
12

Control Paradigms

12.1 Introduction

Process control systems are normally complex with many control variables and
many measured signals. The bottom-up approach is one way to design such
systems. In this procedure the system is built up from simple components. The
systems can be implemented in many different ways. Originally, it was done by
interconnection of separate boxes built of pneumatic or electronic components.
Today, the systems are typically implemented in distributed control systems
consisting of several hierarchically connected computers. The software for the
distributed control system is typically constructed so that programming can be
done by selecting and interconnecting the components. The key component, the
PID controller, has already been discussed in detail. In this chapter, we present
some of the components required to build complex automation systems. We
also present some of the key paradigms that guide the construction of complex
systems.

A collection of paradigms for control is used to build complex systems from
simple components. The components are controllers of the PID type, linear fil-
ters, and static nonlinearities. Typical nonlinearities are amplitude and rate
limiters and signal selectors. Feedback is an important paradigm. Simple feed-
back loops are used to keep process variables constant or to make them change
in specified ways. Feedback has been discussed extensively in the previous
chapters. Another important paradigm is feedforward. This was discussed in
Chapter 5. The key problem is to determine the control variables that should
be chosen to control given process variables. Another problem is that there
may be interaction between different feedback loops. This was discussed in
Chapter 11.

Section 12.2 gives an overview of the problem to design complex systems,
and the two approaches top-down and bottom-up design are compared. This
section also gives an overview and presents the outline of the chapter. The
chapter ends with an example to illustrate how the different components and
paradigms can be used. The process considered is a chemical reactor, and the
design is given in Section 12.9. Some important observations made in the chap-
ter are finally summarized in Section 12.10.
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12.2 Bottom-Up and Top-Down Approaches

There are two general approaches for designing a complex system: bottom up
and top down. In the bottom-up or Lego approach the system is designed by
combining small subsystems. The top-down approach starts with a general
overall design that is refined successively. In practice the approaches are of-
ten combined. In both approaches we need knowledge about the elementary
building blocks or components of the system. The bottom-up approach requires
principles for combining basic components, and the top-down approach requires
principles for refining or decomposing a high-level objective so that it can be
accomplished by the basic system components. Several components and con-
trol principles for composition and decomposition have been described earlier
in the book. In this section we will give an overview of the approaches, and in
later sections we will describe components and paradigms that have not been
discussed previously.

The Bottom-Up Approach

Large control systems can be built from controllers, filters, and nonlinear ele-
ments. The components can either be separate pieces of hardware or function
blocks implemented in software that can be combined graphically using cut
and paste. Controllers and filters have been discussed in Chapters 3, 5, 9, and
11. The nonlinear elements will be discussed in Section 12.6.

Control principles like feedback, feedforward, and model following have
been discussed extensively in Chapters 3 and 5. Other important control prin-
ciples such as repetitive control, cascade control, mid-range control, split-range
control, ratio control, and selector control will be discussed in Sections 12.3,
12.4, 12.5, and 12.6.

An advantage with the bottom-up approach is that the system can be com-
missioned and tuned loop by loop. There may be difficulties when the loops are
interacting. The disadvantage is that it is not easy to judge if additional loops
will bring benefits. The system can also be unwieldy when loops are added.

Top-Down Solutions

Top-down paradigms often start with a problem formulation in terms of an
optimization problem. Paradigms that support a top-down approach are op-
timization, state feedback, observers, predictive control, and linearization. In
the top-down approach it is natural to deal with many inputs and many out-
puts simultaneously. Since this is not the main topic of this book we will only
give a brief discussion. The top-down approach often leads to the controller
structure shown in Figure 12.1. In this system all measured process variables
y together with the control variables u are sent to an observer, which uses
the sensor information and a mathematical model to generate a vector x̂ of
good estimates of internal process variables and important disturbances. The
estimated state x̂ is then compared with the ideal state xm produced by the
feedforward generator, and the difference is fed back to the process. The feed-
forward generator also gives a feedforward signal u f f , which is sent directly
to the process inputs. The controller shown in Figure 12.1 is useful for process
segments where there are several inputs and outputs that interact, but the
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Figure 12.1 Block diagram of a controller based on model following, state feedback, and
an observer.

system becomes very complicated when there is a large number of inputs and
outputs. In such a case it may be better to decompose the system into several
subsystems.

An advantage with the top-down approach is that the total behavior of
the system is taken into account. A systematic approach based on mathemat-
ical modeling and simulation makes it easy to understand the fundamental
limitations. Commissioning of the system is, however, difficult because many
feedback loops have to be closed simultaneously. When using the top-down ap-
proach it is therefore good practice to first tune loops based on simulation,
possibly also hardware in the loop simulation.

Soft Computing

Because of the widespread use of computers in control there has also been
an influence on control from computer science. Two particular paradigms that
originated from artificial intelligence are neural networks and fuzzy control,
which both emerged from research in artificial intelligence. These paradigms
are presented in Section 12.7 and Section 12.8. This branch of computer science
is also called soft computing.

12.3 Repetitive Control

Attenuation of disturbances has been an essential theme in this book. For PID
control we have focused on elimination of constant or slow disturbances. In this
section we will show that similar ideas can be used to eliminate other types
of disturbances, particularly periodic disturbances. Problems of this type are
common when there are cyclic operations.

In Section 4.3 it was shown that attenuation of disturbances is captured by
the transfer function from load disturbance to process output

G yd = P

1 + PC , (12.1)

where P is the process transfer function and C the controller transfer function,
respectively. By designing a controller that has high gain at a particular fre-
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Figure 12.2 Block diagram of a controller with positive feedback of a filtered signal.

quency disturbances with that frequency are effectively reduced. The control
error is zero in steady-state if the gain is infinite.

Consider the controller in Figure 12.2. Intuitively the system works as fol-
lows. The filter G f filters out the signal component that we would like to
eliminate, and the output of G f is fed back to the input with positive feedback.
The net effect is to create a high gain for the frequencies in the pass band of
the filter G f .

Constant and Sinusoidal Disturbances

To investigate the properties of the system analytically we observe that the
controller has the transfer function

C(s) = k

1 − G f (s) . (12.2)

When G f (s) is a low-pass filter with transfer function

G f (s) = 1
1 + sT ,

we find that

C(s) = k
(

1 + 1
sT

)
,

which is the transfer function of a PI controller. Notice that the controller
transfer function C(s) has infinite gain at zero frequency, which implies that
the steady-state error is zero for constant disturbances.

When G f (s) is the band-pass filter

G f (s) = 2ζ ω 0s

s2 + 2ζ ω 0s+ ω 2
0

,

we find that

C(s) = k 2ζ ω 0s

s2 + ω 2
0

.

Notice that this transfer function has infinite gain for s = iω 0, which implies
that the steady-state error is zero for a sinusoidal disturbance of frequency ω 0.
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Periodic Disturbances

Periodic disturbances can be reduced by choosing

G f (s) = e−sL,

where L is the period of the disturbance. With this filter we find

C(s) = k

1 − e−sL
. (12.3)

The relation between control error and control variable is

u(t) = ke(t) + u(t− L).

The control action at time t is thus a sum of the control error and the control
signal at time t− L.

The controller has infinite gain for s = 2nπ i/L, n = 0, 1, . . .. A controller of
this type is particularly useful when disturbances or set-point variations are
periodic.

The transfer function from load disturbance to output (12.1) is

G yd(s) = P(s)
1 + P(s)C(s) = P(s)(1 − e−sL)

1 − e−sL + kP(s) .

The relation between load disturbance and output is then

(1 − e−sL + kP(s))Y(s) = P(s)(1 − e−sL
)
D(s).

Notice that the time function corresponding to (1 − e−sL
)
D(s) is

d(t) − d(t− L),

which vanishes if D is a periodic disturbance with period L. The steady-state
error caused by a periodic disturbance is thus zero.

The effective disturbance rejection does, however, come at a price that is
illustrated with the following example.

EXAMPLE 12.1—AN EXTREME CASE

Consider a process with the transfer function

P(s) = e−sL,

with the controller

C(s) = 1
1 − e−sL

.

that attenuates periodic disturbances.
The loop transfer function

Gl(s) = e−sL

1 − e−sL
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is periodic with period 2π /L, and its gain is infinite for ω = 2nπ /L. The
frequency response is

Gl(iω ) = −1
2

− i sinω L

2(1 − cosω L) = −1
2

− i 1
tan(ω L/2) .

The Nyquist curve is a vertical line through the point Gl = −0.5 and a half
circle to the right. This curve is transversed once for 0 ≤ ω ≤ 2π /L and
infinitely many times when ω increases towards infinity.

The system has the gain margin 2 and the phase margin is 60○. The sensi-
tivity functions are

S(s) = 1 − e−sL

T(s) = e−sL,

and we find that Ms = 2 and Mt = 1.
A superficial look at traditional robustness measures like gain margin gm =

2, phase margin ϕm = 60○, and maximum sensitivities Ms = 2 and Mt = 1 may
indicate that the system is robust to process perturbations.

The fact that T(iω ) = 1 for all frequencies is, however, an indication that
the system has unusual properties. Further insight is obtained by analysing
the effect of parameter variations. The system has only one parameter, the time
delay L, and we will investigate the effects of variations in the time delay. To
use the robustness inequality (4.32) we will convert time delay variations to
an additive process perturbation. Assume that the time delay changes from L
to L + δ L, then

e−s(L+δ L) = e−sLe−sδ L = e−sL + e−sL(e−sδ L − 1).

A variation in the time delay can thus be represented by the additive pertur-
bation

∆P(s) = e−sL(e−sδ L − 1).

Hence �∆P(iω )� = �e−iωδ L − 1�.
Since �P(iω )� = 1, the robustness inequality (4.32) becomes

�∆P(iω )�
�P(iω )� = �e−iωδ L − 1� < 1

�T(iω )� = 1.

This inequality is not satisfied for any δ L > 0 because the left-hand side is 2
and the right hand side is 1, and we cannot guarantee stability for an arbitrary
small perturbation in the time delay.

The example shows that the effective attenuation of periodic disturbances
comes at the cost of the system being extremely sensitive to parameter varia-
tions. A compromise between disturbance attenuation can be made by replac-
ing G f (s) in Figure 12.2 by αG f (s) with α < 1. The controllers obtained for
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Figure 12.3 Gain curves of Bode plots for the controllers Cconst (top), Csine (middle), and
Cper (bottom). The parameter α is 0.99 in all cases, which means that the largest gains
of the controllers are 100. For the band-pass filter we have ζ = 0.1, and for the repetitive
controller we have T = 2π /ω 0.

constant, sinusoidal, and periodic signals then become

Cconst(s) = 1 + sT
1 − α + sT

Csine(s) = s2 + 2ζ ω 0s+ ω 2
0

s2 + 2(1 − α )ζ ω 0s+ ω 2
0

Cper(s) = 1
1 − α e−sT

.

The largest gains of the transfer functions are 1/(1 −α ) in all cases. Choosing
α < 1 diminishes disturbance attenuation but improves the robustness. The
properties of the controllers Cconst, Csine, and Cper are illustrated in Figure 12.3
which shows the gain curves of the Bode plots for the controllers. The controller
Cconst has high gain for low frequencies, the controller Csine has high gain for
ω = ω 0, and the controller Cper has high gain for the frequencies ω 0, 2ω 0, 3ω 0,
etc.
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Figure 12.4 Block diagram of a system with cascade control.

12.4 Cascade Control

Cascade control can be used when there are several measurement signals and
one control variable. It is particularly useful when there are significant dynam-
ics, e.g., long dead times or long time constants, between the control variable
and the process variable. Tighter control can then be achieved by using an in-
termediate measured signal that responds faster to the control signal. Cascade
control is built up by nesting the control loops, as shown in the block diagram
in Figure 12.4. The system in this figure has two loops. The inner loop is called
the secondary loop; the outer loop is called the primary loop. The reason for
this terminology is that the outer loop deals with the primary measured signal.
It is also possible to have a cascade control with more nested loops. The perfor-
mance of a system can be improved with a number of measured signals, up to
a certain limit. If all state variables are measured, it is often not worthwhile
to introduce other measured variables. In such a case the cascade control is
the same as state feedback. We will illustrate the benefits of cascade control
by an example.

EXAMPLE 12.2—IMPROVED LOAD DISTURBANCE REJECTION

Consider the system shown in Figure 12.4. Let the transfer functions be

P1 = 1
s+ 1

and

P2 = 1
(s+ 1)3 .

Assume that a load disturbance enters at the input of the process. There are
significant dynamics from the control variable to the primary output. The sec-
ondary output does respond much faster than the primary output. Thus, cas-
cade control can be expected to give improvements.

The dashed lines in Figure 12.5 show the response obtained with con-
ventional feedback using a PI controller with the parameters K = 0.37 and
Ti = 2.2. Since the response of the secondary measured variable to the control
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Figure 12.5 Responses to a load disturbance for a system with (solid line) and without
(dashed line) cascade control. The upper diagram shows process output y, and the lower
diagram shows control signal u.

signal is quite fast, it is possible to use high loop gains in the secondary loop.
If the controller in the inner loop is proportional with gain Ks, the dynamics
from the set point of Cs to process output becomes

G(s) = Ks

(s+ 1 + Ks)(s+ 1)3 .

With Ks = 5 in the inner loop and PI control with K = 0.55 and Ti = 1.9 in the
outer loop, the responses shown in solid lines Figure 12.5 are obtained. The
figure shows that the disturbance response is improved substantially by using
cascade control. Notice in particular that the control variable drops very much
faster with cascade control. The main reason for this is the fast inner feedback
loop, which detects the disturbance much faster than the outer loop.

The secondary controller is proportional, and the loop gain is 5. A large
part of the disturbance is eliminated by the inner loop. The remaining error
is eliminated at a slower rate through the action of the outer loop. In this
case integral action in the inner loop will always give an overshoot in the
disturbance response.

Choice of Secondary Measured Variables

It is important to be able to judge whether cascade control can give improve-
ment and to have a methodology for choosing the secondary measured variable.
This is easy to do if we just remember that the key idea of cascade control is to
arrange a tight feedback loop around a disturbance. In the ideal case the sec-
ondary loop can be so tight that the secondary loop is a perfect servo wherein
the secondary measured variable responds very quickly to the control signal.
The basic rules for selecting the secondary variable are:

• There should be a well-defined relation between the primary and sec-
ondary measured variables.
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Figure 12.6 Examples of different process and measurement configurations.

• Essential disturbances should act in the inner loop.

• The inner loop should be faster than the outer loop. The typical rule of
thumb is that the average residence times should have a ratio of at least
five.

• It should be possible to have a high gain in the inner loop.

A common situation is that the inner loop is a feedback around an actuator.
The reference variable in the inner loop can then represent a physical quantity,
like flow, pressure, torque, velocity, etc., while the control variable of the inner
loop could be valve pressure, control current, etc. This is also a typical example
where feedback is used to make a system behave in a simple predictive way.
It is also a very good way to linearize nonlinear characteristics.

A number of different control systems with one control variable and two
measured signals are shown in Figure 12.6. In the figure the control variable is
represented by u, the primary measured variable by y, the secondary measured
variable by ys, and the essential disturbance is v. With the rules given above
it is only case A that is suitable for cascade control.

Choice of Control Modes

When the secondary measured signal is chosen it remains to choose the ap-
propriate control modes for the primary and secondary controllers and to tune
their parameters. The choice is based on the dynamics of the process and the
nature of the disturbances. It is difficult to give general rules because the con-
ditions can vary significantly. In critical cases it is necessary to analyze and
simulate. It is, however, useful to have an intuitive feel for the problems.

Consider the system in Figure 12.4. To have a useful cascade control, it
is necessary that the process P2 be slower than P1 and that the essential
disturbances act on P1. We assume that these conditions are satisfied. The
secondary controller can often be chosen as a pure proportional controller or a
PD controller. In some cases integral action can be useful to improve rejection
of low-frequency disturbances. With controllers that lack integral action, there
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may be a static error in the secondary loop. This may not be a serious drawback.
The secondary loop, as a rule, is used to eliminate fast disturbances. Slow
disturbances can easily be eliminated by the primary loop, which will typically
have integral action. There are also drawbacks to using integral control in the
secondary loop. With such a system there will always be an overshoot in the
response of the primary control loop. Integral action is needed if the process
P2 contains essential time delays and the process P1 is such that the loop gain
in the secondary loop must be limited.

The special case when the process P2 is a pure integrator is quite common.
In this case integral action in the inner loop corresponds to proportional control
in the outer loop. If integral action is used in the inner loop, the proportional
action in the outer loop must be reduced. This is a significant disadvantage for
the performance of the system. A good remedy is to remove the integrator in
the inner loop and to increase the gain in the outer loop.

Tuning and Commissioning

Cascade controllers must be tuned in a correct sequence. The outer loop should
first be put in manual when the inner loop is tuned. The inner loop should then
be put in automatic when tuning the outer loop. The inner loop is often tuned
for critical or over-critical damping or equivalently for a small sensitivity (Ms).
If this is not done there is little margin for using feedback in the outer loop.

Commissioning of cascade loops also requires some considerations. The fol-
lowing procedure can be used, starting with both controllers in manual mode.

1. Adjust the set point of the secondary controller to the value of the sec-
ondary process variable.

2. Set the secondary controller in automatic with internal set point selected.

3. Adjust the primary controller so that its set point is equal to the process
variable and so that its control signal is equal to the set point of the
secondary controller.

4. Switch the secondary controller to external set point.

5. Switch the primary controller to automatic mode.

The steps given above are automated to different degrees in different con-
trollers. If the procedure is not done in the right way there will be switching
transients.

Integral Windup

If integral action is used in both the secondary and primary control loops, it
is necessary to have a scheme to avoid integral windup. The inner loop can be
handled in the ordinary way, but it is not a trivial task to avoid windup in the
outer loop. There are three situations that must be covered:

1. The control signal in the inner loop can saturate.

2. The secondary control loop may be switched to internal set point.

3. The secondary controller is switched from automatic to manual mode.
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The feedback loop, as viewed from the primary controller, is broken in all these
cases, and it is necessary to make sure that its integral mode is dealt with prop-
erly. This problem is solved automatically in a number of process controllers
that have cascade control capabilities, but if we build up the cascade control
using two independent controllers we have to solve the problem ourselves. This
requires being able to inject a tracking signal into the primary controller.

If the output signal of the secondary controller is limited, the process vari-
able of the secondary controller should be chosen as the tracking signal in the
primary controller. This also requires a digital transfer from the secondary to
the primary controller telling it when the tracking is to take place.

In the case where the secondary controller switches to work according to its
local set point instead of the external one from the primary controller, the local
set point should be sent back to the primary controller as a tracking signal. In
this way one can avoid both integrator windup and jumps in the transition to
cascade control.

When the secondary controller switches over to manual control, the process
variable from the secondary controller should be sent back to the primary
controller as a tracking signal.

Some Applications

Cascade control is a convenient way to use extra measurements to improve
control performance. The following examples illustrate some applications.

EXAMPLE 12.3—VALVE POSITIONERS

Control loops with pneumatic valves are a very common application. In this
case the inner loop is a feedback around the valve itself where the valve position
is measured. The inner loop reduces the influences of pressure variations and
various nonlinearities in the pneumatic system.

EXAMPLE 12.4—MOTOR CONTROL

Figure 12.7 is a block diagram of a typical motor control system. This sys-
tem has three cascaded loops. The innermost loop is a current loop where the
current is measured. The next loop is the velocity loop, which is based on mea-
surement of the velocity. The outer loop is a position loop. In this case integral
action in the velocity loop is equivalent to proportional action in the position
loop. Furthermore, it is clear that the derivative action in the position loop
is equivalent to proportional action in the velocity loop. From this it follows
directly that there is no reason to introduce integral action in the velocity con-
troller or derivative action in the position controller.

EXAMPLE 12.5—HEAT EXCHANGER

A schematic diagram of a heat exchanger is shown in Figure 12.8. The purpose
of the control system is to control the outlet temperature on the secondary
side by changing the valve on the primary side. The control system shown
uses cascade control. The secondary loop is a flow control system around the
valve. The control variable of the primary loop is the set point of the flow
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Figure 12.7 Block diagram of a system for position control. The system has three cas-
caded loops with a current controller (CC) with feedback from current (I), a velocity
controller (V C) with feedback from velocity (v), and a position controller (PC) with feed-
back from position (y).
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Figure 12.8 Schematic diagram of a heat exchanger with cascade control.

controller. The effect of nonlinearities in the valve, as well as flow and pressure
disturbances, is thus reduced by the secondary controller.

12.5 Mid-Range and Split-Range Control

Cascade control is a strategy where one control signal and two measurement
signals are used to meet the control objective. The dual situation is when two
control signals are used to control one measurement signal. The two control
signals are sometimes used one at a time. This is the case in split-range control.
In other situations it is necessary to use the two control signals simultaneously.
A common situation is mid-range control or mid-ranging. Mid-range and split-
range control are discussed in this section.

Mid-Range Control

The problem treated by mid-range control is illustrated in Figure 12.9. The
figure illustrates an example where two valves are used to control a flow. One
valve, v1, is small but has a high resolution. The other valve, v2, is large but
has a low resolution.

Suppose that the small valve v1 is in the middle of its operating range
and that only small disturbances are acting on the system. In this case, one
controller that manipulates valve v1 is able to take care of the control problem.
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Figure 12.9 Two valves are used to control the flow.
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Figure 12.10 Mid-range control

However, when larger disturbances occur, valve v1 will saturate. In this case,
the larger valve v2 must also be manipulated.

The mid-range control strategy is illustrated in Figure 12.10. Controller C1

takes the set point ysp and flow signal y as inputs and manipulates the small
valve v1. A second controller, C2, takes the control signal from C1 as input and
tries to control it to a set point usp in the middle of its operating range by
manipulating the large valve v2. If both controllers have integral action, the
flow will be at the set point ysp and the valve v1 will be at the set point usp in
steady state.

A block diagram of the mid-range control strategy is given in Figure 12.11.
Process P1 and controller C1 together form a fast feedback loop. The mid-
ranging controller C2 controls the valve position of controller C1 via the process
output y. This means that the output of controller C1 is controlled by driving the
process output y away from the set point. If this is done slowly, the deviation

C1

C2

P1

P2

ysp

usp

u1

u2

y
Σ

Figure 12.11 Block diagram of a system with mid-range control.
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Figure 12.12 Block diagram of a system with mid-range control.

from the set point can be kept small. If not, it is recommended to use the
structure given in Figure 12.12.

In Figure 12.12 a feedforward signal is added from control signal u2 to
controller C1. If the feedforward compensator is

Cf f (s) = −P2(s)
P1(s) ,

controller C2 will perform the mid-ranging control without any disturbance of
the process output y.

It is likely that the small valve will saturate. In spite of this, it is not
necessary that the controller C1 has anti-windup. Since the control signal is
controlled by the controller C2, controller C2 prevents controller C1 from wind-
ing up.

Split-Range Control

In split-range control, the control is shared by two controllers that perform
the control one at a time. Systems of this type are common, e.g., in connection
with heating and cooling. One physical device is used for heating and another
for cooling. The heating and cooling systems often have different static and
dynamic characteristics. The principle of split-range control is illustrated in
Figure 12.13, which shows the static relation between the measured variables
and the control variables. When the temperature is too low, it is necessary to
supply heat. The heater, therefore, has its maximum value when the measured
variable is zero. It then decreases linearly until mid-range, where no heating
is supplied. Similarly, there is no cooling when the measured variable is below
mid-range. Cooling, however, is applied when the process variable is above
mid-range, and it then increases.

There is a critical region when switching from heating to cooling. To avoid
both heating and cooling at the same time, there is often a small dead zone
where neither heating nor cooling is supplied. Switching between the different
control modes may cause difficulties and oscillations.
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Figure 12.13 Illustration of the concept of split-range control.

Split-range control is commonly used in systems for heating and ventilation.
It is also useful applications when the control variable ranges over a very large
range. The flow is then separated into parallel paths, each controlled with a
valve.

12.6 Nonlinear Elements

Nonlinear elements have been discussed before. In Section 3.5 we used a lim-
iter to avoid integral windup in a controller with integral action. In Chapter 9
it was shown that controllers could be tuned by relay feedback and that per-
formance could be improved by gain scheduling. In this section we describe
more nonlinear elements and also present some control paradigms that guide
the use of these elements.

Linearization

The nonlinearity in sensors and actuators can be compensated in a straight-
forward way. Consider, for example, an actuator that has the characteristics

v = f (u),

where v is the actual process input signal, and u is the control signal. To
compensate for the nonlinearity we simply compute the control signal uc as if
the actuator was linear with unit gain. The control law

u = f −1(uc),

where f −1 is the inverse of the actuator nonlinearity, then gives

v = f (u) = f ( f −1(uc)) = uc.

The actuated process signal is then identical to uc as was desired.
The same idea can be applied to sensors. Consider, for example, a sensor

that has the nonlinearity g(x). By designing a linear controller based on the
assumption that the sensor is linear with unit gain and feeding the signal

yc = g−1(y)
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Figure 12.14 Block diagram of a simple amplitude limiter (upper left), a rate limiter
(upper right), and a jump and rate limiter or a ramp unit (lower).

to the controller, the sensor nonlinearity is eliminated.
Similar ideas can be applied to process nonlinearities, but the compensation

is not ideal because of dynamics. There is a technique for compensating for
nonlinearities called feedback linearization, but this is outside the scope of
this book. There are also situations when the nonlinearities are beneficial.

Limiters

Since all physical values are limited, it is useful to have limiting devices in
control systems too. Limiters are used in many different ways. They can be
used to limit the command signals so that we are not generating set points
that are demanding larger or faster changes than a system can cope with.

A block diagram of a simple amplitude limiter is shown in upper left part
of Figure 12.14. The limiter can mathematically be described as the static
nonlinearity

y = sat(u,ul ,uh) =



ul if u ≤ ul

u if ul < u < uh

uh if u ≥ uh

.

where ul and uh are the saturation limits.
It is also useful to limit the rate of change of signals. This can be done with

the rate limiter or the ramp unit shown in the upper right part of Figure 12.14.
The output follows the input signal if the rate of change of the input is smaller
than the rate limit. In steady state the inputs and the outputs are identical
because there is integral action in the system. Since the output is generated
by an integrator with limited input signal, the rate of change of the output
will be limited to the bounds given by the limiter. It is possible to use different
limits for increasing or decreasing rates.
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Figure 12.15 Simulation of a rate limiter (upper), and a jump and rate limiter (lower).
The thin line shows the input to the limiter and the thick line shows the output of the
limiter

A more sophisticated limiter called a jump and rate limiter is shown in the
lower part of Figure 12.14. The output will follow the input for small changes
in the input signal. At large changes, the output will follow the input with a
limited rate. The jump and rate limiter can be described by

dx

dt
= sat(u− x, −a, a)
y = x + sat(u− x, −a, a),

If �u − x� ≤ a it follows from the equations describing the system that y = u,
and if u ≥ x+a it follows that dx/dt = a. Thus, the output signal will approach
the input signal at the rate a.

The properties of the different limiters are illustrated in the simulation
shown in Figure 12.15. The input signal consists of a few steps and a sinusoid.
The upper curve shows a rate limiter where the rate limit is 4. The figure shows
that the rate of change of the output is limited. The response to a sinusoidal
input shows clearly that the rate limiter gives a phase lag. The lower curve
shows the response of a jump and rate limiter. Notice that the output follows
rapid changes in the input as long as the difference between x and u are less
than the jump limit, which is 0.5. The rate is limited to 4.

Surge Tank Control

The control problems that were discussed in Chapter 4 were all regulation
problems where the task was to keep a process variable as close to a given
set point as possible. There are many other control problems that also are
important. Surge tank control is one example. The purpose of a surge tank
is to act as a buffer between different production processes. Flow from one
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(A)

(B)

Figure 12.16 Different structures for surge tank control. The material flow is from the
left to the right. The scheme in A is called control in the direction of the flow. The scheme
in B is called control in the direction opposite to the flow.

process is fed to another via the surge tank. Variations in production rate can
be accommodated by letting the level in the surge tank vary. Conventional level
control, which attempts to keep the level constant, is clearly not appropriate
in this case. To act as a buffer the level should indeed change. It is, however,
important that the tank neither become empty nor overflow.

There are many approaches to surge tank control. A common, simple solu-
tion is to use a proportional controller with a low gain. Controllers with dead
zones or nonlinear PI controllers are also used. Gain scheduling is a better
method. The scheduling variable is chosen as the tank level. A controller with
low gain is chosen when the level is between, e.g., 10 percent and 90 percent,
and a controller with high gain is used outside the limits. There are also special
schemes for surge tank control.

In many cases there are long sequences of surge tanks and production units,
as illustrated in Figure 12.16. Two different control structures, control in the
direction of the flow or opposite to the flow, are shown in the figure. Control
in the direction opposite to the flow is superior because then all control loops
are characterized by first-order dynamics. With control in the direction of the
flow, it is easy to get oscillations or instabilities because of the feedback from
the end of the chain to the beginning.

Ratio Control

Ratio control is applied when the control objective is to keep the ratio between
two variables, often flows, at a certain ratio a. In combustion, for example, it
is desired to control the fuel-to-air supply ratio, in order for the combustion to
be as efficient as possible. Blending of chemicals is another example where it
is desired to keep the ratio between different flows constant. In in-line blend-
ing systems, when there are no downstream mixing tanks, this is of special
importance. If the composition is not maintained, quality problems may occur.

Ratio control is normally solved in the way shown in Figure 12.6. There are
two control loops. The main loop consists of process P1 and controller C1. Output
y1 is the main flow, and the external set point r1 is the desired main flow. In
the second loop, consisting of process P2 and controller C2, it is attempted to
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Figure 12.17 Ratio control using a Ratio station (RS) applied to main flow y1.

control the flow y2 so that the ratio y2/y1 is equal to ratio a. In Figure 12.6
this is obtained using a Ratio station where set point r2 is determined by

r2(t) = ay1(t), (12.4)

i.e., simply by multiplying the main flow y1 with the desired ratio a.
In Equation 12.4, parameter a is assumed to be constant. This is not nec-

essary. The desired ratio a is often time-varying. In combustion, for example,
the ratio a is often adjusted based on O2 measurements in the exhaust.

Provided the controllers have integral action, the solution given in Fig-
ure 12.6 will work in steady state, i.e., y1 = r1 and y2 = ay1. However, the
simple Ratio station is not efficient during transients. The second flow y2 will
always be delayed compared to the desired flow ay1. The length of this delay
is determined by the dynamics of the second loop.

When set point r1 is increasing, the delay causes an under-supply of the
media corresponding to flow y2, and conversely when r1 is decreasing there
is an excess of the media corresponding to flow y2. There are cases when it
is important never to get any under-supply of one of the two media. In the
combustion case, one gets an under-supply of air during the transient part
when the external set point increases, but an excess of air when the set point
decreases. To prevent the fuel from not being fully burnt by an under-supply of
air, the solution in Figure 12.6 has to be complemented with some logic using
selectors. This is discussed in the next section.

The main drawback with the simple Ratio station approach shown in Fig-
ure 12.6 is that the secondary flow y2 is delayed compared to the desired flow
ay1. This problem can be solved if not only y1 is used to form the secondary set
point, but also the main set point r1. The structure, called the Blend station,
is shown in Figure 12.18.

In the Blend station, the secondary set point is determined as

r2(t) = a (γ r1(t) + (1 − γ )y1(y)) . (12.5)

Gain γ is a weighting factor that determines the relation between set point r1
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Figure 12.18 Ratio control using the Blend station (BS).

and main flow y1 when forming secondary set point r2. When γ = 0, the Blend
station is identical to the Ratio station.

EXAMPLE 12.6—PULP BLEACHING CONTROL

The Ratio station and the Blend station have been applied on a bleaching sec-
tion in a paper mill. The pulp is bleached by adding Hydrosulphite to the pulp
flow. The goal is to keep the ratio between the pulp flow and the Hydrosulphite
flow constant.

The upper diagram in Figure 12.19 shows control using the Ratio station.
The pulp flow controller, C1, is a PI controller with setting K1 = 0.2 and
Ti1 = 4s. The Hydrosulphite controller, C2, is also a PI controller with set-
ting K2 = 0.078 and Ti2 = 1.07s. The figure shows responses to two set-point
changes in the pulp flow. The Hydrosulphite flow is scaled with the desired
ratio and translated, so that the desired flow rates become identical. The fig-
ure shows that the Ratio station provides the correct ratio in steady state, but
also that there is a deviation between the two flows during the transients. The
Hydrosulphite flow is delayed compared to the pulp flow.

The lower diagram in Figure 12.19 shows the results obtained when using
the Blend station with gain factor γ = 0.75. Here, the difference between the
two flows is almost eliminated.

Selector Control

Selector control can be viewed as the inverse of split-range control. In split
range there is one measured signal and several actuators. In selector control
there are many measured signals and only one actuator. A selector is a static
device with many inputs and one output. There are two types of selectors:
maximum and minimum. For a maximum selector the output is the largest of
the input signals.

There are situations where several controlled process variables must be
taken into account. One variable is the primary controlled variable, but it is
also required that other process variables remain within given ranges. Selector

386



12.6 Nonlinear Elements

0 20 40 60 80 100 120 140 160 180

35

45

55

0 20 40 60 80 100 120 140 160 180

35

45

55

Figure 12.19 Ratio control of a pulp bleaching process using the original Ratio station
(upper) and the Blend station with gain γ = 0.75 (lower). The figure shows two changes
in the pulp set point, the pulp flow (fastest response) and the Hydrosulphite flow (slowest
response).
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Figure 12.20 Selector control.

control can be used to achieve this. The idea is to use several controllers and
to have a selector that chooses the controller that is most appropriate. One
example of use is where the primary controlled variable is temperature and we
must ensure that pressure does not exceed a certain range for safety reasons.

The principle of selector control is illustrated in Figure 12.20. The primary
controlled variable is the process output y. There is an auxiliary measured
variable z that should be kept within the limits zmin and zmax. The primary
controller C has process variable y, set point ysp, and output un. There are also
secondary controllers with measured process variables that are the auxiliary
variable z and with set points that are bounds of the variable z. The outputs
of these controllers are uh and ul. The controller C is an ordinary PI or PID
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controller that gives good control under normal circumstances. The output of
the minimum selector is the smallest of the input signals; the output of the
maximum selector is the largest of the inputs.

Under normal circumstances the auxiliary variable is larger than the min-
imum value zmin and smaller than the maximum value zmax. This means that
the output uh is large and the output ul is small. The maximum selector, there-
fore, selects un, and the minimum selector also selects un. The system acts as
if the maximum and minimum controller were not present. If the variable z
reaches its upper limit, the variable uh becomes small and is selected by the
minimum selector. This means that the control system now attempts to control
the variable z and drive it towards its limit. A similar situation occurs if the
variable z becomes smaller than zmin.

In a system with selectors, only one control loop at a time is in operation.
The controllers can be tuned in the same way as single-loop controllers. There
may be some difficulties with conditions when the controller switches. With
controllers having integral action, it is also necessary to track the integral
states of those controllers that are not in operation. Selector control is very
common in order to guarantee that variables remain within constraints. The
technique is commonly used in the power industry for control in boilers, power
systems, and nuclear reactors. The advantage is that it is built up of simple
nonlinear components and PI and PID controllers. An alternative to selector
control is to make a combination of ordinary controllers and logic. The following
example illustrates the use of selector control.

EXAMPLE 12.7—AIR-FUEL CONTROL

In the previous section we discussed air-fuel control using ratio control. When
the Ratio station is used, there may be lack of air because the set point of the
air controller increases first when the fuel controller has increased the oil flow.
One way to solve this problem is to use the Blend station. However, the system
cannot compensate for perturbations in the air channel. This problem can be
treated using selectors, such as is shown in Figure 12.21. The system uses one
minimum and one maximum selector. There is one PI controller for fuel flow
and one PI controller for the air flow. The set point for the air controller is the
larger of the command signal and the fuel flow. This means that the air flow
will increase as soon as more energy is demanded. Similarly, the set point to
the fuel flow is the smaller of the demand signal and the air flow. This means
that when demand is decreased, the set point to the dual flow controller will
immediately be decreased, but the set point to the air controller will remain
high until the oil flow has actually decreased. The system thus ensures that
there will always be an excess of air.

Median Selectors

A median selector is a device with many inputs and many outputs. Its output
selects the input that represents the current median of the input signals. A
special case is the two-out-of-three selector, commonly used for highly sensitive
systems. To achieve high reliability it is possible to use redundant sensors and
controllers. By inserting median selectors it is possible to have a system that
will continue to function even if several components fail.
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Figure 12.21 Air-fuel controller based on selectors.

12.7 Neural Network Control

In the previous section, we have seen that simple nonlinearities can be used
very effectively in control systems. In this and the following section, we will
discuss some techniques based on nonlinearities, where the key idea is to rep-
resent functions of several variables in a compact way. The ideas have been
introduced under the names of neural and fuzzy control. At first sight, these
methods may seem quite complicated, but once the colorful language is stripped
off we find that the algorithms have natural representations as implementa-
tions of nonlinear functions. It is a nontrivial problem to find good representa-
tions of a nonlinear function. If we simply try to grid the variables and use an
interpolation we find that the number of entries in the table for representing
the function grows very rapidly with the number of variables. For example, if n
variables are gridded in N points each we find that the number of entries are
Nn. For a function of five variables with N = 100 we find that 1010 entries are
required. Another useful property of neural networks is that there are methods
to fit the parameters of the function to data.

Neural Networks

Neural networks originated in attempts to make simple models for neural ac-
tivity in the brain and attempts to make devices that could recognize patterns
and carry out simple learning tasks. A brief description that captures the es-
sential idea follows.

A Simple Neuron A schematic diagram of a simple neuron is shown in
Figure 12.22. The system has many inputs and one output. If the output is y
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Figure 12.22 Schematic diagram of a simple neuron.
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Figure 12.23 Sigmoid functions.

and the inputs are u1, u2, ... , un the input-output relation is described by

y = f (w1u1 +w2u2 + ⋅ ⋅ ⋅ +wnun) = f
(

n∑
k=1

wiui

)
, (12.6)

where the numbers wi are called weights. The function f is a so-called sigmoid
function, illustrated in Figure 12.23. Such a function can be represented as

f (x) = sinhα x = e
α x − e−α x

eα x + e−α x
(12.7)

where α is a parameter. This model of a neuron is thus simply a nonlinear
function. Some special classes of functions can be approximated by (12.6).

Neural Networks More complicated models can be obtained by connecting
neurons together as shown in Figure 12.24. This system is called a neural
network or a neural net. The adjective feedforward is often added to indicate
that the neurons are connected in a feedforward manner. There are also other
types of neural networks. In the feedforward network, the input neurons are
connected to a layer of neurons, the outputs of the neurons in the first layer
are connected to the neurons in the second layer, and so on, until we have the
outputs. The intermediate layers in the net are called hidden layers.

Each neuron is described by Equation (12.6). The input-output relation of
a neural net is thus a nonlinear static function. Conversely, we can consider a
neural net as one way to construct a nonlinear function of several variables.
The neural network representation implies that a nonlinear function of several
variables is constructed from two components: a single nonlinear function, the
sigmoid function (12.7), which is a scalar function of one variable; and linear
operations. It is thus a simple way to construct a nonlinearity from simple op-
erations. A key reason why neural networks are interesting is that practically
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Figure 12.24 A feedforward neural network.

all continuous functions can be approximated by neural networks having one
hidden layer. It has been found practical to use more hidden layers because
then fewer weights can be used. Another practical feature of the sigmoidal
functions is that the approximations are local.

Learning Notice that there are many parameters (weights) in a neural
network. Assuming that there are n neurons in a layer, if all neurons are con-
nected, n2 parameters are then required to describe the connections between
two layers.

Another interesting property of a neural network is that there are so-called
learning procedures. This is an algorithm that makes it possible to find param-
eters (weights) so that the function matches given input-output values. The
parameters are typically obtained recursively by giving an input value to the
function and the desired output value. The weights are then adjusted so that
the data is matched. A new input-output pair is then given, and the parameters
are adjusted again. The procedure is repeated until a good fit has been obtained
for a reasonable data set. This procedure is called training a network. A pop-
ular method for training a feedforward network is called back propagation.
For this reason the feedforward net is sometimes called a back-propagation
network. Fitting a neural network to experimental data is illustrated in Fig-
ure 12.25. A nice feature is that it is possible to find both the function and its
inverse. The inverse function is useful when compensating for nonlinearities
in sensors and actuators.

Control Applications A feedforward neural network can be viewed as a
nonlinear function of several variables with a training procedure. The function
has many parameters (weights) that can be adjusted by the training procedure
so that the function will match given data. Even if this is an extremely simplis-
tic model of a real neuron, it is a useful system component. In process control
we can often make good use of nonlinear functions. Sensor calibration is one
case. There are many situations where an instrument has many different sen-
sors, the outputs of which must be combined nonlinearly to obtain the desired
measured value. Nonlinear functions can also be used for pattern recognition.

391



Chapter 12. Control Paradigms

Process

Neural Neural
network network

Input Input ee

++

−−

Desired Desired
response response

M

ΣΣ

Figure 12.25 Illustration of training of a simple feedforward network. The block diagram
on the left shows training of a function, and the figure on the right shows training of an
inverse function.
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Figure 12.26 Implementation of a nonlinear dynamical system using integrators and
neural networks.

It is also possible to model dynamic systems by combining the neural network
with integrators as is illustrated in Figure 12.26. The system in the figure
implements the nonlinear system

dx

dt
= f (x,u)
y = g(x,u),

where the nonlinear functions are represented by neural networks.

12.8 Fuzzy Control

Fuzzy control is an old control paradigm that has received a lot of attention
recently. In this section we will give a brief description of the key ideas. We
will start with fuzzy logic, which has inspired the development.

Fuzzy Logic

Ordinary Boolean logic deals with quantities that are either true or false. Fuzzy
logic is an attempt to develop a method for logic reasoning that is less sharp.
This is achieved by introducing linguistic variables and associating them with
membership functions, which take values between 0 and 1. In fuzzy control
the logical operations and, or, and not are operations on linguistic variables.
These operations can be expressed in terms of operations on the membership
functions of the linguistic variables. Consider two linguistic variables with the
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Figure 12.27 Illustration of fuzzy logic. The upper diagram shows the membership func-
tions of cold, moderate, and hot. The middle diagram shows the membership functions for
cold and moderate the lower diagram shows the membership functions for cold or moder-

ate.

membership functions fA(x) and fB(x). The logical operations are defined by
the following operations on the membership functions.

f
A and B = min( fA(x), fB(x))
fA or B = max( fA(x), fB(x))
fnot A = 1 − fA(x).

A linguistic variable, where the membership function is zero everywhere except
for one particular value, is called a crisp variable.

Assume, for example, that we want to reason about temperature. For this
purpose we introduce the linguistic variables cold, moderate, and hot, and we
associate them with the membership functions shown in Figure 12.27. The
membership function for the linguistic variables cold and moderate and cold
or moderate are also shown in the figure.

A Fuzzy Controller

A block diagram of a fuzzy PD controller is shown in Figure 12.28. The control
error, which is a continuous signal, is fed to a linear system that generates
the derivative of the error. The error and its derivative are converted to so-
called linguistic variables in a process called “fuzzification.” This procedure
converts continuous variables to a collection of linguistic variables. The num-
ber of linguistic variables is typically quite small, for example: negative large
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Figure 12.28 A fuzzy PD controller.

(NL), negative medium (NM), negative small (NS), zero (Z), positive small
(PS), positive medium (PM), and positive large (PL). The control strategy is
expressed in terms of a function that maps linguistic variables to linguistic
variables. This function is defined in terms of a set of rules expressed in fuzzy
logic. As an illustration we give the rules for a PD controller where the error
and its derivative are each characterized by three linguistic variables (N, Z, P)
and the control variable is characterized by five linguistic variables (NL, NM,
Z, PM, and PL).
Rule 1: If e is N and de/dt is P then u is Z

Rule 2: If e is N and de/dt is Z then u is NM

Rule 3: If e is N and de/dt is N then u is NL

Rule 4: If e is Z and de/dt is P then u is PM

Rule 5: If e is Z and de/dt is Z then u is Z

Rule 6: If e is Z and de/dt is N then u is NM

Rule 7: If e is P and de/dt is P then u is PL

Rule 8: If e is P and de/dt is Z then u is PM

Rule 9: If e is P and de/dt is N then u is Z}

These rules can also be expressed in table form; see Table 12.1. The mem-
bership functions representing the linguistic variables normally overlap (see
Figure 12.27). Due to this, several rules contribute to the control signal. The
linguistic variable representing the control signal is calculated as a weighted
sum of the linguistic variables of the control signal. The linguistic variable rep-
resenting the control signal is then mapped into a real number by an operation
called “defuzzification.” More details are given in the following.

Fuzzy Inference Many different shapes of membership functions can be
used. In fuzzy control it is common practice to use overlapping triangular
shapes like the ones shown in Figure 12.27 for both inputs and control vari-
ables. Typically only a few membership functions are used for the measured
variables.

Fuzzy logic is only used to a moderate extent in fuzzy control. A key issue is
to interpret logic expressions of the type that appears in the description of the
fuzzy controller. Some special methods are used in fuzzy control. To describe
these we assume that fA, fB , and fC are the membership functions associated
with the linguistic variables A, B, and C. Furthermore let x and y represent
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Table 12.1 Representation of the fuzzy PD controller as a table.

de

dt
P Z N

N Z NM NL

e Z PM Z NM

P PL PM Z

measurements. If the values x0 and y0 are measured, they are considered as
crisp values. The fuzzy statement

If x is A and y is B

is then interpreted as the crisp variable

z0 = min( fA(x0), fB(y0))

where and is equivalent to minimization of the membership functions. The
linguistic variable u defined by

If x is A or y is B then u is C

is interpreted as a linguistic variable with the membership function

fu(x) = z0 fC(x).

If there are several rules, as in the description of the PD controller, each rule is
evaluated individually. The results obtained for each rule are combined using
the or operator. This corresponds to taking the maximum of the membership
functions obtained for each individual rule.

Figure 12.29 is a graphical illustration for the case of the first two rules of
the PD controller. The figure shows how the linguistic variable corresponding
to each rule is constructed and how the control signal is obtained by taking
the maximum of the membership functions obtained from all rules.

The inference procedure described is called “product-max.” This refers to
the operations on the membership functions. Other inference procedures are
also used in fuzzy control. The and operation is sometimes represented by
taking the product of two membership functions and the or operator by taking
a saturated sum. Combinations of the schemes are also used. In this way it is
possible to obtain “product-max” and “min-sum” inferences.

Defuzzification Fuzzy inference results in a control variable expressed as a
linguistic variable and defined by its membership function. To apply a control
signal we must have a real variable. Thus, the linguistic variable defining
the control signal must be converted to a real number through the operation
of “defuzzification.” This can be done in several different ways. Consider a
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Figure 12.29 Illustration of fuzzy inference with two rules using the min-max rule.

linguistic variable A with the membership function fA(x). Defuzzification by
mean values gives the value

x0 =
∫
x fA(x)dx∫
fA(x)dx .

Defuzzification by the centroid gives a real variable x0 that satisfies

∫ x0

−∞
fA(x)dx =

∫ ∞

x0

fA(x)dx.

Nonlinear Control

Having gone through the details, we return to the fuzzy PD controller in Fig-
ure 12.28. We first notice that the operations fuzzification, fuzzy logic, and
defuzzification can be described in a very simple way. Stripping away the vo-
cabulary and considering the final result, a fuzzy controller is nothing but a
nonlinear controller. The system in Figure 12.28 can in fact be expressed as

u = F
(
e,
de

dt

)
,

where F is a nonlinear function of two variables. Thus, the fuzzy PD con-
troller is a controller where the output is a nonlinear function of the error e
and its derivative de/dt. In Figure 12.30 we give a graphic illustration of the
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Figure 12.30 Graphic illustration of the nonlinearity of the fuzzy controller showing
control signal u as function of control error e and its derivative.

Figure 12.31 Two views of a fuzzy controller. The figure on the left shows that the
fuzzy controller can be viewed as a nonlinear controller. The figure on the right instead
emphasizes the rules.

nonlinearity defined by given rules for the PD controller with standard trian-
gular membership functions and product fuzzification. The figure shows that
the function is close to linear. In this particular case the fuzzy controller will
behave similarly to an ordinary linear PD controller.

Fuzzy control may be considered as a way to represent a nonlinear function.
This is illustrated in Figure 12.31. Notice that it is still necessary to deal with
the generation of derivatives or integrals, integral windup, and all the other
matters in the same way as for ordinary PID controllers. We may also inquire
as to when it is useful to introduce the nonlinearities and what shape they
should have.

Representation of a nonlinearity by fuzzification, fuzzy logic, and defuzzi-
fication is not very different from representation of a nonlinear function as
a table with an interpolation procedure. Roughly speaking, the function val-
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ues correspond to the rules; the membership functions and the fuzzification
and defuzzification procedures correspond to the interpolation mechanism. To
illustrate this we consider a function of two variables. Such a function can
be visualized as a surface in two dimensions. A linear function is simply a
tilted plane. This function can be described completely by three points on a
plane, i.e., three rules. More complex surfaces or functions are obtained by
using more function values. The smoothness of the surface is expressed by the
interpolation procedures.

From the point of view of control, the key question is understanding when
nonlinearities are useful and what shape they should have. These are matters
where much research remains to be done. There are cases where the nonlin-
earities can be very beneficial but also cases where the nonlinearities cause
problems. It is also a nontrivial task to explore what happens. A few simula-
tions of the behavior is not enough because the response of a nonlinear system
is strongly amplitude dependent.

Let us also point out that the properties of the controller in Figure 12.28
are strongly influenced by the linear filter used. It is thus necessary to limit
the high-frequency gain of the approximation of the derivative. It is also useful
to take derivatives of the process output instead of the error, as was discussed
in Section 3.3. Other filters can also be used; by adding an integrator to the
output of the system in Figure 12.28, we obtain a fuzzy PI controller.

Applications

The representation of the control law as a collection of rules for linguistic
variables has a strong intuitive appeal. It is easy to explain heuristically how
the control system works. This is useful in communicating control strategies
to persons with little formal training. It is one reason why fuzzy control is
a good tool for automation of tasks that are normally done by humans. In
this approach it is attempted to model the behavior of an operator in terms
of linguistic rules. Fuzzy control has been used in a number of simple control
tasks for appliances. It has also been used in controllers for processes that are
complicated and poorly known. Control of a cement kiln is one example of this
type of application. Fuzzy control has also been used for controller tuning.

12.9 System Structuring

In this section we illustrate how complex control systems can be built from
simple components by using the paradigms we have discussed. The problem is
quite complex. It involves selection of measured variables and control variables,
and it requires significant physical understanding of the process.

The Process

The process to consider is a chemical reactor. A schematic diagram is shown in
Figure 12.32. Two substances A and B are mixed in the reactor. They react to
form a product. The reaction is exothermic, which means that it will generate
heat. The heat is dissipated through water that is circulating in cooling pipes

398



12.9 System Structuring

V1

V2

V3

V4

V5

Tv

Tr

L

qA

qB

Steam

Cool water

Cooling pipes

Figure 12.32 Schematic diagram of a chemical reactor.
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Figure 12.33 Static process model for the exothermic reactor.

in the reactor. The reaction is very fast; equilibrium is achieved after a time
that is much shorter than the residence time of the reactor. The flow qA of
substance A is considerably larger than qB . Efficiency of the reaction and the
heat generation is essentially proportional to the flow qB .

A static process model is useful in order to understand the control problem.
Figure 12.33 shows the efficiency and the heat generation as a function of
temperature. A model of this type was derived in Section 2.5. In the figure we
have drawn a straight line that corresponds to the cooling power. There are
equilibria where the power generated by the reaction is equal to the cooling
power represented at points P and Q in the figure. The point P corresponds to
an unstable equilibrium. It follows from Figure 12.33 that if the temperature
is increased above P the power generated by the reaction is larger than the
cooling power. Temperature will thus increase. The catalyst in the reactor may
be damaged if the temperature becomes too high. Similarly, if the temperature
decreases below point P it will continue to decrease and the reaction stops. This
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phenomenon is called “freezing.” Freezing starts at the surface of the cooling
tube and will spread rapidly through the reactor. If this happens the reactor
must be switched off and restarted again.

Design Requirements

There are considerable risks in running an exothermic reactor. The reactor
can explode if the temperature is too high. To reduce the risk of explosion, the
reactors are placed in special buildings far away from the operator. Because
of the risk of explosion, it is not feasible to experiment with controller tuning.
Consequently, it is necessary to compute controller setting beforehand and
verify that the settings are correct before starting the reactor. Safety is the
overriding requirement of the control system. It is important to guarantee that
the reaction temperature will not be too high. It is also important to make sure
that process upsets do not lead to loss of coolant flow and that stirring does
not lead to an explosion. It is also desirable to operate the reactor efficiently.
This means that freezing must be avoided. Besides, it is desirable to keep
the efficiency as high as possible. Because of the risks, it is also necessary to
automate start and stop as well as normal operation. It is desirable to avoid
having to run the reactor under manual control. In this particular case the
operator can set two variables: the reactor temperature and the ratio between
the flows qA and qB . The reaction efficiency and the product quality can be
influenced by these two variables.

Controller Structure

The reactor has five valves. Two of them, V1 and V2, influence the coolant
temperature. The flow of the reactor is controlled by V3 and V4, and the product
flow is controlled by the valve V5. In this particular application the valve V5

is controlled by process steps downstream. (Compare this with the discussion
of surge tanks in Section 12.6).

There are five measured signals: the reactor temperature Tr, the level in
the reactor tank L, the cooling temperature Tv, and the flows qA and qB . The
physical properties of the process give a natural structuring of the control
system. A mass balance for the material in the reactor tank shows that the
level is essentially influenced by the flow qA and the demanded production. It
follows from the stoichiometry of the reaction that the ratio of the flows qA and
qB should be kept constant for an efficient reaction. The reactor temperature
is strongly influenced by the water temperature, by the temperature of the
coolant flow, and the flows qA and qB . Coolant temperature is influenced by
the valve V1 that controls the amount of flow and by the steam valve V2.

This simple physical discussion leads to the diagram shown in Figure 12.34,
which shows the causality of the variables in the process. The valve V5 can
be regarded as a disturbance because it is set by downstream process units.
Figure 12.34 suggests that there are three natural control loops:

• Level control: Controlling the tank level with valve V3.

• Temperature control: Control of the reactor temperature with valves V1

and V2.
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Figure 12.35 Block diagram for the level control through valve V3.

• Flow ratio control: Control of ratio qB/qA with valve V4.

These control loops are discussed in detail.

Level Control

The block diagram for the level control is shown in Figure 12.35. The primary
function is a proportional feedback from the level to the flow qA, which is
controlled by the valve V3. The reactor is also used as a surge tank to smooth
out the difference between actual production and commanded production. The
level in the tank will vary during normal operations. Reasonable limits are that
the level should be between 50 percent and 100 percent. If the proportional
band of the controller is chosen as 50 percent, the control variable will be
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Figure 12.36 Block diagram showing temperature control through valves V1 and V2.

fully closed when the tank is full and half-open when the tank is half-full. It
is important that the reactor temperature remains within given bounds. The
flow qA is constrained, therefore, by two selectors based on measurements of
the temperature in the reactor tank (Tr) and the coolant temperature (Tv).
When starting the reactor the level is kept at the lower limit until the coolant
temperature becomes sufficiently high. This is achieved by a combination of
limiters, multipliers, and selectors, as shown in Figure 12.35.

Temperature Control

Figure 12.36 gives a block diagram for controlling the reactor temperature.
Since the chemical reaction is fast compared to temperature and flow dynam-
ics, the reactor can be viewed as a heat exchanger from the control point of
view. During normal conditions the temperature is controlled by adjusting the
coolant flow through the valve V1. The primary control function is a feedback
from temperature to the valves V1 and V2. The set point in this control loop can
be adjusted manually. The parameters of this control loop can be determined
as follows. The transfer function from coolant flow to the reactor temperature
is approximately given by

G(s) = Kp

(1 + sT1)(1 + sT2) , (12.8)

where the time constant typically has values T1 = 300 s and T2 = 50 s. The fol-
lowing rough calculation gives approximate values of the controller parameter.
A proportional controller with gain K gives the loop transfer function

G0(s) = KKp

(1 + sT1)(1 + sT2) . (12.9)

The characteristic equation of the closed loop becomes

s2 + s
(

1
T1

+ 1
T2

)
+ 1 + KKp

T1T2
= 0.

The closed system is thus of second order. The relative damping ζ and the
undamped natural frequency ω are given by

2ζ ω = 1
T1

+ 1
T2

	 1
T2

(12.10)
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and

2ζ ω 2 = 1 + KKp

T1T2
. (12.11)

The approximation in the first expression is motivated by T1 ≫ T2. With a rela-
tive damping ζ = 0.5 the Equation (12.10) then gives ω 	 1/T2. Furthermore,
it follows from Equation (12.11) that

1 + KKp = T1

T2
= 300

50
= 6.

The loop gain is thus essentially determined by the ratio of the time constants.
The controller gain becomes

K = 5
Kp

,

and the closed-loop system has the undamped natural frequency.

ω = 1/T2 = 0.02 rad/s.

If PI control is chosen instead, it is reasonable to choose a value of the inte-
gration time

T1 	 5T2.

Control can be improved by using derivative action. The achievable improve-
ment depends on the time constant of the temperature sensor. In typical cases
this time constant is between 10 s and 40 s. If it is as low as 10 s it is indeed
possible to obtain improved control by introducing a derivative action in the
controller. The derivative time can be chosen to eliminate the time constant
T2. We then obtain a system with the time constants 300 s and 10 s. The gain
can then be increased so that

1 + KKp = 300
10

= 30

and the undamped natural frequency of the system then becomes ω 	 0.1 rad/s.
If the time constant of the temperature sensor is around 40 s, the derivative
action gives only marginal improvements.

The heat generated by the chemical reaction is proportional to the flow
qA. To make sure that variations in qA are compensated rapidly we have also
introduced a feedforward from the flow qA. This feedforward will only operate
when the tank level is larger than 50 percent in order to avoid freezing when
the reactor is started.

To start the reaction the reactor must be heated so that the temperature
in the reaction vessel is larger than Tc (compare with Figure 12.33). This is
done by using the steam valve V2. Split-range control is used for the steam and
water valves (compare Section 12.6). The water valve is open for low signals
(3–9 PSI), and the steam valve is open for large pressures (9–15 PSI).

To avoid having the reactor freeze, it is necessary to make sure that the
reaction temperature is always larger than Tc. This is the reason for the extra
feedback from water temperature to Tv through a maximum selector. This
feedback makes sure that the steam valve opens if the temperature in the
coolant flow becomes too low. Cascade control would be an alternative to this
arrangement.

403



Chapter 12. Control Paradigms

  qB

Yield

Figure 12.37 Reaction yield as a function of qB at constant qA.

Flow Ratio Control

The ratio of the flows qA and qB must be kept constant. Figure 12.37 shows
how the efficiency of the reaction depends on qB when qA is kept constant. The
flow qB is controlled with a ratio control system (as shown in Figure 12.38),
which is the primary control function. The reaction rate depends strongly on
qB . To diminish the risk of explosion, there is a nonlinearity in the feedback
that increases the gain when qB/qA is large. The flow loop has several selec-
tors. At startup it is desirable that substance B not be added until the water
temperature has reached the critical value Tc and the reactor tank is half-full.
To achieve this the feedback from water temperature and tank level has been
introduced through limiters and a minimum selector. There are also limiters
and a selector that closes valve V4 if flow qA is lost. There is also a direct feed-
back from qA through limiters and selectors and a feedback from the reactor
temperature that closes valve V4, if the reactor temperature becomes too high.

Override Control of the Outlet Valve

The flow out of the reactor is determined by valve V5. This valve is normally
controlled by process steps downstream. The control of the reactor can be im-
proved by introducing an override, which depends on the state of the reactor.
When starting the reactor, it is desirable to have the outlet valve closed until
the reactor tank is half-full and the reaction has started. This is achieved by in-
troducing the tank level and the tank temperature to the set point of the valve
controller via limiters and minimum selectors as is shown in Figure 12.39.
The valve V5 is normally controlled by qsp. The minimum selector overrides
the command qsp when the level L or the temperature Tr are too low.

12.10 Summary

In this chapter we have illustrated how complex control systems can be built
from simple components such as PID controllers, linear filters, gain schedules,
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Figure 12.39 Block diagram for controlling the outflow of the reactor through valve V5.

and simple nonlinear functions. A number of control paradigms have been
introduced to guide system design.

The primary linear control paradigms are feedback by PID control and feed-
forward. Cascade control can be used to enhance control performance through
the use of extra measurements. State feedback may be viewed as an extreme
case of cascade control where all states of a system are measured. Observers
can be used to infer values of variables that are not measured by combining
mathematical models with available measurements. Mid-range and split-range
control are paradigms for control when there are several control signals but
only one measured signal. These paradigms are the dual of cascade control.
Repetitive control is a technique that is efficient for cases where the distur-
bances are periodic. The idea is to create a high loop gain at the frequency of
the disturbance.

We also discussed several nonlinear components and related paradigms in-
cluding nonlinear functions, gain schedules, limiters, and selectors. Recall that
it was shown in Section 3.5 how PID controllers could be enhanced by simple
nonlinear functions to avoid windup. Ratio control is a nonlinear strategy that
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admits control of two process variables so that their ratio is constant. In Sec-
tion 9.3 we showed how gain schedules could be used to cope with changes in
process dynamics. Gain schedules and nonlinear functions are also useful for
control of buffers, where the goal is not to keep constant levels in the buffers
but to allow them to vary within given ranges. Selector control is another
important paradigm that is used for constraint control where certain process
variables have to be kept within given constraints. Neural and fuzzy techniques
were also discussed briefly. It was shown that they could be interpreted both
as rule-based control and as nonlinear control.

We also gave an example how the components and the paradigms could be
used to develop a control system for a chemical process.

12.11 Notes and References

Many aspects of the material in this chapter are found in classical textbooks on
process control such as [Buckley, 1964; Shinskey, 1988; Bequette, 2003; Seborg
et al., 2004] and in the books [Shinskey, 1981; Klefenz, 1986] which focus on
energy systems. A more specialized presentation is given in [Hägglund, 1991].

The methods discussed in this chapter can all be characterized as bottom-up
procedures in the sense that a complex system is built up by combining simple
components. An interesting view of this is given in [Bristol, 1980]. A top-down
approach is another possibility. A discussion of this, which is outside the scope
of this book, is found in [Seborg et al., 1986] and [Morari and Zafiriou, 1989].

Cascade and feedforward control are treated in the standard texts on con-
trol. A presentation with many practical aspects is found in [Tucker and Wills,
1960]. Selector control is widely used in practice. A general presentation is
given in [Åström, 1987b]. It is difficult to analyse nonlinear systems. A sta-
bility analysis of a system with selectors is given in [Foss, 1981]. The Blend
station is presented in [Hägglund, 2001].

Fuzzy control has been around for a long time; see [Mamdani, 1974; Mam-
dani and Assilian, 1974; King and Mamdani, 1977; Tong, 1977]. It has received
a lot of attention particularly in Japan: see [Zadeh, 1988; Tong, 1984; Sugeno,
1985; Driankov et al., 1993; Wang, 1994]. The technique has been used for au-
tomation of complicated processes that have previously been controlled man-
ually. Control of cement kilns is a typical example; see [Holmblad and Øster-
gaard, 1981]. There has been a similar development in neural networks; see, for
example, [Hecht-Nielsen, 1990; Pao, 1990; Åström and McAvoy, 1992]. There
was a lot of activity in neural networks during the late 1960s, which vanished
rapidly. There was a rapid resurgence of interest in the 1980s. There are a lot
of exaggerations both in fuzzy and neural techniques, and no balanced view of
the relevance of the fields for control has yet emerged. The paper [Willis et al.,
1991] gives an overview of possible uses of neural networks for process control,
and the paper [Pottman and Seborg, 1993] describes an application to control
of pH. The papers [Lee, 1990; Huang, 1991; Swiniarski, 1991] describe appli-
cations to PID controllers and their tuning. There have also been attempts to
merge fuzzy and neural control; see [Passino and Antsaklis, 1992] and [Brown
and Harris, 1994]. Section 12.9 is based on [Buckley, 1970].
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