notice that time delays and right-half plane zeros give an upper bound to the
achievable gain crossover frequency while right-half plane poles give a lower
bound.

Nonlinearities, saturation, and rate saturation are very common; they im-
pose limitations on how much and how fast the process variables can change.
Saturations combined with unstable process dynamics are particularly serious
because they may lead to situations where it is not possible to recover stable
operating conditions. Such situations are fortunately not common in process
control.

Load disturbances and measurement noise limit how accurately a process
variable can be controlled. The limitations often interact. The allowable con-
troller gain is, for example, limited by a combination of measurement noise
and actuator saturation. The effect of load disturbances depends critically on
the achievable bandwidth.

Process models used for control are always approximations. Process dy-
namics may also change during operation. Insensitivity to model uncertainty
is one of the essential properties of feedback. There is, however, a limit to the
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Stable Unstable

Stable Unstable

Figure 4.4 Illustration of different system behaviors used to define stability.

uncertainty that can be dealt with. Feedback cannot be active in frequency
ranges where the uncertainty in the phase of the process is larger than ±90○.
To have reasonable control performance the uncertainty should be less than
about ±15○. If the process variations correlate well with some measured quan-
tity it is possible to compensate for the uncertainties by changing the controller
parameters. This technique, which is called gain scheduling, will be discussed
in Section 9.3.

4.4 Stability

Feedback has many useful properties. The main drawback is that feedback
may cause instability. It is therefore essential to have a good understanding of
stability and the mechanisms that cause instability.

Stability Concepts

The notion of stability is intuitively very simple. It tells how a system behaves
after a perturbation. Already in 1868 Maxwell classified the behavior as follows:

U1: The variable increases continuously

S1: The variable decreases continuously

U2: The variable increases in an oscillatory manner

S2: The variable decreases in an oscillatory manner

These behaviors are illustrated in Figure 4.4. Maxwell called the behaviors
labeled S stable and the ones labeled U unstable. He also found that for linear
time-invariant systems stability was related to properties of the roots of an
algebraic equation.
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Figure 4.5 Block diagram of a simple feedback system.

Consider a system with the transfer function

G(s) = b(s)
a(s) , (4.11)

where a(s) and b(s) are polynomials. Recall that the roots of the polynomial
a(s) are called the poles of the system. Since a pole si corresponds to a time
function esit the following relations are obtained between the behaviors and
the roots of an algebraic equation:

U1: Corresponds to real poles with positive real part

S1: Corresponds to real poles with negative real part

U2: Corresponds to complex poles with positive real part

S2: Corresponds to complex poles with negative real part

The system (4.11) is stable if it has no poles in the right half plane. The
equation

a(s) = 0 (4.12)
is called the characteristic equation. A system is stable if the characteristic
equation does not have any roots with positive real parts. It is common practice
to label poles on the imaginary axis as unstable.

Nyquist’s Stability Criterion

The algebraic definition of stability based on the roots of the characteristic
equation is useful, but it also has some drawbacks. Consider, for example, the
feedback system in Figure 4.5 where the transfer functions of the process and
the controller have been combined into one block with the transfer function
Gl = PC. The characteristic equation for this system is

1 + Gl(s) = 0. (4.13)

The transfer function, which is the product of the transfer functions of the pro-
cess and the controller, describes how signals propagate around the feedback
loop and is called the loop transfer function. It is not easy to see how the roots
of (4.13) are influenced by the transfer functions of the process and the con-
troller. This can, however, be done by using a totally different view of stability,
which was developed by Nyquist. He started by investigating the conditions
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for maintaining an oscillation in the system shown in Figure 4.5. Assume that
the feedback loop is broken as is indicated in the figure and that the signal
uA(t) = sinω 0t is injected at point A. After a transient the output at point B
is then given by

uB(t) = −�Gl(iω 0)� sin
(
ω 0t + arg Gl(iω )).

The signals uA(t) and uB(t) are identical if

Gl(iω 0) = −1, (4.14)

and an oscillation will be maintained if the loop is closed by joining points A
and B. Equation 4.14 thus gives the condition for oscillations in the system.
It follows from (4.13) and (4.14) that the condition for oscillation implies that
the characteristic equation of the system has a root s = iω 0. The frequencies
where the system can maintain an oscillation can be determined by solving
(4.14) for ω 0.

Nyquist developed a stability criterion based on the idea of how sinusoids
propagate around the feedback loop. Nyquist argues as follows. He first in-
vestigated frequencies where the signals uA and uB are in phase, i.e., when
arg Gl(iω 0) = π . Intuitively it seems reasonable that the system is stable if
�Gl(iω 0)� < 1 because the amplitude is then decreased when the signal tra-
verses the loop. The situation is actually a little more complicated because the
system may be stable even if �Gl(iω 0)� > 1. The precise result can be expressed
in terms of the Nyquist curve introduced in Section 2.3. Recall that the Nyquist
curve is a plot of (ReGl(iω ), ImGl(iω )) for 0 ≤ ω ≤ ∞. When the loop transfer
function does not have poles in the right half plane the condition for stability is
that the critical point −1 is to the left of the Nyquist curve when it is traversed
for increasing ω .

A nice property of the Nyquist’s criterion is that it indicates how a system
should be changed in order to move the Nyquist curve away from the critical
point. Figure 6.4 shows that derivative action, which introduces phase lead,
bends the curve away from the critical point. Integral action, which introduces
phase lag, bends the curve towards the critical point. The idea is to modify the
controller so that the curve is bent away from the critical point. This has led
to a whole class of design methods called loop shaping.

Stability Margins

In practice it is not enough to require that the system is stable. There must
also be some margins of stability. This means that the Nyquist curve should not
be too close to the critical point. This is illustrated in Figure 4.6, which shows
several stability margins. The gain margin gm tells how much controller gain
can be increased before reaching the stability limit. Let phase crossover fre-

quency ω 180 be the smallest frequency where the phase lag of the loop transfer
function Gl(s) is 180○ and the gain margin be defined as

gm = 1
�Gl(iω 180)� . (4.15)
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Figure 4.6 Nyquist plot of the loop transfer function Gl with gain margin gm, phase
margin ϕm and stability margin sm.

The point where the Nyquist curve intersects the unit circle is another in-
teresting point. This point can be characterized by the angle ϕm. This angle
called the phase margin is also a measure of how close the Nyquist curve is to
the critical point. The angle ϕm is the amount of phase lag required to reach
the stability limit. The gain crossover frequency ω gc is the lowest frequency
where the loop transfer function Gl(s) has unit magnitude. The phase margin
is formally defined as

ϕm = π + arg Gl(iω gc). (4.16)

Both gain and phase margin are classical measures of degrees of stability.
Both values must be specified in order to ensure that the Nyquist curve is far
from the critical point. They can be replaced by a single number, the shortest
distance from the Nyquist curve to the critical point −1, which is called the
stability margin sm.

Reasonable values of the margins are phase margin ϕm = 30○ − 60○, gain
margin gm = 2 − 5, stability margin sm = 0.5 − 0.8.

The gain and phase margins were originally conceived for the case when the
Nyquist curve only intersects the unit circle and the negative real axis once.
For more complicated systems there may be many intersections, and it is then
necessary to consider the intersections that are closest to the critical point. For
more complicated systems there is also another number that is highly relevant,
namely, the delay margin. The delay margin is defined as the smallest time
delay required to make the system unstable. For loop transfer functions that
decay quickly the delay margin is closely related to the phase margin, but for
systems where the amplitude ratio of the loop transfer function has several
peaks at high frequencies the delay margin is a much more relevant measure.
This is particularly relevant for the Smith predictor that will be discussed in
Chapter 8.
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Internal Stability

So far we have only discussed the simple feedback system in Figure 4.5. For
the more general system in Figure 4.1 which is characterized by six transfer
functions, it is necessary to require that all four transfer functions,

PC

1 + PC

P

1 + PC

C

1 + PC

1
1 + PC

,

(4.17)

are stable; compare with (4.3). This is called internal stability. Notice that
there may be cancellations of poles and zeros in the product PC.

Stability Regions

A primary requirement for a PID controller is that the parameters of the con-
troller are chosen in such a way that the closed-loop system is stable. A PID
controller of the form

C(s) = k + ki

s
+ kds (4.18)

has three parameters only, and the stability region can be represented by a vol-
ume in three dimensions. To describe this volume the process transfer function
is represented as

P(iω ) = r(ω )eiφ(ω ) = r(ω )(cos(ω ) + i sin(ω )),

and the condition for oscillation (4.14) then becomes

P(iω )C(iω ) = r(ω )(cos(ω ) + i sin(ω ))(k − i
ki

ω
+ ikdω

) = −1.

Separating the real and imaginary parts we find that the boundary of the
stability region can be represented parametrically as

k = −cosφ(ω )
r(ω )

ki = ω 2kd − ω sinφ(ω )
r(ω ) .

(4.19)

It is thus straightforward to determine the stability region for a constant value
of kd. Repeating the calculations for a set of kd-values gives the stability region
for the PID controller.

EXAMPLE 4.1—STABILITY REGION FOR P(s) = 1/(s + 1)4

Figure 4.7 shows the stability region for a process with the transfer function
P(s) = 1/(s + 1)4. The value kd = 0 corresponds to PI control. Integral gain
ki may be increased by adding derivative action. The integral gain has its
maximum ki = 36 at the boundary of the stability region for k = 8 and kd = 20.
The system is unstable for all values of k and ki if kd > 20.
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Figure 4.7 Stability region for the system P(s) = (1 + s)−4.

Some interesting conclusions can be drawn from Example 4.1. To have good
disturbance rejection it is desirable to have a large value of ki. This is shown
in Section 4.9. With PI control, the largest value of ki for a stable system is
ki = 1. Figure 4.7 shows that the value of ki can be increased substantially
by introducing derivative action. The highest value of ki that can be obtained
with a stable system is ki = 36. This will, however, be a very fragile controller
because the system can be made unstable by arbitrarily small changes in con-
troller gains. For large values of kd the curves have sharp corners at the point
of maximum integral gain. This property of derivative action is one reason
why tuning of controllers with derivative action is difficult. It will be discussed
further in Chapters 6 and 7.

Constant Proportional Gain

The region of parameters where the system is stable is a subset of R3. The
calculations performed give the two-dimensional intersections with constant
derivative gain. Additional insight can be obtained from another representa-
tion of the stability regions. To investigate the stability we will use the Nyquist
criterion and plot the locus of the loop transfer function Gl(s). With propor-
tional control we have Gl = kP. For a fixed value of the proportional gain k > 0
we determine the frequency ω n where the Nyquist curve of kP(iω ) intersects
the circle with the line segment (−1, 0) as a diameter; see Figure 4.8. We will
first consider the case when the intersection of the Nyquist curve and the circle
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Im Gl(iω )

Figure 4.8 Nyquist curve of the loop transfer function Gl(s) = kP(s).

occurs in the lower half plane as shown in Figure 4.8. The controller transfer
function is

C(iω ) = k + i
(

− ki

ω
+ kdω

)
= k − i

( ki

ω
− kdω

)
,

hence,

Gl(iω n) = P(iω n)C(iω n) = kP(iω n) − i
( ki

ω n

− kdω n

)
kP(iω n).

If proportional gain k is fixed the point kP(iω n) moves to Gl(iω n) when propor-
tional and integral gains are different from zero. To avoid reaching the critical
point it must be required that

( ki

ω n

− kdω n

)
�P(iω n)� < �1 + P(iω n)�.

The same analysis can be made when the intersection of the Nyquist curve
and the circle occurs in the upper half plane. Combining the inequalities we
find that the stability regions are given by the conditions

ki > 0

ki < ω 2
nkd + ω n

�1 + kP(iω n)�
�P(iω n)� , for Im P(iω n) < 0

ki > ω 2
nkd − ω n

�1 + kP(iω n)�
�P(iω n)� , for Im P(iω n) > 0

(4.20)

which should hold for for all ω n such that

∣∣∣kP(iω n) + 1
2

∣∣∣ = 1
2

. (4.21)
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We can thus conclude that for constant proportional gain the stability region
is represented by several convex polygons in the ki-kd plane. In general, there
may be several polygons, and each may have many surfaces. The number of
surfaces of the polygons is determined by the number of roots of the Equa-
tion 4.21. In many cases, the polygons are also very simple, as is illustrated
with the following example.

EXAMPLE 4.2—FOUR EQUAL POLES

To illustrate the results we consider a process with the transfer function

P(s) = 1
(s + 1)4 = 1

s4 + 6s2 + 1 + 4s(s2 + 1) .

In this case, Equation 4.21 becomes

ω 4 − 6ω 2 + 1 + k = 0.

This equation has only two positive solutions,

ω 2 = 3 ±
√

8 − k,

and it follows from (4.20) that the stability region is given by the inequalities

ki > 0

ki < (3 −
√

8 − k)kd + 4k − 56 + 20
√

8 − k

ki > (3 +
√

8 − k)kd + 4k − 56 − 20
√

8 − k.

(4.22)

The stability region is shown in Figure 4.7. The integral gain has its maximum
ki = 36 at the boundary of the stability region for k = 8 and kd = 20.

4.5 Closed-Loop Poles and Zeros

Many properties of a feedback system can be obtained from the closed-loop
poles and zeros. For PID control the behavior is often characterized by a few
dominant poles, typically those closest to the origin. Many properties of the
closed-loop system can be deduced from the poles and the zeros of complemen-
tary sensitivity function

T(s) = PC(s)
1 + PC(s) .

With error feedback, F = 1 in Figure 4.1, the closed-loop zeros are the same
as the zeros of loop transfer function Gl(s), and the closed-loop poles are the
roots of the equation

1 + Gl(s) = 0.

The pole-zero configurations of closed-loop systems may vary considerably.
Many simple feedback loops, however, will have a configuration of the type
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Figure 4.9 Pole-zero configuration of the transfer function from set point to output for
a simple feedback system.

shown in Figure 4.9, where the principal characteristics of the response are
given by a complex pair of poles, p1 and p2, called the dominant poles. The
response is also influenced by real poles and zeros p3 and z1 close to the origin.
The position of p3 and z1 may be reversed. There may also be more poles and
zeros far from the origin, which typically are of less influence. Poles and zeros
to the left of the dominant poles have little influence on the transient response
if they are sufficiently far away from the dominant poles. The influence of a
pole diminishes if there is a zero close to it.

Complex poles can be characterized in terms of their frequency ω 0, which is
the distance from the origin, and their relative damping ζ . A first approxima-
tion of the response is obtained from the equivalent second-order system. The
response is modified if there are poles and zeros close to the dominating poles.
Classical control was very much concerned with closed-loop systems having the
pole-zero configuration shown in Figure 4.9.

Even if many closed-loop systems have a pole-zero configuration similar
to the one shown in Figure 4.9, there are, however, exceptions. For instance,
systems with mechanical resonances, which may have poles and zeros close to
the imaginary axis, are generic examples of systems that do not fit the pole-zero
pattern of the figure. Another example is processes with a long dead time.

Design of PID controllers are typically based on low-order models, which
gives closed-loop systems with a small number of poles and zeros.

Dominant Poles from the Loop Transfer Function

A simple method for approximate determination of the dominant poles from
knowledge of the Nyquist curve of the loop transfer function will now be given.
Consider the loop transfer function Gl(s) as a mapping from the s-plane to the
Gl-plane. The map of the imaginary axis in the s-plane is the Nyquist curve
Gl(iω ), which is indicated in Figure 4.10. The closed-loop poles are the roots
of the characteristic equation

1 + Gl(s) = 0.

The map of a straight vertical line through the dominant closed-loop poles in
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Figure 4.10 Representation of the loop transfer function Gl(iω ) as a map of complex
planes.

the s-plane is thus a curve through the critical point Gl = −1 in the Gl-plane.
This curve is shown by a dashed line in Figure 4.10. Since the map is conform,
the straight line A′C′ is mapped on the curve AC, which intersects the Nyquist
curve orthogonally. The triangle ABC is also mapped conformally to A′B′C′. If
ABC can be approximated by a triangle, we have

Gl(iω 2) − Gl(iω 1)
iω 2 − iω 1

	 1 + Gl(iω 2)
σ

.

When ω 1 is close to ω 2 this becomes

σ = (1 + Gl(iω 2)) iω 2 − iω 1

Gl(iω 2) − Gl(iω 1) 	 1 + Gl(iω 2)
G′

l(iω 2) , (4.23)

where G′
l(s) = dGl(s)/ds. To determine the dominant poles we first determine

the point A on the Nyquist curve that is closest to the critical point −1. This
point is characterized by the frequency ω 2. Then determine the derivative of the
loop transfer function at ω 2. The dominant poles are then given by s = −σ ±iω 2,
where σ is given by Equation 4.23.

4.6 The Sensitivity Functions

Two of the transfer functions (4.3) are of particular interest, the sensitivity
function S and the complementary sensitivity function T . These functions are
defined by

S = 1
1 + PC

= 1
1 + Gl

, T = PC

1 + PC
= Gl

1 + Gl

. (4.24)

The sensitivity functions are uniquely given by the loop transfer function
Gl(s) = P(s)C(s) and have the property S + T = 1. The transfer functions
reflect many interesting properties of the closed-loop system, particularly ro-
bustness to process variations.
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Small Process Variations—The Sensitivity Function

We will start by investigating how sensitive the response to set-point changes
is to small process variations. It follows from (4.2) that the transfer function
from set point to process variable is

Gx ysp
= Gyysp

= PCF

1 + PC
.

Consider Gx ysp
as a function of the process transfer function P. Differentiating

with respect to P gives

dGx ysp

dP
= CF

1 + PC
− PC2 F

(1 + PC)2 = CF

(1 + PC)2 = 1
1 + PC

CF

1 + PC
.

Hence,
dGx ysp

Gx ysp

= 1
1 + PC

dP

P
= S

dP

P
. (4.25)

Notice that the quantity dG/G can be interpreted as the relative variation in
the transfer function G. Equation 4.25 thus implies that the relative error in
the closed-loop transfer function Gyysp

is equal to the product of the sensitiv-
ity function and the relative error in the process. For frequencies where the
sensitivity function is small it thus follows that the closed-loop system is very
insensitive to variations in the process. This is actually one of the key reasons
for using feedback. The formula (4.25) is one of the reasons why S is called the
sensitivity function. The sensitivity function also has other interesting proper-
ties.

Disturbance Attenuation

A very fundamental question is how much the fluctuations in the process vari-
able are influenced by feedback. Consider the situation shown in Figure 4.11
where the same load disturbance acts on a process P in open loop and on the
process P in a closed loop with the controller C. Let yol be the output of the
open-loop system and ycl the output of the closed-loop system. We have the
following relation between the Laplace transforms of the signals,

Ycl(s)
Yol(s) = 1

1 + P(s)C(s) = S(s). (4.26)

Disturbances with frequencies ω such that �S(iω )� < 1 are thus attenuated by
feedback, but disturbances such that �S(iω )� > 1 are amplified by the feedback.
A plot of the amplitude ratio of S thus immediately tells the effect of feedback.

Since the sensitivity only depends on the loop transfer function it can be
visualized graphically in the Nyquist plot of the loop transfer function. This is
illustrated in Figure 4.12. The complex number 1 + Gl(iω ) can be represented
as the vector from the point −1 to the point Gl(iω ) on the Nyquist curve. The
sensitivity is thus less than one for all points outside a circle with radius 1 and
center at −1. Disturbances of these frequencies are attenuated by the feedback.
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Figure 4.11 Block diagrams of open- and closed-loop systems subject to the same dis-
turbances.
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Figure 4.12 Nyquist curve of loop transfer function showing graphical interpretation
of maximum sensitivity. The sensitivity crossover frequency ω sc, and the frequency ω ms

where the sensitivity has its largest value are indicated in the figure. All points inside the
circle with center at the −1 have sensitivities greater than 1.

The lowest frequency where the sensitivity function has magnitude 1 is called
the sensitivity crossover frequency ω sc. The value

Ms = max
ω

�S(iω )� = max
ω

∣∣∣ 1
1 + P(iω )C(iω )

∣∣∣ = max
ω

∣∣∣ 1
1 + Gl(iω )

∣∣∣, (4.27)

which is called the maximum sensitivity, tells the worst-case amplification of
the disturbances.

The sensitivity cannot be made arbitrarily small. The following relation
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holds under reasonably general conditions for stable systems∫ ∞

0
log �S(iω )�dω = 0. (4.28)

This very important relation is called Bode’s integral. It says that if the sensi-
tivity is reduced for one frequency it increases at another frequency. Feedback
can thus redistribute the attenuation of disturbances for different frequencies,
but it cannot reduce the effect of disturbances for all frequencies.

In Section 2.6 it was mentioned that random fluctuations can be modeled
by a power spectral density. If the spectral density is φ(ω ) for a system without
control it becomes �S(iω )�2φ(ω ) for a system with control. The rations of the
variances under open and closed loop are thus

σ 2
cl

σ 2
ol

=
∫ ∞

−∞ �S(iω )�2φ(ω )dω∫ ∞
−∞ φ(ω )dω

. (4.29)

Stability Margins and Maximum Sensitivity

Notice that �1+ Gl(iω )� is the distance from a point on the Nyquist curve of the
loop transfer function to the point −1. See Figure 4.12. The shortest distance
from the Nyquist curve of the loop transfer function to the critical point −1 is
thus 1/Ms, which is equal to the stability margin sm. Compare Figures 4.12
and 4.6. The maximum sensitivity can thus also serve as a stability margin. A
requirement on Ms gives the following bounds for gain and phase margins

gm ≥ Ms

Ms − 1

ϕm ≥ 2 arcsin
( 1

2Ms

)
.

The requirement Ms = 2 implies that gm ≥ 2 and ϕm ≥ 29○ and Ms = 1.4
implies that gm ≥ 3.5 and ϕm ≥ 41○.

Nonlinearities in the Loop

The condition that the Nyquist curve of the loop transfer function is outside a
circle at the critical point with radius 1/Ms has strong implications. It follows
from Nyquist’s stability criterion that the system remains stable even if the
gain is increased by the factor Ms/(Ms − 1) or if it is decreased by the factor
Ms/(Ms + 1). More surprising is that the closed loop is stable even if a static
nonlinearity f is inserted in the loop, provided that

Ms

Ms + 1
< f (x)

x
< Ms

Ms − 1
. (4.30)

A small value of Ms thus ensures that the system will remain stable in spite
of nonlinear actuator characteristics. With Ms = 2 the function lies in a sector
limited by straight lines through the origin with slopes 2/3 and 2. With Ms =
1.4 the slopes are between 0.28 and 3.5.
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Figure 4.13 Nyquist curve of a nominal loop transfer function and its uncertainty caused
by process variations ∆P.

Large Variations

We will now investigate conditions for the system to remain stable under large
variations in the process transfer function. Assume that the process transfer
function changes from P to P + ∆P, where ∆P is a stable transfer function.
Consider a point A on the the Nyquist curve of the loop transfer function; see
Figure 4.13. This point then changes from A to B in the figure. The distance
from the critical point −1 to the point A is �1 + Gl�. This means that the
perturbed Nyquist curve will not reach the critical point −1 provided that

�C∆P� < �1 + Gl�,

which implies

�∆P� <
∣∣∣1 + Gl

C

∣∣∣. (4.31)

Notice that the condition is conservative because it follows from Figure 4.13
that much larger changes can be made in directions from the critical point. The
condition (4.31) must be valid for all points on the Nyquist curve, i.e, point-
wise for all frequencies. The condition (4.31) for stability can then be written
as ∣∣∣∆P(iω )

P(iω )
∣∣∣ < 1

�T(iω )� , (4.32)

where T is the complementary transfer function. The inequality (4.32) tells
that large relative perturbations are permitted as long as T is small. A simple
conservative estimate of the permissible relative error in the process transfer
function is 1/Mt where

Mt = max
ω

�T(iω )� = max
ω

∣∣∣ P(iω )C(iω )
1 + P(iω )C(iω )

∣∣∣ = max
ω

∣∣∣ Gl(iω )
1 + Gl(iω )

∣∣∣, (4.33)
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is the largest magnitude of �T �. Notice that Mt is also the largest gain of the
transfer function from set point to output for a system with error feedback.

Equation 4.32 can also be written as

�∆P(iω )� < �P(iω )�
�T(iω )� . (4.34)

It follows from this equation that the magnitude of the permissible error
�∆P(iω )� is small when �P(iω )� is less than �T(iω )�. High model precision is
thus required for frequencies where the gain of the closed-loop system is larger
than the gain of the open-loop system.

Graphical Interpretation of Constraint on Sensitivities

The requirements that the sensitivities are less than given values have nice
geometric interpretations in the Nyquist plot. Since the sensitivity is defined
by

S(iω ) = 1
1 + Gl(iω ) ,

it follows that the sensitivity has constant magnitude on circles with center
at the critical point −1. The condition that the largest sensitivity is less than
Ms is equivalent to the condition that the Nyquist curve of the loop transfer
function is outside a circle with center at −1 and radius 1/Ms.

There is a similar interpretation of the complementary sensitivity

T = Gl(iω )
1 + Gl(iω ) .

Introducing
Gl(iω ) = ReGl(iω ) + iImGl(iω ) = x + iy,

we find that the magnitude of T is given by

�T � =
√

x2 + y2√
(1 + x)2 + y2

.

The magnitude of the complementary sensitivity function is constant if

x2 + y2 = M2
t ((1 + x)2 + y2) = M2

t (1 + 2x + x2 + y2),

or

x2 M2
t − 1
M2

t

+ 2x + y2 M2
t − 1
M2

t

+ 1 = 0.

This condition can be written as

x2 + 2
M2

t

M2
t − 1

x + y2 + M2
t

M2
t − 1

=
(

x + M2
t

M2
t − 1

)2
+ y2 + M2

t

M2
t − 1

−
( M2

t

M2
t − 1

)2

=
(

x + M2
t

M2
t − 1

)2
+ y2 − M2

t

(M2
t − 1)2

= 0.
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Re Gl(iω )

Im Gl(iω )

Figure 4.14 Loci where the complementary sensitivity function has constant magnitude.
The solid lines show points where the magnitude of the sensitivity function is Mt = 1.1,
1.2, 1.4, 1.5, 2, and 5 and the inverses of these values. The dashed line corresponds to
Mt = 1.

This is a circle with center at x = −M2
t /(M2

t − 1) and y = 0, and with radius
r = Mt/(M2

t − 1). For Mt = 1 the circle degenerates to the straight line with
x = −0.5. The requirement that the complementary sensitivity function is
less than Mt thus implies that the Nyquist curve is outside the corresponding
circle. The loci of constant gain of the complementary sensitivity function Gl

are shown in Figure 4.14. Notice that the circles enclose the critical point −1.
Notice also that the closed-loop transfer function is insensitive to variations at
frequencies where the loop transfer function is far from the origin, particularly
if the Nyquist curve is close to the straight line ReGl(iω ) = −0.5. This implies
that controllers with the property

Ti 	 Tar

2K Kp

1 + 2K Kp

(4.35)

are very robust. Compare with Section 6.3.

Combined Sensitivities

The requirements that the maximum sensitivity is less than Ms and the com-
plementary sensitivity is less than Mt imply that the Nyquist curve should be
outside the corresponding circles. It is possible to find a slightly more conserva-
tive condition by determining a circle that encloses both circles as is illustrated
in Figure 4.15. The radii and the centers of the circles are given in Table 4.1.
In that table we have also given the circles that guarantee that both Mt and
Ms are smaller than specified values. A particular simple criteria is obtained
if it is required that Ms = Mt.
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Ms = Mt = 2 Ms = Mt = 1.4

Figure 4.15 Curves for constant sensitivity, constant complementary sensitivity, and
constant combined sensitivity.

Table 4.1 Center and radius of circles defining locus for constant sensitivity Ms, constant
complementary sensitivity Mt, constant mixed sensitivity, and equal sensitivities M =
Ms = Mt.

Contour Center Radius

Ms −1 1/Ms

Mt − M2
t

M2
t − 1

Mt

M2
t − 1

Ms, Mt − Ms(2Mt − 1) − Mt + 1
2Ms(Mt − 1)

Ms + Mt − 1
2Ms(Mt − 1)

M = Ms = Mt −2M2 − 2M + 1
2M(M − 1)

2M − 1
2M(M − 1)

4.7 Robustness to Process Variations

Robustness to process variations is a key issue in control systems design. Pro-
cess parameters can change for many reasons; they typically depend on oper-
ating conditions. Time delays and time constants often change with production
levels. Parameters can also change because of aging of equipment. One of the
key reasons for using feedback is that it is possible to obtain closed-loop sys-
tems that are insensitive to variations in the process.

The analysis of the sensitivity functions in Section 4.6 gives insight into the
effects of process variations. Equation 4.25 shows the effect of small process
variations on the closed-loop system. In particular it tells that a closed-loop
system is insensitive to small process variations for frequencies where the
sensitivity function is small.

The robustness inequality given by (4.32) tells that a closed-loop system
will remain stable when the process is perturbed from P(s) to P(s) + ∆P(s),
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P(iω )

Re P(iω )
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Figure 4.16 Shaded circle shows permissible values of P(iω ) + ∆P(iω ) given by the
inequality (4.32). The circle is drawn for Mt = 2.

where ∆P(iω ) is a stable transfer function, if the perturbations are bounded
by

�∆P(iω )�
�P(iω )� < 1

�T(iω )� .

This equation is one of the reasons why feedback systems work so well in
practice. The mathematical models used to design control system are often
strongly simplified. There may be model errors and the properties of a process
may change during operation.

Equation (4.32) implies that the closed-loop system will be stable for sub-
stantial variations in the process dynamics. The closed-loop system is stable
if, for all ω , the perturbed process transfer function P(iω ) + ∆P(iω ) lies in a
circle with center at P(iω ) and radius 1/�T(iω )�, see Figure 4.16. For a system
designed with Mt = 2 it is possible to change the process gain by factors in
the range 0.5 to 1.5 and the phase can be changed by 60○. For a system with
Mt = 1.414 the gain can be changed by factors in the range 0.3 to 1.7, and the
phase can be changed by 45○.

The Cancellation Problem

The sensitivities depend on the loop transfer function Gl = PC. Robustness
criteria based on sensitivities can give misleading results when there are fac-
tors in the process and controller transfer functions that cancel each other. We
will illustrate what happens with an example.

EXAMPLE 4.3—CANCELLATIONS

Consider a process with the transfer function

P(s) = 1
s2 + 2ζ as + a2 ,
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and a controller with the transfer function

C(s) = 50(s2 + 2ζ as + a2)
s(s2 + 10s + 50) .

This controller is a combination of a PID controller with a filter to provide
high-frequency roll-off and a notch filter to reduce the excitation of the low-
frequency oscillatory mode. The loop transfer function is

Gl(s) = 50
s(s2 + 10s + 50) .

Notice that the oscillatory modes vanish because the same factor appears both
in the controller and the process. The sensitivity functions are

S(s) = s(s + 5)2

s3 + 10s2 + 50s + 50

T(s) = 1
s3 + 10s2 + 50s + 50

.

With the numerical values a = 0.5 and ζ = 0.02 we get Ms = 1.2 and Mt = 1.
A casual application of the robustness inequality (4.32) may lead us to believe
that the closed-loop system is robust. However, if a controller is designed based
on the nominal value a = 0.5 and if the process parameter is changed by 5
percent to a = 0.4775 the system becomes unstable. The reason is that if we
interpret the parameter variation as an additive disturbance in the process
model the small perturbation in the process parameter a translates as a much
larger additive disturbance because it is associated with a resonant mode with
a very small relative damping.

The controller in the example is not a good design because it is bad practice to
cancel slow process poles.

Other Robustness Measures

There are other robustness results that permit more realistic process variations
than the stable additive perturbation used in the robustness inequality (4.32).
One result represents the process transfer function as

P(s) = N(s)
D(s)

where N(s) and D(s) are stable transfer functions. The results state that the
system is stable for variations ∆N and ∆D such that

max(�N(iω )�, �D(iω )�) = σ̄


1

1 + P(iω )C(iω )
P(iω )

1 + P(iω )C(iω )
C(iω )

1 + P(iω )C(iω )
P(iω )C(iω )

1 + P(iω )C(iω )


=

√
(1 + �P(iω )�2)(1 + �C(iω )�2)

�1 + P(iω )C(iω )� = Σ(ω ),

(4.36)
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Figure 4.17 The magnitudes of the sensitivity function �S(iω )� (dotted), the comple-
mentary sensitivity function �S(iω )� (dashed) and the largest singular value Σ(iω ) (solid)
for the system in Example 4.3.

where σ̄ is the largest singular value. The parameter

Mσ = maxω Σ(ω )

is a robustness measure. The robustness condition (4.32) requires that the
process perturbation ∆P(s) is a stable transfer function. Criteria based on Mσ

do not have this limitation because it permits more general perturbations of
the process, for example, changing a small stable pole, an integrator, or an
unstable pole. It also covers the situation when there are cancellations of poles
and zeros. To have good robustness the parameter Mσ should be less than 3 to
5. Notice that Mσ is larger than both Ms and Mt.

To illustrate the effectiveness of Mσ we apply it to Example 4.3. Figure 4.17
shows �S(iω )�, �T(iω )�, and Σ(ω ) for the nominal system in Example 4.3. We
have Mσ = 46; since this is much larger than 5 it follows that the closed-loop
system has very poor robustness.

Another way of investigating robustness is to explore variations in pro-
cess parameters required to make the closed-loop system unstable. Changes in
gain and time constants can be captured by replacing P(s) by κ P(α s). Process
variations that make the system unstable are given by

κ P(iαω )C(iω ) + 1 = 0.

Solving for α and κ for all ω gives the functions κ (ω ) and α (ω ). Peter Hansen
has suggested the following robustness index

Rph = min
ω

(log �κ (ω )� + log �α (ω )�). (4.37)

This measure is a generalization of gain margin and delay margin.
The largest singular value Mσ and the robustness measure Rph are more

complicated than Ms and Mt, and we will therefore mostly use Ms and Mt.
It should, however, be kept in mind that evaluating robustness requires some
care, particularly when there are cancellations and when the loop transfer
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function has high peaks above the gain crossover frequency. This is typically
the cases for motion control with systems having mechanical resonances and
for predictive controllers investigated in Chapter 8.

4.8 Quantifying the Requirements

Having understood the fundamental properties of the basic feedback loop we
will now quantify the requirements on a typical control system. To do this it is
necessary to have a clear understanding of the primary goal of control. Control
problems are very rich as was discussed in Section 4.2. In general, we have to
consider

• Load disturbance attenuation

• Measurement noise response

• Robustness to process uncertainties

• Set-point response

The emphasis on the different factors depends on the particular problem. Ro-
bustness is important for all applications. Set-point following is the major issue
in motion control, where it is desired that the system follows commanded tra-
jectories. In process control, the set point is normally kept constant most of the
time; changes are typically made only when production is altered. Rejection of
load disturbances is instead the key issue in process control. There are also
situations where the purpose of control is not to keep the process variables at
specified values. Level control in buffer tanks is a typical example. The reason
for using a buffer tank is to smooth flow variations. In such a case the tank
level should fluctuate within some limits. A good strategy is to take no control
actions as long as the tank level is within certain limits and only apply control
when the level is close to the limits. This is called averaging control or surge
tank control. There are special strategies developed for dealing with such
problems, techniques such as gain scheduling have also been applied. This is
discussed in Section 9.3.

The linear behavior of the system is completely determined by the Gang of

Six (4.3). Neglecting set-point response it is sufficient to consider the Gang of

Four (4.4). Specifications can be expressed in terms of these transfer functions.
A significant advantage with a structure having two degrees of freedom, or

set-point weighting, is that the problem of set-point response can be decoupled
from the response to load disturbances and measurement noise. The design
procedure can then be divided into two independent steps.

• First design the feedback controller C that reduces the effects of load
disturbances and the sensitivity to process variations without introducing
too much measurement noise into the system.

• Then design the feedforward F to give the desired response to set points.

We will now discuss how specifications can be expressed in terms properties of
the transfer functions (4.4).
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Response to Load Disturbances

An estimate of the effectiveness of a control system to reject disturbances is
given by (4.26), which compares the outputs of a closed- and an open-loop
system when the disturbances are the same. The analysis shows that distur-
bances with frequencies less than the sensitivity crossover frequency ω sc are
attenuated by feedback and that the largest amplification of disturbances is
the maximum sensitivity Ms.

We will now turn specifically to load disturbances which are disturbances
that drive the process variables away from their desired values. Attenuation of
load disturbances is a primary concern for process control. This is particularly
the case for regulation problems where the processes are running in steady
state with constant set point. Load disturbances are often dominated by low
frequencies. Step signals are therefore used as prototype disturbances. The
disturbances may enter the system in many different ways. If nothing else is
known, it is often assumed that the disturbances enter at the process input.
The response of the process variable is then given by the transfer function

Gxd = P

1 + PC
= PS = T

C
. (4.38)

Since load disturbances typically have low frequencies it is natural that the
criterion emphasizes the behavior of the transfer function at low frequencies.
Filtering of the measurement signal has only marginal effect on the attenua-
tion of load disturbances because the filter only attenuates high frequencies.
For a system with P(0) �= 0 and a controller with integral action control the
controller gain goes to infinity for small frequencies, and we have the following
approximation for small s;

Gxd = T

C
	 1

C
	 s

ki

. (4.39)

Since load disturbances typically have low frequencies this equation implies
that integral gain ki is a good measure of load disturbance rejection.

EXAMPLE 4.4—LOAD DISTURBANCE ATTENUATION

Consider a process with the transfer function P = (s + 1)−4 and a PI controller
with k = 0.5 and ki = 0.25. The system has Ms = 1.56 and ω ms = 0.494. Fig-
ure 4.18 shows the magnitude curve of the transfer function (4.38). The figure
shows clearly that feedback reduces the low-frequency gain significantly com-
pared with the open-loop system. The dashed-dotted line in the figure shows
the gain curve for the transfer function s/ki. The figure shows clearly that
this is a very good approximation of Gxd for low frequencies, approximately
up to ω ms. Integral gain ki is a good measure of load frequency disturbance
attenuation. For high frequencies the load disturbance rejection is given by
the process dynamics; feedback has no influence. The sensitivity crossover fre-
quency is ω sc = 0.25, which is close to ki.

Attenuation of load disturbances can also be characterized in the time do-
main by showing the time response due to a representative disturbance. This
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Figure 4.18 The gain of the transfer function Gxd from load disturbance to process
variable for PI control (k = 0.5, Ti = 2.0) of the process P = (s + 1)−4. The dashed dotted
curve shows the gain of s/ki, and the dashed curve shows gain of the process transfer
function P.

is illustrated in Figure 4.19, which shows the response of the process output
to a unit step disturbance at the process input. The output has its maximum
ymax = 0.66 for tmax = 5.62. Furthermore, tmaxω ms = 2.76, integrated error
I E = 4.00 and integrated absolute error I AE = 4.26.

The steady-state error caused by a unit step load disturbance for proportional
control is

ess = P(0)
1 + kP(0) , (4.40)

where k is the proportional gain of the controller. As indicated in Figure 4.19,
the steady-state error for proportional control can be used as an approximation
of the largest error for PID control. For the system in Example 4.4 we have
P(0) = 1 and k = 0.5 and (4.40) gives the estimate emax 	 ess = 1/1.5 = 0.67
which is close to the correct value 0.66.

Response to Measurement Noise

An inevitable consequence of using feedback is that measurement noise is fed
back into the system. Measurement noise, which typically has high frequencies,
generates undesirable control actions and variations in the process variable.
Rapid variations in the control variable are detrimental because they cause
wear in valves and motors and they even saturate the actuator. It is important
to keep these variations at a reasonable level. A typical requirement is that
the variations are only a fraction of the span of the control signal. The varia-
tions can be influenced by filtering and by proper design of the high-frequency
properties of the controller.

The effects of measurement noise are thus captured by the transfer function
from measurement noise to the control signal

Gun = C

1 + PC
= CS = T

P
. (4.41)

For low frequencies (small s) the transfer function approaches 1/P(0) and for
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Figure 4.19 Response to a load disturbance in the form of a unit step with a PI controller
having parameters k = 0.5 and ki = 0.25 and the process P = (s + 1)−4. The dashed curve
shows the response to a proportional controller with gain k = 0.5.

high frequencies (large s) we have approximately

Gun 	 C.

For an ideal PID controller the transfer function Gun becomes infinite for large
s which clearly indicates the necessity to filter the derivative, as discussed in
Section 3.3. We illustrate with an example.

EXAMPLE 4.5—EFFECT OF FILTERING

Figure 4.20 shows the gain curve of the transfer function (4.41) for PID control
of the process P = (s+1)−4. The dashed line is for a controller with a first-order
filter of the derivative and the full line for a controller with a second-order filter
of the measured signal. The significant differences in the transfer functions for
high frequencies is a good motivation for preferring the controller with filtering
of the measurement signal. For low frequencies (small s) the transfer function
approaches 1/P(0).
A simple measure of the effect of measurement noise is the largest gain of the
transfer function Gun,

Mun = max
ω

�Gun(iω )�. (4.42)
For PI control the gain of the transfer function Gun has a peak close to the
peak of the sensitivity function and we have approximately

Mun 	 Ms K . (4.43)
For PID control the gain of the transfer function Gun typically has two local
maxima, one is close to the maximum of the sensitivity function. The other
peak is larger

Mun 	 kd/Td, (4.44)
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Figure 4.20 The magnitude of the transfer function Gun = CS for PID control (k = 1,
Ti = 2, Td = 1, Tf = 0.2) of the process P = (s + 1)−4. The solid line represents a
controller with a second-order noise filter of the measured signal (3.16) and the dashed
line a controller with a first-order filter of the derivative (3.15).

and it occurs close to the frequency 1/Tf .
If the standard deviation of the measurement noise is σ n, a crude estimate

of the variations in the control signal is Munσ n. More accurate assessment can
be made if the power spectrum φn of the measurement noise is known. The
standard deviation of the control signal is then given by

σ 2
u =

∫ ∞

−∞
�Gun(iω )�2φn(ω )dω . (4.45)

However, it is rare that such detailed information is rarely available for typical
applications.

Robustness to Process Variations

The inverse of the maximum sensitivity is the shortest distance from the crit-
ical point −1 to the Nyquist curve of the loop transfer function.

The sensitivity to small variations in process dynamics is captured by the
sensitivity function. We have

dT

T
= S

dP

P
.

Variations in process dynamics thus have small influence on the closed-loop
system for frequencies where the sensitivity function is small.

Variations in process dynamics may also lead to instability. The condition

�∆P(iω )�
�P(iω )� < 1

�T(iω )�

guarantees that a variation ∆P(iω ) in the process transfer function does not
make the system unstable. Robustness to process variations is thus captured
by the sensitivity and the complementary sensitivity functions. Simple mea-
sures are the maximum sensitivity Ms, the maximum of the complementary
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sensitivity Mt, or the largest combined sensitivity M . Typical values of the
sensitivities are in the range of 1.2 − 2.0.

Other measures are the gain margin gm (typically 2 to 8), the phase margin
ϕm (typically 30○ to 60○), or the stability margin sm = 1/Ms (typically 0.5 to
0.8). Compare with Section 4.4.

Trade-offs

Load disturbance attenuation is captured by integral gain ki. It follows from
(4.39) that attenuation of low-frequency disturbances is approximately in-
versely proportional to ki. Injection of measurement noise is captured by the
noise gain Mun. It follows from (4.42) that Mun gives the gain from measure-
ment noise to control variable. The trade-off between load disturbance atten-
uation and injection of measurement noise can thus be achieved by balancing
ki and Mun.

Set-Point Response

By using a controller with two degrees of freedom it is possible to obtain any
desired response to set-point changes. This will be discussed further in Chap-
ter 5. The limitations are given by the permissible magnitude of the control
signal. In some cases only the control error is measured. A controller with
two degrees of freedom then cannot be used and the response to set points
has to be handled by proper choosing of the controller transfer function. Large
overshoots can be avoided by requiring low values of Mt.

Summary

Summarizing we find that the behavior of the system can be characterized
in the following way. The transfer function from load disturbance to process
variable is

Gyd = P

1 + PC
= PS 	 s

ki

, (4.46)

where the approximation holds for low frequencies.
The effect of measurement noise can be captured by the noise gain

Mun = max
ω

�Gun(iω )� 	
{

kMs for PI control

kd/Tf for the PID controller (3.16),
(4.47)

which strongly depends on the filtering of measurement noise.
Stability and robustness to process uncertainties can be expressed by the

sensitivity function and the complementary sensitivity function

S = 1
1 + PC

, T = PC

1 + PC
,

where the largest values of the sensitivity functions Ms and Mt are good quanti-
tative measures. The parameter 1/Ms is the shortest distance from the critical
point to the Nyquist curve of the loop transfer function.

Essential features of load disturbance attenuation, measurement noise in-
jection, and robustness can thus be captured by four parameters ki, Mun, Mt,
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and Ms. An attractive feature of this choice of parameters is that ki and Mun

are directly related to the controller parameters and that there are good design
methods that can guarantee given Ms and Mt.

4.9 Classical Specifications

The specifications we have given have the advantage that they capture robust-
ness as well as the responses to load disturbances, measurement noise, and
set points with only four parameters. Unfortunately, it has been the tradition
in PID to judge a system based on one response only, typically the response
of the output to a step change in the set point. This can be highly misleading
as we have discussed previously. A large number of different parameters have
also been used to characterize the responses. For completeness and to connect
with classical literature on PID control some of the classical specifications will
be summarized in this section.

Criteria Based on Time Responses

Many criteria are related to time responses, for example, the step response to
set-point changes or the step response to load disturbances. It is common to
use some feature of the error typically extrema, asymptotes, areas, etc.

The maximum error emax is defined as

emax = max
0≤t<∞

�e(t)�

Tmax = arg max �e(t)�.
(4.48)

The time Tmax where the maximum occurs is a measure of the response time
of the system. The integrated absolute error (IAE) is defined as

I AE =
∫ ∞

0
�e(t)�dt. (4.49)

A related error is integrated error (IE), defined as

I E =
∫ ∞

0
e(t)dt. (4.50)

The criteria IE and IAE are the same if the error does not change sign. Notice
that IE can be very small even if the error is not. For IE to be relevant it
is necessary to add conditions that ensure that the error is not too oscillatory.
The criterion IE is a natural choice for control of quality variables for a process
where the product is sent to a mixing tank. The criterion may be strongly
misleading, however, in other situations. It will be zero for an oscillatory system
with no damping. It will also be zero for a control loop with two integrators.

There are many other criteria, for example, the time multiplied absolute
error, defined by

IT N AE =
∫ ∞

0
tn�e(t)�dt. (4.51)
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The integrated squared error (ISE) is defined as

ISE =
∫ ∞

0
e(t)2dt. (4.52)

There are other criteria that take account of both input and output signals, for
example, the quadratic criterion

QE =
∫ ∞

0
(e2(t) + ρu2(t))dt, (4.53)

where ρ is a weighting factor. The criteria IE and QE can easily be computed
analytically, simulations are, however, required to determine IAE.

One reason for using IE is that its value is directly related to the parameter
ki of the PID controller, as is illustrated by the following example.

EXAMPLE 4.6—INTEGRAL GAIN AND IE FOR LOAD DISTURBANCES

Consider the control law

u(t) = ke(t) + ki

∫ t

0
e(t)dt − kd

dy

dt
.

Assume that this controller gives a stable closed-loop system. Furthermore,
assume that the error is zero initially and that a unit step load disturbance
is applied at the process input. Since the closed-loop system is stable and has
integral action the control error will go to zero. We thus find

u(∞) − u(0) = ki

∫ ∞

0
e(t)dt.

Since the disturbance is applied at the process input, the change in control
signal is equal to the change of the disturbance. Hence, u(∞) − u(0) = 1 and
we get

I E =
∫ ∞

0
e(t)dt = 1

ki

= Ti

K
. (4.54)

Integral gain ki is thus inversely proportional to the integrated error caused
by a unit step load disturbance applied to the process input.

Set-Point Response

Specifications on set-point following are typically expressed in the time domain.
They may include requirements on rise time, settling time, decay ratio, over-
shoot, and steady-state offset for step changes in set point. These quantities
are defined as follows, see Figure 4.21.

• The rise time Tr is defined either as the inverse of the largest slope of the
step response or the time it takes for the step response to change from
10 percent to 90 percent of its steady-state value.
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Figure 4.21 Specifications on set-point following based on the time response to a unit
step in the set point. The upper curve shows the response of the output, and the lower
curve shows the corresponding control signal.

• The settling time Ts is the time it takes before the step response remains
within p percent of its steady-state value. The values p = 1, 2, and 5
percent of the steady-state value are commonly used.

• The decay ratio d is the ratio between two consecutive maxima of the
error for a step change in set point or load; see Figure 2.35. The value
d = 1/4, which is called quarter amplitude damping, has been used tra-
ditionally. This value is, however, normally too high, as will be shown
later.

• The overshoot o is the ratio between the difference between the first
peak and the steady-state value of the step response. It is often given
in percent. In industrial control applications it is common to specify a
maximum overshoot of 8 to 10 percent. In many situations it is desirable,
however, to have an over-damped response with no overshoot.

• The steady-state error ess = ysp − y0 is the steady-state control error e.
This is always zero for a controller with integral action.

Actuators may have rate limitations, which means that step changes in the
control signal will not appear instantaneously. In motion control systems it
is often more relevant to consider responses to ramp signals instead of step
signals.
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Tmax

emax

Figure 4.22 The error due to a unit step load disturbance at the process input and some
features used to characterize attenuation of load disturbances. The dashed curve show the
open-loop error.

Response to Load Disturbances

The response to load disturbances is of primary importance in process control.
Figure 4.22 shows the output for a step disturbance in a load applied at the
process input and some features that are used to characterize the response. The
figure shows the maximum error emax, the time it takes to reach the maximum
Tmax, and the settling time Ts. In addition to these numbers the integrated
error (IE) or the integrated absolute error (IAE) are also commonly used to
characterize the load disturbance response. The maximum error for a unit step
and the time where this is reached can be approximated by

emax = 1
1 + kP(0)

Tmax 	 3
ω ms

.

(4.55)

We illustrate these estimates by an example.

EXAMPLE 4.7—ESTIMATING THE MAXIMUM ERROR

When a process with the transfer function P(s) = (s + 1)−4 is controlled by a
PI controller having parameters k = 0.78 and ki = 0.38, we have ω ms = 0.559,
emax = 0.59, and Tmax = 5.15. The estimates above give emax 	 0.56, Tmax = 5.6.

Criteria Based on Frequency Responses

Specifications can also be related to frequency responses. Since specifications
were originally focused on set-point response it was natural to consider the
transfer function from set point to output. A typical gain curve for this response
is shown in Figure 4.23. It is natural to require that the steady-state gain is
one. Typical specifications are then as follows:

• The resonance peak Mp is the largest value of the frequency response.
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Figure 4.23 Gain curve for transfer function from set point to output.

• The peak frequency ω p is the frequency where the maximum occurs.

• The bandwidth ω b is the frequency where the gain has decreased to 1/√
2.

For a system with error feedback the transfer function from set point to output
is equal to the complementary transfer function, and we have Mp = Mt.

Specifications can also be related to the loop transfer function. Useful fea-
tures that have been discussed previously are

• Gain crossover frequency ω gc.

• Gain margin gm.

• Phase margin ϕm.

• Maximum sensitivity Ms.

• Frequency where the sensitivity function has its maximum ω ms.

• Sensitivity crossover frequency ω sc.

• Maximum complementary sensitivity Mt.

• Frequency where the complementary sensitivity function has its maxi-
mum ω mt.

Relations between Time and Frequency Domain Specifications

There are approximate relations between specifications in the time and fre-
quency domain. Let G(s) be the transfer function from set point to output.
In the time domain the response speed can be characterized by the rise time
Tr, the average residence time Tar, or the settling time Ts. In the frequency
domain the response time can be characterized by the closed-loop bandwidth
ω b, the gain crossover frequency ω gc, and the sensitivity frequency ω ms. The
product of bandwidth and rise time is approximately constant, and we have

Trω b 	 2. (4.56)
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It has previously been shown that

Tar = − G′(0)
G(0) ;

see (2.16).
The overshoot of the step response o is related to the peak Mp of the fre-

quency response in the sense that a larger peak normally implies a larger
overshoot. Unfortunately, there are no simple relations because the overshoot
also depends on how quickly the frequency response decays. For Mp < 1.2 the
overshoot o in the step response is often close to Mp−1. For larger values of Mp

the overshoot is typically less than Mp − 1. These relations do not hold for all
systems; there are systems with Mp = 1 that have a positive overshoot. These
systems have transfer functions that decay rapidly around the bandwidth.

To avoid overshoots in systems with error feedback it is therefore advis-
able to require that the maximum of the complementary sensitivity function
is small, say, Mt = 1.1 − 1.2 in order to avoid too large overshoot in the step
response to command signals.

Performance Assessment

Before designing a controller it is useful to make a preliminary assessment
of achievable performance. It is interesting to know if a PID controller is suf-
ficient or if the performance can be increased substantially by using a more
complex controller. It is also interesting to know if a PI controller is sufficient
or if derivative action gives significant improvements. To make the assess-
ment we need some measure of performance. In this section we will use the
gain crossover frequency ω gc as a yardstick. When the phase margin is 60○

this frequency is equal to the sensitivity crossover frequency ω sc. Recall from
Section 4.6 that disturbances with frequencies lower than ω sc are reduced by
feedback. For phase margins lower than 60○ we have ω sc < ω gc, and for larger
phase margins we have ω sc > ω gc. Attenuation of load disturbances is thus
improved with increasing gain crossover frequencies.

Process dynamics with non-minimum phase properties like a time delay
imposes fundamental limitations on the achievable performance which can be
expressed by the inequality

ω gc L < a, (4.57)
where a is a number less than 1. Since the true time delay L is rarely known
it can be approximated by the apparent time delay La. Figure 4.24 shows
the product ω gc La for a large batch of systems under robust PID control. The
circles which represents FOTD systems show that the product is 0.5 for FOTD
systems. For high order systems with lag dominated dynamics the product
ω gc Las is larger than 0.5 because the apparent time delay of the approximating
FOTD model is larger than the true time delay of the system.

Consider a closed-loop system with a process having transfer function P(s)
and a controller with transfer function C(s). The gain crossover frequency is
defined by

arg P(iω gc) + arg C(iω gc) = −π + ϕm. (4.58)
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Figure 4.24 The product of gain crossover frequency ω gc and apparent time delay La

as a function of normalized dead time, for a large set of systems under PID control.
The circles show results for FOTD systems and the squares for SOTD systems. The PID
controllers are designed to give a combined sensitivity M = 1.4. All systems are described
in Section 7.2. The dashed line gives the relation ω gc La = 0.5.

Notice that the units radians is used in this equation. A PD controller has
a maximum phase lead of about 60○ (π /3 rad), a proportional controller has
zero phase lag, a PI controller has a phase lag of about 45○ (π /4 rad), and a
PID controller can have a phase lead of about 45○. If a phase margin of 45○ is
desired it follows from Equation 4.58 that crossover frequencies for PI, PID,
and PD control are the frequencies where the process has phase-lags of 90○,
135○, and 195○, respectively. These frequencies are denoted as ω 90, ω 135, and
ω 195. An estimate of the controller gains required can be obtained by computing
the process gains at the corresponding frequencies. Notice that this assessment
only requires the process transfer function. We illustrate by two examples.

EXAMPLE 4.8—MULTI-LAG PROCESS

Consider a process with the transfer function

P(s) = 1
(s + 1)4 .

We have ω 90 = 0.41 and K90 = 0.73, where K90 denotes the process gain at ω 90.
Furthermore, we have ω 135 = 0.67, K135 = 0.48, and ω 195 = 1.14, K195 = 0.19.
We can thus expect that disturbances with frequencies lower than 0.4 rad/s
can be reduced by PI control. Since ω 135 is moderately larger than ω 90 we can
expect that a PI controller can be improved somewhat by introducing derivative
action. The gain of a PID controller can be expected to be about twice as large
as for PI control. Also notice that the apparent time delay is L = 2.14 and that
ω gc = 0.47 which is in good agreement with (4.24).

EXAMPLE 4.9—A LAG-DOMINATED PROCESS

Consider a process with the transfer function

P(s) = 1
(s + 1)(0.1s + 1)(0.01s + 1)(0.001s + 1) .
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Table 4.2 Parameters of PI controllers for the process P(s) = (s + 1)−3 designed with
different Ms.

Ms k ki Mun b ω ms I AE Ts Mt

1.2 0.355 0.171 0.426 1.00 0.671 1.00

1.4 0.633 0.325 0.866 1.00 0.74 3.07 10.3 1.00

1.6 0.862 0.461 1.379 0.93 0.79 2.28 7.87 1.05

1.8 1.056 0.580 1.901 0.70 0.83 2.00 6.77 1.24

2.0 1.222 0.685 2.444 0.50 0.86 1.89 6.27 1.45

We have ω 90 = 3.0, K90 = 0.3, ω 135 = 9.9, K135 = 0.07, and ω 195 = 47.5, K195 =
0.004. We can thus expect that disturbances with frequencies lower than 3
rad/s can be reduced by PI control. With a PID controller disturbances with
frequencies up to 9.9 rad/s can be reduced. In this case, there are significant
performance benefits from using derivative action. Since ω 195 is much larger
than ω 135 there may be substantial benefits by using more complex controllers.
Since the process gain K135 is so low the improved benefits require controllers
with high gain, and the benefits may be not be realizable unless sensor noise
if very low.

Design Parameters

In control system design and implementation it is convenient to have a param-
eter that can be changed to influence the key trade-offs in a design problem.
Performance expressed by fast response time and good attenuation of load dis-
turbances can be obtained, but large control signals may be required. Stricter
requirements on robustness may lead to poorer performance.

The trade-off between performance and robustness varies between differ-
ent control problems. Therefore, it is desirable to have a design parameter to
change the properties of the closed-loop system. Ideally, the parameter should
be directly related to the performance or the robustness of the system; it should
not be process oriented. There should be good default values so a user is not
forced to select some value. This is of special importance when the design pro-
cedure is used for automatic tuning. The design parameter should also have a
good physical interpretation and natural limits to simplify its adjustment.

The behavior of a system can often be characterized by a few dominant poles
that are close to the origin. When there is one real dominant pole this pole can
be used as a design parameter. This is used, for example, in the design method
Lambda Tuning, which will be discussed in Section 6.5. When the dominant
poles are complex the distance from the origin of the poles ω 0 and their relative
damping ζ are good design parameters. This applies to controllers based on
pole placement design, which will be discussed in Section 6.4. The maximum
sensitivity Ms or the combined sensitivity M are good design variables for
regulation problems. This is illustrated in Figure 4.25, which shows the effect
of Ms on time and frequency responses for a PI controller, and in Table 4.2,
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Figure 4.25 Illustrates the effects of using Ms as a design parameter. The left curves
show the Nyquist plots of the loop transfer functions together with the circles of constant
Ms=1.2 (dotted), 1.4, 2.0 (dashed). The curves on the right show process outputs and
control signals for the different values of the design parameters.

which gives numerical values of controller parameters and various criteria.
The step response for Ms = 1.2 has no overshoot and relatively long settling
time. The settling time decreases and the overshoot increases as the value of
Ms is increased. Notice that set-point weighting is used for larger values of Ms

to reduce the overshoot. The performance also increases with increasing Ms.
The values of IAE decrease with about a factor of 2. Apart from use in design
it is also possible to implement systems where the user can adjust the design
parameters on line.

4.10 Summary

In this section we have summarized some important issues for the design
of control systems, with particular emphasis for PID control. A discussion of
the basic feedback loop showed that it is necessary to consider six transfer
functions (the Gang of Six) to determine the properties of a feedback loop. This
is severely neglected in most elementary texts in control and in the literature
of PID controllers. The notion of stability was then discussed. This is important
because the risk for instability is the main disadvantage of feedback. Stability
criteria and stability margins were also introduced. The stability criteria also
made it possible to obtain the parameter regions which give a stable closed-
loop system under PID control. Characterization of a closed-loop system by its
poles and zeros give very valuable insight, and it is also closely related to many
design methods. The sensitivity function and the complementary sensitivity
functions, which are useful to express the robustness to parameter variations,
were also introduced. The problem of controller design was then discussed,
and a number of criteria used to give specifications on a control system were
also introduced. The key factors are load disturbances, measurement noise,
robustness, and set-point response. A nice result is that for systems having
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two degrees of freedom it is possible to design for disturbances and robustness.
The desired set-point response can then be obtained by using feedforward. For
PID control set-point weighting is a special form of controller with two degrees
of freedom that often is sufficient. It is also shown that the key requirements
can be parameterized in a simple way. Load disturbance response is captured
by integral gain of the controller ki. Effects of measurement noise are captured
by the noise gain Mun, which has a simple relation to controller parameters.
Robustness is captured by the maximum sensitivities Ms and Mt.

4.11 Notes and References

Control system design is complicated because many factors have to be con-
sidered and trade-offs have to be made. It is therefore natural that it took
time before a good understanding was developed. Early work on control de-
sign was based on the differential equations describing the closed-loop system.
A typical approach was to adjust the controller parameters so that the domi-
nant closed-loop poles had desired properties. Systematic methods for control
system design appeared in the 1940s when the field of control emerged. The
design methods were based on frequency response, computations were based
on graphics, and modeling was often done experimentally by perturbing the
system with sinusoidal signals; see [Bode, 1945; James et al., 1947; Brown and
Campbell, 1948; Chestnut and Mayer, 1959]. It is noteworthy that particular
emphasis was given to robustness to process variations. The insightful book
[Horowitz, 1963] gives a mature account. This book also emphasizes the impor-
tant concept of controllers that have two degrees of freedom. Such controllers
admit a decoupling of the responses to set points and load disturbances.

There was a paradigm shift in the 1960s when differential equations reap-
peared in the name of state-space systems; see [Zadeh and Desoer, 1963]. This
coincided with the appearance of digital computers, which permitted efficient
numerical computations. The important ideas of optimal control and Kalman
filtering are key contributions; see [Bellman, 1957; Kalman, 1960; Kalman
and Bucy, 1961; Kalman, 1961; Pontryagin et al., 1962; Athans and Falb,
1966; Bryson and Ho, 1969].

There was a very dynamic development of theory, many design methods and
efficient computational techniques were also developed; see [Boyd and Barratt,
1991].

The robustness issue was unfortunately neglected for a long period. This
was remedied with the emergence of the so called H∞ theory, which led to a
reconciliation with the classical frequency response methods. The books [Doyle
et al., 1992; Zhou et al., 1996; Skogestad and Postlethwaite, 1996] give a bal-
anced perspective. The robustness criteria Ms, Mt, and Mσ are results of robust
control theory. An interesting novel robustness criterion which focuses on vari-
ations in the process parameters has been suggested in [Hansen, 2000] and
[Hansen, 2003]. The question of fundamental limitations is closely related to
robustness as is discussed by [Åström, 2000]. For process control the true time
delay is a key limiting factor. Notice that the true time delay can be different
from the apparent time delay obtained when fitting FOTD models.

137



Chapter 4. Controller Design

Many practitioners of control have been fully aware of the importance of the
compromise between performance and robustness; see [Shinskey, 1990], and it
is now pleasing to see that robust control theory has made it possible to merge
theory and practice; see [Panagopoulos and Åström, 2000].

In the literature on PID control there has been a long discussion, whether
tuning should be based on response to set-point changes or load disturbances.
It is surprising that so many papers just show the response of process output
to a step change in the set point. Since steady-state regulation is the essen-
tial problem in process control, load-disturbance responses are more important
than responses to set points as has been emphasized many times by Shinskey;
see for example [Shinskey, 1996]. One of the useful conclusions of robust con-
trol theory is that six responses are required to get a complete understanding
of a closed loop system,

Another lesson from robust control theory is that high-frequency roll-off
improves robustness. This is a good reason to use effective filtering in PID
control.
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