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Preface

This book is devoted to proportional–integral–derivative (PID) controller theory and its ap‐
plication. PID controllers are probably the most widely used industrial controller in the
process industries. They remain important control tools for three reasons: past record of suc‐
cess, wide availability, and simplicity of use. Their stability analysis is extremely easy to car‐
ry out and the design trade-off between performance and robustness is clearly understood.

PID Control for Industrial Processes presents a clear, multidimensional representation of PID
control for both students and specialists working in the area of PID control. It mainly focus‐
es on the theory and application of PID control in industrial processes. It incorporates recent
developments in PID control technology in industrial practice. Emphasis has been given to
finding the best possible approach to develop a simple and optimal solution for industrial
users. This book includes several chapters that cover a broad range of topics and priority has
been given to subjects that cover real-world examples and case studies. The book is focused
on approaches for controller tuning, i.e., method bases on open-loop plant tests and closed-
loop experiments.

Briefly, Chapter 1 presents a novel data-based PID controller tuning method that can be ap‐
plied to stable, integrating, and unstable plants. The tuning method is developed under the
virtual reference feedback tuning (VRFT) design framework where the reference model of
VRFT is coordinately optimized with the controller on the basis of the model-reference criteri‐
on to ensure the validity of the VRFT approach. Chapter 2 finds the PID setting parameters of
two degrees of freedom control structure based on model uncertainty. This tuning method is
able to obtain reasonable controller parameters even under process uncertainties on standard
two degrees of freedom internal model control. Chapter 3 demonstrates that when using ad‐
vanced evolutionary algorithms, whatever the adopted system model (SOSPD, non-mini‐
mum phase, oscillatory, or non-linear), it is possible to find optimal parameters of PID
controllers satisfying simultaneously the behavior of the system and a performance index
such as Absolute Integral Error. Multidynamics Algorithm for Global Optimization is used to
solve the control problem with PID controllers. Chapter 4 is a concise survey showing the
persistent demand for PID tuning algorithms that integrate performance requirements into
the tuning algorithm. The proposed frequency-domain PID controller design method guaran‐
tees closed-loop performance in terms of commonly used time-domain specifications. Chap‐
ter 5 emphasizes the problem of controlling the Takagi-Sugeno fuzzy model by PID
controllers using particle swarm optimization. A new algorithm is proposed that relies on the
use of a new objective function taking into account both the performance indices and the error
signal.
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In Chapter 6 steady-state simulation and dynamic simulation for a debutanizer column are
performed using a process simulator. The main objective is to study the process variables of
each controller at the column by using different tuning relations. The other part is to identify
the best tuning methods for the controllers to optimize the performance of the column.
Chapter 7 introduces the closed-form analytical design of proportional-integral controller
parameters for optimal control subjected to operational constraints. The main idea of the
design is not only to minimize the control performance index but also to cope with the con‐
straints in the process variable, controller output, and its rate of change. The proposed opti‐
mization-based approach is examined to regulatory and servo control of integrating
processes. Chapter 8 presents the design and implementation of a decoupling control strat‐
egy for an experimental platform pilot plant, dedicated to the study of the fouling phenom‐
ena that occurs in industrial tubes. The concept of a soft sensor was applied to monitor the
output variables of the experimental platform for better performance of the decoupling con‐
trol. Chapter 9 provides two off-line tuning methods for a digital PID-type controller for a
two-mass resonance system to suppress its mechanical resonance vibrations. These methods
include a coefficient diagram method and a fictitious reference iterative tuning method. The
first method uses a nominal mathematical model of the object while the second method uses
only the initial experimental data without use of the mathematical model.
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Abstract

This chapter presents a novel data-based proportional-integral-derivative (PID) control-
ler tuning method that can be applied to stable, integrating, and unstable plants. The
tuning method is developed under the virtual reference feedback tuning (VRFT) design
framework, where the reference model of VRFT is coordinately optimized with the
controller on the basis of the model-reference (MR) criterion to ensure the validity of
the VRFT approach. In the proposed MR-VRFT method, a set of closed-loop plant data
are directly exploited without resorting to a process model. Because of its closed-loop
tuning capability, the MR-VRFT method can be applied online to improve (retune)
existing underperforming controllers. Moreover, the tuning method includes a robust-
ness specification based on the maximum sensitivity that enables the designer to explic-
itly address the trade-off between performance and robustness. Simulation studies,
including the application to an unstable biochemical reactor, are presented to demon-
strate the effectiveness of MR-VRFT method.

Keywords: PID controller, process control, data-driven control, model-reference control,
virtual reference feedback tuning, integrating process, unstable process

1. Introduction

Proportional-integral-derivative (PID) controllers have been the most widely used process
control technique for many decades in the chemical process industry. Although a PID con-
troller has only three adjustable parameters, the optimization of these parameters in the
absence of a systematic procedure is not a trivial task. It has been reported that numerous
controllers are poorly tuned in practice [1]. A typical category of methods for tuning PID
controllers is based on the model-based design approach. With the availability of plant
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models, both analytic and empirical rules can be applied for PID design; see Ref. [2] for an
extensive collection of methods. With the development of engineering technologies, indus-
trial plants are becoming more and more complex, and therefore, modeling and identifying
industrial plants are more challenging and demand considerable engineering effort. Further-
more, the performance of model-based controllers is highly dependent on the model accu-
racy. The model-based methods can give satisfactory PID design when the controlled plant
dynamics are reasonably described by the low-order models, but the effectiveness of these
methods degrades for complex and/or higher-order process dynamics owing to the inevita-
ble modeling error.

An attractive approach to relieving the efforts of identifying a complicated process and
mitigating the drawback of a plant-model mismatch is to design controllers directly from
plant input–output data without the intermediate step of model identification. In the
past two decades, a number of data-based control design methods have been developed;
see Ref. [3] for a brief survey of the existing data-based control methods. Virtual reference
feedback tuning (VRFT) [4, 5] is a one-shot discrete-time controller tuning method
that only needs a set of plant input–output data to compute the controller parameters.
Under the VRFT framework, the controller tuning problem is transformed into a controller
parameter identification problem through introducing the virtual reference signal with a
predefined reference model. The controller parameters are then obtained by solving an
optimization problem formulated to minimize the VRFT criterion, that is, the deviation
between the virtual controller output and actual plant input. The closed-loop behavior
with the controller designed by VRFT is determined by the reference model. It is critical
but not an easy step to properly determine a reference model because the plant model is
unknown. However, VRFT is basically studied as an identification problem, and how to
determine the optimal reference model is not addressed in traditional VRFT methods.
Recently, VRFT has been extended to the design of continuous-time PID controllers [6–
10] and, to determine the reference model appropriately, the parameter in the reference
model was optimized by evaluating the VRFT criterion. In fact, the original objective of
VRFT is to search the optimal controller parameters which minimize a model-reference
(MR) criterion. The VRFT criterion shares with the MR criterion the same minimizer only
when the adopted controller structure allows a perfect model matching [5]. However, the
PID controller may not belong to the ideal controller set that allows a perfect model
matching. The reference model determined by minimizing the VRFT criterion does not
guarantee an effective model-reference control and therefore the performance of the
designed PID controller becomes unpredictable.

To solve this problem, a novel model-reference VRFT (MR-VRFT) method is presented in this
chapter. The PID controller is designed with VRFT based on an optimal reference model
determined by minimizing the MR criterion, and consequently, the design objective of model-
reference control can be effectively achieved. The MR-VRFT method can be applied to stable,
integrating, and unstable plants by choosing appropriate reference model structures. The
proposed design method includes robustness consideration that allows the designer to deal
with the trade-off between control performance and system robustness by specifying a desired
robustness level in terms of the maximum sensitivity.

PID Control for Industrial Processes2

The rest of this chapter is organized as follows. Section 2 presents the PID controller design
based on VRFT approach. Section 3 presents the specification of the reference model and
proposed MR-VRFT method. Section 4 summarizes the controller tuning procedures. Section
5 presents several simulation examples showing the effectiveness of the proposed method.
Finally, concluding remarks are presented in Section 6.

2. PID controller design based on VRFT approach

Consider the feedback control system shown in Figure 1, which consists of a plant G(s) and a
PID controller C(s) given by

C sð Þ ¼ KC 1þ 1
τIs

þ τDs
� �

(1)

where KC, τI , and τD denote the proportional gain, the integral time, and the derivative time of
the controller, respectively. Assume that the plant G(s) is unknown and only a set of input–
output data, u(t) and y(t), collected during an experiment on the plant is available for tuning
the PID controller. The target of control design in the proposed method is assigned via a
reference model, M(s), that describes the desired closed-loop transfer function of the system
shown in Figure 1. The control objective is the minimization of the following model-reference
(MR) criterion:

JMR KC; τI ; τDð Þ ¼ G sð ÞC sð Þ
1þ G sð ÞC sð Þ �M sð Þ
� �

W sð Þ
����

����
2

2
(2)

where W(s) is a user-specified weighting function.

Because G(s) is unknown, the minimization of JMR cannot be performed. The traditional
approach is to identify a model of G(s) using a set of input–output data of the plant and
then minimize JMR by replacing G(s) with its model. However, this renders modeling
difficult and introduces inevitable modeling error. The VRFT approach [5] avoids the proc-
edure of model identification by creating a virtual reference signal ~r tð Þ from the measured
output y(t):

~R sð Þ ¼ M sð Þ�1Y sð Þ (3)

Figure 1. Feedback control system.
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The rest of this chapter is organized as follows. Section 2 presents the PID controller design
based on VRFT approach. Section 3 presents the specification of the reference model and
proposed MR-VRFT method. Section 4 summarizes the controller tuning procedures. Section
5 presents several simulation examples showing the effectiveness of the proposed method.
Finally, concluding remarks are presented in Section 6.

2. PID controller design based on VRFT approach

Consider the feedback control system shown in Figure 1, which consists of a plant G(s) and a
PID controller C(s) given by

C sð Þ ¼ KC 1þ 1
τIs

þ τDs
� �

(1)

where KC, τI , and τD denote the proportional gain, the integral time, and the derivative time of
the controller, respectively. Assume that the plant G(s) is unknown and only a set of input–
output data, u(t) and y(t), collected during an experiment on the plant is available for tuning
the PID controller. The target of control design in the proposed method is assigned via a
reference model, M(s), that describes the desired closed-loop transfer function of the system
shown in Figure 1. The control objective is the minimization of the following model-reference
(MR) criterion:

JMR KC; τI ; τDð Þ ¼ G sð ÞC sð Þ
1þ G sð ÞC sð Þ �M sð Þ
� �

W sð Þ
����

����
2

2
(2)

where W(s) is a user-specified weighting function.

Because G(s) is unknown, the minimization of JMR cannot be performed. The traditional
approach is to identify a model of G(s) using a set of input–output data of the plant and
then minimize JMR by replacing G(s) with its model. However, this renders modeling
difficult and introduces inevitable modeling error. The VRFT approach [5] avoids the proc-
edure of model identification by creating a virtual reference signal ~r tð Þ from the measured
output y(t):

~R sð Þ ¼ M sð Þ�1Y sð Þ (3)

Figure 1. Feedback control system.
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where ~R sð Þ and Y(s) is the Laplace transform of ~r tð Þ and y(t), respectively. Such a reference
signal is called “virtual” because it was not used to generate y(t). As Y(s) is considered to be the

desired output of the closed-loop system when the reference signal is specified by ~R sð Þ, the
corresponding controller’s output can be calculated by

~U sð Þ ¼ C sð Þ ~R sð Þ � Y sð Þ� � ¼ KC 1þ 1
τIs

þ τDs
� �

M sð Þ�1 � 1
h i

Y sð Þ (4)

When the plant is fed by the measured input signal u(t), it generates y(t) as the output. Therefore,
a controller that shapes the closed-loop transfer function to the reference model is one that

generates u(t) or its Laplace transform U(s) when the error signal is given by ~R sð Þ � Y sð Þ, as
depicted in Figure 2. The model-reference control design is then transformed into the problem of

searching for a controller to minimize the difference between U(s) and ~U sð Þ given in Eq. (4).

Substituting s = jω into Eq. (4) yields

~U jωð Þ ¼ Ω jωð Þ Ω jωð Þ
jω

Ω jωð Þjω
� �

p (5)

where

Ω jωð Þ ¼ M jωð Þ�1 � 1
h i

Y jωð Þ (6)

p ¼ KC
KC
τI

KCτD
h iT

(7)

Minimizing the difference between U(s) and ~U sð Þ can be formulated in the frequency domain

to minimize the difference between U(jω) and ~U jωð Þ in a frequency range [0, ωmax]. Choosing
ωi, i ¼ 1, 2,⋯, n, such that 0 < ω1 < ω2 < ⋯ < ωn ¼ ωmax. The PID parameters are obtained by
solving

min
p

JVRFT pð Þ ¼ φ�Ψp
�� ��2

2 (8)

Figure 2. Schematic diagram of VRFT.
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where

φ ¼ U jω1ð Þ U jω2ð Þ ⋯ U jωnð Þ½ �T

Ψ ¼ ψ1 ψ2 ⋯ ψn

� �T

ψi ¼ Ω jωið Þ Ω jωið Þ
jωi

Ω jωið Þjωi

h iT
(9)

The frequency responses of U(jωi) and Y(jωi) at selected frequency points ωi (i = 1, 2,…, n) can
be evaluated by performing discrete Fourier transform for plant input and output measure-
ments, which can be efficiently calculated using the fast Fourier transform (FFT) algorithm.
The sampling rate to collect plant data must be large enough so that significant plant informa-
tion is not lost. The frequency ωmax denotes the upper bound of the frequency range for the
minimization problem, and it is closely related to the controller design. Because the controller
usually operates under the critical frequency, ωmax can be specified as the critical frequency, ωc,
at which the phase angle of GC(jω) equals �π. Based on the reference model M(s), the critical
frequency can be calculated according to the following equation:

∠
M jωð Þ

1�M jωð Þ
����
ω¼ωc

¼ �π (10)

After algebraic calculations, Eq. (8) is recast as

min
p

JVRFT pð Þ ¼ ~φ � ~Ψp
�� ��2

2 (11)

with

~φ ¼ Re φ
� �

Im φ
� �

" #
; ~Ψ ¼ Re Ψð Þ

Im Ψð Þ

� �
(12)

where Re(A) and Im(A) denote the real matrix (or vector), and the elements are the real and
imaginary parts of a complex matrix (or vector) A, respectively. Eq. (11) can be solved by the
least-squares method as

p∗ ¼ ~ΨT ~Ψ
� ��1 ~ΨT ~φ (13)

which is used to obtain the parameters of the PID controller according to Eq. (7).

3. Specification of the reference model and MR-VRFT method

The reference model must be specified prior to calculation of the PID parameters using
Eq. (13). The specification of the reference model is crucial to the performance of the resulting
closed-loop system. Basically, the condition M 0ð Þ ¼ 1 should be satisfied to achieve an offset-
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free tracking. In addition, other conditions should be imposed on the reference model when
the controlled plant is integrating or unstable. Here, the reference models for stable, integrat-
ing, and unstable plants are presented.

For stable plants, the reference model can be specified as

M sð Þ ¼ 1
λsþ 1

e�θs (14)

For integrating plants, the following asymptotic tracking constraint must be satisfied to enable
the step-load disturbances to be counteracted to eliminate the offset.

lim
s!0

d
ds

1�M sð Þ½ � ¼ 0 (15)

In this case, the reference model for integrating plants is chosen as

M sð Þ ¼ 2λþ θð Þsþ 1

λsþ 1ð Þ2 e�θs (16)

For unstable plants, 1�M sð Þ½ � should have zeros at unstable poles of the plant to guarantee
the internal stability of the closed-loop system [11]. When the plant has an unstable pole up, the
following condition should be satisfied:

1�M sð Þjs¼up ¼ 0 (17)

Therefore, the reference model for unstable plants can be chosen as

M sð Þ ¼ αsþ 1

λsþ 1ð Þ2 e
�θs (18)

where αmust be determined so that Eq. (17) is satisfied. In the reference models, θ is related to
the apparent time delay of the plant, and λ is an adjustable parameter to manage the trade-off
between control performance and system robustness.

The peak value of the sensitivity function (maximum sensitivity),MS, defined in the following,
has been widely used as a measure of system robustness.

MS ¼ max
ω

1
1þ GC jωð Þ
����

���� (19)

As the maximum sensitivity decreases, the closed-loop system becomes more robust. The use
of the maximum sensitivity as a robustness measure is advantageous because lower bounds
for the gain and phase margins can be assured [1]. Because the plant is not known, MS can be
evaluated on the basis of the reference model as follows:

MS ¼ max
ω

1�M jωð Þj j (20)

PID Control for Industrial Processes6

Therefore, the parameter λ can be selected to match a designer-specified robustness level in
terms of the maximum sensitivity. For a given value of the reference model parameter r, where
r ¼ θ for stable and integrating plants and r ¼ θ;αf g for unstable plants, the following corre-
lated robust design criterion provides the required value of λ to achieve a specified value ofMS.

λ ¼ �0:7289MS þ 1:555
MS � 1:006

θ, 1:2 ≤MS ≤ 2:0; for stable plants (21)

λ ¼ �0:4105MS þ 2:044
MS � 1:012

θ, 1:2 ≤MS ≤ 2:0; for integrating plants (22)

λ ¼ b1MS þ b0
MS þ a

θ, 1:5 ≤MS ≤ 3:0; for unstable plants (23)

where

b1 ¼ 0:1395 α
θ

� �0:7266 � 0:18

b0 ¼ 0:6371 α
θ

� �0:4992 þ 0:0521

a ¼ �0:178 α
θ

� ��0:7623 � 0:6712

(24)

Eq. (24) is valid for 1 ≤α=θ ≤ 10. With the robust design criterion, the value of λ can be deter-
mined conveniently.

When a desired value of MS is specified, the optimal solution given in Eq. (13) is a function of
the reference model parameter r, that is, p∗ ¼ p∗ rð Þ. As pointed out before, it is unreasonable
to determine the reference model without information on the controlled plant. To determine
the reference model appropriately, we propose for the first time that the reference model
parameter r is optimized by minimizing the model-reference criterion given in Eq. (2). Namely,
the proposed method seeks an appropriate reference model, which is most achievable for the
controlled plant under the desired robustness level, to design the PID controller in the frame-
work of VRFT.

Given a value of the reference model parameter r, the corresponding PID controller parameter
p∗ rð Þ can be calculated and a PID controller C s;p∗ rð Þð Þ is the result. The virtual reference

signal ~Rr sð Þ that has to be applied in a closed loop employing the PID controller C s;p∗ rð Þð Þ to
obtain u(t) and y(t) (the available data for controller design) as the closed-loop response can be
calculated by

~Rr sð Þ ¼ C s;p∗ rð Þð Þ�1U sð Þ þ Y sð Þ (25)

Therefore, the closed-loop transfer function resulting from C s;p∗ rð Þð Þ can be expressed by

Tr sð Þ ¼ G sð ÞC s;p∗ rð Þð Þ
1þ G sð ÞC s;p∗ rð Þð Þ ¼

Y sð Þ
~Rr sð Þ (26)

and its frequency response can be obtained as follows:
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Tr jωð Þ ¼ Y jωð Þ
~Rr jωð Þ ¼

Y jωð Þ
C jω;p∗ rð Þð Þ�1U jωð Þ þ Y jωð Þ (27)

A model-reference criterion based on the framework of VRFT for PID controller design is then
defined by

JMR-VRFT rð Þ ¼
Xn

i¼1

Tr jωið Þ �M jωi; rð Þ� �
W jωið Þ�� ��2 (28)

where the weighting function can be simply chosen asW jωið Þ ¼ 1= jωið Þ. The optimal reference
model parameter, r∗, is determined by solving the following minimization problem:

r∗ ¼ argmin
r

JMR-VRFT rð Þ (29)

and its corresponding solution p∗ r∗ð Þ is the optimal PID controller parameter proposed by the
MR-VRFT method.

4. Controller tuning procedure

The MR-VRFT method directly utilizes closed-loop plant data for controller tuning without
requiring a priori knowledge of the plant and the existing (possibly roughly tuned) control-
ler. For stable plants, open-loop data can also be used for controller tuning. Suppose that
the existing control system has been brought to a steady state and a closed-loop test
is applied. We recommend using a set-point step test because it is the simplest and most
commonly used test in process control applications. The plant input u(t) and output y(t) are
collected during the set-point change until a new steady state is reached. It is noted that u(t)
and y(t) represent deviation variables and are defined on the basis of the original steady
state.

In sum, the proposed MR-VRFT method for tuning PID controllers can be implemented as
follows:

Step 1. Collect the plant data, u(t) and y(t), from a plant test and calculate their frequency
responses, U(jωi) and Y(jωi). To calculate Y(jωi), the output y(t) is decomposed into
y tð Þ ¼ Δy tð Þ þ ys, where Δy tð Þ and ys represent the transient part and the final steady-state
value of y(t), respectively. The Fourier transforms of y(t) at discrete frequencies ωi are then
obtained by

Y jωið Þ ¼ ΔY jωið Þ þ ys
jωi

(30)

where ΔY jωið Þ can be calculated by applying the FFT to Δy tð Þ. Similar procedures apply to the
calculation of U(jωi) from u(t).

PID Control for Industrial Processes8

Step 2. Set the prescribed searching range of r and the desired level of system robustness in
terms of MS. The recommended values for MS are typically within the range 1:2 < MS < 2:0
[12]. However, specifying a higher value of MS is required for particular unstable plants (e.g.,
those that involve a large time delay).

Step 3. Solve the minimization problem given in Eq. (29) by iteration. For each chosen r,
perform the following steps.

1. Calculate the corresponding λ using the robust design criterion and specify the reference
model M(s).

2. Obtain the critical frequency ωc using Eq. (10) and set ωmax = ωc.

3. Calculate p∗ using Eq. (13).

4. Calculate the frequency response Tr jωið Þ using Eq. (27) and evaluate the criterion JMR-VRFT

given in Eq. (28).

Repeat (1) to (4) for other values of r in the searching range until the minimal JMR-VRFT is
identified.

Step 4. Obtain the PID controller parameters from p∗ corresponding to the optimal value of r,
i.e., p∗ r∗ð Þ.

5. Illustrative examples

Simulation examples are presented to demonstrate the effectiveness of the MR-VRFT method
for PID controller tuning. In each example, the closed-loop plant data, u(t) and y(t), were
generated by introducing a step change in the set point of an initial (existing) closed-loop
system (Figure 1). To implement the proposed method, a priori knowledge of the existing
controller settings is not required. Therefore, the effectiveness of the MR-VRFT method, pro-
posed as a closed-loop tuning method, is not affected by the existing controller parameters
used for generating the closed-loop data, as confirmed by the following example.

In all simulations, the PID controller was implemented as follows to avoid the derivative kick:

U sð Þ ¼ KC 1þ 1
τIs

� �
E sð Þ � τDs

γτDsþ 1
Y sð Þ

� �
(31)

The derivative filter parameter γ was set to 0.1. Two metrics were used to evaluate the
controller performance. The integrated absolute error (IAE) is defined as

IAE ¼
ð∞
0

r tð Þ � y tð Þj j dt (32)

To evaluate the required control effort, the total variation (TV) of the manipulated input u was
calculated:
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U sð Þ ¼ KC 1þ 1
τIs

� �
E sð Þ � τDs

γτDsþ 1
Y sð Þ

� �
(31)

The derivative filter parameter γ was set to 0.1. Two metrics were used to evaluate the
controller performance. The integrated absolute error (IAE) is defined as

IAE ¼
ð∞
0

r tð Þ � y tð Þj j dt (32)

To evaluate the required control effort, the total variation (TV) of the manipulated input u was
calculated:
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TV ¼
X∞

i¼1

u ið Þ � u i� 1ð Þj j (33)

TV is an effective measure of the “smoothness” of a signal and should be as small as possible [13].

5.1. Example 1: stable plant

Consider a fifth-order plant given by the following transfer function:

G sð Þ ¼ 1

2sþ 1ð Þ3 sþ 1ð Þ2 e
�6s (34)

To illustrate that the effectiveness of the MR-VRFTmethod is unaffected by the plant data used
for controller design, three sets of plant data, that is, one set of open-loop step response data
and two sets of closed-loop data generated by initially poorly tuned PID controllers, collected
with a sampling interval of 0.1, were separately used to implement the MR-VRFT method. As
illustrated in Figure 3, the first set of closed-loop data (initial tuning 1: KC ¼ 0:4, τI ¼ 10, and
τD ¼ 1) exhibited a sluggish set-point step response whereas the second set of closed-loop data
(initial tuning 2: KC ¼ 0:4, τI ¼ 4, and τD ¼ 0:5) exhibited an oscillatory response. Using the
reference model given in Eq. (14) with the desired level of robustness set as MS = 1.58, the
resulting three PID controllers are summarized in Table 1, where the controller parameters
obtained by the MR-VRFT are almost indistinguishable in spite of different plant data used for
controller design. Furthermore, the resulting closed-loop system has MS = 1.59, which is close
to the design value. Figure 4 shows the closed-loop responses for the initial and retuned (MR-
VRFT) controllers for a unit step set-point change at t = 0 and a unit step load disturbance at

Figure 3. Three sets of plant data used for controller design in Example 1.
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t = 150. Control performance can be improved significantly using the MR-VRFT method,
regardless of the initial controller parameters used for collecting the closed-loop data.

We compared the proposed PID design method with the model-based design method of
Skogestad internal model control (SIMC) [13]. In the SIMC method, the plant in Eq. (34) was
approximated as a second-order plus time delay (SOPTD) model:

Gm sð Þ ¼ 1
3sþ 1ð Þ 2sþ 1ð Þ e

�9s (35)

The controller parameters were obtained as KC ¼ 0:278, τI ¼ 5, and τD ¼ 1:2. The resulting
closed-loop system also has MS = 1.59, which facilitated a comparison of controller perfor-
mance for controllers with the same level of robustness. The closed-loop response for the PID
controller tuned by SIMC method is also shown in Figure 4. The values of IAE and TV for the
controllers are presented in Table 2. Figure 4 shows that the proposed PID controller provides
faster set-point response and disturbance attenuation than the SIMC PID controller, demon-
strating the superior performance of MR-VRFT method.

Data set θ* λ KC τI τD MS

Open-loop data 8.91 6.26 0.508 7.71 2.58 1.59

Closed-loop data (initial tuning 1) 8.91 6.26 0.508 7.71 2.57 1.59

Closed-loop data (initial tuning 2) 8.94 6.28 0.505 7.69 2.51 1.59

Table 1. Results of controller design using three different sets of plant data for Example 1.

Figure 4. Closed-loop responses for Example 1.
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5.2. Example 2: integrating plant

Consider the following integrating plant:

G sð Þ ¼ 1

s sþ 1ð Þ4 e
�0:5s (36)

To implement the MR-VRFT method, an initial control system with a roughly tuned PID
controller (KC ¼ 0:3, τI ¼ 10, and τD ¼ 1) was considered for generating closed-loop data, with
a sampling interval of 0.05.

Using the reference model given in Eq. (16) with the design target MS = 1.62, we determined
the optimal θ value to be θ∗ ¼ 2:98 (λ ¼ 6:75). The corresponding PID controller parameters
are KC ¼ 0:209, τI ¼ 17:4, and τD ¼ 2:29, and the resulting closed-loop system has anMS value
nearly identical to the design target. Figure 5 shows the closed-loop responses for the initial
and retuned (MR-VRFT) controllers for a unit step set-point change at t = 0 and a step-load
disturbance of magnitude 0.1 at t = 120. The response for the initial controller is rather
oscillatory. In fact, the initial closed-loop system has an MS value of 3.92, indicating poor
robustness. Control performance can be considerably improved after the retuning using the
MR-VRFT method.

The proposed PID controller was compared with the SIMC PID controller which was tuned
using the following model:

Gm sð Þ ¼ 1
s 1:5sþ 1ð Þ e

�3s (37)

The SIMC controller parameters were obtained as KC ¼ 0:177, τI ¼ 25:5, and τD ¼ 1:41. The
resulting closed-loop system also has MS = 1.62. The closed-loop response for the PID control-
ler tuned by SIMC method is also shown in Figure 5. The values of IAE and TV for the

Tuning method KC τI τD Set point Disturbance

IAE TV IAE TV

Ex. 1 MR-VRFT 0.508 7.71 2.58 15.9 1.16 15.2 1.00

SIMC [13] 0.278 5 1.2 19.9 1.12 19.4 1.09

Ex. 2 MR-VRFT 0.209 17.4 2.29 13.0 0.487 8.43 0.156

SIMC [13] 0.177 25.5 1.41 14.0 0.416 14.4 0.157

Ex. 3 MR-VRFT 3.98 9.79 1.86 7.69 15.6 2.52 3.03

Lee et al. [14] (first-order model) 3.26 10.6 1.63 8.84 12.5 3.31 2.96

Lee et al. [14] (second-order model) 3.99 11.4 1.89 8.0 15.8 2.86 3.05

Ex. 4 MR-VRFT �0.935 3.84 0.422 0.729 0.954 0.719 0.191

Ref. [15] �0.952 5.62 0.530 0.790 1.36 1.03 0.224

Table 2. PID controller settings and performance indices for the examples.

PID Control for Industrial Processes12

controllers are presented in Table 2. Clearly, the proposed MR-VRFT method provides favor-
able control performance, especially for disturbance rejection, compared with the model-based
method of SIMC.

In practice, plant data are inevitably corrupted by measurement noise. Figure 6 shows closed-
loop plant data that were corrupted by Gaussian white noise with a variance of 0.005; the data
were used to tune the controller by the MR-VRFT method. The optimal θ value was deter-
mined to be θ∗ ¼ 2:99 (λ ¼ 6:77), and the resulting controller parameters were KC ¼ 0:211,

Figure 5. Closed-loop responses for Example 2.

Figure 6. Noisy closed-loop data used for controller design in Example 2.
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τI ¼ 18:2, and τD ¼ 2:21. By comparing the controller parameters obtained under noise condi-
tions with those obtained under noise-free conditions, no dramatic change is observed, which
verifies the applicability of the MR-VRFT method under realistic conditions. Moreover, simu-
lation results show that fast sampling of plant data could reduce the sensitivity of the MR-
VRFT method to the effect of measurement noise.

5.3. Example 3: unstable plant

Consider the following third-order delayed unstable plant studied in Lee et al. [14]:

G sð Þ ¼ 1
5s� 1ð Þ 2sþ 1ð Þ 0:5sþ 1ð Þ e

�0:5s (38)

An initial closed-loop system with a roughly tuned PID controller (KC ¼ 2, τI ¼ 20, and
τD ¼ 1) was assumed to generate plant data for controller design. The sampling interval was
chosen as 0.1. We applied the MR-VRFT method to design the PID controller using the
reference model given in Eq. (18), with an assigned MS value of 2.25. The optimal reference
model parameter was determined to be r∗ ¼ θ∗; α∗f g ¼ 1:389; 8:033f g with λ ¼ 2:09. The
corresponding PID controller parameters are KC ¼ 3:98, τI ¼ 9:79, and τD ¼ 1:86, and the
resulting closed-loop system has MS = 2.20, which is close to the design target. To show the
advantage of the MR-VRFT method over the previous VRFT method, the reference model
parameter was also determined by minimizing the following VRFT criterion for comparison:

r∗ ¼ argmin
r

JVRFT rð Þ ¼ ~φ � ~Ψ p∗ rð Þ�� ��2
2 (39)

The result was obtained as r∗ ¼ θ∗; α∗f g ¼ 1:481; 9:645f g with λ ¼ 2:41. The corresponding
PID controller parameters are KC ¼ 3:49, τI ¼ 11:7, and τD ¼ 1:77, and the resulting closed-
loop system has MS = 2.07, which deviates from the design target. When a closed-loop system
has an MS value closer to the design target, the closed-loop system matches the reference
model better. By comparing the MS value of the closed-loop systems resulting from the MR-
VRFT and VRFT methods, it clearly indicates that the MR-VRFT method achieves a more
effective model-reference control design than the VRFT method does. Figure 7 shows closed-
loop responses for the initial and MR-VRFT controllers for a unit step set-point change at t = 0
and a unit step load disturbance at t = 50. The control performance evidently improves
considerably after the retuning using the MR-VRFT method.

The proposed PID controller was compared with two PID controllers tuned by the model-
based method of Lee et al. [14] on the basis of the following first-order and second-order
models, respectively:

Gm1 sð Þ ¼ 1
5:766s� 1

e�3:282s

Gm2 sð Þ ¼ 1
5s� 1ð Þ 2:07sþ 1ð Þ e

�0:939s
(40)

Bothmodels provide accurate approximations; however, the second-ordermodel ismore accurate.

PID Control for Industrial Processes14

The control systems using the model-based controllers were tuned to have the same robustness
level ofMS = 2.2. The PID settings are shown inTable 2 and the resulting closed-loop responses are
shown in Figure 7. The values of IAE and TV for all of the controllers are presented in Table 2. As
evident from the results in Table 2 and Figure 7, the proposed MR-VRFTmethod performs better
than the model-based design method with respect to both set-point tracking and disturbance
rejection. In addition, themodel-based controller based on the second-ordermodel provides better
performance than that based on the first-ordermodel, which indicates that themodel-based design
method requires an accurate processmodel to obtain improved PID settings. Because the availabil-
ity of accurate processmodels cannot be guaranteed, the proposed data-basedmethod provides an
obvious advantage in controller design.

5.4. Example 4: application of a biochemical reactor

The biochemical reactor plays a major role in most of the biotechnological and chemical
industries. The MR-VRFT method was applied to the nonlinear biochemical reactor studied
by Vivek and Chidambaram [15]. The bioreactor modeling equations are as follows.

Biomass balance :
dx1
dt

¼ μ�D
� �

x1

Substrate balance :
dx2
dt

¼ D x2f � x2
� �� μx1

Y

Specific growth rate : μ ¼ μmax x2
km þ x2 þ k1x22

(41)

Figure 7. Closed-loop responses for Example 3.
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where x1 is the biomass concentration, x2 is the substrate concentration, x2f is the substrate feed
concentration, and D is the dilution rate. The yield Y is assumed to be a constant. The model
parameters used for the simulation were

μmax ¼ 0:53 h�1; km ¼ 0:12 g=L; k1 ¼ 0:4545 L=g; Y ¼ 0:4; x2f ¼ 4:0 g=L (42)

The nonlinear process has three steady-state operating points for a dilution rate of 0.3 h�1. An
unstable operating region with a steady-state value of (x1s, x2s) = (0.9951, 1.5122) is considered.
The dilution rate is the manipulated variable used to control the biomass concentration at the
unstable steady state. A time delay of 1 h is assumed in the measurement of x1.

Vivek and Chidambaram [15] calculated the PID parameters (see Table 2) on the basis of the
following identified unstable first-order plus time delay model:

Gm sð Þ ¼ �5:5903
5:6125s� 1

e�1:0152s (43)

An initial closed-loop system with the PID controller proposed by Vivek and Chidambaram
[15] was considered to generate the plant data required to tune the controller. The MR-VRFT
method was applied to retune the PID controller by introducing a step change of 10% in the set
point of x1. To simulate realistic conditions, Gaussian white noise, with a standard deviation of
0.005, was added to the measurements as the measurement noise. The noisy closed-loop data
collected with a sampling interval of 0.01 h are shown in Figure 8. Using the reference model
given in Eq. (18) with the design target MS = 2.6, the optimal reference model parameter was
determined to be r∗ ¼ θ∗; α∗f g ¼ 1:084; 3:736f g with λ ¼ 0:966, and the corresponding PID
controller parameters are shown in Table 2.

Figure 8. Noisy closed-loop data used for controller design in Example 4.

PID Control for Industrial Processes16

The proposed controller was compared with the initial model-based controller by simulating the
nonlinear model equations of the bioreactor. Figure 9 shows the closed-loop responses to a step
change of 20% in the set point at t = 0, followed by a step disturbance of 4 g/L in the substrate

Figure 9. Closed-loop responses for Example 4.

Figure 10. Closed-loop responses under variations in the process parameters for Example 4.
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feed concentration x2f at t = 20 h. The corresponding values of IAE and TV, as presented in
Table 2, clearly indicate that the retuned control system using the MR-VRFT method outper-
forms the initial control system. The proposed controller shows a rapid attenuation of the
disturbance. The overshoot in the set-point response for the proposed controller is moderately
large, but the response is less oscillatory with a shorter settling time compared to that of Vivek
and Chidambaram [15] (i.e., the initial controller). It is noted that the excessive overshoot can be
reduced by applying the set-point weighting to the proportional mode of a PID controller.

Figure 10 shows the closed-loop responses of the controllers when a 30% increase in the process
parameters km and k1 has occurred. The response for the controller of Vivek and Chidambaram
[15] became highly oscillatory compared with that of the proposed controller, indicating the
superior robust performance of the proposed controllers. This example demonstrates that the
MR-VRFTmethod is promising for industrial applications.

6. Conclusions

In this chapter, a novel and systematic data-based PID design method based on combined
model-reference and virtual reference feedback tuning is presented.With the optimized reference
model using the model-reference criterion, the optimal PID controller can be efficiently designed
in the framework of VRFT. By choosing an appropriate structure of the reference model, the
proposedMR-VRFTmethod applies to a wide variety of process dynamics and deals with stable,
integrating, and unstable processes using the same unified procedure. Simulation studies show
that PID controllers designed by the MR-VRFT method fulfill the user-defined robustness spec-
ification, indicating that an effective model-reference control design is achieved, and they also
exhibit favorable control performance when compared to the model-based PID controllers.
Therefore, the MR-VRFT method is a promising PID controller design method for industrial
application, and it can be used to improve the performance of existing underperforming PID
controllers through the retuning of the controller parameters using routine operating data.
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Abstract

The specification of controller setting for a standard controller typically requires a trade-off
between set point tracking and disturbance rejection. For this reason, two simple strategies
can be used to adjust the set point and disturbance responses independently. These strate-
gies are referred as controllers that have two degree of freedom. Unfortunately, the tuning
parameters of the model uncertainty at two degree of freedom structure controller are
difficult to obtain. Maximum peak-gain margin (Mp-GM) tuning method has been intro-
duced to obtain the setting parameters of two degree of freedom structure controller based
on model uncertainty. This tuning method is able to obtain reasonable controller parameters
even under process uncertainties on standard two degree of freedom IMC. This research
was conducted to develop maximum peak-gain margin tuning method for another two
degree of freedom structure controller such as two degree of freedom IMC by Kaya [9] and
two degree of freedom PID. The simulation results show that the maximum peak-gain
margin tuning method can give a good target set point tracking, disturbance rejection, and
robustness in two degree of freedom structure controller system.

Keywords: two degree of freedom structure controller, IMC, PID, maximum peak,
gain margin

1. Introduction

The process control is one of the important component parts in industries which is useful to
keep and maintain the operating conditions of processes working on the desired performance.
The development of this issue had begun since 1940. It is characterized by using PID controller
in industries. Nowadays, PID control system is widely used as the basic control technology,
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because the PID controller uses a simple control algorithm [1]. Although the development of
PID controller is rapid, it still does not produce maximum results especially for the process
with large time delay. This is due to the disturbance that is not detected immediately (only can
be detected until a certain time with delay) and also control actions based on the delay that are
not in accordance with the purpose of information and need some time to determine its effects
on the process.

To overcome this weakness, a new structure controller has been developed. This structure
controller is called as internal model control (IMC) controller (Figure 1) [2, 3]. The philos-
ophy of this structure stated that if the process model is an exact representation of the
process that will be controlled, then it is possible to obtain the ideal control in 1DOF-IMC
without any feedback. But in fact, the process model may not be invertible and some
disturbances may enter the system so that the feedback path control is still necessary.
Unfortunately, IMC design is intended only for the set point problem and the disturbance
rejection responses still cannot be expected in many cases. So, this controller provides
a good response for the set point tracking and a very slow response for the disturbance
rejection case [4].

The specification of controller settings for a standard controller typically requires a trade-off
between set point tracking and disturbance rejection. For many single-loop controllers, it is
extremely difficult to obtain the specification in one degree of freedom structure controller
settings. Fortunately, there are two simple strategies that can be used to adjust the set point
and disturbance responses independently. These strategies are referred as controllers with
two degree of freedom structure controller [5]. The design of these control systems is a
multiobjective problem, so that a two degree of freedom (abbreviated as 2DOF) controller
system has more advantages than a one degree of freedom (abbreviated as 1DOF) controller
system. This fact was already stated by Horowitz, but it did not attract the general attention
from engineers for a long time, until 1984, two decades after Horowitz’s work, when a
research to exploit the advantages of the 2DOF structure for PID control systems was
eventually started [6].

Figure 1. The structure of one degree of freedom IMC controller.
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Many researches have proposed new various configurations of 2DOF structure control for PID,
IMC, fuzzy logic controller, etc. Unfortunately, this is not followed by the study of 2DOF
controller tuning method. The research conducted for 2DOF tuning method is still very rare,
especially for the process with uncertainty. Maximum peak-gain margin (Mp-GM) tuning
method has been proposed to obtain setting parameter of 2DOF structure controller based on
model uncertainty. This tuning method is able to obtain the good controller parameter even
under process uncertainties on standard 2DOF IMC structure controller [7]. The stability and
robust Mp-GM tuning method has potential to be implemented into the other 2DOF structure
controllers, both 2DOF PID controller and 2DOF IMC controller. This chapter studies the
analytical procedure of implementation of Mp-GM tuning method to the other 2DOF structure
controller under process uncertainties.

2. Two degree of freedom PID structure controller

For many single-loop controls, disturbance rejection is more precedent to be attained than set
point tracking. Hence, the tuning methods hold a dominant role to reach this goal. Unfortu-
nately, 1DOF structure controller can only arrange one parameter so that a trade-off between
set point tracking and disturbance rejection cannot be reached. If the parameters give good
enough response for set point tracking, it will give a slow response for the disturbance
rejection and vice versa. This leads to the difficulty for stabilizing the control response simul-
taneously between set point tracking and disturbance rejection [5]. To overcome this weakness,
a new simple control strategy has been developed to arrange the set point tracking and
disturbance rejection controller independently without affecting each other. This method is
called as (2DOF) strategy controller. The research of 2DOF strategy control for PID controller
began since 1984. In 2DOF PID structure control, controller which is used to control set point
tracking and disturbance rejections can be in PI, PD, or PID form controller. In 2003, there are
some new variations developed for 2DOF PID structure controller such as 2DOF PID filter set
point as shown in Figure 2 [6].

Figure 2. 2DOF-PID filter set point.
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The structure of 2DOF-PID filter set point was developed by adding filter function in PID
controller conventional (F(s)) that was used for controlling set point tracking, whereas PID
parallel controller with approximate derivative was used for controlling disturbance rejection.
Algorithm of F(s) and C0(s) controller for controlling set point tracking and disturbance rejec-
tion can be seen in Eqs. (1) and (2), respectively.

F sð Þ ¼ 1þ 1� að ÞτI sð Þ þ 1� β
� �

τI sð ÞτDD sð Þ
1þ τI sð Þ þ τI sð ÞτDD sð Þ (1)

C0 sð Þ ¼ kp 1þ 1
τIs

þ τDD sð Þ
� �

(2)

D sð Þ ¼ s
1þ τs

(3)

Another variation of 2DOF-PID that is showed in Figure 3 was developed by added feedback
loop from output y directly to input u which will be compared with conventional PID control-
ler (Cy(s)), which is called as feedback compensator that is used for controlling disturbance
rejection). Cr(s) will be used as set point tracking controller. Algorithm for Cr(s) and Cy(s)
controller was given by Eqs. (4) and (5) [6]:

Cr sð Þ ¼ kp 1� αð Þ þ 1
τIs

þ 1� β
� �

τDD sð Þ
� �

(4)

Cy sð Þ ¼ kp αþ βτDD sð Þ� �
(5)

In 2011, another structure called as 2DOF-PID Vilanova was developed and was given in
Figure 4. Figure 4 shows that Csp(s) is used as set point tracking, Cyd(s) as disturbance
rejection control, and P(s) as transfer function process. Cyd(s) was placed in the feedback loop
to give a significant influence in maintaining stability without depending on the weighting
factor set point tracking. For set point tracking controller, a filter is inserted in the path of the

Figure 3. 2DOF-PID feedback.
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conventional PID controller. Transfer function of Csp and Cyd was given by Eqs. (6) and (7),
respectively [8].

Cr sð Þ ¼ kc βþ 1
τIs

� �
(6)

Cy sð Þ ¼ kc 1þ 1
τIs

þ τD

� �
(7)

where kp is proportional to gain controller, τI the is integral time constant, τD is the derivative
time constant as “basic parameters,” and α and β variables as parameters for 2DOF controller.
The range value of parameters α and β is between 0 and 1. All parameters in 2DOF-PID filter
set point and feedback will be treated as adjustable parameters. The τ parameter in approxi-
mate derivative Eq. (3) is set as τD/δ, where δ is called the derivative gain. The fixed value of δ
can be determined by traditional step. The research stated that the change of δ does not
influence the optimal value of all parameters in this structure drastically [6], while in 2DOF-
PID Vilanova, the controller parameters will be determined by analytical robust tuning (ART)
method. This tuning method used approach of the robustness-performance to determine
controller parameters [8].

Beside 2DOF-PID, research on 2DOF controller also performed on controller with model
principle like 2DOF-IMC. 2DOF IMC (Figure 5) structure controller was developed which
aimed to cover a very slow response for disturbance rejection at 1DOF-IMC. This controller
consists of controller for set point tracking (Gc1) in the open loop and disturbance rejection
(Gc2) in the feedback path as shown in Figure 6. This structure configuration shows if there are
no errors in the model and there are no disturbance enter to the process, it will need open loop
path control only to get the ideal control response where the output will be same with set
point. In fact, none of the models exactly same with the process and disturbance will always
enter to the process in the field so that will be required a feedback loop to overcome these
problems [2].

Figure 4. 2DOF-PID Vilanova.
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PID Vilanova, the controller parameters will be determined by analytical robust tuning (ART)
method. This tuning method used approach of the robustness-performance to determine
controller parameters [8].

Beside 2DOF-PID, research on 2DOF controller also performed on controller with model
principle like 2DOF-IMC. 2DOF IMC (Figure 5) structure controller was developed which
aimed to cover a very slow response for disturbance rejection at 1DOF-IMC. This controller
consists of controller for set point tracking (Gc1) in the open loop and disturbance rejection
(Gc2) in the feedback path as shown in Figure 6. This structure configuration shows if there are
no errors in the model and there are no disturbance enter to the process, it will need open loop
path control only to get the ideal control response where the output will be same with set
point. In fact, none of the models exactly same with the process and disturbance will always
enter to the process in the field so that will be required a feedback loop to overcome these
problems [2].

Figure 4. 2DOF-PID Vilanova.
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y ¼
Gc1Gpysp þ 1� Gc2Gpm

� �
Gd

1þ Gc2 Gp � Gpm
� � (8)

If Gp = Gpm,

e ¼ 1�GpGc2
� �

d� 1�GpGc2
� �

Ysp (9)

From Eq. (9), it can be assumed that Gc2 was designed for disturbance rejection (d). If Gc2 was
designed exactly with Gc1, then the disturbance rejections cannot be eliminated optimally.
Therefore, it is necessary to do tuning to get an optimal control result [2]. Unfortunately, the
research for 2DOF controller tuning method is still extremely rare. Most studies were
conducted only on the development of the new structure configuration of 2DOF structure
controller. As in 2004, a new structure configuration was proposed for 2DOF IMC called as
2DOF IMC Kaya. This structure was designed for controlling integrating process with small
time delays. Besides that, this structure is also used for the tuning of proportional derivative

Figure 5. 2DOF-IMC standard.

Figure 6. 2DOF-IMC Kaya.
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(PD) controller using gain and phase margin stability principle. As show in Figure 6, Gc1 and
Gc2 in 2DOF-IMC Kaya are going to be located in the close loop of the structure. Gc1 will be
used for set point tracking and Gc2 for disturbance rejection [9]. Besides 2DOF IMC controller,
there is another controller that has model principle like Smith Predictor (SP), and nowadays, it
is developed in 2DOF controller form. 2DOF SP structure controller has been applied on the
integrating process with large time delay. The results show that 2DOF SP controller is able to
gain fast and stable response for disturbance rejection [10].

3. Tuning method for two degree of freedom structure controller

The purpose of controller tuning is to determine the controller parameter to obtain appropriate
control parameters in order to achieve stable closed-loop performance robustly. The controller
performance is expected to be stable and robust when the variable control at desired set point
and the disturbance can be eliminated as soon as possible [11]. The proposed 2DOF controller
tuning method has been started since the structure developed in 1984. Tuning of 2DOF
controller is developed in the form of proportional derivative (PD) or proportional integral
derivative (PID) controller. Unfortunately, this tuning did not provide an analytical explana-
tion for the controller parameters. Besides that, there is no guarantee that a stable response and
robust process can be produced [4]. Furthermore, another tuning has been developed for
2DOF PID structure controller with principle multiplication from dominant pole on sensitivity
and complementary sensitivity function [12]. This tuning has only been developed for the
integrating process with small time delay. Additionally, this tuning involves weighting factor
in variables for both proportional and derivative part in PID controller which is used for both
set point tracking and disturbance rejections. In 2008, another research has been done to
develop a tuning for 2DOF PI/PID structure controller with analytical approaching. This
tuning was called as analytical robust tuning (ART), which is also using a weighting factor in
variable of proportional controller for the case with perfect models. Analytical approaching in
this tuning depends on the process being controlled. To control FOPDT process, the propor-
tional integral (PI) controller will be used for set point tracking and disturbance rejection.
Nevertheless, when SOPDT process is to be controlled, the proportional integral derivative
(PID) controller will be used [4]. Tuning for 2DOF-PID filter set point has been done by Zhang
et al. at 2006, but the tuning was used for integrating process and the dead time of process is
approximated with two-order Pade approximation so that the equations become more com-
plicated [13].

For the 2DOF IMC structure controller tuning, most of them are still being developed for the
case with perfect model, where the transfer functions process and model are exactly equal. One
of the researchers who developed a tuning for the case of uncertainties is Brosilow and Joseph.
They used the principle of the resonant peak of the complementary sensitivity function to
develop a tuning for 2DOF IMC structure. The tuning was called as maximum peak (Mp)
tuning [14]. Unfortunately, this tuning can only be used for 1DOF IMC structure. Furthermore,
it can be done by using the maximum peak (Mp) principle that was developed by Brosilow
and Joseph, Stryczek et al. to propose IMCTUNE. This tuning can be implemented not only in
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(PD) controller using gain and phase margin stability principle. As show in Figure 6, Gc1 and
Gc2 in 2DOF-IMC Kaya are going to be located in the close loop of the structure. Gc1 will be
used for set point tracking and Gc2 for disturbance rejection [9]. Besides 2DOF IMC controller,
there is another controller that has model principle like Smith Predictor (SP), and nowadays, it
is developed in 2DOF controller form. 2DOF SP structure controller has been applied on the
integrating process with large time delay. The results show that 2DOF SP controller is able to
gain fast and stable response for disturbance rejection [10].

3. Tuning method for two degree of freedom structure controller

The purpose of controller tuning is to determine the controller parameter to obtain appropriate
control parameters in order to achieve stable closed-loop performance robustly. The controller
performance is expected to be stable and robust when the variable control at desired set point
and the disturbance can be eliminated as soon as possible [11]. The proposed 2DOF controller
tuning method has been started since the structure developed in 1984. Tuning of 2DOF
controller is developed in the form of proportional derivative (PD) or proportional integral
derivative (PID) controller. Unfortunately, this tuning did not provide an analytical explana-
tion for the controller parameters. Besides that, there is no guarantee that a stable response and
robust process can be produced [4]. Furthermore, another tuning has been developed for
2DOF PID structure controller with principle multiplication from dominant pole on sensitivity
and complementary sensitivity function [12]. This tuning has only been developed for the
integrating process with small time delay. Additionally, this tuning involves weighting factor
in variables for both proportional and derivative part in PID controller which is used for both
set point tracking and disturbance rejections. In 2008, another research has been done to
develop a tuning for 2DOF PI/PID structure controller with analytical approaching. This
tuning was called as analytical robust tuning (ART), which is also using a weighting factor in
variable of proportional controller for the case with perfect models. Analytical approaching in
this tuning depends on the process being controlled. To control FOPDT process, the propor-
tional integral (PI) controller will be used for set point tracking and disturbance rejection.
Nevertheless, when SOPDT process is to be controlled, the proportional integral derivative
(PID) controller will be used [4]. Tuning for 2DOF-PID filter set point has been done by Zhang
et al. at 2006, but the tuning was used for integrating process and the dead time of process is
approximated with two-order Pade approximation so that the equations become more com-
plicated [13].

For the 2DOF IMC structure controller tuning, most of them are still being developed for the
case with perfect model, where the transfer functions process and model are exactly equal. One
of the researchers who developed a tuning for the case of uncertainties is Brosilow and Joseph.
They used the principle of the resonant peak of the complementary sensitivity function to
develop a tuning for 2DOF IMC structure. The tuning was called as maximum peak (Mp)
tuning [14]. Unfortunately, this tuning can only be used for 1DOF IMC structure. Furthermore,
it can be done by using the maximum peak (Mp) principle that was developed by Brosilow
and Joseph, Stryczek et al. to propose IMCTUNE. This tuning can be implemented not only in
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the 1DOF and 2DOF structure controller but also on the other structures, such as 1DOF PID
and model state feedback (MSF)-IMC. Unfortunately, IMCTUNE needs partial sensitivity
functions from the transfer function of disturbance which is difficult to be modeled [3]. To
overcome this weakness, in 2013, maximum peak-gain margin (Mp-GM) tuning has been
proposed to obtain setting parameter of 2DOF structure controller based on model uncertainty.
By using maximum value of complementary sensitivity function of 1DOF IMC structure to
determine parameter control for set point tracking and gain margin (GM) values to determine
parameter control for disturbance rejection, this tuning method is able to obtain a good
controller parameter when it is even under process uncertainties on standard 2DOF IMC. The
steps for Mp-GM tuning will be explained more clearly in the next section [7].

4. Maximum peak-gain margin tuning method

One of the newest tuning method that was developed to handle the case control with para-
metric uncertainty is maximum peak-gain margin (Mp-GM) tuning method. This tuning
method consists of three steps with all figure to determine the parameter value of Mp-GM
tuning given in Figure 7. The initial step in Mp-GM tuning is determining the worst case of
uncertainty model. Worst case is a condition when transfer function process is not same with
model. The worst case can be found from the limit of the uncertainty model in terms of upper
and lower on process model parameters. This condition usually occurs at the uncertainty
model with the larger (upper limit) steady-state gain process, the larger the (upper limit) time
delay, the smaller the (lower limit) process time constant. The worst case can be identified as
the biggest maximum value of magnitude of frequency response of complementary sensitivity

Figure 7. Magnitude of |T(jw)| vs. frequency response (w) to get the worst case.
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function which can be seen in the Figure 7. When determining the worst case, the filter time
constant (τ) value will be set equal to the time delay of no error in the model [7].

The second step is specifying the parameter of set point controller (Gc1) using complementary
sensitivity function of 1DOF-IMC structure, based on the maximum peak stability criterion. By
using algorithm of Eq. (10) below:

Gc1 ¼ 1
k
τpsþ 1
λ1sþ 1

(10)

where k is the gain process, τ is the time constant process, and λ1 is the filter time constant
parameter, the parameter λ1 is the parameter of set point controller. The filter time constant
parameter can be obtained by looping the value of λ1 (the filter time constant Gc1) in calculat-
ing complementary sensitivity function so that acquired max T jωð Þj jwill be 1.05 in the range of
frequency ω equal to 10�3–103. For the first looping, λ1 will be set equal to the time delay (θ) of
no error in the model divided by 20. Calculation results are displayed in the graphical fre-
quency form which is shown in Figure 8 [7].

The third step is obtaining parameter of disturbance rejection controller (Gc2) using open loop
transfer function of 2DOF structure controller based on the gain margin criterion. The distur-
bance rejection parameter is obtained by looping the value of α in calculating transfer function
open loop so that the acquired GM will be 2.4. For the first looping, α is set equal to the filter

Figure 8. Magnitude of |T(jw)| vs. frequency response (w) to determine λ1.
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function which can be seen in the Figure 7. When determining the worst case, the filter time
constant (τ) value will be set equal to the time delay of no error in the model [7].
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Figure 9. Nyquist plot to determine λ2 and α.

Figure 10. Comparison of responses between Mp-GM and IMCTUNE on 2 DOF-IMC standard.
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time constant parameter disturbance rejection controller (λ2) by setting ratio of λ2 to λ1 as
much as 0.9. This calculation is using Eq. (11) below:

Gc2 ¼ 1
k
τpsþ 1
λ1sþ 1

αsþ 1
λ2sþ 1

(11)

where λ2 and α are the filter time constant parameter and lead parameter at disturbance
rejection controller, respectively. The result will be plotted into the Nyquist plot as can be seen
in the Figure 9 [7].

To see the results of Mp-GM tuning, the used IMCTUNE will be required as the comparison. To
get parameter controller by IMCTUNE, Mp-tuning software was used [2]. Based on Figure 10, it
can be seen that this tuning method is able to obtain a good controller parameter when it is even
under process uncertainties on standard 2DOF IMC [7].

5. Maximum peak-gain margin tuning method for 2DOF IMC Kaya and
2DOF PID feedback

Four examples of FOPDT cases can be considered to illustrate the use of the Mp-GM tuning
method on 2DOF structure control. The examples cover FOPDT cases model with θ

τ < 1 and
θ
τ > 1 where process time constant or dead time is fixed. The assumption for uncertainty model
is the deviation �20%. As described earlier, the worst case will be determined as the maximum
value of the calculation of complementary sensitivity function of 1DOF-IMC controller that
was given in Eq. (13), with Eq. (12) as process and model transfer function.

Gp ¼ Gpm ¼ ke�θs

τsþ 1
(12)

T jωð Þ ¼ Gc1Gp

1þ Gc1 Gp � Gpm
� � ysp (13)

The first FOPDT case model where the variables are gain and dead time with θ
τ < 1 is described

as below.

Gp ¼ ke�θs

τsþ 1
, 0:8 ≤ k ≤ 1:2, 16 ≤ τ ≤ 24 and 9:6 ≤θ ≤ 12 (14)

Gpm ¼ e�10s

20sþ 1
(15)

Gd ¼ 0:5
2sþ 1

(16)

By using Mp-GM tuning, it is obtained that the worst case of the plant is the condition with
k = 1.2, τ = 16, and θ = 12. The second FOPDT case where the variables are gain and dead time
with θ

τ > 1 is described as below.
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time constant parameter disturbance rejection controller (λ2) by setting ratio of λ2 to λ1 as
much as 0.9. This calculation is using Eq. (11) below:
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where λ2 and α are the filter time constant parameter and lead parameter at disturbance
rejection controller, respectively. The result will be plotted into the Nyquist plot as can be seen
in the Figure 9 [7].

To see the results of Mp-GM tuning, the used IMCTUNE will be required as the comparison. To
get parameter controller by IMCTUNE, Mp-tuning software was used [2]. Based on Figure 10, it
can be seen that this tuning method is able to obtain a good controller parameter when it is even
under process uncertainties on standard 2DOF IMC [7].

5. Maximum peak-gain margin tuning method for 2DOF IMC Kaya and
2DOF PID feedback

Four examples of FOPDT cases can be considered to illustrate the use of the Mp-GM tuning
method on 2DOF structure control. The examples cover FOPDT cases model with θ

τ < 1 and
θ
τ > 1 where process time constant or dead time is fixed. The assumption for uncertainty model
is the deviation �20%. As described earlier, the worst case will be determined as the maximum
value of the calculation of complementary sensitivity function of 1DOF-IMC controller that
was given in Eq. (13), with Eq. (12) as process and model transfer function.

Gp ¼ Gpm ¼ ke�θs

τsþ 1
(12)

T jωð Þ ¼ Gc1Gp

1þ Gc1 Gp � Gpm
� � ysp (13)

The first FOPDT case model where the variables are gain and dead time with θ
τ < 1 is described

as below.

Gp ¼ ke�θs

τsþ 1
, 0:8 ≤ k ≤ 1:2, 16 ≤ τ ≤ 24 and 9:6 ≤θ ≤ 12 (14)

Gpm ¼ e�10s

20sþ 1
(15)

Gd ¼ 0:5
2sþ 1

(16)

By using Mp-GM tuning, it is obtained that the worst case of the plant is the condition with
k = 1.2, τ = 16, and θ = 12. The second FOPDT case where the variables are gain and dead time
with θ

τ > 1 is described as below.
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Gp ¼ ke�θs

τsþ 1
, 0:8 ≤ k ≤ 1:2, 1:6 ≤ τ ≤ 2:4 and 9:6 ≤θ ≤ 12 (17)

Gpm ¼ e�10s

2sþ 1
(18)

where the parameter of the worst case of the plant is the condition with k = 1.2, τ = 2.4, and
θ = 12, respectively. The third FOPDT case model where the variables are gain and process time
constant with θ

τ < 1 is described as below.

Gp ¼ ke�θs

τsþ 1
, 1:6 ≤ k ≤ 2:4, 2:4 ≤ τ ≤ 3:6 and 1:2 ≤θ ≤ 1:8 (19)

Gpm ¼ e�1:5s

3sþ 1
(20)

The worst case plant is obtained under the condition with k = 2.4, τ = 2.4, and θ = 1.8. The
fourth FOPDT case model where the variables are gain and process time constant with θ

τ > 1 is
described as below.

Gp ¼ ke�θs

τsþ 1
, 1:6 ≤ k ≤ 2:4, 2:4 ≤ τ ≤ 3:6 and 6:4 ≤θ ≤ 9:6 (21)

Gpm ¼ e�8s

3sþ 1
(22)

The worst case plant is obtained under the condition with k = 2.4, τ = 3.6, and θ = 9.6.

Parameter value of set point tracking (λ1) of 2DOF-IMC Kaya was also determined by calcula-
tion in Eq. (13), so that acquired maximum value of complementary sensitivity function will be
1.05. The implementation of the Mp-GM tuning in 2DOF-PID feedback has been done with the
same method as the one of 2DOF-IMC Kaya. Therefore, by using Eq. (23) for approximation of
set point tracking, controller form in structure 2DOF-PID feedback was obtained. The value of
filter time constant Gc1 (λ1) of 2DOF-IMC Kaya was also used to get parameter controller in
2DOF-PID feedback.

Cr sð Þ ¼ Gc1 sð Þ
1� GpmGc1 sð Þ (23)

In order to improve the controller’s performance, the dead time can be approximated using a
first-order Taylor series expansion such as Eq. (24);

e�θs ¼ 1� θs (24)

By substituting Eqs. (10) and (12) into the Eq. (23), Eq. (25) can be obtained. Eq. (25) can be
approximated into the proportional integral (PI) controller form as Eq. (26).
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Cr sð Þ ¼ 1
k

τsþ 1
λ1sþ θs

(25)

Cr sð Þ ¼ kc 1þ 1
τIs

� �
(26)

where:

kc ¼ 1
k

τp
λ1 þ θ

τI ¼ τp

To determine the parameter value of λ₂ and α as parameter disturbance rejection controller in
2DOF-IMC Kaya, the same steps are used. By using Eq. (27), one can obtain parameter
disturbance rejection by looping the value of α in calculating transfer function open loop, so
that the acquired GM will be 2.4 by setting ratio of λ2 to λ1 as much as 0.9.

Gol ¼ Gc2Gp þ Gc1 Gp � Gpm
� �

(27)

whereas disturbance rejection controller at 2DOF-PID feedback will have same transfer func-
tion form with controller that is used in 2DOF-IMC Kaya. The transfer function is given in
Eq. (11). As a correction factor, parameter gain of disturbance rejection controller will be
multiplied by 0.5 in 2DOF-IMC Kaya and by 0.3 in 2DOF-PID feedback. Parameter values of
2DOF-IMC Kaya and 2DOF-PID feedback are given in Table 1.

The implementation of Mp-GM tuning method into 2DOF-PID filter set point and Vilanova
structure control has been done with the analogies that of 2DOF-IMC standard, so that one
uses Eq. (29) for approximation of set point tracking controller form in structure 2DOF-PID
filter set point and Eq. (30) for approximation of set point tracking controller form in structure
2DOF-PID Vilanova. The parameter λ1 (the filter time constant) was obtained by using Eq. (13)
so that acquired maximum value of complementary sensitivity function will be 1.05.

Variation of FOPDTcases that used Parameter values of PI for
set point tracking
controller

Parameter values of 2DOF-IMC controller and
disturbance rejection in 2DOF-PID feedback
controller

kc τI λ1 λ2 α

First case 0.7051 20 18.366 16.5294 22.2694

Second case 0.2539 2 14.792 13.3128 16.4128

Third case 0.0807 3 2.776 2.4984 3.3784

Fourth case 0.0759 3 11.772 10.5948 13.0948

Table 1. Parameter values of 2DOF-IMC Kaya and 2DOF-PID feedback.
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tion form with controller that is used in 2DOF-IMC Kaya. The transfer function is given in
Eq. (11). As a correction factor, parameter gain of disturbance rejection controller will be
multiplied by 0.5 in 2DOF-IMC Kaya and by 0.3 in 2DOF-PID feedback. Parameter values of
2DOF-IMC Kaya and 2DOF-PID feedback are given in Table 1.

The implementation of Mp-GM tuning method into 2DOF-PID filter set point and Vilanova
structure control has been done with the analogies that of 2DOF-IMC standard, so that one
uses Eq. (29) for approximation of set point tracking controller form in structure 2DOF-PID
filter set point and Eq. (30) for approximation of set point tracking controller form in structure
2DOF-PID Vilanova. The parameter λ1 (the filter time constant) was obtained by using Eq. (13)
so that acquired maximum value of complementary sensitivity function will be 1.05.

Variation of FOPDTcases that used Parameter values of PI for
set point tracking
controller

Parameter values of 2DOF-IMC controller and
disturbance rejection in 2DOF-PID feedback
controller

kc τI λ1 λ2 α

First case 0.7051 20 18.366 16.5294 22.2694

Second case 0.2539 2 14.792 13.3128 16.4128

Third case 0.0807 3 2.776 2.4984 3.3784

Fourth case 0.0759 3 11.772 10.5948 13.0948

Table 1. Parameter values of 2DOF-IMC Kaya and 2DOF-PID feedback.
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To get the parameter value of λ₂ and α, one can use Eq. (28) as the open-loop transfer function
of 2DOF-IMC standard. By looping the value of α in the calculation of open-loop transfer
function, one can get the acquired GM of 2.4 by setting ratio of λ2 to λ1 as much as 0.9.

Gol ¼ Gc2 Gp � Gpm
� �

(28)

F sð Þ ¼ Gc1 sð Þ
Gc2 sð Þ (29)

Csp sð Þ ¼ Gc1 sð Þ
1� GpmGc2 sð Þ (30)

Substituting Eqs. (10) and (11) into Eq. (29) will give PD controller as set point tracking
controller in 2DOF-PID filter set point;

F sð Þ ¼ λ2sþ 1
αsþ 1

(31)

Substituting Eqs. (10) and (12) into Eq. (30), one can obtain Eq. (32). This equation will be used
to approximate the function into PID series with derivative filter controller form in Eq. (33) as
set point tracking controller in 2DOF-PID Vilanova.

Csp sð Þ ¼ 1
k

λ2τs2 þ λ2 þ τð Þsþ 1
λ1λ2 þ αθð Þs2 þ λ1 þ λ2 � αþ θð Þs (32)

Csp sð Þ ¼ kC
τIsþ 1
τIs

� �
τDsþ 1
AτDsþ 1

� �
(33)

where:

kc ¼ 0:5 x τ
k λ1 þ λ2 þ θ� αð Þ

τI ¼ τ

τD ¼ λ2

A ¼ λ1λ2 þ αθ
λ2 λ1 þ λ2 þ θ� αð Þ

For the disturbance rejection on 2DOF-PID filter set point and Vilanova controller, one can
obtain the same controller form like Eqs. (34) and (35).

C
0 sð Þ ¼ Cyd sð Þ ¼ Gc2 sð Þ

1� GpmGc2 sð Þ (34)

C0 sð Þ ¼ Cyd sð Þ ¼ 1
k

ατs2 þ αþ τð Þsþ 1
λ1λ2 þ αθð Þs2 þ λ1 þ λ2 � αþ θð Þs (35)
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Eq. (35) for disturbance rejection controller will be approximated into PID series with deriva-
tive filter form as Eq. (36)

C0 sð Þ ¼ kC
τIsþ 1
τIs

� �
τDsþ 1
AτDsþ 1

� �
(36)

where:

kc ¼ 0:5 x τ
k λ1 þ λ2 þ θ� αð Þ

τI ¼ τ

τD ¼ α

A ¼ λ1λ2 þ αθ
α λ1 þ λ2 þ θ� αð Þ

The gain parameter controller of PID series with derivative filter that is used on 2DOF-PID
filter set point and 2DOF-PID Vilanova will be multiplied with weighting factor equal to 0.5 as
factor correction. As a comparison to see performance of Mp-GM tuning, analytical robust
tuning (ART) proposed by Vilanova was used [4]. Parameter values of 2DOF-PID filter set
point are given in Table 2 and 2DOF-PID Vilanova is given in Table 3.

The response of 2DOF IMC Kaya and 2DOF-PID which had been tuned with Mp-GM in the
FOPDT case model with variations of ratio of dead time (θ) and process time constant (τ) for θ
fixed is presented in Figures 11 and 12, while τ fixed is presented in Figure 12. The worst case
in FOPDT case with ratio dead time and time constant process lower than 1 was found from
the larger (upper limit) steady-state gain process, the larger the (upper limit) time delay, the
smaller the (lower limit) process time constant. On the other hand, in FOPDT case with ratio
dead time and process time constant more than 1, the worst case was found on the upper limit
on all parameters of process model. Figures 11 and 12 with the control action of 2DOF-IMC
Kaya that was tuned by Mp-GM showed that processes with ratio dead time and process time
constant more than 1 at fixed dead time gave smaller IAE and faster settling time toward
desired set point. On the other hand, processes with ratio less than 1 produce sluggish control

Variation of FOPDTcases that used Parameter values of 2DOF-
IMC standard

Parameter values of PID series with derivative
for disturbance rejection controller

λ1 λ2 Α kc τI τD A

First case 12.35 11.115 20.295 1.5186 20 20.295 1.2789

Second case 11.365 16.4128 23.7185 0.2539 2 23.7185 1.8922

Third case 1.854 1.6686 3.0486 0.7599 3 3.0486 1.2739

Fourth case 9.543 8.5887 20.1687 0.2516 3 20.1687 2.0231

Table 2. Parameter values of 2DOF-PID filter set point.
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Eq. (35) for disturbance rejection controller will be approximated into PID series with deriva-
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The gain parameter controller of PID series with derivative filter that is used on 2DOF-PID
filter set point and 2DOF-PID Vilanova will be multiplied with weighting factor equal to 0.5 as
factor correction. As a comparison to see performance of Mp-GM tuning, analytical robust
tuning (ART) proposed by Vilanova was used [4]. Parameter values of 2DOF-PID filter set
point are given in Table 2 and 2DOF-PID Vilanova is given in Table 3.

The response of 2DOF IMC Kaya and 2DOF-PID which had been tuned with Mp-GM in the
FOPDT case model with variations of ratio of dead time (θ) and process time constant (τ) for θ
fixed is presented in Figures 11 and 12, while τ fixed is presented in Figure 12. The worst case
in FOPDT case with ratio dead time and time constant process lower than 1 was found from
the larger (upper limit) steady-state gain process, the larger the (upper limit) time delay, the
smaller the (lower limit) process time constant. On the other hand, in FOPDT case with ratio
dead time and process time constant more than 1, the worst case was found on the upper limit
on all parameters of process model. Figures 11 and 12 with the control action of 2DOF-IMC
Kaya that was tuned by Mp-GM showed that processes with ratio dead time and process time
constant more than 1 at fixed dead time gave smaller IAE and faster settling time toward
desired set point. On the other hand, processes with ratio less than 1 produce sluggish control

Variation of FOPDTcases that used Parameter values of 2DOF-
IMC standard

Parameter values of PID series with derivative
for disturbance rejection controller

λ1 λ2 Α kc τI τD A

First case 12.35 11.115 20.295 1.5186 20 20.295 1.2789

Second case 11.365 16.4128 23.7185 0.2539 2 23.7185 1.8922

Third case 1.854 1.6686 3.0486 0.7599 3 3.0486 1.2739

Fourth case 9.543 8.5887 20.1687 0.2516 3 20.1687 2.0231

Table 2. Parameter values of 2DOF-PID filter set point.

Maximum Peak-Gain Margin (Mp-GM) Tuning Method for Two Degree of Freedom PID Controller
http://dx.doi.org/10.5772/intechopen.74293

35



action. The reason was that at processes with ratio less than 1, it produced bigger process time
constant, so that it gave sluggish control action. While for the case in which process time
constant is fixed, then processes with ratio dead time and process time constant greater than 1
produce smaller IAE and faster settling time to reach desired set point. Processes with ratio
less than 1 have a smaller dead time so that it can produce faster control action with smaller
overshoot. The use of the same transfer function of disturbance rejection cause control action
that was produced in 2DOF-PID feedback was almost the same as response that was resulted
in 2DOF-IMC Kaya controller.

Using the 2DOF-IMC standard that was tuned by Mp-GMmethod to be applied for 2DOF-PID
filter set point and 2DOF-PID Vilanova causes both of the them to produce somewhat the same
response. Figures 13 and 14 showed that the processes with ratio dead time and process time

Cases Mp-GM tuning Parameter values of PI
controller using ART
methodParameter values of PID series with

derivative for set point tracking
controller

Parameter values of PID series with
derivative for disturbance rejection
controller

kc τI τD A kc τI τD A kc τI

1st 1.5186 20 11.115 2.3241 1.5186 20 20.295 1.2728 0.582 19.867

2nd 0.2539 2 10.229 4.3877 0.2539 2 23.719 1.8922 0.116 1.7867

3rd 0.7598 3 1.6686 2.3275 0.7598 3 3.0486 1.2739 0.291 2.98

4th 0.2515 3 8.5887 4.7508 0.2515 3 20.169 2.0231 0.091 2.7055

Table 3. Parameter values of 2DOF-PID Vilanova.

Figure 11. Responses of 2DOF-IMC Kaya with dead time fixed.
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constant more than 1 produce a faster response with smaller IAE and overshoot in either dead
time or process time constant is fixed. The output response of 2DOF-PID Vilanova structure
which was tuned by Mp-GM tuning and ART method showed that Mp-GM produced control
action with smaller overshoot and smoother than ART method even though Mp-GM method
gave bigger IAE value with dead time fixed. On the other hand, Mp-GM gives sluggish control
action with bigger IAE than ARTmethod in case FOPDTwith ratio dead time and process time

Figure 12. Responses of 2DOF-IMC Kaya with fixed time constant process.

Figure 13. Responses of 2DOF-PID Vilanova with fixed dead time.
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constant larger than 1 at process time constant fixed. As for the case with ratio less than 1, Mp-
GM and ART methods gave somewhat same results. All cases showed that Mp-GM can give
same and better response with an easier way than ART method. But in overall, all of the
FOPDT cases that are used showed good results for set point tracking and disturbance rejec-
tion both on 2DOF-IMC Kaya or all of 2DO-PID controller that used in this research. This can
be seen from controller response, which can be returned to its desired condition when there is a
change of the set point and the load. The weighting factor which was added as a correction
factor at the equation for calculation of parameter gain controller can have faster response, so
that it needs less time to reach a desired set point. These results show that Mp-GM tuning
method can be implemented in other 2DOF structure controllers.

6. Mp-GM implementation for simulation of temperature control on CSTR
reactor using Simulink and HYSYS

In the previous section, the Mp-GM tuning has been proven capable of being implemented on
2DOF controllers to control various processes using Simulink simulation to see the control
response. Furthermore, Mp-GM method will also be used for tuning the control of a real
process modeling using HYSYS program. The process to be used as a model is the process of
hydrolysis of propylene oxide to produce propylene glycol. The hydrolysis reaction is
assumed to be of one-order with the expected 50% reaction conversion. Propylene oxide as
limiting reactant and water as an excess reactant. This reaction is a type of exothermic reaction,
so that a CSTR reactor with coolant is used as a heat absorbing medium generated from the
reaction. Design data for the CSTR are provided in Table 4.

Figure 14. Responses of 2 DOF-PID Vilanova with fixed time constant process.
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Based on the derivation of the equation, one can obtain the function transfer equation in the
form of second-order Laplace transform for the influence of the feed temperature to the
reaction temperature as in Eq. (37)

Gp ¼ 1, 4582sþ 12; 249
s2 þ 3, 1937sþ 13, 1413

(37)

To facilitate the implementation of the Mp-GM tuning method, the second-order function
transfer equation is approximated by the Skogestad’s “Half rule”

Gp ¼ e�0,12s

0; 082s2 þ 0; 261sþ 1, 0728
(38)

Furthermore, to obtain the first-order function transfer form, Eq. (38) is then approximated by
Panda method so that the Eq. (39)

Gp ¼ 0; 932e�0;202s

0; 243sþ 1
(39)

The inconsistency parameter is assumed to be �20% of the transfer of the process model
function in Eq. (39) as 0.7456 ≤ kc ≤ 1.1184; 0.1616 ≤ τ ≤ 0. 2424 dan 0.1944 ≤ θ ≤ 0.2916.

Input Output

Manual Simulation Error (%)

The concentration of propylene oxide (lbmol/ft3) 0.132 0.066 0.06587 0.002

The concentration of propylene glycol (lbmol/ft3) — 0.066 0.06613 0.002

Temperature (�F) 60 102.64 102.64 —

Pressure (psia) 16.17 16.17 16.17 —

Energy Coolant (Btu/hr) �7.837 x 105 —

Table 4. The simulation data of input and output of CSTR reactor on propylene oxide hydrolysis process to produce
propylene glycol.

Figure 15. Steady-state simulation of propylene oxide hydrolysis process to produce propylene glycol using CSTR
reactor with HYSYS.
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Based on transfer function of process, the value of process model parameters, respectively, for
kp, τp, and θ is 3.22, 0.97, and 0.15 was obtained. The parameter values for the worst case
process are each of 3.864, 0.776, and 0.18.

Based on the simulation using Simulink and HYSYS software, the control result profile for
disturbance change +20% from the propylene oxide feed temperature is given in Figures 16
and 17. Figures 16 and 17 show that the resulting control profile gives almost the same result.
From simulation using Simulink and HYSYS, it is shown that the use of Mp-GM tuning gives
faster control response to achieve stability with smaller IAE compared with autotuner method.

Figure 16. Comparison of temperature control responses in the process of hydrolysis of propylene oxide with CSTR
reactor with disturbance +20% change in feed temperature simulation Simulink.

Figure 17. Comparison of temperature control responses in the process of hydrolysis of propylene oxide with CSTR
reactor with disturbance +20% change in feed temperature simulation HYSYS.
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Based on the calculation with Simpson rule method 1/3 obtained IAE value for 2DoF PID
controller with autotuner and 2DoF PID controller with a Mp-GM tuning of 1221.721 and
528.3267. Similar results were obtained from the control response profile with disturbance
�20% of the propylene oxide feed temperature as given in Figures 16 and 17. The control
response with 2DOF PID controller with Mp-GM tuning gives better results when viewed
from the control response profile or the resulting IAE value. Where based on Simpson rule
method 1/3 obtained IAE value for 2DoF PID controller with autotuner and Mp-GM tuning is
equal to 924.2412.

7. Conclusion

A maximum peak-gain margin (Mp-GM) tuning method has been used for 2DOF-IMC Kaya
and 2DOF-PID. The simulation results show that the maximum peak gain margin tuning
method can give a good target set point tracking, disturbance rejection, and robustness in
system 2DOF structure controller with a little addition step. All of the process of FOPDTwith
different ratio of dead time and process time constant showed good responses. Mp-GM tuning
is able to give better response than analytical robust tuning (ART) at the 2DOF-PID Vilanova
structure control. The implementations of Mp-GM tuning on another model controller like
2DOF-IMC Kaya follow the similar steps by adding a correction factor of 0.5 multiplied by
transfer function disturbance rejection. The implementations of Mp-GM tuning on another
2DOF-PID consist of three ways:

1. Determining the worst case as maximum value of complementary sensitivity function of
1DOF-IMC controller.

2. Determining parameter λ1 by looping λ1 in calculating Eq. (13) so that acquired maximum
value of complementary sensitivity function will be 1.05 (for first looping, λ1 will be set
equal to θ), while for parameter λ₂ and α will be obtained by looping the value of α in
calculating Eq. (27) for 2DOF-PID feedback and Eq. (28) for 2DOF-PID filter set point and
Vilanova so that the acquired GM will be 2.4 by setting ratio of λ2 to λ1 as much as 0.9.

3. Substituting the value of k, τ, θ, λ1, λ2, and α into the previous equations that have been
derived to obtain parameter value of PID controller (kc, τI, τD, A) that will be used in
2DOF-PID controller.

Author details

Juwari Purwo Sutikno1*, Nur Hidayah2 and Renanto Handogo1

*Address all correspondence to: juwari@chem-eng.its.ac.id and joecheits@yahoo.com

1 Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya,
Indonesia

2 Department of Industrial Engineering, Sari Mulia University, Banjarmasin, Indonesia

Maximum Peak-Gain Margin (Mp-GM) Tuning Method for Two Degree of Freedom PID Controller
http://dx.doi.org/10.5772/intechopen.74293

41
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A maximum peak-gain margin (Mp-GM) tuning method has been used for 2DOF-IMC Kaya
and 2DOF-PID. The simulation results show that the maximum peak gain margin tuning
method can give a good target set point tracking, disturbance rejection, and robustness in
system 2DOF structure controller with a little addition step. All of the process of FOPDTwith
different ratio of dead time and process time constant showed good responses. Mp-GM tuning
is able to give better response than analytical robust tuning (ART) at the 2DOF-PID Vilanova
structure control. The implementations of Mp-GM tuning on another model controller like
2DOF-IMC Kaya follow the similar steps by adding a correction factor of 0.5 multiplied by
transfer function disturbance rejection. The implementations of Mp-GM tuning on another
2DOF-PID consist of three ways:

1. Determining the worst case as maximum value of complementary sensitivity function of
1DOF-IMC controller.

2. Determining parameter λ1 by looping λ1 in calculating Eq. (13) so that acquired maximum
value of complementary sensitivity function will be 1.05 (for first looping, λ1 will be set
equal to θ), while for parameter λ₂ and α will be obtained by looping the value of α in
calculating Eq. (27) for 2DOF-PID feedback and Eq. (28) for 2DOF-PID filter set point and
Vilanova so that the acquired GM will be 2.4 by setting ratio of λ2 to λ1 as much as 0.9.

3. Substituting the value of k, τ, θ, λ1, λ2, and α into the previous equations that have been
derived to obtain parameter value of PID controller (kc, τI, τD, A) that will be used in
2DOF-PID controller.

Author details

Juwari Purwo Sutikno1*, Nur Hidayah2 and Renanto Handogo1

*Address all correspondence to: juwari@chem-eng.its.ac.id and joecheits@yahoo.com

1 Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya,
Indonesia

2 Department of Industrial Engineering, Sari Mulia University, Banjarmasin, Indonesia

Maximum Peak-Gain Margin (Mp-GM) Tuning Method for Two Degree of Freedom PID Controller
http://dx.doi.org/10.5772/intechopen.74293

41



References

[1] Mazzini HM, Santos DFG. Two degree of freedom PID control for integrating process. In:
XVIII Congreso Brasilleiro Automatica/12 a 16 Setembro; Bonito-MS, Brasil; 2010

[2] Morari M, Zafiriou E. Robust Process Control. Englewood Cliffs, NJ: Prentice –Hall; 1989.
Books

[3] Stryczek K, Laiseca M, Brosilow C, Leitman MG. Tuning and design of single-input, single-
output control systems for parametric uncertainty. AICHE Journal. 2000;46(8):1616-1631

[4] ThamMing T. Part of a Set of LectureNotes on Introduction to Robust Control. Chemical and
Process Engineering University of Newcastle Upon Tyne; 2002. Manual in pdf. https://pdfs.
semanticscholar.org/9642/e32f84e5e0697f5c2ebc3ad9b86474b24e17.pdf?_ga=2.89823387.1035
637983.1531365135-1361555406.1531365135

[5] Seborg DE, Edgar TF, Mellicamp DA. Process Dynamic and Control. 2nd ed. New Jersey:
John Wiley & Sons, Inc.; 2004. Books

[6] ArakiM, TaguchiH. Two degree of freedom PID controller. International Journal of Control,
Automation and Systems. 2003;1(4):401-411

[7] Juwari AA, Badhrulhisham CS, Yee MR. A new tuning method for two-degree-of-freedom
internal model control under parametric uncertainty. Process systems engineering and
process safety. Chinese Journal of Chemical Engineering. 2013;21(9):1030-1037

[8] Vilanova R, Alvaro VM, Arrieta O. Analytical robust tuning approach for two degree of
freedom. Engineering Letters. 2011;19(3):EL_19_3_08

[9] Kaya I. Two-degree-of-freedom IMC structure and controller design for integrating pro-
cesses based on gain and phase-margin specifications. IEEE Proceedings-Control Theory
and Applications. 2004;151(4):481-487

[10] Liu T, Gao F. Enhanced IMC-based load disturbance rejection design for integrating
processes with slow dynamics. In: Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems; Lueven Belgium; 2010

[11] Marlin TE. Process control: Designing processes and control systems for dynamic perfor-
mance. In: Chemical Engineering Series. 2nd ed. Boston: McGrawHill; 2000. Books

[12] Viteckova M, Vitecer A. Two degree of freedom controller tuning for integral plus time
delays plants. ICIC Express Letters. 2008;2(3):225-229

[13] Zhang J, Wang J, Zhao Z. A novel two degree of freedom PID controller for integrator and
dead time process. In: Proceedings of the 6th World Congress on Intelligent Control and
Automation; Dalian, China. 2006

[14] Brosilow C, Joseph B. Techniques of model-based control. In: Prentice Hall International
Series in the Physical and Chemical Engineering Science. New Jersey: Prentice Hall PTR;
2001. Books

PID Control for Industrial Processes42

Chapter 3

Optimum PI/PID Controllers Tuning via an
Evolutionary Algorithm

Jorge-Humberto Urrea-Quintero,
Jesús-Antonio Hernández-Riveros and
Nicolás Muñoz-Galeano

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74297

Provisional chapter

Optimum PI/PID Controllers Tuning via an Evolutionary
Algorithm

Jorge-Humberto Urrea-Quintero,
Jesús-Antonio Hernández-Riveros and
Nicolás Muñoz-Galeano

Additional information is available at the end of the chapter

Abstract

In this chapter, it is demonstrated that when using advanced evolutionary algorithms,
whatever the adopted system model (SOSPD, nonminimum phase, oscillatory or
nonlinear), it is possible to find optimal parameters for PID controllers satisfying simulta-
neously the behavior of the system and a performance index such as absolute integral
error (IAE). The Multidynamics Algorithm for Global Optimization (MAGO) is used to
solve the control problem with PID controllers. MAGO is an evolutionary algorithm
without parameters, with statistical operators, and for the optimization, it does not need
the derivatives, what makes it very effective for complex engineering problems. A selec-
tion of some representative benchmark systems is carried out, and the respectively two-
degree-of-freedom (2DoF) PID controllers are tuned. A power electronic converter is
adopted as a case study and based on its nonlinear dynamical model, a PI controller is
tuned. In all cases, the control problem is formulated as a constrained optimization
problem and solved using MAGO. The results found are outstanding.

Keywords: evolutionary algorithms, PID controller, nonlinear model, MAGO, 2DoF
PID-based controllers, SOSPD model, control benchmark, power electronic converters

1. Introduction

It is well known that most of 90% of the closed-loop implemented strategies are PI or PID
controllers [1]. Since its introduction in 1940, researchers’ interest has been focused on the
development on simplistic but effective tuning rules for PID controllers [2]. For any industrial
plant without resonant characteristics, a SOSPD model can represent the dominant dynamics
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and that a suitable PID tuning can be achieved [3]. Moreover, Åström and Hägglund proposed
a collection of systems models with various difficulties of control that are suitable for testing
PID controllers. Those models illustrate systems with various difficulties of control. Neverthe-
less, SOSPD representation is limited, and a wide range of process dynamics can be found, for
example, process with a non-minimum phase behavior or oscillations. Therefore, PID control
traditional tuning is not well suited for most of the complex problems. The trend remains in
the so-called two degree-of-freedom (2DoF) PID controllers [4]. The 2DoF PID control struc-
ture has two components: one to tune the controller considering the regulatory closed-loop
mode performance and robustness and the second one to improve the servo-control behavior.
2DoF PID tuning could be also based on a system transfer function. A 2DoF PID control
structure is the option to achieve simultaneously a good system performance as both regulator
and servomechanism modes what is a challenge of control requirements for a traditional PID
controller.

Evolutionary algorithms (EA) have been proved to be an effective tool to optimal PID control-
lers tuning [5]. In general, EA is considered as an optimal algorithm that is able to deal with ill-
defined problem domain such as multimodality, discontinuity, time variance, randomness and
noise [6]. MAGO as EA does not work with genetic operators. MAGO operators are inspired in
numerical derivation applying the Nelder-Mead method, the estimation distribution of the
actual population and a statistical quality control technique. Additionally, MAGO has only
two tunable parameters: the population size and the number of generations. These two param-
eters could be removed, but they remain because in real situations they help to understand the
context of the problem. Particularly, MAGO has been successfully tested for the tuning of PID
controllers based on SOSPD models [7]. MAGO has been used in various fields of engineering
[8], LQR tuning [9–11], drivers in tuning PID controllers [12, 13], showing successful solutions
in each case applied.

Despite a lot of works in PID controllers tuning, a general concern remains because real
processes have multiple operational constraints, and some exhibit high nonlinear dynamics
that cannot successfully be captured by transfer functions. This chapter shows that advanced
evolutionary algorithms are suitable to solve the control problem with PID controllers when
the control system is formulated as an optimization problem. The evolutionary algorithm
MAGO is used to solve the control problem with traditional PI and with 2DoF PID controllers.
MAGO is an evolutionary algorithm without parameters; it is based on statistical operators
and does not need the derivatives of the nonlinear optimization problems. Furthermore, this
chapter demonstrates that whatever system model is adopted (SOSPD, non-minimum phase,
oscillatory or nonlinear), it is possible to find optimal parameters for PID controllers satisfying
the system behavior and a performance index such as absolute integral error (IAE). This
chapter is divided into four sections as follows: in Section 2, the general problem statement of
PID controllers tuning is introduced and formulated as an optimization problem. In Section 3,
the (EA) MAGO is presented and the evolutionary design procedure of a PID controller is
established. In Section 4, a selection of some representative benchmark systems from [5] is
carried out, and the respectively 2DoF PID controllers are tuned. In Section 5, a power elec-
tronic converter (DC-DC buck converter) is adopted as a case study, and based on its nonlinear
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dynamical model, a PI controller is tuned by MAGO. PI-MAGO controller performance is
tested, and a comparison is carried out against a PID controller tuned by the pole placement
method. In all cases, the control problem is formulated as a constrained optimization problem
and solved using MAGO.

2. Problem statement

2.1. Control system representation

Consider a single-input single-output (SISO) control system depicted in Figure 1. In this
system, r tð Þ is the set-point, u tð Þ is the controller output signal, d tð Þ is the load-disturbance,
and y tð Þ is the controller process variable.
The system output y tð Þ simultaneously depends on r tð Þ and d tð Þ. Two operation modes should
be taken into account for the controller design, one as a servomechanism and the other as a
regulator. In the first case, the control objective is to track the set-point r tð Þ. In the second case,
the control objective is to reject a change in d tð Þwhile y tð Þ is keeping as close as possible to r tð Þ.
However, it is not always possible to specify distinctly performance criteria for both operation
modes. Furthermore, a trade-off between servo-regulator modes must be specified as in the
traditional PID controller tuning case.

The general form to represent a dynamical system is given by Eqs. (1) and (2), where x is the
system state and _x is the time derivative of the system state; y tð Þ is the system output and
functions g and h are nonlinear and represent the dynamical system evolution.

_x tð Þ ¼ g x; u; dð Þ (1)

y tð Þ ¼ h x; u; dð Þ (2)

Through Taylor linearization, it is possible to obtain a linear representation of Eqs. (1) and (2)
given by Eqs. (3) and (4). Where A∈Rnxn is the system Jacobian, B∈Rnxm is an input matrix,

C∈Rkxn is an output matrix and D∈Rkxm is a direct transmission matrix.

Figure 1. Single-input single-output (SISO) feedback control system.
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_x ¼ Axþ Bu (3)

y ¼ CxþDu (4)

Eqs. (3) and (4) are usually employed in control theory for designing multi-input multi-output
(MIMO) control structures. However, transfer functions are a better approximation for design-
ing SISO control structures. The realization given by Eq. (5) is obtained by applying the
Laplace transform to Eqs. (3) and (4).

G sð Þ ¼ C
adj sI � Að ÞT
det sI � Að Þ

" #
BþD (5)

On the other hand, the control policy of an ideal PID controller is expressed by Eq. (6).
Where, e tð Þ ¼ r tð Þ � y tð Þ, Kp is the proportional gain, Ti is the integral time constant and Td is
the derivative time constant.

u tð Þ ¼ Kp e tð Þ þ 1
Ti

ðt
0
e τð Þdτþ Td

de tð Þ
dt

� �
(6)

PID frequency domain representation is given by Eq. (7).

C sð Þ ¼ Kp 1þ 1
Tis

þ Tds
� �

(7)

The closed-loop transfer function form for the system represented in Figure 1 considering a
PID controller is given by Eq. (8).

Y sð Þ ¼ C sð ÞG sð Þ
1þ C sð ÞG sð ÞR sð Þ þ G sð Þ

1þ C sð ÞG sð ÞD sð Þ (8)

If the system operates in the servomechanism mode, that is when disturbances are not consid-
ered, the output signal can be represented as in Eq. (9).

Ysp sð Þ ¼ C sð ÞG sð Þ
1þ C sð ÞG sð ÞR sð Þ (9)

If the system operates in the regulation mode, that is when the signal reference is not consid-
ered, the output signal can be represented as in Eq. (10).

Yld sð Þ ¼ G sð Þ
1þ C sð ÞG sð ÞD sð Þ (10)

From Eqs. (9) and (10), both control objectives cannot be optimally achieved because the
controller parameters simultaneously affect the servo and regulatory operation modes. At
most, a tuning PID controller process can be carried out by establishing a servo-regulatory
trade-off to obtain a closed-loop performance that is not optimum for neither servo nor
regulatory operation modes, but it has an acceptable performance in both cases.
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Controllers of the form given by either Eqs. (6) or (7) are known as one degree of freedom
(1DoF) PID controllers. Two degree of freedom (2DoF) PID controllers are an alternative to
overcome the 1DoF PID controller operation limitations. The control policy for a 2DoF PID
controller is given by Eqs. (11) or (12). Considering the proportional, integral and derivative
error, respectively in Eqs. (13), (14) and (15), where Kp is the proportional gain, Ti is the integral
time constant and Td is the derivative time constant, β and γ are the set-point weights. In
Figure 2, the 2DoF PID controller block diagram is depicted.

u tð Þ ¼ Kp ep tð Þ þ 1
Ti

ðt
0
ei εð Þdεþ Td

ded
dt

� �
(11)

C2DoF sð Þ ¼ Kp ep sð Þ þ 1
Tis

ei sð Þ þ Tded sð Þ
� �

(12)

with

ep sð Þ ¼ βR sð Þ � Y sð Þ (13)

ei sð Þ ¼ R sð Þ � Y sð Þ (14)

ed sð Þ ¼ γR sð Þ � Y sð Þ (15)

The parameter γ is more frequently applied as a derivative mode switch (0 or 1) for R sð Þ. γ is
normally set to zero to avoid an extreme instantaneous change in the controller output when a
set-point step change occurs. In consequence, Eq. (12) can be arranged as in Eq. (16).

C2DoF sð Þ ¼ Kp βþ 1
Tis

� �
R Sð Þ � Kp 1þ 1

Tis
þ Tds

� �
Y sð Þ (16)

A compact form of Eq. (16) consistent with Figure 2 is given by Eq. (17). Where Cr sð Þ, is the set-
point controller transfer function and Cy sð Þ is the feedback controller transfer function.

C2DoF sð Þ ¼ Cr sð ÞR sð Þ � Cy sð ÞY sð Þ (17)

The closed-loop transfer function form for the system represented in Figure 2 considering a
2DoF PID controller is given by Eq. (18). Where Myr sð Þ is the transfer function from the set

Figure 2. 2DoF closed-loop block diagram.
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PID controller is given by Eq. (8).

Y sð Þ ¼ C sð ÞG sð Þ
1þ C sð ÞG sð ÞR sð Þ þ G sð Þ

1þ C sð ÞG sð ÞD sð Þ (8)

If the system operates in the servomechanism mode, that is when disturbances are not consid-
ered, the output signal can be represented as in Eq. (9).

Ysp sð Þ ¼ C sð ÞG sð Þ
1þ C sð ÞG sð ÞR sð Þ (9)

If the system operates in the regulation mode, that is when the signal reference is not consid-
ered, the output signal can be represented as in Eq. (10).

Yld sð Þ ¼ G sð Þ
1þ C sð ÞG sð ÞD sð Þ (10)

From Eqs. (9) and (10), both control objectives cannot be optimally achieved because the
controller parameters simultaneously affect the servo and regulatory operation modes. At
most, a tuning PID controller process can be carried out by establishing a servo-regulatory
trade-off to obtain a closed-loop performance that is not optimum for neither servo nor
regulatory operation modes, but it has an acceptable performance in both cases.
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Controllers of the form given by either Eqs. (6) or (7) are known as one degree of freedom
(1DoF) PID controllers. Two degree of freedom (2DoF) PID controllers are an alternative to
overcome the 1DoF PID controller operation limitations. The control policy for a 2DoF PID
controller is given by Eqs. (11) or (12). Considering the proportional, integral and derivative
error, respectively in Eqs. (13), (14) and (15), where Kp is the proportional gain, Ti is the integral
time constant and Td is the derivative time constant, β and γ are the set-point weights. In
Figure 2, the 2DoF PID controller block diagram is depicted.

u tð Þ ¼ Kp ep tð Þ þ 1
Ti

ðt
0
ei εð Þdεþ Td

ded
dt

� �
(11)

C2DoF sð Þ ¼ Kp ep sð Þ þ 1
Tis

ei sð Þ þ Tded sð Þ
� �

(12)

with

ep sð Þ ¼ βR sð Þ � Y sð Þ (13)

ei sð Þ ¼ R sð Þ � Y sð Þ (14)

ed sð Þ ¼ γR sð Þ � Y sð Þ (15)

The parameter γ is more frequently applied as a derivative mode switch (0 or 1) for R sð Þ. γ is
normally set to zero to avoid an extreme instantaneous change in the controller output when a
set-point step change occurs. In consequence, Eq. (12) can be arranged as in Eq. (16).

C2DoF sð Þ ¼ Kp βþ 1
Tis

� �
R Sð Þ � Kp 1þ 1

Tis
þ Tds

� �
Y sð Þ (16)

A compact form of Eq. (16) consistent with Figure 2 is given by Eq. (17). Where Cr sð Þ, is the set-
point controller transfer function and Cy sð Þ is the feedback controller transfer function.

C2DoF sð Þ ¼ Cr sð ÞR sð Þ � Cy sð ÞY sð Þ (17)

The closed-loop transfer function form for the system represented in Figure 2 considering a
2DoF PID controller is given by Eq. (18). Where Myr sð Þ is the transfer function from the set

Figure 2. 2DoF closed-loop block diagram.
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point to the controlled output (servo-control closed-loop), and Myd sð Þ is the transfer function
from load-disturbance to the controller output (regulatory control closed-loop).

Y sð Þ ¼ Myr sð ÞR sð Þ þMydD sð Þ (18)

With

Myr sð Þ ¼ Cr sð ÞG sð Þ
1þ Cy sð ÞG sð Þ (19)

Myd ¼ G sð Þ
1þ Cy sð ÞG sð Þ (20)

From Eqs. (19) and (20), both control objectives can be achieved separately because of the
possibility of tuning two different controllers, one for each operation mode.

2.2. Optimum control problem formulation

The usual criterion for tuning a controller is directly related to the desired closed-loop
system response. Integral performance indexes allow quantifying the closed-loop system
performance due to a unit step load disturbance. Most common employed indexes are
integral of absolute error (IAE) (see Eq. (21)) and integral of absolute control action u tð Þ
(IAU) (see Eq. (22)).

IAE ¼
ð∞
0

e tð Þj jdt (21)

IAU ¼
ð∞
0

eu tð Þj jdt (22)

For the PID case, e tð Þ and eu tð Þ, Eqs. (21) and (22), respectively, can be calculated as
e tð Þ ¼ r tð Þ � y t;θð Þ and eu tð Þ ¼ u0 � u t;θð Þ, where u0 is the initial condition θ ¼ Kp Ti Td

� �
.

The load disturbance may enter at many different places, and extreme cases occur when it
enters at the process input or output. However, when a feedback error appears, integral
performance indexes evaluate the controller performance indistinctly, whereas load distur-
bance appears [14]. The abovementioned fact is the main motivation to adopt integral perfor-
mance indexes.

The integrated error for a unit step disturbance at the process input is the inverse of the
controller integral gain, IE ¼ 1=ki. For a unit step output disturbance, it is instead, IE ¼ 1=Kki,
where K is the static gain of the process. When the closed-loop system is well-damped, IE ≈ IAE
are approximately the same [1]. The criteria IE and IAE are widely employed to measure
controllers performance. IAE and IAU performance indexes are initially adopted in this work
because of its interpretability from the PID controller parameters, but other criteria could also
been used.
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The controller tuning process that minimizes an integral performance index can be seen as an
optimization problem where the ultimate goal is to find a controller parameters combination
such that the value of an Integral Performance Index is minimized.

For the 1DoF PID controller, the optimal tuning problem consists of minimizing the objective
function given by Eq. (23), where the minimum is the result of obtaining a suitable combina-
tion of the 1DoF PID parameters θ ¼ Kp Ti Td

� �
.

Minθ JIAE ¼
Xtk f

tk

e tkð Þj j
( )

(23)

Subject to a process model (see Eqs. (1)–(5)), a control action (see Eq. 6) and

Kpmin
≤Kp ≤Kpmax

Timin ≤Ti ≤Timax

Tdmin ≤Td ≤Tdmax

Similarly, for the 2DoF PID controller, the optimal problem consists of minimizing the objec-
tive function given by Eq. (24), where the minimum is the result of obtaining a suitable
combination of the 2DoF PID parameters θ ¼ Kp Ti Td β

� �
.

Minθ JIAEþIAU ¼
Xtkf

tk

e tkð Þj j þ
Xtk f

tk

eu tkð Þj j
( )

(24)

Subject to a process model (see Eqs. (1)–(5)), a control action (see Eq. 11) and

Kpmin
≤Kp ≤Kpmax

Timin ≤Ti ≤Timax

Tdmin ≤Td ≤Tdmax

βmin ≤ β ≤ βmax

3. Tuning of PID controllers using an evolutionary algorithm

From the observation of living beings, we can see that these reproduce, adapt, and evolve in
relation to the environment where they develop. Some of the characteristics acquired during
life may be inheritable by the next generation. The synthetic theory of evolution has been able
to explain these processes and biological variations in detail [15]. This theory bases on genes as
units of inheritance transfer, that is, functional units of basic information for the development
of an organism. The genetic material of an individual is in its genotype. The genotype consists
of an organization of hierarchical structures of genes. The complex information contained in
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point to the controlled output (servo-control closed-loop), and Myd sð Þ is the transfer function
from load-disturbance to the controller output (regulatory control closed-loop).
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1þ Cy sð ÞG sð Þ (20)

From Eqs. (19) and (20), both control objectives can be achieved separately because of the
possibility of tuning two different controllers, one for each operation mode.

2.2. Optimum control problem formulation

The usual criterion for tuning a controller is directly related to the desired closed-loop
system response. Integral performance indexes allow quantifying the closed-loop system
performance due to a unit step load disturbance. Most common employed indexes are
integral of absolute error (IAE) (see Eq. (21)) and integral of absolute control action u tð Þ
(IAU) (see Eq. (22)).
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IAU ¼
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0

eu tð Þj jdt (22)

For the PID case, e tð Þ and eu tð Þ, Eqs. (21) and (22), respectively, can be calculated as
e tð Þ ¼ r tð Þ � y t;θð Þ and eu tð Þ ¼ u0 � u t;θð Þ, where u0 is the initial condition θ ¼ Kp Ti Td

� �
.

The load disturbance may enter at many different places, and extreme cases occur when it
enters at the process input or output. However, when a feedback error appears, integral
performance indexes evaluate the controller performance indistinctly, whereas load distur-
bance appears [14]. The abovementioned fact is the main motivation to adopt integral perfor-
mance indexes.

The integrated error for a unit step disturbance at the process input is the inverse of the
controller integral gain, IE ¼ 1=ki. For a unit step output disturbance, it is instead, IE ¼ 1=Kki,
where K is the static gain of the process. When the closed-loop system is well-damped, IE ≈ IAE
are approximately the same [1]. The criteria IE and IAE are widely employed to measure
controllers performance. IAE and IAU performance indexes are initially adopted in this work
because of its interpretability from the PID controller parameters, but other criteria could also
been used.
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The controller tuning process that minimizes an integral performance index can be seen as an
optimization problem where the ultimate goal is to find a controller parameters combination
such that the value of an Integral Performance Index is minimized.

For the 1DoF PID controller, the optimal tuning problem consists of minimizing the objective
function given by Eq. (23), where the minimum is the result of obtaining a suitable combina-
tion of the 1DoF PID parameters θ ¼ Kp Ti Td

� �
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Minθ JIAE ¼
Xtk f
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e tkð Þj j
( )

(23)

Subject to a process model (see Eqs. (1)–(5)), a control action (see Eq. 6) and

Kpmin
≤Kp ≤Kpmax

Timin ≤Ti ≤Timax

Tdmin ≤Td ≤Tdmax

Similarly, for the 2DoF PID controller, the optimal problem consists of minimizing the objec-
tive function given by Eq. (24), where the minimum is the result of obtaining a suitable
combination of the 2DoF PID parameters θ ¼ Kp Ti Td β
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.

Minθ JIAEþIAU ¼
Xtkf

tk

e tkð Þj j þ
Xtk f

tk

eu tkð Þj j
( )

(24)

Subject to a process model (see Eqs. (1)–(5)), a control action (see Eq. 11) and

Kpmin
≤Kp ≤Kpmax

Timin ≤Ti ≤Timax

Tdmin ≤Td ≤Tdmax

βmin ≤ β ≤ βmax

3. Tuning of PID controllers using an evolutionary algorithm

From the observation of living beings, we can see that these reproduce, adapt, and evolve in
relation to the environment where they develop. Some of the characteristics acquired during
life may be inheritable by the next generation. The synthetic theory of evolution has been able
to explain these processes and biological variations in detail [15]. This theory bases on genes as
units of inheritance transfer, that is, functional units of basic information for the development
of an organism. The genetic material of an individual is in its genotype. The genotype consists
of an organization of hierarchical structures of genes. The complex information contained in

Optimum PI/PID Controllers Tuning via an Evolutionary Algorithm
http://dx.doi.org/10.5772/intechopen.74297

49



the genotype is expressed in the phenotype, that is, the visible characteristics and functionality
of individuals. In the evolutionary process, the occurrence of small variations in the phenotypes,
apparently random and without a clear purpose, is recognized. Such variations which are
usually calledmutations prove their efficacy in the light of the environment and prevail through
the selection of the individual, or otherwise they disappear. The natural needing to produce
offspring motivates the selection of individuals. Because of a severe competition for reproduc-
tion, which only the fittest individuals achieve, it is assumed that the offspring overcome their
parents by inheriting their mixed characteristics. When resources in the environment become
insufficient, only the fittest individuals will have a better chance of survival and reproduce. The
selective pressure on individuals of a species makes them continually improve with respect to
its environment. Evolutionary algorithms (EA) emulate the synthetic theory of evolution.

As natural evolution, an EA begins with an initial set of potential solutions to a specific
problem. This set can be composed at random in a delimited searching space or using infor-
mation of the problem. EA include operators that select and create new individuals. Crossover
operator exchange of genetic material among “parents” to generate new “sons,” and the
mutation operator makes small variations. The new set of possible solutions is evaluated using
a “fitness” function. When evaluating, the fittest are favored, leaving them as new “parents.”
The process is cyclically repeated to find the best solution to the problem in a delimited
searching space.

EA encompass different approaches that transfer the behavior of adaptation and evolution of
species, giving rise to several methods. Among the most popular approaches are genetic
algorithms, genetic programming, evolutionary strategies, and evolutionary programming.
Nowadays, EA are not only based in the biological evolution, rather EA are identified as
algorithms that search iteratively for a solution through a population in evolution. Some of
the main reasons for new optimization heuristics are the need to identify the interrelationships
between the variables used to represent individuals according to the coding applied and the
need to reduce the own parameters of the classical EA. New EA use operators different to the
genetic ones. Some of those algorithms are differential evolution, estimation of distribution
algorithms, and the multidynamics algorithm for global optimization.

Differential evolution at first glance is not based on any natural process. The proportional
difference of two randomly chosen individuals from the population is added to a third indi-
vidual, also randomly chosen. From this differential mutation, a fourth individual appears.
This individual is compared against its parent, the third one. The best of them is selected to the
next generation. The process is repeated until a stop criterion [16].

Estimation of distribution algorithms also bases their search on populations that evolve. The
new population is recreated in each generation from the probability distribution obtained from
the best individuals of the previous generation. The interrelationships between the variables
are expressed explicitly through that distribution. There are no crossing or mutation operators.
The process is repeated until a stop criterion [17].

In MAGO, a differential crossover is applied between the target individual and its mutant coming
from a numerical derivation. A tournament chooses the best of them. The interrelationships
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among the variables are explicit through a distribution of the population in each generation. The
new population is sampled from a set composed of the best individuals until now, the historical
trend and other individuals completely new. Next, this algorithm is explained in detail.

3.1. Multidynamics algorithm for global optimization

EA emulates the mechanisms of natural selection and genetic inheritance inspiring from the
Neo-Darwinian theory of biological evolution. EA have evolved themselves to treat with
artificial evolution processes. MAGO is a good example of this evolution. MAGO does not
work with genetic operators [18]. MAGO starts with a random initial population on a search
space bounded by the problem. To guarantee diversity and increase the exploitation of the
search space, MAGO creates new individuals by means of three different subgroups of
the population simultaneously. Each group has its own dynamics: a normal distribution over
the searching space, a conservation mechanism of the best individual, and a strategy for
maintaining diversity [19]. Because introducing statistics operators, MAGO provides a strong
way to demonstrate the evolution. The mutation based on numerical derivation, generalizes
the searching space where MAGO can acts. MAGO takes advantage of the concept of control
limits [20] to produce individuals on each generation simultaneously from the three different
subgroups. The size of the population is fixed, but the cardinality of each subgroup changes in
each generation according to the first, second and third deviation of the actual population,
respectively. The exploration is performed creating new individuals from these three subpop-
ulations, individuals that are governed by any of their dynamics, the exploration is performed.
For the exploitation, MAGO, looking for the goal, uses a greedy criterion in the first subset.

MAGO is evolutionary in the sense that works with a population of possible solutions ran-
domly distributed throughout the searching space approaching iteratively to the final solution.
MAGO is autonomous in the sense that it regulates its own behavior and does not need human
intervention. Unlike other EA, MAGO has only two parameters: the population size and the
number of generations. These two parameters could be removed, but they remain because in
real situations they help to understand the context of the problem.

In each generation, MAGO divides the population into three subgroups. To know how many
individuals will belong to each subgroup, the actual entire population is observed as having a
normal distribution. The average location, the first, second and third dispersion of the whole
population are calculated to form the three groups. To each subgroup is assigned many
individuals as the cardinality of each different level of standard deviation. Each group has its
own evolution. The cardinality of these subgroups changes autonomously in each generation.

The subgroup named Emerging Dynamics (G1) creates a subpopulation of individuals around
the individual with better characteristics; this group is the evolutionary elite of each genera-
tion, that is, the fittest individuals contributing with their genes to the next generation. The
Crowd Dynamics (G2) creates a group of individuals but around the current population mean,
configuring the historical trend. This dynamic is applied to the largest portion of the popula-
tion, and it is always close to the emerging dynamics, but never close enough to be con-
founded. These two dynamics could be merged within a same territory only until there are
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the genotype is expressed in the phenotype, that is, the visible characteristics and functionality
of individuals. In the evolutionary process, the occurrence of small variations in the phenotypes,
apparently random and without a clear purpose, is recognized. Such variations which are
usually calledmutations prove their efficacy in the light of the environment and prevail through
the selection of the individual, or otherwise they disappear. The natural needing to produce
offspring motivates the selection of individuals. Because of a severe competition for reproduc-
tion, which only the fittest individuals achieve, it is assumed that the offspring overcome their
parents by inheriting their mixed characteristics. When resources in the environment become
insufficient, only the fittest individuals will have a better chance of survival and reproduce. The
selective pressure on individuals of a species makes them continually improve with respect to
its environment. Evolutionary algorithms (EA) emulate the synthetic theory of evolution.
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mutation operator makes small variations. The new set of possible solutions is evaluated using
a “fitness” function. When evaluating, the fittest are favored, leaving them as new “parents.”
The process is cyclically repeated to find the best solution to the problem in a delimited
searching space.

EA encompass different approaches that transfer the behavior of adaptation and evolution of
species, giving rise to several methods. Among the most popular approaches are genetic
algorithms, genetic programming, evolutionary strategies, and evolutionary programming.
Nowadays, EA are not only based in the biological evolution, rather EA are identified as
algorithms that search iteratively for a solution through a population in evolution. Some of
the main reasons for new optimization heuristics are the need to identify the interrelationships
between the variables used to represent individuals according to the coding applied and the
need to reduce the own parameters of the classical EA. New EA use operators different to the
genetic ones. Some of those algorithms are differential evolution, estimation of distribution
algorithms, and the multidynamics algorithm for global optimization.

Differential evolution at first glance is not based on any natural process. The proportional
difference of two randomly chosen individuals from the population is added to a third indi-
vidual, also randomly chosen. From this differential mutation, a fourth individual appears.
This individual is compared against its parent, the third one. The best of them is selected to the
next generation. The process is repeated until a stop criterion [16].

Estimation of distribution algorithms also bases their search on populations that evolve. The
new population is recreated in each generation from the probability distribution obtained from
the best individuals of the previous generation. The interrelationships between the variables
are expressed explicitly through that distribution. There are no crossing or mutation operators.
The process is repeated until a stop criterion [17].

In MAGO, a differential crossover is applied between the target individual and its mutant coming
from a numerical derivation. A tournament chooses the best of them. The interrelationships
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among the variables are explicit through a distribution of the population in each generation. The
new population is sampled from a set composed of the best individuals until now, the historical
trend and other individuals completely new. Next, this algorithm is explained in detail.

3.1. Multidynamics algorithm for global optimization

EA emulates the mechanisms of natural selection and genetic inheritance inspiring from the
Neo-Darwinian theory of biological evolution. EA have evolved themselves to treat with
artificial evolution processes. MAGO is a good example of this evolution. MAGO does not
work with genetic operators [18]. MAGO starts with a random initial population on a search
space bounded by the problem. To guarantee diversity and increase the exploitation of the
search space, MAGO creates new individuals by means of three different subgroups of
the population simultaneously. Each group has its own dynamics: a normal distribution over
the searching space, a conservation mechanism of the best individual, and a strategy for
maintaining diversity [19]. Because introducing statistics operators, MAGO provides a strong
way to demonstrate the evolution. The mutation based on numerical derivation, generalizes
the searching space where MAGO can acts. MAGO takes advantage of the concept of control
limits [20] to produce individuals on each generation simultaneously from the three different
subgroups. The size of the population is fixed, but the cardinality of each subgroup changes in
each generation according to the first, second and third deviation of the actual population,
respectively. The exploration is performed creating new individuals from these three subpop-
ulations, individuals that are governed by any of their dynamics, the exploration is performed.
For the exploitation, MAGO, looking for the goal, uses a greedy criterion in the first subset.

MAGO is evolutionary in the sense that works with a population of possible solutions ran-
domly distributed throughout the searching space approaching iteratively to the final solution.
MAGO is autonomous in the sense that it regulates its own behavior and does not need human
intervention. Unlike other EA, MAGO has only two parameters: the population size and the
number of generations. These two parameters could be removed, but they remain because in
real situations they help to understand the context of the problem.

In each generation, MAGO divides the population into three subgroups. To know how many
individuals will belong to each subgroup, the actual entire population is observed as having a
normal distribution. The average location, the first, second and third dispersion of the whole
population are calculated to form the three groups. To each subgroup is assigned many
individuals as the cardinality of each different level of standard deviation. Each group has its
own evolution. The cardinality of these subgroups changes autonomously in each generation.

The subgroup named Emerging Dynamics (G1) creates a subpopulation of individuals around
the individual with better characteristics; this group is the evolutionary elite of each genera-
tion, that is, the fittest individuals contributing with their genes to the next generation. The
Crowd Dynamics (G2) creates a group of individuals but around the current population mean,
configuring the historical trend. This dynamic is applied to the largest portion of the popula-
tion, and it is always close to the emerging dynamics, but never close enough to be con-
founded. These two dynamics could be merged within a same territory only until there are
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sufficient and necessary conditions to ensure a full exploration of the searching space, usually
at the end of the evolutionary process. The Accidental Dynamics (G3) is a small group created
by quantum speciation. It is established in isolation from individuals of the other two dynam-
ics generation after generation. This portion of the population is always formed spontaneously
and contains entirely new individuals. MAGO uses the covariance matrix of the population of
each generation to establish a distribution of exploration. With the Accidental Dynamics, the
main diagonal of the covariance matrix is different from zero, ensuring numerical stability of
the evolutionary process. Because in each generation, the population is treated for its division
by a normal distribution for its division according to the first, second, and third deviation, the
subgroups G1, G2, and G3 not interbreed.

Emerging Dynamics: This subset is created with the N1 fittest individuals in each genera-
tion. The N1 fittest individuals within the first standard deviation of the average location of
the current population of individuals move in a line toward the best one of the entire
population, in a kind of mutation that incorporate information from the best of all. The
mutation and selection of individuals who have obtained the best values in their objective
function is based on the simplex search method of numerical derivation [21]. MAGO uses
only two individuals for this mutation, the best one and the trial one. If this movement
generates a better individual, this one passes to the next generation; otherwise, its predeces-
sor passes on with no changes. This method does not require gradient information for the
derivation.

The fittest individuals are ordered from the best one. Test individuals are created bringing
them closer to the best one, following the rule in Eq. (25):

x jð Þ
T ¼ x jð Þ

i þ F jð Þ � x jð Þ
B � x jð Þ

i

� �
(25)

where x jð Þ
B is the best individual of generation j and x jð Þ

i is the selected fittest individual. F jð Þ is a
matrix that includes information about the covariance of the problem variables, Eq. (26),
including information about the interrelationships of the variables in the actual generation.
The covariance matrix of the current population considers the effect of the evolution, and
Eq. (25) propagates it on new individuals.

F jð Þ ¼ S jð Þ

S jð Þ
���

���
(26)

where S jð Þ is the sample covariance matrix of the individual population in generation j.

Crowd Dynamics: The number of individuals of this subgroup corresponds to the cardinality of
the second deviation of the normal distribution of the actual population. This subgroup has the
role of exploring the searching space in a neighborhood close to the population mean. If the

population mean and dispersion matrix for generation j are x jð Þ
M and S jð Þ, then the Crowd

Dynamics individuals are created from a uniform distribution on the hyper-rectangle-

LB jð Þ;UB jð Þ
h i

, see Eqs. (27) and (28). The diagonal of the population dispersion matrix of the

generation j, described by Eq. (29).

PID Control for Industrial Processes52

LB jð Þ ¼ x jð Þ
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
(27)

UB jð Þ ¼ x jð Þ
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
(28)

diag S jð Þ
� �

¼ S jð Þ
11 S jð Þ

22 … S jð Þ
m

h iT
(29)

Initially, the neighborhood around the mean may be large, but as evolution proceeds, this
neighborhood is reduced, and the population mean is getting closer to the optimal but follow-
ing on another path.

Accidental Dynamics: This group is a smaller one in relation to its impacts on the population. N3
new individuals are created from a uniform distribution over the whole search space, as in the
initial population. The two dynamics mentioned above concentrate the population around
their local optima. To maintain diversity, MAGO introduces new individuals in each genera-
tion with the accidental dynamic, sampling a uniform distribution throughout the search
space. This dynamic also ensures the numerical stability of the covariance dispersion matrix.
The accidental dynamics always guarantees the diversity and dispersion of the population,
even if the other two groups already have converged. Following, the pseudo code of MAGO is
presented.

MAGO Pseudo Code.

1: j ¼ 0. Initial Generation.
2: Random initial population generation uniformly distributed over the searching space.
3: repeat
4: Evaluate each individual with the objective function.
5: Calculate the population covariance matrix and the first, second and third dispersion.
6: Calculate the cardinalities N1, N2 and N3 of the groups G1, G2 and G3.
7: Select N1 fittest individuals, modify them according to Eq. (25), translate the winners toward the best one and make

them compete. Pass the fittest to the next generation jþ 1.

8: Sample N2 individuals from a uniform distribution in hyper rectangle LB jð Þ;UB jð Þ
h i

and pass them to generation

jþ 1.
9: Sample N3 individuals from a uniform distribution over the whole search space and pass them to generation jþ 1.

10: j ¼ jþ 1
11: until an ending criterion is satisfied

Cardinalities. For control tables, if the process is outside the control limits, then it is
assumed that the process is out of order. The next step in MAGO is a type of variance
decomposition, inspired by the well-known variance analysis (ANOVA). Consider the

population dispersion matrix of generation j, S jð Þ and its diagonal diag S jð Þ
� �

. If Pob jð Þ is

the set of possible solutions in generation j, then three groups can be defined as in Eqs
(30), (31), and (32). If N1, N2, and N3 are the cardinalities of the sets G1, G2, and G3, then
the cardinality of the Emerging Dynamics, Crowd Dynamics and Accidental Dynamics are
set, respectively.
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sufficient and necessary conditions to ensure a full exploration of the searching space, usually
at the end of the evolutionary process. The Accidental Dynamics (G3) is a small group created
by quantum speciation. It is established in isolation from individuals of the other two dynam-
ics generation after generation. This portion of the population is always formed spontaneously
and contains entirely new individuals. MAGO uses the covariance matrix of the population of
each generation to establish a distribution of exploration. With the Accidental Dynamics, the
main diagonal of the covariance matrix is different from zero, ensuring numerical stability of
the evolutionary process. Because in each generation, the population is treated for its division
by a normal distribution for its division according to the first, second, and third deviation, the
subgroups G1, G2, and G3 not interbreed.

Emerging Dynamics: This subset is created with the N1 fittest individuals in each genera-
tion. The N1 fittest individuals within the first standard deviation of the average location of
the current population of individuals move in a line toward the best one of the entire
population, in a kind of mutation that incorporate information from the best of all. The
mutation and selection of individuals who have obtained the best values in their objective
function is based on the simplex search method of numerical derivation [21]. MAGO uses
only two individuals for this mutation, the best one and the trial one. If this movement
generates a better individual, this one passes to the next generation; otherwise, its predeces-
sor passes on with no changes. This method does not require gradient information for the
derivation.

The fittest individuals are ordered from the best one. Test individuals are created bringing
them closer to the best one, following the rule in Eq. (25):

x jð Þ
T ¼ x jð Þ

i þ F jð Þ � x jð Þ
B � x jð Þ

i

� �
(25)

where x jð Þ
B is the best individual of generation j and x jð Þ

i is the selected fittest individual. F jð Þ is a
matrix that includes information about the covariance of the problem variables, Eq. (26),
including information about the interrelationships of the variables in the actual generation.
The covariance matrix of the current population considers the effect of the evolution, and
Eq. (25) propagates it on new individuals.

F jð Þ ¼ S jð Þ

S jð Þ
���

���
(26)

where S jð Þ is the sample covariance matrix of the individual population in generation j.

Crowd Dynamics: The number of individuals of this subgroup corresponds to the cardinality of
the second deviation of the normal distribution of the actual population. This subgroup has the
role of exploring the searching space in a neighborhood close to the population mean. If the

population mean and dispersion matrix for generation j are x jð Þ
M and S jð Þ, then the Crowd

Dynamics individuals are created from a uniform distribution on the hyper-rectangle-

LB jð Þ;UB jð Þ
h i

, see Eqs. (27) and (28). The diagonal of the population dispersion matrix of the

generation j, described by Eq. (29).
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LB jð Þ ¼ x jð Þ
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
(27)

UB jð Þ ¼ x jð Þ
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
(28)

diag S jð Þ
� �

¼ S jð Þ
11 S jð Þ

22 … S jð Þ
m

h iT
(29)

Initially, the neighborhood around the mean may be large, but as evolution proceeds, this
neighborhood is reduced, and the population mean is getting closer to the optimal but follow-
ing on another path.

Accidental Dynamics: This group is a smaller one in relation to its impacts on the population. N3
new individuals are created from a uniform distribution over the whole search space, as in the
initial population. The two dynamics mentioned above concentrate the population around
their local optima. To maintain diversity, MAGO introduces new individuals in each genera-
tion with the accidental dynamic, sampling a uniform distribution throughout the search
space. This dynamic also ensures the numerical stability of the covariance dispersion matrix.
The accidental dynamics always guarantees the diversity and dispersion of the population,
even if the other two groups already have converged. Following, the pseudo code of MAGO is
presented.

MAGO Pseudo Code.

1: j ¼ 0. Initial Generation.
2: Random initial population generation uniformly distributed over the searching space.
3: repeat
4: Evaluate each individual with the objective function.
5: Calculate the population covariance matrix and the first, second and third dispersion.
6: Calculate the cardinalities N1, N2 and N3 of the groups G1, G2 and G3.
7: Select N1 fittest individuals, modify them according to Eq. (25), translate the winners toward the best one and make

them compete. Pass the fittest to the next generation jþ 1.

8: Sample N2 individuals from a uniform distribution in hyper rectangle LB jð Þ;UB jð Þ
h i

and pass them to generation

jþ 1.
9: Sample N3 individuals from a uniform distribution over the whole search space and pass them to generation jþ 1.

10: j ¼ jþ 1
11: until an ending criterion is satisfied

Cardinalities. For control tables, if the process is outside the control limits, then it is
assumed that the process is out of order. The next step in MAGO is a type of variance
decomposition, inspired by the well-known variance analysis (ANOVA). Consider the

population dispersion matrix of generation j, S jð Þ and its diagonal diag S jð Þ
� �

. If Pob jð Þ is

the set of possible solutions in generation j, then three groups can be defined as in Eqs
(30), (31), and (32). If N1, N2, and N3 are the cardinalities of the sets G1, G2, and G3, then
the cardinality of the Emerging Dynamics, Crowd Dynamics and Accidental Dynamics are
set, respectively.
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G1 ¼ x∈Pob jð Þ=x jð Þ
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
≤ x ≥ x jð Þ

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r� �
(30)

G2 ¼ x∈Pob jð Þ=x jð Þ
M � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
≤ x ≥ x jð Þ

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r� �
(31)

G3 ¼ x∈Pob jð Þ=x ≤ x jð Þ
M � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
; x ≥ x jð Þ

M þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r� �
(32)

where, XM jð Þ is the mean of the actual population and Pob jð Þ ¼ G1⋃G2⋃G3.

This way of defining the elements of each group is dynamical in nature and autonomous in
MAGO. Cardinalities depend on the dispersion of the whole population in generation j.

3.2. Design of PI/PID controllers via an evolutionary algorithm

A feedback controller is a device that automatically manipulates a predetermined variable to
ensure the balance of the system around an operating point. It compares the actual value of the
controlled variable to its desired value (feedback) obtaining an error signal to calculate the
control action so that it maintains or returns the system to the point of operation [9].

The output, u tð Þ, (control action) is a composite of three effects, Kp, the proportional action, Ti,
the integral time and, Td, the derivative time, which are calculated based on the error. An
optimal PID controller consists of adjusting its parameters Kp, Ti, and Td so that a performance
criterion (error between the actual output of the plant regarding the desired value and/or effort
control) is minimized. MAGO is a real-valued evolutionary algorithm, very efficient and
effective instrument to solve problems in continuous domain. It has been chosen as a tool for
estimating the parameters of a controller that minimizes an integral performance index. The
representation of the evolutionary individual is a vector containing the controller parameters,
as positive values in a continuous domain. See Table 1.

The fitness function for the optimization problem of a 1DoF PID controller is defined in
Eq. (33). The error is calculated for each point of time, tk, throughout the measurement horizon
as the difference between the system output and the reference signal.

J θð Þ ¼ J Kp;Ti;Td
� � ¼ Minθ JIAE ¼

Xtkf

tk

e tkð Þj j
( )

(33)

A complete analysis of the methods of tuning controllers based on SOSPD was made in [23,
24]. Each tuning rule for PID controllers has restrictions on the behavior of the plant, expressed

Kp ∈R Ti ∈R Td ∈R β∈R

Table 1. Structure of the evolutionary individual.
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in the range of validity, and has only been applied to a certain group of processes. In general,
those rules are based on several relationships and/or conditions of the parameters defining the
process model. Most methods for optimal tuning of SOSPD systems require, from experiments
carried out directly on the plant, additional critical system information. Readers are referred to
[25] for a good compilation of the PID tuning rules and [26] for a complete analysis of the
different tuning rules characteristics and features. It is not always possible to perform experi-
ments such as reaction curves and closed-loop tests because the extreme stress and oscillations
may create instability and damage to the system. This scenario shows that a general rule for
tuning PID controllers must be sought. A tuning method that best satisfies the operation
requirements of each problem and ensures optimal values for the controller parameters
according to the 2DoF PID chosen criterion. This situation could be reduced to an optimization
problem consisting of minimizing an objective function. A suitable combination of the three
parameters required by the PID controller will be the result of minimizing a performance
criterion. This is the approach taken in this chapter.

MAGO has shown a great capacity to optimize nonlinear dynamical problems in the continu-
ous domain. Because that, it has been selected for tuning several optimal 2DoF PID controllers.
Next section is concerned to optimal 2DoF PID controllers satisfying an integral performance
index and not requiring additional system information coming from experiments on the plant.

Figure 3. Flowchart of the MAGO algorithm for PI/PID controllers tuning.
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G1 ¼ x∈Pob jð Þ=x jð Þ
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
≤ x ≥ x jð Þ

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r� �
(30)

G2 ¼ x∈Pob jð Þ=x jð Þ
M � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
≤ x ≥ x jð Þ

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r� �
(31)

G3 ¼ x∈Pob jð Þ=x ≤ x jð Þ
M � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r
; x ≥ x jð Þ

M þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag S jð Þ

� �r� �
(32)

where, XM jð Þ is the mean of the actual population and Pob jð Þ ¼ G1⋃G2⋃G3.

This way of defining the elements of each group is dynamical in nature and autonomous in
MAGO. Cardinalities depend on the dispersion of the whole population in generation j.

3.2. Design of PI/PID controllers via an evolutionary algorithm

A feedback controller is a device that automatically manipulates a predetermined variable to
ensure the balance of the system around an operating point. It compares the actual value of the
controlled variable to its desired value (feedback) obtaining an error signal to calculate the
control action so that it maintains or returns the system to the point of operation [9].

The output, u tð Þ, (control action) is a composite of three effects, Kp, the proportional action, Ti,
the integral time and, Td, the derivative time, which are calculated based on the error. An
optimal PID controller consists of adjusting its parameters Kp, Ti, and Td so that a performance
criterion (error between the actual output of the plant regarding the desired value and/or effort
control) is minimized. MAGO is a real-valued evolutionary algorithm, very efficient and
effective instrument to solve problems in continuous domain. It has been chosen as a tool for
estimating the parameters of a controller that minimizes an integral performance index. The
representation of the evolutionary individual is a vector containing the controller parameters,
as positive values in a continuous domain. See Table 1.

The fitness function for the optimization problem of a 1DoF PID controller is defined in
Eq. (33). The error is calculated for each point of time, tk, throughout the measurement horizon
as the difference between the system output and the reference signal.

J θð Þ ¼ J Kp;Ti;Td
� � ¼ Minθ JIAE ¼

Xtkf

tk

e tkð Þj j
( )

(33)

A complete analysis of the methods of tuning controllers based on SOSPD was made in [23,
24]. Each tuning rule for PID controllers has restrictions on the behavior of the plant, expressed

Kp ∈R Ti ∈R Td ∈R β∈R

Table 1. Structure of the evolutionary individual.
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in the range of validity, and has only been applied to a certain group of processes. In general,
those rules are based on several relationships and/or conditions of the parameters defining the
process model. Most methods for optimal tuning of SOSPD systems require, from experiments
carried out directly on the plant, additional critical system information. Readers are referred to
[25] for a good compilation of the PID tuning rules and [26] for a complete analysis of the
different tuning rules characteristics and features. It is not always possible to perform experi-
ments such as reaction curves and closed-loop tests because the extreme stress and oscillations
may create instability and damage to the system. This scenario shows that a general rule for
tuning PID controllers must be sought. A tuning method that best satisfies the operation
requirements of each problem and ensures optimal values for the controller parameters
according to the 2DoF PID chosen criterion. This situation could be reduced to an optimization
problem consisting of minimizing an objective function. A suitable combination of the three
parameters required by the PID controller will be the result of minimizing a performance
criterion. This is the approach taken in this chapter.

MAGO has shown a great capacity to optimize nonlinear dynamical problems in the continu-
ous domain. Because that, it has been selected for tuning several optimal 2DoF PID controllers.
Next section is concerned to optimal 2DoF PID controllers satisfying an integral performance
index and not requiring additional system information coming from experiments on the plant.

Figure 3. Flowchart of the MAGO algorithm for PI/PID controllers tuning.
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With MAGO, the optimization of 2DoF PID controllers is made in only one stage and
simultaneously for the regulator and servomechanism modes. The flowchart for tuning of
PID controller using MAGO is shown in Figure 3. In this chapter, it is not included a
convergence analysis of the MAGO; however, its convergence has been previously demon-
strated in [18, 19].

4. 2DoF PID controllers tuning on benchmark plants

A 2DoF PID controller attempts simultaneously achieve good closed-loop servo-regulatory
dynamical responses. Most of the recent literature working on 2DoF PID controllers had been
based on both First Order Systems plus Time Delay (FOSPD) and Second Order plus Time
Delay (SOSPD) models with satisfactory results [27–30].

In [22], a set of system models as a benchmark suitable for testing PID controllers was
proposed. FOSPD and SOSPD were included in the benchmark. This set of system models
presents different challenges of control because PID controllers are not well suited for all
of them. From the best of our knowledge, none of the PID controller tuning rules applies
to obtain suitable values for its parameters for all the systems in that benchmark.

In this chapter, nine different system models are taken from the benchmark and 2DoF PID
controllers are designed, one for each system model. The 2DoF PID controller parameters
obtained here are compared with parameters reported in [22] for the same system models.
The 2DoF PID controller-tuning problem is formulated as a constrained optimization
problem based on IAE and IAU performance indexes. Then, MAGO is employed to solve
the optimization problem. Consider the system models given by Eqs. (34)–(42).

Multiple equals poles:

G1 sð Þ ¼ 1

sþ 1ð Þ8 (34)

Fourth-order system:

G2 ¼ 1
sþ 1ð Þ 0:5sþ 1ð Þ 0:25sþ 1ð Þ 0:125sþ 1ð Þ (35)

Right half plane zero (non-minimum phase):

G3 ¼ 1� 5s

sþ 1ð Þ3 (36)

Time delay and lag: (FOSPD):

G4 ¼ 1
0:1sþ 1

e�s (37)
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Time delay and double lag (SOSPD):

G5 ¼ 1

0:1sþ 1ð Þ2 e
�s (38)

Fast and slow modes:

G6 ¼ 100

sþ 10ð Þ2
1

sþ 1
þ 0:5
sþ 0:05

� �
(39)

Conditionally stable system:

G7 ¼ sþ 6ð Þ2
s sþ 1ð Þ2 sþ 36ð Þ (40)

Oscillatory system:

G8 ¼ 25
sþ 1ð Þ s2 þ sþ 25ð Þ (41)

Unstable pole:

G9 ¼ 1
s2 � 1

(42)

In [22], the control problem was solved as an optimization process where the objective function
was a combination of the IAE and IAU performance indexes. The main features of the proce-
dure used in to solve the control problem were: (1) not only IAE but also IAU are included in
the objective function establishing a kind of trade-off between the system performance and
robustness due to the restriction imposed in the controller action effort through the IAU index.
(2) Four 2DoF PID controller parameters were simultaneously optimized to take the full
advantage of the control structure qualities. Traditionally, the tuning process for a 2DoF PID
controller is carried out in two stages as follows: firstly, values of Kp, Ti, and Td are found such
that closed-loop system achieves some dynamical behavior. Secondly, the value of β is settled
such that the closed-loop dynamical response of the system is improved when the system
operates as servomechanism. These two stages tuning process imply that the closed-loop
system responses are not optimal for any of the system operation modes. (3) The optimization
process simultaneously considers both system operation modes, that is, optimum 2DoF PID
controller parameters were found such that the closed-loop system response is optimal for
both servo and regulatory modes. MATLAB functions fminsearh and fmincon were
employed to solve the optimization problem. Fminsearch function was used to find a set of
initial conditions for the controller parameters. Next, fmincon function was used trying to
find the overall optimal controller parameters. The authors highlight that with this optimiza-
tion strategy exists the possibility that the problem solution is not the global optimum of the
objective function although the closed-loop systems performance was satisfactory in all cases.
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With MAGO, the optimization of 2DoF PID controllers is made in only one stage and
simultaneously for the regulator and servomechanism modes. The flowchart for tuning of
PID controller using MAGO is shown in Figure 3. In this chapter, it is not included a
convergence analysis of the MAGO; however, its convergence has been previously demon-
strated in [18, 19].

4. 2DoF PID controllers tuning on benchmark plants

A 2DoF PID controller attempts simultaneously achieve good closed-loop servo-regulatory
dynamical responses. Most of the recent literature working on 2DoF PID controllers had been
based on both First Order Systems plus Time Delay (FOSPD) and Second Order plus Time
Delay (SOSPD) models with satisfactory results [27–30].

In [22], a set of system models as a benchmark suitable for testing PID controllers was
proposed. FOSPD and SOSPD were included in the benchmark. This set of system models
presents different challenges of control because PID controllers are not well suited for all
of them. From the best of our knowledge, none of the PID controller tuning rules applies
to obtain suitable values for its parameters for all the systems in that benchmark.

In this chapter, nine different system models are taken from the benchmark and 2DoF PID
controllers are designed, one for each system model. The 2DoF PID controller parameters
obtained here are compared with parameters reported in [22] for the same system models.
The 2DoF PID controller-tuning problem is formulated as a constrained optimization
problem based on IAE and IAU performance indexes. Then, MAGO is employed to solve
the optimization problem. Consider the system models given by Eqs. (34)–(42).

Multiple equals poles:

G1 sð Þ ¼ 1

sþ 1ð Þ8 (34)

Fourth-order system:

G2 ¼ 1
sþ 1ð Þ 0:5sþ 1ð Þ 0:25sþ 1ð Þ 0:125sþ 1ð Þ (35)

Right half plane zero (non-minimum phase):

G3 ¼ 1� 5s

sþ 1ð Þ3 (36)

Time delay and lag: (FOSPD):

G4 ¼ 1
0:1sþ 1

e�s (37)
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Time delay and double lag (SOSPD):

G5 ¼ 1

0:1sþ 1ð Þ2 e
�s (38)

Fast and slow modes:

G6 ¼ 100

sþ 10ð Þ2
1

sþ 1
þ 0:5
sþ 0:05

� �
(39)

Conditionally stable system:

G7 ¼ sþ 6ð Þ2
s sþ 1ð Þ2 sþ 36ð Þ (40)

Oscillatory system:

G8 ¼ 25
sþ 1ð Þ s2 þ sþ 25ð Þ (41)

Unstable pole:

G9 ¼ 1
s2 � 1

(42)

In [22], the control problem was solved as an optimization process where the objective function
was a combination of the IAE and IAU performance indexes. The main features of the proce-
dure used in to solve the control problem were: (1) not only IAE but also IAU are included in
the objective function establishing a kind of trade-off between the system performance and
robustness due to the restriction imposed in the controller action effort through the IAU index.
(2) Four 2DoF PID controller parameters were simultaneously optimized to take the full
advantage of the control structure qualities. Traditionally, the tuning process for a 2DoF PID
controller is carried out in two stages as follows: firstly, values of Kp, Ti, and Td are found such
that closed-loop system achieves some dynamical behavior. Secondly, the value of β is settled
such that the closed-loop dynamical response of the system is improved when the system
operates as servomechanism. These two stages tuning process imply that the closed-loop
system responses are not optimal for any of the system operation modes. (3) The optimization
process simultaneously considers both system operation modes, that is, optimum 2DoF PID
controller parameters were found such that the closed-loop system response is optimal for
both servo and regulatory modes. MATLAB functions fminsearh and fmincon were
employed to solve the optimization problem. Fminsearch function was used to find a set of
initial conditions for the controller parameters. Next, fmincon function was used trying to
find the overall optimal controller parameters. The authors highlight that with this optimiza-
tion strategy exists the possibility that the problem solution is not the global optimum of the
objective function although the closed-loop systems performance was satisfactory in all cases.
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In this chapter, a similar procedure for solving the optimization is adopted to facilitate the
comparison of results. However, MAGO is adopted as optimizer instead of using native
MATLAB functions fminsearh and fmincon. The objective function to be optimized is
given by Eq. (43), where r and s refer to regulation-servo operation modes.

Minθ

Xtkf

tk

e tkð Þj j þ
Xtkf

tk

eu tkð Þj j
 !

s

þ
Xtkf

tk

e tkð Þj j þ
Xtkf

tk

eu tkð Þj j
 !

r

( )
(43)

Subject to G1,2,…,9 (see Eqs. (34)–(42))

U sð Þ ¼ Kp βþ 1
Tis

� �
R Sð Þ � Kp 1þ 1

Tis
þ Tds

� �
Y sð Þ

Kpmin
≤Kp ≤Kpmax

Timin ≤Ti ≤Timax

Tdmin ≤Td ≤Tdmax

βmin ≤ β ≤ βmax

Table 2 summarizes results obtained with MAGO and in [22] for 2DoF PID controller param-
eters. Table 3 summarizes results obtained with MAGO and in [22] for each of the IAE and
IAU performance indexes.

From Table 2, it is seen that parameters obtained with MAGO for 2DoF PID controllers are
different in all cases, although they have similar magnitude scales. This implies that MAGO
found a different minimum for the objective function (see Eq. (43)).

From Table 3, it is seen that MAGO found a better minimum value for the integral perfor-
mance indexes except for the performance index IAUs for G6, G8, and G9 systems. In [22], an

System model Kp Ti Td β

[22] MAGO [22] MAGO [22] MAGO [22] MAGO

G1 0.890 0.9544 5.147 5.4354 1.999 1.8095 0.661 0.4453

G2 3.637 3.2947 1.334 1.2791 0.420 0.4270 0.222 0.3096

G3 0.335 0.3515 2.665 2.6949 0.774 0.7941 0.844 0.5355

G4 0.423 0.5278 0.538 0.5765 0.137 0.1557 1.000 0.2593

G5 0.367 0.5013 0.497 0.6117 0.103 0.2380 1.000 0.7687

G6 0.626 1.8491 0.441 0.8014 0.000 0.1580 0.000 0.9654

G7 65 68.4154 1.736 1.2209 0.632 0.3924 0.141 0.0228

G8 0.596 0.6238 0.424 0.3392 0.172 0.1877 1.000 0.4617

G9 40 33.7561 1.430 0.7854 0.297 0.3159 0.231 0.0486

Table 2. 2DoF PID controller parameters.
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Figure 4. Simulation results for 2DoF PID controllers applied to the benchmark. Closed-loop system dynamical response
comparison: 2DoF PID controller tuned with parameters reported in [22] (solid line) and results from MAGO (dashed
line).

System model IAEs IAUs IAEr IAUr Total

[22] MAGO [22] MAGO [22] MAGO [22] MAGO [22] MAGO

G1 8.420 8.9159 2.878 1.9858 5.999 5.8509 7.643 6.8976 24.943 23.6502

G2 1.460 1.3676 1.511 0.6211 0.375 0.4045 1.692 0.6923 5.039 3.0855

G3 8.575 9.0000 1.969 1.1623 16.912 17.0410 9.005 7.8505 36.462 35.0539

G4 1.396 1.5763 1.318 0.4935 1.300 1.3516 2.338 1.4282 6.353 4.8496

G5 1.464 1.5213 1.351 0.3665 1.431 1.3194 2.415 1.3957 6.610 4.6029

G6 1.543 0.7787 1.734 7.8872 1.205 0.4895 2.311 0.5851 6.793 9.7405

G7 1.555 1.2055 1.212 11.187 0.027 0.0180 1.121 0.1752 3.915 12.5855

G8 1.176 1.2154 1.593 0.7958 1.003 0.9138 2.112 1.0807 5.883 4.0057

G9 1.064 0.7669 2.087 16.310 0.036 0.0242 1.173 0.2073 4.360 17.3089

Table 3. 2DoF PID controller IAE and IAU performance indexes.
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In this chapter, a similar procedure for solving the optimization is adopted to facilitate the
comparison of results. However, MAGO is adopted as optimizer instead of using native
MATLAB functions fminsearh and fmincon. The objective function to be optimized is
given by Eq. (43), where r and s refer to regulation-servo operation modes.

Minθ

Xtkf

tk

e tkð Þj j þ
Xtkf

tk

eu tkð Þj j
 !

s

þ
Xtkf

tk

e tkð Þj j þ
Xtkf

tk

eu tkð Þj j
 !

r

( )
(43)

Subject to G1,2,…,9 (see Eqs. (34)–(42))

U sð Þ ¼ Kp βþ 1
Tis

� �
R Sð Þ � Kp 1þ 1

Tis
þ Tds

� �
Y sð Þ

Kpmin
≤Kp ≤Kpmax

Timin ≤Ti ≤Timax

Tdmin ≤Td ≤Tdmax

βmin ≤ β ≤ βmax

Table 2 summarizes results obtained with MAGO and in [22] for 2DoF PID controller param-
eters. Table 3 summarizes results obtained with MAGO and in [22] for each of the IAE and
IAU performance indexes.

From Table 2, it is seen that parameters obtained with MAGO for 2DoF PID controllers are
different in all cases, although they have similar magnitude scales. This implies that MAGO
found a different minimum for the objective function (see Eq. (43)).

From Table 3, it is seen that MAGO found a better minimum value for the integral perfor-
mance indexes except for the performance index IAUs for G6, G8, and G9 systems. In [22], an

System model Kp Ti Td β

[22] MAGO [22] MAGO [22] MAGO [22] MAGO

G1 0.890 0.9544 5.147 5.4354 1.999 1.8095 0.661 0.4453

G2 3.637 3.2947 1.334 1.2791 0.420 0.4270 0.222 0.3096

G3 0.335 0.3515 2.665 2.6949 0.774 0.7941 0.844 0.5355

G4 0.423 0.5278 0.538 0.5765 0.137 0.1557 1.000 0.2593

G5 0.367 0.5013 0.497 0.6117 0.103 0.2380 1.000 0.7687

G6 0.626 1.8491 0.441 0.8014 0.000 0.1580 0.000 0.9654

G7 65 68.4154 1.736 1.2209 0.632 0.3924 0.141 0.0228

G8 0.596 0.6238 0.424 0.3392 0.172 0.1877 1.000 0.4617

G9 40 33.7561 1.430 0.7854 0.297 0.3159 0.231 0.0486

Table 2. 2DoF PID controller parameters.
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Figure 4. Simulation results for 2DoF PID controllers applied to the benchmark. Closed-loop system dynamical response
comparison: 2DoF PID controller tuned with parameters reported in [22] (solid line) and results from MAGO (dashed
line).

System model IAEs IAUs IAEr IAUr Total

[22] MAGO [22] MAGO [22] MAGO [22] MAGO [22] MAGO

G1 8.420 8.9159 2.878 1.9858 5.999 5.8509 7.643 6.8976 24.943 23.6502

G2 1.460 1.3676 1.511 0.6211 0.375 0.4045 1.692 0.6923 5.039 3.0855

G3 8.575 9.0000 1.969 1.1623 16.912 17.0410 9.005 7.8505 36.462 35.0539

G4 1.396 1.5763 1.318 0.4935 1.300 1.3516 2.338 1.4282 6.353 4.8496

G5 1.464 1.5213 1.351 0.3665 1.431 1.3194 2.415 1.3957 6.610 4.6029

G6 1.543 0.7787 1.734 7.8872 1.205 0.4895 2.311 0.5851 6.793 9.7405

G7 1.555 1.2055 1.212 11.187 0.027 0.0180 1.121 0.1752 3.915 12.5855

G8 1.176 1.2154 1.593 0.7958 1.003 0.9138 2.112 1.0807 5.883 4.0057

G9 1.064 0.7669 2.087 16.310 0.036 0.0242 1.173 0.2073 4.360 17.3089

Table 3. 2DoF PID controller IAE and IAU performance indexes.
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additional optimization constraint was imposed for systems G6, G8, and G9 to avoid changes
larger than 10 times the steady-state value of the control action, that is, Δu < uss, where uss is
the steady-state of u. In this chapter, this additional constraint was not included. This con-
straint could be incorporated as follows: Δu ¼ KpβΔr < 10uss.

Figure 4 shows the closed-loop dynamical response for systems given by Eqs. (34)–(42). To test
the 2DoF PID controllers’ performance, a step change in r tð Þ at t ¼ 0 (dotted line) and a step
change in d tð Þ at t ¼ 50 (dash-dot line) were applied. Results by MAGO (dashed line) are
compared with results in [22] (solid line). PID controllers tuned by MAGO perform similar
but faster for G6, G8, and G9 systems.

Figure 5 shows control actions for systems given by Eqs. (34)–(42). In Figure 5, results obtained
by MAGO (dashed line) and in [22] (solid line) are contrasted. From Figure 5, it is seen that the
control action effort is similar for most cases except for G6, G8, and G9 systems, for which an

Figure 5. Simulation results for 2DoF PID controllers applied to the benchmark. Closed-loop dynamical response of the
control action: 2DoF PID controllers tuned with parameters in [22] (solid line) and results from MAGO (dashed line).
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additional optimization constrain was included in [22] to avoid control action changes larger
than 10 times uss.

From Figures 4 and 5, it is seen that MAGO solves the optimization problem satisfactorily
because the control objective is achieved for all systems. For instance, MAGO is not only
suitable to solve the 1DoF PID control problem based on SOSPD [6], but also to solve the
2DoF PID control problem based on a wide range of systems, each one of them with different
dynamical characteristics and challenges from the control point of view.

5. Case study: Evolutionary PI controller tuning for a buck DC-DC
converter based on its nonlinear model

Power electronic converters (PEC) are electronic circuits that are commonly designed to regu-
late the voltage in their output when the input is a nonregulated current or voltage source. A
PEC is highly efficient, highly reliable, negligible maintenance and very small. A PEC is
usually composed of switches (Q IGBT or Mosfets and D diodes). Because switches a PEC is
nonlinear dispositive with an interesting behavior, so a DC-DC buck converter is chosen in this
chapter as a case of study.

DC-DC buck converters are nonlinear systems which analysis and control could be difficult.
Linear techniques based on classical controller have problems related to the stability around
the operation point [31]. Nonlinear controllers can be implemented to improve the stability of
the converter, but such techniques could be complex [32, 33]. Control techniques-based artifi-
cial intelligence simplifies the design and implementation, not requiring the mathematical
model; nonetheless, they are designed based on expert knowledge of the converter [34–36].
Sliding mode control technique has the advantage to reject easily perturbations, but variable
frequency of switching may be handled [37]. There are many articles dealing with control for
the DC-DC buck converter but is still no consensus on the control strategy should be
implemented. This is another reason to choose a DC-DC buck converter as a study case.

DC-DC buck converter, or step-down converter, is a power converter that steps down the
voltage from its supply (input) to its load (output). Figure 5 shows the equivalent circuit of
the DC-DC buck converter. It is composed of an inductor (L), a capacitor (C), a diode (D), and a
switch (Q) (IGBT is considered as the switch for the analysis). The converter is supplied by a
DC input voltage (vg) and feeds in its output (vo) a resistive load (R). Figure 6 also depicts the
reference currents and voltages of the circuit, using passive sign convention. In this chapter, it
is assumed that the converter operates in continuous condition mode (CCM).

The converter has two states per switching cycle (Ts) according to the position of the switch Q
when CCM operation is considered. The on state is when Q is on (closed) and D is inversely
polarized (open), while the off state is when Q (open) is off and D is directly polarized (closed).
Dynamical model and steady-state analysis can be done if Kirchhoff laws are applied, see
Eqs. (44) and (45). Step-by-step DC-DC buck converter dynamical model deduction can be
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additional optimization constraint was imposed for systems G6, G8, and G9 to avoid changes
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straint could be incorporated as follows: Δu ¼ KpβΔr < 10uss.
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additional optimization constrain was included in [22] to avoid control action changes larger
than 10 times uss.

From Figures 4 and 5, it is seen that MAGO solves the optimization problem satisfactorily
because the control objective is achieved for all systems. For instance, MAGO is not only
suitable to solve the 1DoF PID control problem based on SOSPD [6], but also to solve the
2DoF PID control problem based on a wide range of systems, each one of them with different
dynamical characteristics and challenges from the control point of view.

5. Case study: Evolutionary PI controller tuning for a buck DC-DC
converter based on its nonlinear model

Power electronic converters (PEC) are electronic circuits that are commonly designed to regu-
late the voltage in their output when the input is a nonregulated current or voltage source. A
PEC is highly efficient, highly reliable, negligible maintenance and very small. A PEC is
usually composed of switches (Q IGBT or Mosfets and D diodes). Because switches a PEC is
nonlinear dispositive with an interesting behavior, so a DC-DC buck converter is chosen in this
chapter as a case of study.

DC-DC buck converters are nonlinear systems which analysis and control could be difficult.
Linear techniques based on classical controller have problems related to the stability around
the operation point [31]. Nonlinear controllers can be implemented to improve the stability of
the converter, but such techniques could be complex [32, 33]. Control techniques-based artifi-
cial intelligence simplifies the design and implementation, not requiring the mathematical
model; nonetheless, they are designed based on expert knowledge of the converter [34–36].
Sliding mode control technique has the advantage to reject easily perturbations, but variable
frequency of switching may be handled [37]. There are many articles dealing with control for
the DC-DC buck converter but is still no consensus on the control strategy should be
implemented. This is another reason to choose a DC-DC buck converter as a study case.

DC-DC buck converter, or step-down converter, is a power converter that steps down the
voltage from its supply (input) to its load (output). Figure 5 shows the equivalent circuit of
the DC-DC buck converter. It is composed of an inductor (L), a capacitor (C), a diode (D), and a
switch (Q) (IGBT is considered as the switch for the analysis). The converter is supplied by a
DC input voltage (vg) and feeds in its output (vo) a resistive load (R). Figure 6 also depicts the
reference currents and voltages of the circuit, using passive sign convention. In this chapter, it
is assumed that the converter operates in continuous condition mode (CCM).

The converter has two states per switching cycle (Ts) according to the position of the switch Q
when CCM operation is considered. The on state is when Q is on (closed) and D is inversely
polarized (open), while the off state is when Q (open) is off and D is directly polarized (closed).
Dynamical model and steady-state analysis can be done if Kirchhoff laws are applied, see
Eqs. (44) and (45). Step-by-step DC-DC buck converter dynamical model deduction can be
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found in [38]; where u is the switching function (u ¼ 1 for on-state and u ¼ 0 for off-state). The
nonlinearity is because the product between vg and u.

L
diL
dt

¼ vgu� vc (44)

C
dvc
dt

¼ iL � vc
R

� �
(45)

The DC-DC buck converter model given by Eqs. (44) and (45) describes the nonlinear dynam-
ical evolution of the system. From the control point of view, a model given by Eqs. (44) and (45)
is inconvenient, and a linear approximation is preferred. The linear DC-DC buck converter
state-space representation is given by Eqs. (46) and (47). Where d is an input control (duty
cycle) and correspond with uh i ¼ d, d∈ 0; 1½ �, the average value of u. Vg is the average value of
vg (state in its rated value) and D is d in an operation point (D is also defined as the reason
between the on-time and the switching-time D ¼ ton=Ts). Note that vg is chosen as a system
input, and it represents a system disturbance.
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Transfer functions (GiLd, GiLvg , Gvcd and Gvcvg ) can be obtained by applying the realization of
Eq. (5). Transfer functions are shown by Eq. (48).

GiL
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Figure 6. DC-DC buck converter equivalent circuit schematic.
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Transfer functionGvcd can be used for controlling the output voltage bymeans of the change of d;
similarly, GiLd can be used for controlling the inductor current. Gvcvg and GiLvg can be used to
determine the change on vc and iL when vg is considered as a perturbation. Narrowing this
chapter to controlling vc, Gvcd and Gvcvg are the transfer functions that we are focus on; similarly,
GiLd and GiLvg should also be used for the explanation. Classic control commonly uses Gvcd to
regulate vc; nevertheless, Gvcvg also affects vc and must be taken into account if the implementa-
tion of a robust control strategy is desired. For controlling purposes, vg is a perturbation while d
is the control input that allows the control of the system, both vg and d affect vc (see Figure 7).

From the control point of view, the DC-DC buck converter can operate in two modes, as
regulator and servomechanism. Regulation mode objective is to maintain constant the con-
verter output voltage against any system disturbance. Servomechanism mode objective is to
track an output voltage reference. Both operation modes can be combined at any moment. For
instance, the selected control strategy for the DC-DC buck converter should assure a good
performance for both operation modes. In this chapter, a PI/PID-based control structure fulfills
both DC-DC buck converter control objectives. A DC-DC buck converter is parameterized as
follows: C ¼ 22 μF, L ¼ 0:5 mH, R ¼ 10 Ω, Vg ¼ 12 V , Vo ¼ 6 V, D ¼ 0:5, RL ¼ Rc ¼ 1 Ω.

A rigorous way to tune PI controllers for DC-DC buck converters is through the pole place-
ment method [36]. As PI controller tune requirements, wide accepted specifications are a
bandwidth BW ≥ 1

5 f sw, where f sw is the converter switching frequency, and a damping factor

ζ ¼ 1=
ffiffiffi
2

p
. These closed-loop requirements are settled to establish a trade-off between DC-DC

buck closed-loop performance and robustness.

Sisotool is a friendly MATLAB environment to tune PI/PID controller parameters. Figure 8
shows the DC-DC buck converter root locus diagram for the PI and PID controllers. In
Figure 8, points represented as cruces correspond to poles and circles correspond to zeros,

the diagonal line from the origin corresponds to ζ ¼ 1=
ffiffiffi
2

p
. In consequence, shaded area is for

ζ < =
ffiffiffi
2

p
, while non-shaded area is for ζ > 1=

ffiffiffi
2

p
. From Figure 8a, it is possible to observe that

ζ ¼ 1=
ffiffiffi
2

p
cannot be achieved no matter how large the value of the PI controller real zero is.

On the other hand, in Figure 8b, it is possible to observe that ζ ¼ 1=
ffiffiffi
2

p
can be achieved with

a PID controller. Figure 8 shows the DC-DC buck converter closed-loop bode diagram. From
Figure 9, it is possible to observe that BW ¼ 1

5 f sw ¼ 4 kHz. PID parameters are Kp ¼ 0:1624,

Figure 7. DC-DC buck converter open-loop block diagram.
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found in [38]; where u is the switching function (u ¼ 1 for on-state and u ¼ 0 for off-state). The
nonlinearity is because the product between vg and u.
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diL
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The DC-DC buck converter model given by Eqs. (44) and (45) describes the nonlinear dynam-
ical evolution of the system. From the control point of view, a model given by Eqs. (44) and (45)
is inconvenient, and a linear approximation is preferred. The linear DC-DC buck converter
state-space representation is given by Eqs. (46) and (47). Where d is an input control (duty
cycle) and correspond with uh i ¼ d, d∈ 0; 1½ �, the average value of u. Vg is the average value of
vg (state in its rated value) and D is d in an operation point (D is also defined as the reason
between the on-time and the switching-time D ¼ ton=Ts). Note that vg is chosen as a system
input, and it represents a system disturbance.
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Transfer functionGvcd can be used for controlling the output voltage bymeans of the change of d;
similarly, GiLd can be used for controlling the inductor current. Gvcvg and GiLvg can be used to
determine the change on vc and iL when vg is considered as a perturbation. Narrowing this
chapter to controlling vc, Gvcd and Gvcvg are the transfer functions that we are focus on; similarly,
GiLd and GiLvg should also be used for the explanation. Classic control commonly uses Gvcd to
regulate vc; nevertheless, Gvcvg also affects vc and must be taken into account if the implementa-
tion of a robust control strategy is desired. For controlling purposes, vg is a perturbation while d
is the control input that allows the control of the system, both vg and d affect vc (see Figure 7).

From the control point of view, the DC-DC buck converter can operate in two modes, as
regulator and servomechanism. Regulation mode objective is to maintain constant the con-
verter output voltage against any system disturbance. Servomechanism mode objective is to
track an output voltage reference. Both operation modes can be combined at any moment. For
instance, the selected control strategy for the DC-DC buck converter should assure a good
performance for both operation modes. In this chapter, a PI/PID-based control structure fulfills
both DC-DC buck converter control objectives. A DC-DC buck converter is parameterized as
follows: C ¼ 22 μF, L ¼ 0:5 mH, R ¼ 10 Ω, Vg ¼ 12 V , Vo ¼ 6 V, D ¼ 0:5, RL ¼ Rc ¼ 1 Ω.

A rigorous way to tune PI controllers for DC-DC buck converters is through the pole place-
ment method [36]. As PI controller tune requirements, wide accepted specifications are a
bandwidth BW ≥ 1

5 f sw, where f sw is the converter switching frequency, and a damping factor

ζ ¼ 1=
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. These closed-loop requirements are settled to establish a trade-off between DC-DC
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Sisotool is a friendly MATLAB environment to tune PI/PID controller parameters. Figure 8
shows the DC-DC buck converter root locus diagram for the PI and PID controllers. In
Figure 8, points represented as cruces correspond to poles and circles correspond to zeros,
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Ti ¼ 1:7240 e� 3 s½ � and Td ¼ 1:6763 e� 5 s½ �. Furthermore, the tuned PID controller fulfills
the desired closed-loop requirements for the DC-DC buck converter, while a PI controller
cannot be tuned to fulfill the closed-loop requirements for the DC-DC buck converter.

PI rather than PID control structures are preferred in PECs applications because PI-based
control structures significantly reduce the feedback induced noise. In this chapter is proposed
an alternative way to tune PI controllers for DC-DC buck converters in order to overcome the
limitations with the pole placement method. PI controller tuning problem is formulated as a
constrained optimization problem and solved using MAGO as in Eq. (49). θ ¼ Kp Ti

� �
are

the PI controller parameters, α and γ are tuneable weighs establishing a trade-off between IAE
and IAU performance indexes and tsmax is the maximum allowed closed-loop setting time.

Minθ α
Xtkf

tk

e tkð Þj j
 !

þ γ
Xtkf

tk

eu tkð Þj j
 !( )

(49)

Subject to Buck DC-DC nonlinear dynamical model Eqs. (43) and (45)

Figure 8. DC-DC buck converter root locus: (a) PI controller and (b) PID controller.

Figure 9. DC-DC buck converter closed-loop bode diagram for the PID controller.
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u tð Þ ¼ Kp e tð Þ þ 1
Ti

Xtk f

tk

e tkð Þj j
( )

0 ≤Kp ≤ 5

0 ≤Ti ≤ 1e� 3

α ¼ 1

γ ¼ 0:5

Main features of the formulated optimization problem are: (1) DC-DC buck nonlinear dynam-
ical model is incorporated instead of duty to output voltage transfer function. Using the
nonlinear dynamical model of the DC-DC buck converter, it is possible to solve the optimiza-
tion problem simultaneously considering regulation and servomechanism operation modes.
(2) Objective function includes simultaneously IAE and IAU performance indexes. The inclu-
sion of the IAU gives a kind of closed-loop robustness because it limits the maximum control
action effort avoiding system oscillations and actuator saturations. (3) The optimization pro-
cess is carried out based on the temporal dynamical response of the DC-DC buck converter
operating in closed-loop. For each MAGO iteration, it is necessary to solve the DC-DC buck
converter nonlinear dynamical model in the closed-loop mode. To solve the nonlinear dynam-
ical model in the closed-loop mode, it is necessary to define an experiment such that multiple
set-point changes and disturbances appear through the simulation time. The solution of the
optimization problem is the set of PI controller parameters that minimize both IAE and IAU
indexes for the experiment setup.

The total simulation time for the DC-DC buck converter is 25 min. The experiment setup for
the optimization process is as follows: for the time interval t∈ 0; 5½ � ms, the system is at the
nominal conditions. For t∈ 5; 10ð �ms, the set-point for the output voltage is settled in 8 V. For
t∈ 10; 15ð � ms, the input voltage is settled in 14 V, while the output voltage remains in 8 V.
For t∈ 15; 20ð � ms, output and input voltages are settled in 4 V and 10 V, respectively. For
t∈ 20; 25ð � ms, output and input voltages are returned to their nominal values. Both adjustable
MAGO parameters n and ng were settled in 100. The optimization problem solution using
MAGO is: objective function value equals 0.1066, PI controller parameters values are
Kp ¼ 0:0382 and Ti ¼ 1:5364 e� 4 s½ �.
PSIM is a recognized platform to simulate and validate the control system performance
for PEC. A PSIM simulation is carried out for the DC-DC buck converter to validate
MAGO optimization results. A DC-DC buck converter simulation is implemented on
PSIM including parasitic losses in their passive elements as equivalent series resistances
(ESR). Simulation aims to test the real closed-loop system performance. Therefore, two
DC-DC buck converter closed-loop simulations are carried out as follows: (1) PID control-
ler obtained by the pole placement method is implemented and its performance is tested.
(2) PI controller obtained by MAGO is implemented and its performance is tested. In both
cases, the experiment setup used in MAGO optimization is applied to test PID and PI
controllers’ performance.
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(2) Objective function includes simultaneously IAE and IAU performance indexes. The inclu-
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(ESR). Simulation aims to test the real closed-loop system performance. Therefore, two
DC-DC buck converter closed-loop simulations are carried out as follows: (1) PID control-
ler obtained by the pole placement method is implemented and its performance is tested.
(2) PI controller obtained by MAGO is implemented and its performance is tested. In both
cases, the experiment setup used in MAGO optimization is applied to test PID and PI
controllers’ performance.
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Gvcd and Gvcvg were deduced in this chapter without including losses in the inductor and
capacitor; switching losses which includes the losses in the IGBT and the diode neither were
considered. A comparison between a DC-DC buck converter including resistive losses (PSIM
simulation) and a DC-DC buck converter which does not include them (MATLAB simulation)
are presented in Figure 10. For this purpose, pointed line diagrams correspond to PSIM bode
diagrams (nonlinear model), while continuous line diagrams correspond to MATLAB bode
diagrams of transfer functions Gvcd and Gvcvg (linear model). PSIM simulation corresponds to
the most realistic approximation of the system due to it is the nonlinear representation which
includes the resistive losses. In Figure 10, there is a big difference between MATLAB and PSIM
bode diagrams. This chapter uses the linear model (Eqs. 46 and 47) to implement the control
strategy, while the DC-DC buck converter to be controlled includes the resistive losses.

Figure 11 shows the DC-DC buck converter closed-loop dynamical response for both PI
controller tuned by MAGO (PI-MAGO) and PID controller tuned by the pole placement
method. Figure 10a shows both vg and voRef time trajectories. From Figure 11a, it is seen that
these time trajectories agree with the experiment setup proposed for the optimization problem.
Multiple set-point changes (voRef ) and disturbances (vgÞ are applied to test the closed-loop
dynamical response of the DC-DC buck converter.

Figure 11b shows the dynamical closed-loop response for the DC-DC buck converter output
(voÞ. From Figure 11b, it is seen that the converter control objective is achieved satisfactorily.
DC-DC buck converter in closed-loop mode can simultaneously track the set point and reject
the disturbance. Both faster than 2:5 ms and with an approximated over-shoot of 12 and 2:5%
for the PI and PID controllers, respectively. A remarkable issue is that the converter control
objective is achieved when the PSIM DC-DC buck converter model includes the parasitic
losses in their passive elements. This implies that both controllers are robust to the model

Figure 10. PSIM simulation and nonlinear mathematical model comparison: (a) Gvcd and (b) Gvcvg .
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mismatch. From Figure 11b, it is seen that PID controller performs better than PI controller
does; however, the PI performance, it is also acceptable.

Figure 11c shows the control action (d) dynamical response for both PI and PID controllers.
From Figure 11c, it is seen that d has significant oscillations for PID controller compared with
PI controller. The most probable reason for these oscillations is the induced noise caused by the
time derivative constant (TdÞ in the PID controller. For instance, the PI controller is preferred in
PEC applications because the closed-loop induced noise is smaller than in the PID controller
case, although the PI controller has a poor dynamical performance than PID controller. An
important issue related with d behavior is that never reaches its maximum or minimum value,
implying that for the selected setup the actuator does not saturates.

Figure 11d shows the inductor current (iL) dynamical response for both PI and PID controller.
From Figure 10d, DC-DC buck converter operates in the CCM overall simulation time.

In summary, both PI and PID controllers achieve the DC-DC buck converter control objective.
PID controller performs better than PI controller, but the last one has a smaller induced noise
in d, which is a desired characteristic in PEC applications. In consequence, MAGO solution
improves the solution obtained by the pole placement method, where a PI controller was not
possible to tune because the root locus limitations (see Figure 8).

6. Conclusions

A method of tuning optimal controllers on nonlinear systems through the evolutionary algo-
rithm MAGO has been successfully developed and implemented. The MAGO resolves the
tuning as a constrained nonlinear optimization problem for both 1DoF and 2DoF PI/PID

Figure 11. DC-DC buck converter closed-loop PSIM simulation.
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controllers on several types of plants running on different modes of operation. To ensure the
desired performance of the control loop, everything is reduced to the characterization and
adjusting of the value of a set of tuning parameters whatever the chosen control structure is.
The usual tuning controller procedures involve uncertainty and time to obtain the right
parameters, generally by trial and proof by trained personal depending of the method used.
This chapter showed a way to reduce these challenges. MAGO straightforwardly assesses the
controller’s parameters penalizing the error between the reference value and the output of the
plant and minimizing the IAE and IAU performance criteria.

Traditional PID controller tuning rules are restricted to certain values on the behavior of the
system and are limited to an only one type of operation. Most methods require experiments to
be carried out directly on the plant to get additional necessary system information to apply
them; these activities are not always possible to achieve because the triggering of extreme
stresses and oscillations of the plant which may create instability and damages on the system,
so that, they are not recommended. For benchmark models, the PID controller tuning was
made by the MAGO without additional knowledge of the plant. The evolutionary solution
obtained with the MAGO covers all those restrictions, extends their maximum and minimum
limits, and it does not need additional experimental information from the plants and is suitable
for both servo and regulator operating modes. The results showed that regardless of both the
plant or controller models used, MAGO gets a satisfactory closed-loop system performance in
agreement with the literature reported.

A linear model without losses for the DC-DC buck converter was used to implement the
control strategy while a nonlinear system which includes parasitic losses was simulated as a
most realistic system in PSIM. There was a big difference between the bode diagrams of the
linear model and the nonlinear system; nevertheless, the controllers tuned by MAGO have a
successfully behavior in terms of performance and robustness. MAGO controllers let overcome
the limitations of traditional PI controllers.

The challenge of rely on a single method to assess the controller for different kinds of plants
has been solved applying the evolutionary algorithm MAGO as a tool of optimization. The
MAGO was applied to a set of benchmark plants, represented in both transfer functions and
differential equation systems, with a control loop operating on both servo and regulator
modes. The optimal tuning values of the Kp, Ti and Td parameters for the optimal PID
controller found by the evolutionary method achieved successful results for each of the cases
studied. Noticeable results tuning with the algorithm MAGO were obtained when comparing
the performance of the traditional PID controller performance for the DC-DC buck converter
against the PI-MAGO controller. PI-MAGO controller has a comparable performance with the
PID controller tuned by pole placement method. Moreover, PI-MAGO controller minimized
the induced closed-loop noise.

This chapter showed that, although there would be options in the traditional rules of control-
lers tuning, the use of heuristic algorithms is indeed easy than using the classic methods of
optimal tuning. The evolutionary algorithm MAGO was used as a tool to optimize the con-
troller parameters for optimal 2DoF PID controllers working on benchmark plants and to
optimize the PI controller parameters in a DC-DC buck converter application. Regardless of
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the operating mode of the controller and the representation type of the plant used, better
results are yielded when optimization is made with the MAGO algorithm than with the
traditional methods for optimal tuning.
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Abstract

This chapter provides a concise survey, classification and historical perspective of practice-
oriented methods for designing proportional-integral-derivative (PID) controllers and
autotuners showing the persistent demand for PID tuning algorithms that integrate per-
formance requirements into the tuning algorithm. The proposed frequency-domain PID
controller design method guarantees closed-loop performance in terms of commonly used
time-domain specifications. One of its major benefits is universal applicability for both
slow and fast-controlled plants with unknown mathematical model. Special charts called
B-parabolas were developed as a practical design tool that enables consistent and system-
atic shaping of the closed-loop step response with regard to specified performance and
dynamics of the uncertain controlled plant.

Keywords: PID controller tuning, robust performance indices, B-parabolas, closed-loop,
performance assessment, robust performance

1. Introduction

How to tune a controller for any control application quickly and appropriately? This question
raised in 1942 is still up to date and constantly occupies the automation community worldwide.
The answer is very intricate; its intricacy is comparable with the open hitherto unresolved
Hilbert problems known from mathematics.

Will the PID controllers, historically the oldest but currently still the most used ones, control
industrial processes in the near and far future? Based on the increase of the number of PID
tuning methods from 258 to 408 during 2000–2005, a positive response can be assumed [23].
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The remarkably simple ability of the PID controller to generate a difference equation using the
present, past and future values of the control error is often projected into the philosophical
understanding [1] and forecast this controller a long-term perspective.

Beginnings of PID controllers date back to 1935 when the Taylor Instruments Companies
launched their pneumatic controller with a derivative channel [1]. Owing to rapid develop-
ments in the control theory, it was supposed that the conventional PID controllers would be
gradually replaced by advanced ones; however, this did not come to pass mainly due to the
simple PID structure and its commercial usability in practice. For 83 years, control loop
designers preferred the PID controllers for their outstanding ability to eliminate the control
error using the integrator, their ability to improve the performance using the “trend” of the
controlled variable through the derivative channel and for many other benefits. PID controllers
are important parts of distributed control systems, predictive control structures; their coeffi-
cients are often adapted by means of fuzzy and neural control and set by genetic algorithms
[20, 21, 35]. In multiloop control structures, they are able to stabilize unstable objects and
difficult-to-control systems. The 46 existing PID variants and reported 408 diverse tuning
methods are a good prerequisite for achieving a satisfactory performance in simple as well as
demanding industrial applications [23, 25].

PID controllers are widely applied in technological processes of heavy and light industries, for
example in control of tension in the roll during paper winding, boiler temperature, chemical
reactor pressure, lathe spindle position in metalworking, and so on; they can be found in
modern cars controlling combustion control or vehicle dynamics [9], valve opening and
robotic arm position. In the interconnected power system, they are used to control turbine
power and speed in both primary and secondary regulation of active power and network
frequency. Being easy to implement on both Arduino and Raspberry Pi platforms allows them
to be used in mobile “unplugged” applications as well.

Commercial applicability of PID controllers is confirmed by studies referring that more than
90% out of all installed controllers in industrial control loops are PID controllers [36]. The
alarming fact, however, is that only 20% of them are tuned correctly, and in 30% of all PID
applications, the regulation is unsuitable due to an incorrect selection of synthesis method.
Another 30% of poor performance is due to ignorance of nonlinear properties of actuators, and
the remaining 20% represent an inadequate choice of sampling period or poor signal filtering
[5]. Some controllers not only do not provide the required performance yet often even stability
of the control loop being operated only in open loop and manually switched off by the service
staff when approaching the setpoint [9]. According to other statistics, 30% of controllers
operate in manual mode and require continuous fine-tuning and supervising by the process
technologist. A 25% of PID applications use coefficients pre-set by the manufacturer with no
update of their values with respect to the particular process [47].

Therefore, a natural requirement for innovative PID tuning methods has come up to ensure the
specified performance [19, 22] in terms of the maximum overshoot and settling time not only
for processes with constant parameters but for their perturbed types. In this chapter, a novel
original robust PID tuning method is presented; hopefully, it will help reverse the above
mentioned unfavorable statistics of incorrectly tuned PID controllers.

PID Control for Industrial Processes74

2. PID controller design for industrial processes for performance

Despite the fact that there are more than 11,000 PID controllers in 46 variants operating in
industrial processes [23], mostly three basic forms are used to control industrial processes: the
ideal (textbook) PID controller, the real PID controller with derivative filter, and the ideal PID
controller in series with the first-order filter given by the following transfer functions, respectively.

GR sð Þ ¼ K 1þ 1
Tis

þ Tds
� �

, GR sð Þ ¼ K 1þ 1
Tis

þ Tds
1þ Td

N s

 !
, GR sð Þ ¼ K 1þ 1

Tis
þ Tds

� �
1

Tf sþ 1

� �
, (1)

where K is the proportional gain, Ti and Td are the integral and the derivative time constants,
respectively, Tf is the filter time constant and N∈<8,16> in practical applications [37, 38]. The
PID controller design objectives are:

1. tracking of setpoint or reference variable w(t) by y(t),

2. rejection of disturbance d(t) and noise n(t) influence on the controlled variable y(t).

Time response of the controlled variable y(t) is modifiable by parameters K, Ti and Td, respec-
tively; the objective is to achieve a zero steady-state control error e(t) irrespective if caused by
changes in the reference w(t) or the disturbance d(t). This section presents practice-oriented
PID controller design methods based on various performance criteria.

Consider the control loop in Figure 1 with control action u(t) generated by the PID controller
(switch SW in position “1”).

A controller design is a two-step procedure consisting of controller structure selection (P, PI,
PD or PID) followed by tuning coefficients of the selected controller type.

2.1. PID controller structure selection

An appropriate structure of the controller GR(s) is usually selected with respect to:

• zero steady-state error condition (e(∞) = 0),

• type of the controlled plant,

• parameters of the controlled plant.

Figure 1. Feedback control loop with load disturbance d(t) and measurement noise n(t).
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2.1.1. PID controller structure selection based on zero steady-state error condition

Consider the unity feedback control loop (Figure 1), where G(s) is the controlled system.
According to the final value theorem, the steady-state error

e ∞ð Þ ¼ lim
s!0

sE sð Þ ¼ lim
s!0

s
1

1þ L sð ÞW sð Þ ¼ q!wq lim
s!0

sν�q

sν þ KL
(2)

is zero if the integrator orders νL = νS + νR in the open-loop L(s) = G(s)GR(s) is greater than the
order q of the reference signal w(t) = wqt

q, i.e.,

νL > q, (3)

where νS and νR are integrator orders of the plant and the controller, respectively, KL is the
open-loop gain and wq is a positive constant [46].

2.1.2. PID controller structure selection based on the plant type

Industrial process variables (e.g., position, speed, current, temperature, pressure, humidity,
level) are commonly controlled using PI controllers; in practice, the derivative part is usually
switched off due to measurement noise. For pressure and level control in gas tanks, using a P-
controller is sufficient [3]. However, adding the derivative part improves closed-loop stability
and steepens the step response rise time.

2.1.3. PID controller structure selection based on plant parameters

Consider the FOPDT (j = 1) and FOLIPDT (j = 3) plant models, respectively given as GFOPDT ¼
K1e�D1s= T1sþ 1½ � and GFOLIPDT ¼ K3e�D3s= s T3sþ 1½ �f g with the parameters given as follows:

μ1 ¼
D1

T1
; ϑ1 ¼ K1Kc; μ3 ¼

D3

T3
; ϑ3 ¼ lims!0 sG sð Þ

ωc G jωcð Þj j ¼ TcK3Kc

2π
; μ3 ¼

2
π þ arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ2
3 � 1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ2
3 � 1

q , (4)

where Kc and ωc are critical gain and critical frequency of the plant, respectively, the normal-
ized time delay μj and the parameter ϑj can be used to select appropriate PID control strategy.
According to Table 1 [46], the derivative part is not used in presence of intense noise and a PID
controller is not appropriate for plants with large time delays.

2.2. Performance measures in PID controller design

Performance measures for industrial control loops can be expressed both in the time and the
frequency domains. The time-domain performance indicators allow to directly expressing the
desired process parameter, whereas the frequency-domain performance indicators can be used
as PID tuning parameters.
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2.2.1. Performance measures in the time-domain

In the time-domain, satisfactory setpoint tracking (Figure 2a) and disturbance rejection
(Figure 2b) are indicated by small values of maximum overshoot and a decay ratio, respec-
tively, given as

ηmax ¼ 100
ymax � y ∞ð Þ�� ��

y ∞ð Þ %½ �; δDR ¼ Aiþ1

Ai
, (5)

where y(∞) denotes the steady-state value of y(t) [4]. A measure of the y(t) response decay is
the ratio of two successive amplitudes Ai+1/Ai, where i = 1…N, and N is half the number of
points of intersections of y(∞) and y(t). The settling time ts is the time after which the output
y(t) remains within �ε% of its final value (Figure 2b); typically ε = [1%÷5%]y(∞), δDR∈(1:4;1:2),

Ranges for μ and ϑ Control strategy

No precise control
necessary

Precise control needed

High noise Low saturation Lowmeasurement noise

μ1 > 1; ϑ1 < 1.5 I I + B + C PI +B + C PI +B + C

0.6 < μ1 < 1; 1.5 < ϑ1 < 2.25 I or PI I + A PI + A (PI or PID) + A + C

0.15 < μ1 < 0.6; 2.25 < ϑ1 < 15 PI PI PI or PID PID

μ1 < 0.15; ϑ1 > 15 or μ3 > 0.3;
ϑ3 < 2

P or PI PI PI or PID PI or PID

μ3 < 0.3; ϑ3 > 2 PD + E F PD + E PD + E

A: forward compensation suggested, B: forward compensation necessary, C: dead-time compensation suggested, D: dead-
time compensation necessary, E: set-point weighting necessary, F: pole-placement.

Table 1. Controller structure selection with respect to plant model parameters.

Figure 2. Performance measures: δDR, ts, ηmax and e(∞); (a) setpoint step response; (b) load disturbance step response;
(c) over-, critically- and underdamped closed-loop step-responses.
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where y(∞) denotes the steady-state value of y(t) [4]. A measure of the y(t) response decay is
the ratio of two successive amplitudes Ai+1/Ai, where i = 1…N, and N is half the number of
points of intersections of y(∞) and y(t). The settling time ts is the time after which the output
y(t) remains within �ε% of its final value (Figure 2b); typically ε = [1%÷5%]y(∞), δDR∈(1:4;1:2),

Ranges for μ and ϑ Control strategy

No precise control
necessary

Precise control needed

High noise Low saturation Lowmeasurement noise

μ1 > 1; ϑ1 < 1.5 I I + B + C PI +B + C PI +B + C

0.6 < μ1 < 1; 1.5 < ϑ1 < 2.25 I or PI I + A PI + A (PI or PID) + A + C

0.15 < μ1 < 0.6; 2.25 < ϑ1 < 15 PI PI PI or PID PID

μ1 < 0.15; ϑ1 > 15 or μ3 > 0.3;
ϑ3 < 2

P or PI PI PI or PID PI or PID

μ3 < 0.3; ϑ3 > 2 PD + E F PD + E PD + E

A: forward compensation suggested, B: forward compensation necessary, C: dead-time compensation suggested, D: dead-
time compensation necessary, E: set-point weighting necessary, F: pole-placement.

Table 1. Controller structure selection with respect to plant model parameters.

Figure 2. Performance measures: δDR, ts, ηmax and e(∞); (a) setpoint step response; (b) load disturbance step response;
(c) over-, critically- and underdamped closed-loop step-responses.
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ηmax∈(0%;50%). Figure 2c depicts underdamped (plot 1), overdamped (plot 2) and critically
damped (plot 3) closed-loop step responses.

2.2.2. Performance measures in the frequency-domain

The most frequent parameters for PID tuning are the following performance measures [1]:

• ϕM and GM: phase and gain margins, respectively,

• Ms and Mt: maximum peaks of magnitudes of the sensitivity function S(jω) and comple-
mentary sensitivity function T(jω), respectively,

• λ: required closed-loop time constant.

If a designed controller GR(jω) guarantees, that |S(jω)| or |T(jω)| do not exceed prespecified
values Ms or Mt, respectively, defined by

Ms ¼ sup
ω

S jωð Þj j ¼ sup
ω

1
1þ L jωð Þ
����

����; Mt ¼ sup
ω

T jωð Þj j ¼ sup
ω

L jωð Þ
1þ L jωð Þ
����

���� (6)

for ω∈〈0,∞), then the Nyquist plot of the open-loop transfer function L(s) = G(s)GR(s) avoids
the respective circles MS or MT each given by its center and radius as follows:

CS ¼ �1; j0½ �, RS ¼ 1
Ms

;CT ¼ � M2
t

M2
t � 1

; j0

" #
, RT ¼ � Mt

1�M2
t

�� �� : (7)

By avoiding the Nyquist plot of L(s) to enter the circles corresponding to MS or MT, a safe
distance from the critical point is kept (Figure 3a). Typical |S(jω)| and |T(jω)| plots for
properly designed controller are in Figure 3b. The disturbance d(t) is sufficiently rejected if

Figure 3. (a) Definition and geometrical interpretation of ϕM and GM in the complex plane; (b) sensitivity and comple-
mentary sensitivity magnitudes |S(jω)|, |T(jω)| and performance measures Ms, Mt.
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Ms∈(1.2;2). The reference w(t) is properly tracked by the process output y(t) if Mt∈(1.3;2.5).
With further increasing of Mt the closed-loop tends to be oscillatory.

From Figure 3a results, that by increasing open-loop phase margin ϕM the gain crossover
L(jωa*) on the unit circle M1 moves away from the critical point (�1,j0); similarly by increasing
open-loop gain margin GM the phase crossover L(jωf*) moves away from (�1,j0). Therefore, the
stability margins ϕM or GM given by

φM ¼ 180
� þ arg L ω∗

a

� �
; GM ¼ 1

L jω∗
f

� ����
���

(8)

are frequently used performance measures, their typical values are ϕM∈(20�;90�), GM∈(2;5).
Relations between individual stability margins and respective magnitude peaks are given by
the following inequalities

φM ≥ 2 arcsin
1

2Ms

� �
; φM ≥ 2 arcsin

1
2Mt

� �
; GM ≥

Ms

Ms � 1
; GM ≥ 1þ 1

Mt
: (9)

The point in which the Nyquist plot L(jω) touches the MT circle defines the closed-loop
resonance frequency ωMt.

2.3. PID controller design methodologies for performance

When synthesizing a control loop, if the controller type is already known and the designer has
just to select a suitable method to appropriately adjust its coefficients, we speak about PID
controller tuning methods. Controller design is a more complex problem which includes deter-
mining controller structure and then calculating its parameters. When setting coefficients of
industrial PID controllers {K, Ti, Td}, basically the following procedures are applied:

1. Trial-and-error methods are based on closed-loop experiments [1]. Controller parameters
settings are based on observation of the response to reference or disturbance changes with
the assistance of an expert, or the design is driven by empirical rules. The control-loop
synthesis is time-consuming and its success is not guaranteed.

2. Analytical methods are used to generate a control law based on the mathematical model of
the plant; the plant model is obtained from first principles or via experimental identifica-
tion. The success of these methods depends on the accuracy of the mathematical model of
the plant, and is not always achievable in practical cases (e.g., for a cement kiln).

3. Classical tuning methods use only a limited number of characteristic parameters of the
plant obtained from the step response or critical system parameters [11, 27, 31]. Their main
advantage is a simple and short calculation of controller parameters. The control objective
is to provide a satisfactory response to reference change, or disturbance rejection and often
their combination. The main drawback is that the designer cannot influence the perfor-
mance by means of the adjustable parameters of the algorithm. Also, the resulting closed-
loop response may not be satisfactory if the step response of the plant is nonmonotonic, or
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Ms∈(1.2;2). The reference w(t) is properly tracked by the process output y(t) if Mt∈(1.3;2.5).
With further increasing of Mt the closed-loop tends to be oscillatory.

From Figure 3a results, that by increasing open-loop phase margin ϕM the gain crossover
L(jωa*) on the unit circle M1 moves away from the critical point (�1,j0); similarly by increasing
open-loop gain margin GM the phase crossover L(jωf*) moves away from (�1,j0). Therefore, the
stability margins ϕM or GM given by

φM ¼ 180
� þ arg L ω∗

a

� �
; GM ¼ 1

L jω∗
f

� ����
���

(8)

are frequently used performance measures, their typical values are ϕM∈(20�;90�), GM∈(2;5).
Relations between individual stability margins and respective magnitude peaks are given by
the following inequalities

φM ≥ 2 arcsin
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The point in which the Nyquist plot L(jω) touches the MT circle defines the closed-loop
resonance frequency ωMt.

2.3. PID controller design methodologies for performance

When synthesizing a control loop, if the controller type is already known and the designer has
just to select a suitable method to appropriately adjust its coefficients, we speak about PID
controller tuning methods. Controller design is a more complex problem which includes deter-
mining controller structure and then calculating its parameters. When setting coefficients of
industrial PID controllers {K, Ti, Td}, basically the following procedures are applied:

1. Trial-and-error methods are based on closed-loop experiments [1]. Controller parameters
settings are based on observation of the response to reference or disturbance changes with
the assistance of an expert, or the design is driven by empirical rules. The control-loop
synthesis is time-consuming and its success is not guaranteed.

2. Analytical methods are used to generate a control law based on the mathematical model of
the plant; the plant model is obtained from first principles or via experimental identifica-
tion. The success of these methods depends on the accuracy of the mathematical model of
the plant, and is not always achievable in practical cases (e.g., for a cement kiln).

3. Classical tuning methods use only a limited number of characteristic parameters of the
plant obtained from the step response or critical system parameters [11, 27, 31]. Their main
advantage is a simple and short calculation of controller parameters. The control objective
is to provide a satisfactory response to reference change, or disturbance rejection and often
their combination. The main drawback is that the designer cannot influence the perfor-
mance by means of the adjustable parameters of the algorithm. Also, the resulting closed-
loop response may not be satisfactory if the step response of the plant is nonmonotonic, or

Advanced Methods of PID Controller Tuning for Specified Performance
http://dx.doi.org/10.5772/intechopen.76069

79



when the plant has nonminimum-phase dynamics or large time delay. Most of these
methods are implemented in autotuners of industrial PID controllers [1].

4. Autotuners are a modern and convenient means for adjusting coefficients of industrial
controllers [33, 34, 49]. They implement a two-step algorithm of automatic acquisition of
characteristic parameters of the controlled process followed by automatic calculation and
adjustment of the controller coefficients. After activating the autotuning function on the
industrial controller, the control-loop synthesis is performed automatically in a very short
time. The ABB, Emerson, Fischer-Rosemont, Foxboro, Honeywell, Siemens, Yokogava, or
ZPA controllers have a built-in PID autotuning function implemented on a microcomputer
[47]. In many situations, however, these methods are unreliable because of the imperfec-
tion of the plant identification algorithm and the subsequent controller design.

5. Robust PID controller tuning methods for specified performance represent a modern area of
industrial control-loop synthesis. They improve the PID tuning methods by providing
stability and required performance also for processes with variable parameters. The con-
troller tuned only by conventional method is just “intuitively” invariant against perturba-
tions of the controlled plant; robust operation of the control loop is usually possible only
for small changes of plant parameters. The major disadvantage of these methods is that the
control law is not based on the knowledge of uncertainties of the controlled object and a
further research on their possible expansion is needed. The proposed original method
which eliminates this drawback, its theoretical analysis and verification on benchmark
examples are the core of the chapter.

2.4. PID controller tuning methods for performance

Tuning methods are commonly used engineering tool for the synthesis of industrial control
loops as they do not require a full knowledge of the mathematical description of the controlled
plant. This differentiates them from analytical methods which, on the contrary are based on a
precise knowledge of the mathematical model of the controlled system. In the tuning methods,
the controlled process is considered as a black-box which is to be revealed only to such
extent that the controller synthesis is successful and the control objectives are achieved.
Thus, only those characteristic parameters of the unknown plant have to be acquired via
appropriate identification that are inevitable for the PID controller design. In this way, the
PID controller coefficients can be obtained in a relatively short time. The implicit knowledge
about the controlled system and the ambient influences affect the choice of the PID coeffi-
cients calculation method . According to the way of using the identified data of the controlled
plant, the tuning methods are classified into as follows:

a. model-free PID controller tuning methods,

b. model-based PID controller tuning methods.

Percentage proportions of commonlyusedPID controller tuningmethods are presented inFigure 4.

Approximately 12% out of all tuning methods are model-free methods, 88% (app. seven times
more) are model-based ones. A 37% portion belongs to PID controllers of FOLPDT (first order
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lag plus dead time) system models which are the most commonly used approximation of plant
dynamics in industries (thermal plants, chemical and woodworking industries). Equal 9%
shares belong to IPDT (integral plus dead time) and FOLIPDT (first order lag integral plus
dead time) models with integral behavior encountered mainly in drives and power industry in
modeling mechanical subsystems of rotating machines, valves and servo-systems and 18% of
algorithms are used to control plants with SOSPDT (second order system plus dead time)
models [26]. Controllers for other system types are tuned by methods from the 15% portion.

2.4.1. Model-free PID controller tuning with guaranteed performance

There are such PID tuning algorithms, which can be applied without any knowledge about the
unknown plant model. These methods yielding PID coefficients for systems with a general,
unknown model are known as “Non-Model Specific”, “Model-Free” or “Rule-Based”
Methods. Their basic feature is that the identified characteristic parameters of the unknown
system appear directly in the PID coefficient tuning rules. They are very popular among
practitioners due to a high flexibility and ability to control a wide class of systems. The
respective algorithms have been tested on benchmark examples, the control objectives can be
expressed by empirical rules. They are simply algorithmizable for application in industrial
autotuners. A seven-step flow diagram of a direct tuning method is depicted in Figure 5.

The oldest direct-type engineering method is the well-known Ziegler-Nichols frequency method
(1942) [48]. The control objective is a rapid disturbance rejection so that each amplitude of
the oscillatory response to disturbance step change is only a quarter of the previous amplitude.
The method is based on two identified characteristic parameters of the unknown plant :
the critical frequency ωc = 2π/Tc and the critical gain Kc used for calculation of the coefficients of
P, PI and PID controllers . The first characteristic parameter provides basic information on
plant dynamics, while the value of the second parameter indicates the degree-of-stability of the
plant. PID controller parameters according to the Ziegler-Nichols method are calculated using
the algorithm PZN = 0.6Kc, TiZN = 0.5Tc = π/ωc, TdZN = 0.125Tc = 0.25π/ωc, in which the
characteristic parameters {Kc , ωc} are directly included.

Figure 4. Percentages of commonly used PID controller tuning methods.
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2.4.1.1. Trial-and-error tuning methods

When first PID controllers were developed in the period 1935–1942, no tuning methods were
available at the market. The controller “design” consisted in experimenting with control loops
without considering any relationship between plant parameters and controller coefficients.
Acquired experience, however, was generalized giving rise to empirical trial-and-error tuning
method that consist of three main steps:

1. Turning off the integral and derivative parts of the PID controller and increasing the gain
until the closed-loop oscillates with constant amplitudes, then adjusting the gain at half of
this value.

2. Decreasing the integral time until oscillations with constant amplitude are obtained, then
adjusting the integral time at a treble of this value.

3. Increasing the derivative time until oscillations with constant amplitude are obtained, then
adjusting the derivative time at a third of this value.

The set of these rules of thumb is still being used in practice to roughly tune industrial PID
controllers and is considered as a predecessor of all engineering tuning methods. In 1942, two
direct tuning methods were published and authored by Ziegler and Nichols [48], employees of
the Taylor Instrument Companies producing PID controllers. The first one is time-domain
method; according to it, the PID coefficients are calculated using the effective time delay and
the effective time constant of the step response of the industrial plant. The frequency-domain
method uses the critical gain Kc and the period of critical oscillations Tc to calculate the PID
coefficients according to the relations ΘPID = (P, Ti, Td) = (α1Kc, α2Tc, α3Tc), where the weights
of critical parameters are (α1, α2, α3) = (0.6, 0.5, 0.125).

2.4.1.2. Tuning rules based on ultimate parameters of the industrial process

Due to its simplicity, the Ziegler-Nichols frequency-domain methods are still used in industrial
autotuners in the original version, although they have undergone various modifications dur-
ing the last 70 years of its existence. Due to the technological development after the industrial
revolution and major electrification, PID tuning for stability was no more sufficient because a
fast setpoint attainment could bring about important savings of time and money and

Figure 5. Flow chart of the direct engineering PID tuning method.

PID Control for Industrial Processes82

accelerate the entire production process. More and more demanding requirements on control
performance were formulated, and an intense demand for effective tuning methods guarantee-
ing required performance has arisen.

As a rule, application of Ziegler-Nichols methods usually leads to oscillatory closed-loop
responses; hence, many scientists have become interested in their possible improvement.
Forty-two modifications of the Ziegler-Nichols frequency method were developed in the
period from 1967 to 2010. They differ from the classical algorithm in using various other
combinations of the weights (α1, α2, α3). An overview of selected model-free methods is given
in Table 2.

Tuning rules No. 1–3 are the well-known Ziegler-Nichols frequency-domain method which
objective is a fast rejection of the disturbance d(t) and δDR = 1:4. In the complex plane interpre-
tation (Figure 6), the method corresponds to shifting the critical point C = [�1/Kc + j0], into the
points CP = [�0.5 + j0], CPI = [�0.45 + j0.0896] and CPID = [�0.6-j0.28] using respectively P, PI
and PID controllers tuned according to Table 2. Put simply, the open-loop Nyquist plot is
shaped into a sufficient distance from the limit of instability specified by the point (�1.j0).

No. Design method, year Controller K Ti Td Performance

1. Ziegler and Nichols, 1942 [48] P 0.5Kc — — Quarter decay ratio

2. Ziegler and Nichols, 1942 [48] PI 0.45Kc 0.8Tc — Quarter decay ratio

3. Ziegler and Nichols, 1942 [48] PID 0.6Kc 0.5Tc 0.125Tc Quarter decay ratio

4. Pettit and Carr, 1987 [27] PID Kc 0.5Tc 0.125Tc Underdamped

5. Pettit and Carr, 1987 [27] PID 0.67Kc Tc 0.167Tc Critically damped

6. Pettit and Carr, 1987 [27] PID 0.5Kc 1.5Tc 0.167Tc Overdamped

7. Chau, 2002 [16] PID 0.33Kc 0.5Tc 0.333Tc Small overshoot

8. Chau, 2002 [16] PID 0.2Kc 0.55Tc 0.333Tc No overshoot

9. Bucz, 2011 [6] PID 0.54Kc 0.79Tc 0.199Tc Overshoot ηmax≤20%

10. Bucz, 2011 [6] PID 0.28Kc 1.44Tc 0.359Tc Settling time ts≤13/ωc

Table 2. Model-free PID controller tuning rules based on critical plant parameters.

Figure 6. Moving the critical point C = [�1/Kc + j0] of the plant using P, PI and PID controllers designed by Ziegler-
Nichols frequency-domain method for critical frequency ωc of the plant.
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accelerate the entire production process. More and more demanding requirements on control
performance were formulated, and an intense demand for effective tuning methods guarantee-
ing required performance has arisen.

As a rule, application of Ziegler-Nichols methods usually leads to oscillatory closed-loop
responses; hence, many scientists have become interested in their possible improvement.
Forty-two modifications of the Ziegler-Nichols frequency method were developed in the
period from 1967 to 2010. They differ from the classical algorithm in using various other
combinations of the weights (α1, α2, α3). An overview of selected model-free methods is given
in Table 2.

Tuning rules No. 1–3 are the well-known Ziegler-Nichols frequency-domain method which
objective is a fast rejection of the disturbance d(t) and δDR = 1:4. In the complex plane interpre-
tation (Figure 6), the method corresponds to shifting the critical point C = [�1/Kc + j0], into the
points CP = [�0.5 + j0], CPI = [�0.45 + j0.0896] and CPID = [�0.6-j0.28] using respectively P, PI
and PID controllers tuned according to Table 2. Put simply, the open-loop Nyquist plot is
shaped into a sufficient distance from the limit of instability specified by the point (�1.j0).

No. Design method, year Controller K Ti Td Performance

1. Ziegler and Nichols, 1942 [48] P 0.5Kc — — Quarter decay ratio

2. Ziegler and Nichols, 1942 [48] PI 0.45Kc 0.8Tc — Quarter decay ratio

3. Ziegler and Nichols, 1942 [48] PID 0.6Kc 0.5Tc 0.125Tc Quarter decay ratio

4. Pettit and Carr, 1987 [27] PID Kc 0.5Tc 0.125Tc Underdamped

5. Pettit and Carr, 1987 [27] PID 0.67Kc Tc 0.167Tc Critically damped

6. Pettit and Carr, 1987 [27] PID 0.5Kc 1.5Tc 0.167Tc Overdamped

7. Chau, 2002 [16] PID 0.33Kc 0.5Tc 0.333Tc Small overshoot

8. Chau, 2002 [16] PID 0.2Kc 0.55Tc 0.333Tc No overshoot

9. Bucz, 2011 [6] PID 0.54Kc 0.79Tc 0.199Tc Overshoot ηmax≤20%

10. Bucz, 2011 [6] PID 0.28Kc 1.44Tc 0.359Tc Settling time ts≤13/ωc

Table 2. Model-free PID controller tuning rules based on critical plant parameters.

Figure 6. Moving the critical point C = [�1/Kc + j0] of the plant using P, PI and PID controllers designed by Ziegler-
Nichols frequency-domain method for critical frequency ωc of the plant.
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Related methods (No. 4–10) use various weighting of critical parameters thus allowing to vary
the closed-loop performance requirements (see the last column in Table 2). All presented
methods (No. 1–10) are applicable for various plant types, easy-to-use and time efficient.

2.4.1.3. Specification of critical parameters of the plant using relay experiment

In autotuners of industrial controllers, a relay test [29] using an ideal relay (IR) or a hysteresis
relay (HR) is used to quickly determine the plant critical parameters Kc and Tc. In the manual
mode, after setting the nominal setpoint w(t) and switching the SW to position “3”, a stable
limit cycle around the nominal working point y(t) arises in the control loop in Figure 1. As a
result of switching between the �M, +M relay levels, the controlled system G(s) is excited by a
rectangular periodic signal u(t) (Figure 7a). The critical frequency ωc and the critical gain Kc

are calculated as follows:

ωc ¼ 2π
Tc

; Kc_IR ¼ 4M
πAc

; Kc_HR ¼ 4 M� 0:5ΔDBð Þ
πAc

, (10)

where the period Tc and the amplitude Ac of critical oscillations are read off from y(t) of the
recorded limit cycle (Figure 7b); ΔDB is the width of the hysteresis plot, the relay amplitude M
is chosen as (3÷10)% of the control u(t) limits. A typical limit cycle is depicted in Figure 7b. A
hysteresis relay is used if y(t) corrupted by a noise n(t) [47].

The advantage of these methods is their applicability for different types of systems, simplicity
and the short time needed for the controller design of the—approx. (3÷4)Tc.

2.4.2. Model-based PID controller tuning with guaranteed performance

In these methods, the identified characteristics of the unknown system are used to create its
typical model, and the controller design algorithm is derived for this particular model. Formu-
las for calculation of the controller coefficients include process model parameters that are
function of the identified process data. Each method works perfectly for the system whose
model has been used in the design algorithm. However, if the system is approximated differ-
ently, the achieved performance may be impaired or even insufficient. The advantage is that
control objectives can be clearly defined and expressed using analytical relationships (e.g., it is
possible to derive the relationship for maximum overshoot of the step response). A small
flexibility due to the “tailor-made” design for one type of model limits the widespread appli-
cation of these methods in autotuners of industrial controllers.

PID tuning algorithms of indirect tuning methods have two more steps compared with direct
methods, as shown in the flow chart in Figure 8. When choosing the procedure for creating a

Figure 7. Determination of critical parameters Kc and Tc of the controlled plant from the limit cycle.
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typical model . , it is important how the implicit information about the controlled system is
considered (if we deal with a driving system, a thermal process, a mechanical or pneumatic
system, etc.). If the typical model for the given controlled system has already been selected, the
model parameters are calculated in step . and subsequently used in calculation of the PID
coefficients.

2.4.2.1. Specification of FOLPDT, IPDT and FOLIPDT plant model parameters

The static and dynamic properties of most technological processes can be expressed by one of
the FOLPDT, IPDT, FOLIPDT, or SOSPDT models. Model parameters are identified from the
recorded step response of the controlled system (Figure 9) and are further used in calculation
of PID controller coefficients. According to Figure 1, step response of the controlled process is
obtained by switching SW into position “2” and performing step change in u(t).

Transfer functions of themodel are found from the step responseparameters according toFigure9.

GFOLPDT sð Þ ¼ K1e�D1s

T1sþ 1
; GIPDT sð Þ ¼ K2e�D2s

s
; GFOLIPDT sð Þ ¼ K3e�D3s

s T3sþ 1ð Þ : (11)

Figure 8. Flow chart of the indirect engineering method for PID tuning.

Figure 9. Typical step responses of (a) FOLPDT; (b) IPDT and (c) FOLIPDT models.
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Related methods (No. 4–10) use various weighting of critical parameters thus allowing to vary
the closed-loop performance requirements (see the last column in Table 2). All presented
methods (No. 1–10) are applicable for various plant types, easy-to-use and time efficient.

2.4.1.3. Specification of critical parameters of the plant using relay experiment

In autotuners of industrial controllers, a relay test [29] using an ideal relay (IR) or a hysteresis
relay (HR) is used to quickly determine the plant critical parameters Kc and Tc. In the manual
mode, after setting the nominal setpoint w(t) and switching the SW to position “3”, a stable
limit cycle around the nominal working point y(t) arises in the control loop in Figure 1. As a
result of switching between the �M, +M relay levels, the controlled system G(s) is excited by a
rectangular periodic signal u(t) (Figure 7a). The critical frequency ωc and the critical gain Kc

are calculated as follows:

ωc ¼ 2π
Tc

; Kc_IR ¼ 4M
πAc

; Kc_HR ¼ 4 M� 0:5ΔDBð Þ
πAc

, (10)

where the period Tc and the amplitude Ac of critical oscillations are read off from y(t) of the
recorded limit cycle (Figure 7b); ΔDB is the width of the hysteresis plot, the relay amplitude M
is chosen as (3÷10)% of the control u(t) limits. A typical limit cycle is depicted in Figure 7b. A
hysteresis relay is used if y(t) corrupted by a noise n(t) [47].

The advantage of these methods is their applicability for different types of systems, simplicity
and the short time needed for the controller design of the—approx. (3÷4)Tc.

2.4.2. Model-based PID controller tuning with guaranteed performance

In these methods, the identified characteristics of the unknown system are used to create its
typical model, and the controller design algorithm is derived for this particular model. Formu-
las for calculation of the controller coefficients include process model parameters that are
function of the identified process data. Each method works perfectly for the system whose
model has been used in the design algorithm. However, if the system is approximated differ-
ently, the achieved performance may be impaired or even insufficient. The advantage is that
control objectives can be clearly defined and expressed using analytical relationships (e.g., it is
possible to derive the relationship for maximum overshoot of the step response). A small
flexibility due to the “tailor-made” design for one type of model limits the widespread appli-
cation of these methods in autotuners of industrial controllers.

PID tuning algorithms of indirect tuning methods have two more steps compared with direct
methods, as shown in the flow chart in Figure 8. When choosing the procedure for creating a
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typical model . , it is important how the implicit information about the controlled system is
considered (if we deal with a driving system, a thermal process, a mechanical or pneumatic
system, etc.). If the typical model for the given controlled system has already been selected, the
model parameters are calculated in step . and subsequently used in calculation of the PID
coefficients.

2.4.2.1. Specification of FOLPDT, IPDT and FOLIPDT plant model parameters

The static and dynamic properties of most technological processes can be expressed by one of
the FOLPDT, IPDT, FOLIPDT, or SOSPDT models. Model parameters are identified from the
recorded step response of the controlled system (Figure 9) and are further used in calculation
of PID controller coefficients. According to Figure 1, step response of the controlled process is
obtained by switching SW into position “2” and performing step change in u(t).

Transfer functions of themodel are found from the step responseparameters according toFigure9.

GFOLPDT sð Þ ¼ K1e�D1s

T1sþ 1
; GIPDT sð Þ ¼ K2e�D2s

s
; GFOLIPDT sð Þ ¼ K3e�D3s

s T3sþ 1ð Þ : (11)

Figure 8. Flow chart of the indirect engineering method for PID tuning.

Figure 9. Typical step responses of (a) FOLPDT; (b) IPDT and (c) FOLIPDT models.
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2.4.2.2. PID controller tuning formulas for FOLPDT models

The FOPDT model (11a) is used to approximate dynamics of chemical processes, thermal
plants, production processes, and so on. To calculate the P, PI and PID controller, coefficients
based on the parameters of the FOLPDT model of the controlled system, the tuning formulas
in Table 3 can be used.

2.4.2.3. PID controller tuning formulas for IPDT and FOLIPDT models

While dynamics of slow technological processes (polymer production, heat exchange, etc.) can
be approximated by an IPDT model (11b), electromechanical subsystem of rotating machines
and servo drive objects are typical examples for using a FOLIPTD model [42] (11c) (Table 4).

The gain K in the rule No. 27 is variable with respect to the normalized time delay υ3 = D3/T3 of
the FOLIPDT model; for the corresponding pairs holds: (υ3;x3) = {(0.02;5), (0.053;4); (0.11;3);
(0.25;2.2); (0.43;1.7); (1;1.3); (4;1.1)}.

No. Design method, year, control purpose Controller K Ti Td Performance

11. Ziegler and Nichols, 1942 [48] P 1/ϑ1 — — Quarter decay ratio

12. Ziegler and Nichols, 1942 [48] PI 0.9/ϑ1 3D1 —

13. Ziegler and Nichols, 1942 [48] PID 1.2/ϑ1 2D1 0.5D1

14. Chien et al., 1952, regulator tuning [18] PI 0.6/κ1 4D1 — ηmax = 0%, D1/T1∈(0.1;1)

15. Chien et al., 1952, regulator tuning [18] PID 0.95/ϑ1 2.38D1 0.42D1

16. Chien et al., 1952, regulator tuning [18] PI 0.77/ϑ1 2.33D1 — ηmax = 20%, D1/T1∈(0.1;1)

17. Chien et al., 1952, regulator tuning [18] PID 1.2/ϑ1 2D1 0.42D1

18. Chien et al., 1952, servo tuning [18] PI 0.35/ϑ1 1.17D1 — ηmax = 0%, D1/T1∈(0.1;1)

19. Chien et al., 1952, servo tuning [18] PID 0.6/ϑ1 D1 0.5D1

20. Chien et al., 1952, servo tuning [18] PI 0.6/ϑ1 D1 — ηmax = 20%, D1/T1∈(0.1;1)

21. Chien et al., 1952, servo tuning [18] PID 0.95/ϑ1 1.36D1 0.47D1

22. ControlSoft Inc., 2005 [23] PID 2/K1 T1 + D1 max(D1/3;T1/6) Slow loop

23. ControlSoft Inc., 2005 [23] PID 2/K1 T1 + D1 min(D1/3;T1/6) Fast loop

Table 3. PID tuning rules based on FOPDT model, ϑ1 = K1D1/T1 is the normalized process gain.

No. Design method, year, model Controller K Ti Td Performance

24. Haalman, 1965, IPDT model [12] P 0.66/(K2D2) — — Ms = 1.9

25. Ziegler and Nichols, 1942, IPDT model [48] PI 0.9/(K2D2) 3.33D2 — Quarter decay ratio

26. Ford, 1953, IPDT model [10] PID 1.48/(K2D2) 2D2 0.37D2 Decay ratio 1:2.7

27. Coon, 1956, FOLIPDT model [8] P x3
K3 T3þD3ð Þ — — Quarter decay ratio

28. Haalman, 1965, FOLIPDT model [12] PD 0.66/(K3D3) — T3 Ms = 1.9

Table 4. PID tuning rules based on IPDT and FOLIPDT model parameters.
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2.4.2.4. PID controller tuning formulas for SOSPDT plant models

Flexible systems in wood processing industry, automotive industry, robotics, shocks and
vibrations damping are often modeled by SOSPDT models with transfer functions

GSOSPDT sð Þ ¼ K4e�D4s

T4sþ 1ð Þ T5sþ 1ð Þ ; GSOSPDT sð Þ ¼ K6e�D6s

T2
6s2 þ 2ξ6T6sþ 1

, (12)

where for SOSPDT model (12b) the relative damping ξ6∈(0;1) indicates oscillatory step
response.

If ξ4 > 1, SOSPDT model (12a) is used; its parameters are found from the nonoscillatory step
response in Figure 10a using the following relations

T4:5 ¼ 1
2

C2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2 � 4C2

1

q� �
; D4 ¼ t0:33

0:516
� t0:7
1:067

; C1 ¼ t0:33 � t0:7ð Þ
1:529

; C2 ¼ S
y ∞ð Þ , (13)

where S = K4(T4 + T5 + D4) is the area above the step response of the process output y(t), and
y(∞) is its steady-state value.

Parameters of the SOSPDT model (12b) can be found from evaluation of 2–4 periods of step
response oscillations (Figure 10b) using following rules [39]

ξ6 ¼
�ln aiþ1

aiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln 2 aiþ1

ai

q ; T6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ26

q

πN
tNþ1 � t1ð Þ; D6 ¼ 1

N

XN

i¼1

ti �N þ 1
2

tNþ1 � t1ð Þ
" #

: (14)

Quality of identification improves with increasing number N of read-off amplitudes. If N > 2
several values ξ6, T6 and D6 are obtained, and their average is taken for further calculations.
Table 5 summarizes useful tuning formulas for both oscillatory and nonoscillatory systems
with SOSPDT model properties.

Using tuning methods shown in Tables 2–5, achieved performance is a priori given by the
particular method (e.g., quarter decay ratio when using Ziegler-Nichols methods No. 11–13 in
Table 3) or guarantees performance however not specified by the designer (e.g., in Chen

Figure 10. Step response of (a) nonoscillatory, (b) oscillatory SOSPDT model.
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2.4.2.2. PID controller tuning formulas for FOLPDT models

The FOPDT model (11a) is used to approximate dynamics of chemical processes, thermal
plants, production processes, and so on. To calculate the P, PI and PID controller, coefficients
based on the parameters of the FOLPDT model of the controlled system, the tuning formulas
in Table 3 can be used.

2.4.2.3. PID controller tuning formulas for IPDT and FOLIPDT models

While dynamics of slow technological processes (polymer production, heat exchange, etc.) can
be approximated by an IPDT model (11b), electromechanical subsystem of rotating machines
and servo drive objects are typical examples for using a FOLIPTD model [42] (11c) (Table 4).

The gain K in the rule No. 27 is variable with respect to the normalized time delay υ3 = D3/T3 of
the FOLIPDT model; for the corresponding pairs holds: (υ3;x3) = {(0.02;5), (0.053;4); (0.11;3);
(0.25;2.2); (0.43;1.7); (1;1.3); (4;1.1)}.

No. Design method, year, control purpose Controller K Ti Td Performance

11. Ziegler and Nichols, 1942 [48] P 1/ϑ1 — — Quarter decay ratio

12. Ziegler and Nichols, 1942 [48] PI 0.9/ϑ1 3D1 —

13. Ziegler and Nichols, 1942 [48] PID 1.2/ϑ1 2D1 0.5D1

14. Chien et al., 1952, regulator tuning [18] PI 0.6/κ1 4D1 — ηmax = 0%, D1/T1∈(0.1;1)

15. Chien et al., 1952, regulator tuning [18] PID 0.95/ϑ1 2.38D1 0.42D1

16. Chien et al., 1952, regulator tuning [18] PI 0.77/ϑ1 2.33D1 — ηmax = 20%, D1/T1∈(0.1;1)

17. Chien et al., 1952, regulator tuning [18] PID 1.2/ϑ1 2D1 0.42D1

18. Chien et al., 1952, servo tuning [18] PI 0.35/ϑ1 1.17D1 — ηmax = 0%, D1/T1∈(0.1;1)

19. Chien et al., 1952, servo tuning [18] PID 0.6/ϑ1 D1 0.5D1

20. Chien et al., 1952, servo tuning [18] PI 0.6/ϑ1 D1 — ηmax = 20%, D1/T1∈(0.1;1)

21. Chien et al., 1952, servo tuning [18] PID 0.95/ϑ1 1.36D1 0.47D1

22. ControlSoft Inc., 2005 [23] PID 2/K1 T1 + D1 max(D1/3;T1/6) Slow loop

23. ControlSoft Inc., 2005 [23] PID 2/K1 T1 + D1 min(D1/3;T1/6) Fast loop

Table 3. PID tuning rules based on FOPDT model, ϑ1 = K1D1/T1 is the normalized process gain.

No. Design method, year, model Controller K Ti Td Performance

24. Haalman, 1965, IPDT model [12] P 0.66/(K2D2) — — Ms = 1.9

25. Ziegler and Nichols, 1942, IPDT model [48] PI 0.9/(K2D2) 3.33D2 — Quarter decay ratio

26. Ford, 1953, IPDT model [10] PID 1.48/(K2D2) 2D2 0.37D2 Decay ratio 1:2.7

27. Coon, 1956, FOLIPDT model [8] P x3
K3 T3þD3ð Þ — — Quarter decay ratio

28. Haalman, 1965, FOLIPDT model [12] PD 0.66/(K3D3) — T3 Ms = 1.9

Table 4. PID tuning rules based on IPDT and FOLIPDT model parameters.
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2.4.2.4. PID controller tuning formulas for SOSPDT plant models

Flexible systems in wood processing industry, automotive industry, robotics, shocks and
vibrations damping are often modeled by SOSPDT models with transfer functions

GSOSPDT sð Þ ¼ K4e�D4s

T4sþ 1ð Þ T5sþ 1ð Þ ; GSOSPDT sð Þ ¼ K6e�D6s

T2
6s2 þ 2ξ6T6sþ 1

, (12)

where for SOSPDT model (12b) the relative damping ξ6∈(0;1) indicates oscillatory step
response.

If ξ4 > 1, SOSPDT model (12a) is used; its parameters are found from the nonoscillatory step
response in Figure 10a using the following relations

T4:5 ¼ 1
2

C2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2 � 4C2

1

q� �
; D4 ¼ t0:33

0:516
� t0:7
1:067

; C1 ¼ t0:33 � t0:7ð Þ
1:529

; C2 ¼ S
y ∞ð Þ , (13)

where S = K4(T4 + T5 + D4) is the area above the step response of the process output y(t), and
y(∞) is its steady-state value.

Parameters of the SOSPDT model (12b) can be found from evaluation of 2–4 periods of step
response oscillations (Figure 10b) using following rules [39]

ξ6 ¼
�ln aiþ1

aiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln 2 aiþ1

ai

q ; T6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ26

q

πN
tNþ1 � t1ð Þ; D6 ¼ 1

N
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i¼1

ti �N þ 1
2
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" #

: (14)

Quality of identification improves with increasing number N of read-off amplitudes. If N > 2
several values ξ6, T6 and D6 are obtained, and their average is taken for further calculations.
Table 5 summarizes useful tuning formulas for both oscillatory and nonoscillatory systems
with SOSPDT model properties.

Using tuning methods shown in Tables 2–5, achieved performance is a priori given by the
particular method (e.g., quarter decay ratio when using Ziegler-Nichols methods No. 11–13 in
Table 3) or guarantees performance however not specified by the designer (e.g., in Chen

Figure 10. Step response of (a) nonoscillatory, (b) oscillatory SOSPDT model.
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method No. 33 in Table 5 gain margin GM = 1.96, phase margin ϕM = 44.1� and maximum peak
Ms = 1.5 of the sensitivity to disturbance d(t)).

2.4.2.5. PID controller tuning formulas for unstable FOLPDT models

Minimization of performance indices can be applied also for unstable FOLPDT models

GFOLPDT_US sð Þ ¼ K1e�D1s

T1s� 1
(15)

leading to simple tuning rules for PID controller (1a) (No. 34–38 in Table 6). Tuning rules No.
37 and 38 for PID controller (1c) show that settling time ts increases with growing normalized
time delay ν1 = D1/T1 of the FOLPDT model (15).

2.5. PID controller design for specified performance

The main benefit of these methods consists of that all tuning rules are based on a single tuning
parameter that enables to systematically affect the closed-loop performance by step response
shaping [32].

No. Method, year Controller K Ti Td Performance for

29. Suyama, 1992 [30] PID T4þT5
2K4D4

T4 + T5
T4T5
T4þT5

Closed-loop step response overshoot
ηmax = 10%

30. Vítečková, (1999) [40], Vítečková et al.
(2000) [41]

PID x4 T4þT5
K4D4

T4 + T5
T4T5
T4þT5

Overdamped plants; T5 > T4

ηmax = 0%: x4 = 0.368;
ηmax = 30%: x4 = 0.801

31. Vítečková, (1999) [40], Vítečková et al.
(2000) [41]

PID x6ζ6T6
K6D6

2ζ6T6 T6
2ζ6

Underdamped plants (0.5<ξ6≤1)
ηmax = 0%: x6 = 0.736;
ηmax = 30%: x6 = 1.602

32. Wang and Shao (1999) [43] PID x6ζ6T6
K6D6

2ξ6T6 [GM = 2, ϕM = 45�]: x6 = 1.571
[GM = 5, ϕM = 72�]: x6 = 0.628

33. Chen et al., 1999 [17] PID x6ζ6T6
K6D6

2ξ6T6
D6
2ξ6

[GM;ϕM;Ms] = [3.14;61.4�;1]: x6 = 1.0
[GM;ϕM;Ms] = [1.96;44.1�;1.5]: x6 = 1.6

Table 5. Tuning rules based on SOSPDT model parameters.

No. Method, year K Ti Td Tf Performance

34. Visioli, 2001, Regulator tuning [36] 1.37ν1/K1 2.42T1ν1
1.18 0.60T1 — Minimum ISE

35. Visioli, 2001, Regulator tuning [36] 1.37ν1/K1 4.12T1ν1
0.90 0.55T1 — Minimum ISTE

36. Visioli, 2001, Regulator tuning [36] 1.70ν1/K1 4.52T1ν1
1.13 0.50T1 — Minimum IST2E

37. Chandrashekar et al., 2002 [15] 10.3662/K1 0.3874T1 0.0435T1 0.0134T1 ts = 0.1 T1: ν1 = 0.1

38. Chandrashekar et al., 2002 [15] 2.0217/K1 4.65T1 0.2366T1 0.0696T1 ts = 0.8 T1: ν1 = 0.5

Table 6. Tuning rules for unstable FOPDT model.
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2.5.1. PID controller tuning formulas with performance specification

Table 7 shows open formulas for PID controller design; their tuning is carried out with respect
to closed-loop performance specification.

Rules No. 39–43 consider tuning of ideal PID controller (1a). To apply the Rotach method [29],
knowledge of the plant magnitude |G(jω)| is supposed as well as of the roll-off of the phase
plot argG(ω) at ω = ωMt, where the maximum peak Mt of the complementary sensitivity is
required. Method No. 42 is based on the so-called λ-tuning, where the resulting closed-loop is
expressed as a 1st order system with time constant λ; this rule considers real PID controller
(1b) with filtering constant in the derivative part Tf = 0.5λD1/(1 + D1), where λ is to be chosen so
as to meet following conditions: λ>0.25D1; λ>0.25T1 [22]. The λ-tuning technique is used also in
the rule No. 43 to design interaction PI controller.

2.5.2. Closed-loop performance evaluation under PID controller tuning

Phase margin ϕM is the most widespread performance measure in PID controller design.
Maximum overshoot ηmax and settling time ts of the closed-loop step response are related with
ϕM according to Reinisch relations

ηmax ¼
�0:91φM þ 64:55 for φM ∈ 38

�
; 71

�� �

�1:53φM þ 88:46 for φM ∈ 12
�
; 38

�� � ; ηmax ¼ 100e�2πb2Mt ; ts ∈
π
ω∗

a
;
4π
ω∗

a

� �(
(16)

valid for second-order closed-loop with relative damping ωa*∈(0.25;0.65) where ωa* is the gain
crossover frequency [14]. Relations

ηmax ≤ 100
1:18Mt � T 0ð Þj j

T 0ð Þj j %½ �; ts ≈
3
ω∗

a
forMt ∈ 1:3; 1:5ð Þ (17)

are general for any order of the closed-loop T(s); if the controller has the integral part then
|T(0)| = |T(ω = 0)| = 1 [14].

The engineering practice is persistently demanding for PID controller design methods that
simultaneously guarantee several performance criteria [24], especially the maximum

No. Design method, year, model K Ti Td

39. Hang and Åström, 1988, Nonmodel [13] Kc sinφM Tc 1� cosφMð Þ
π sinφM

Tc 1� cosφMð Þ
4π sinφM

40. Rotach, 1994, Nonmodel [28] Mt G jωMtð Þj jffiffiffiffiffiffiffiffiffi
M2

t �1
p �2

ω2
Mt

d argG ωMtð Þ½ �
dωMt

� � � 1
2
d argG ωMtð Þ½ �

dωMt

41. Wojsznis et al., 1999, FOPDT [45] Kc cosφM
GM

Tc
π tgφM þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tg 2φM

p� � Tc
4π tgφM þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tg 2φM

p� �

42. Morari and Zafiriou, 1989, FOPDT [22] T1þ0, 5D1
K1 λþD1ð Þ T1 þ 1

2D1
T1D1

2T1þD1

43. Chen and Seborg, 2002, FOPDT [17] T2
1þT1D1� λ�T1ð Þ2

λþLð Þ2
T2
1þT1D1� λ�T1ð Þ2

T1þL1
-
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method No. 33 in Table 5 gain margin GM = 1.96, phase margin ϕM = 44.1� and maximum peak
Ms = 1.5 of the sensitivity to disturbance d(t)).

2.4.2.5. PID controller tuning formulas for unstable FOLPDT models

Minimization of performance indices can be applied also for unstable FOLPDT models

GFOLPDT_US sð Þ ¼ K1e�D1s

T1s� 1
(15)

leading to simple tuning rules for PID controller (1a) (No. 34–38 in Table 6). Tuning rules No.
37 and 38 for PID controller (1c) show that settling time ts increases with growing normalized
time delay ν1 = D1/T1 of the FOLPDT model (15).

2.5. PID controller design for specified performance

The main benefit of these methods consists of that all tuning rules are based on a single tuning
parameter that enables to systematically affect the closed-loop performance by step response
shaping [32].

No. Method, year Controller K Ti Td Performance for

29. Suyama, 1992 [30] PID T4þT5
2K4D4

T4 + T5
T4T5
T4þT5

Closed-loop step response overshoot
ηmax = 10%

30. Vítečková, (1999) [40], Vítečková et al.
(2000) [41]

PID x4 T4þT5
K4D4

T4 + T5
T4T5
T4þT5

Overdamped plants; T5 > T4

ηmax = 0%: x4 = 0.368;
ηmax = 30%: x4 = 0.801

31. Vítečková, (1999) [40], Vítečková et al.
(2000) [41]

PID x6ζ6T6
K6D6

2ζ6T6 T6
2ζ6

Underdamped plants (0.5<ξ6≤1)
ηmax = 0%: x6 = 0.736;
ηmax = 30%: x6 = 1.602

32. Wang and Shao (1999) [43] PID x6ζ6T6
K6D6

2ξ6T6 [GM = 2, ϕM = 45�]: x6 = 1.571
[GM = 5, ϕM = 72�]: x6 = 0.628

33. Chen et al., 1999 [17] PID x6ζ6T6
K6D6

2ξ6T6
D6
2ξ6

[GM;ϕM;Ms] = [3.14;61.4�;1]: x6 = 1.0
[GM;ϕM;Ms] = [1.96;44.1�;1.5]: x6 = 1.6

Table 5. Tuning rules based on SOSPDT model parameters.

No. Method, year K Ti Td Tf Performance

34. Visioli, 2001, Regulator tuning [36] 1.37ν1/K1 2.42T1ν1
1.18 0.60T1 — Minimum ISE

35. Visioli, 2001, Regulator tuning [36] 1.37ν1/K1 4.12T1ν1
0.90 0.55T1 — Minimum ISTE

36. Visioli, 2001, Regulator tuning [36] 1.70ν1/K1 4.52T1ν1
1.13 0.50T1 — Minimum IST2E

37. Chandrashekar et al., 2002 [15] 10.3662/K1 0.3874T1 0.0435T1 0.0134T1 ts = 0.1 T1: ν1 = 0.1

38. Chandrashekar et al., 2002 [15] 2.0217/K1 4.65T1 0.2366T1 0.0696T1 ts = 0.8 T1: ν1 = 0.5

Table 6. Tuning rules for unstable FOPDT model.
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2.5.1. PID controller tuning formulas with performance specification

Table 7 shows open formulas for PID controller design; their tuning is carried out with respect
to closed-loop performance specification.

Rules No. 39–43 consider tuning of ideal PID controller (1a). To apply the Rotach method [29],
knowledge of the plant magnitude |G(jω)| is supposed as well as of the roll-off of the phase
plot argG(ω) at ω = ωMt, where the maximum peak Mt of the complementary sensitivity is
required. Method No. 42 is based on the so-called λ-tuning, where the resulting closed-loop is
expressed as a 1st order system with time constant λ; this rule considers real PID controller
(1b) with filtering constant in the derivative part Tf = 0.5λD1/(1 + D1), where λ is to be chosen so
as to meet following conditions: λ>0.25D1; λ>0.25T1 [22]. The λ-tuning technique is used also in
the rule No. 43 to design interaction PI controller.

2.5.2. Closed-loop performance evaluation under PID controller tuning

Phase margin ϕM is the most widespread performance measure in PID controller design.
Maximum overshoot ηmax and settling time ts of the closed-loop step response are related with
ϕM according to Reinisch relations

ηmax ¼
�0:91φM þ 64:55 for φM ∈ 38

�
; 71

�� �

�1:53φM þ 88:46 for φM ∈ 12
�
; 38

�� � ; ηmax ¼ 100e�2πb2Mt ; ts ∈
π
ω∗

a
;
4π
ω∗

a

� �(
(16)

valid for second-order closed-loop with relative damping ωa*∈(0.25;0.65) where ωa* is the gain
crossover frequency [14]. Relations

ηmax ≤ 100
1:18Mt � T 0ð Þj j

T 0ð Þj j %½ �; ts ≈
3
ω∗

a
forMt ∈ 1:3; 1:5ð Þ (17)

are general for any order of the closed-loop T(s); if the controller has the integral part then
|T(0)| = |T(ω = 0)| = 1 [14].

The engineering practice is persistently demanding for PID controller design methods that
simultaneously guarantee several performance criteria [24], especially the maximum

No. Design method, year, model K Ti Td

39. Hang and Åström, 1988, Nonmodel [13] Kc sinφM Tc 1� cosφMð Þ
π sinφM

Tc 1� cosφMð Þ
4π sinφM

40. Rotach, 1994, Nonmodel [28] Mt G jωMtð Þj jffiffiffiffiffiffiffiffiffi
M2

t �1
p �2

ω2
Mt

d argG ωMtð Þ½ �
dωMt

� � � 1
2
d argG ωMtð Þ½ �

dωMt

41. Wojsznis et al., 1999, FOPDT [45] Kc cosφM
GM

Tc
π tgφM þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tg 2φM

p� � Tc
4π tgφM þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tg 2φM

p� �

42. Morari and Zafiriou, 1989, FOPDT [22] T1þ0, 5D1
K1 λþD1ð Þ T1 þ 1

2D1
T1D1

2T1þD1

43. Chen and Seborg, 2002, FOPDT [17] T2
1þT1D1� λ�T1ð Þ2

λþLð Þ2
T2
1þT1D1� λ�T1ð Þ2

T1þL1
-
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overshoot ηmax and the settling time ts. However, we ask the question: how to suitably
transform the abovementioned engineering requirements into frequency-domain specifica-
tions applicable for PID controller coefficients tuning? The response can be found in Section 3
in which a novel original PID controller design method is presented.

3. PID controller design for specified performance based on harmonic
excitation

The proposed original method [6] enables to guarantee required closed-loop performance for a
whole family of plants specified by the uncertainty description. The core of it is the recently
developed PID controller design method based on external harmonic excitation [7]—a two-
step PID tuning method for performance specified in terms of maximum overshoot ηmax and
settling time ts.

In the first step, the plant is identified using external harmonic excitation signal (a sinusoid)
with the frequency ωn. In the second step, two developed PID controller design approaches
can be applied:

1. the approach based on guaranteed phase margin ϕM suitable for nonintegrating systems
with/without time delay and for integrating systems as well;

2. the approach based on guaranteed gain margin GM suitable for nonintegrating systems
with unstable zero.

For the ϕM–based approach, the specified performance is achieved by means of developed
quadratic dependences ηmax = f(ϕM,ωn) and ts = f(ϕM,ωn) parameterized by ωn; the
corresponding plots are called B-parabolas. For the GM–based approach similar quadratic
dependences for both the maximum overshoot ηmax = f(GM,ωn) and the settling time ts =
f(GM,ωn) were constructed. These approaches enable to achieve fulfillment of the following
performance measures (ωc is the plant ultimate frequency):

• for plants without integration behavior: ηmax∈〈0%, 90%〉 and ts∈〈6.5/ωc, 45/ωc〉,

• for plants with integration behavior: ηmax∈〈9.5%, 90%〉 and ts∈〈11.5/ωc, 45/ωc〉,

• for plants with unstable zero: ηmax∈〈0%, 90%〉 and ts∈〈8.5/ωc, 45/ωc〉.

A setup for the proposed harmonic excitation based method [7] is in Figure 11, where G(s) is a
transfer function of the controlled plant with unknown mathematical model, GR(s) is a PID
controller transfer function, and SW is a switch.

3.1. Process identification using external harmonic excitation

A sinusoidal excitation signal u(t) = Unsin(ωnt) is injected into the plant G(s) when the switch is
in the position SW = 4. The plant output y(t) is sinusoidal as well with the same frequency ωn,
magnitude Yn and a phase lag φ, that is y(t) = Ynsin(ωnt + φ), where φ = argG(ωn) (Figure 12).

PID Control for Industrial Processes90

After obtaining Yn and φ from the recorded time responses u(t) and y(t), one point of the
(unknown) plant frequency characteristics related with the excitation frequency ωn can be
plotted in the complex plane (Figure 12)

G jωnð Þ ¼ G jωnð Þj jejargG ωnð Þ ¼ Yn ωnð Þ
Un ωnð Þ e

jφ ωnð Þ: (18)

It is recommended to choose Un = (3÷7)%umax [7]. Identified plant parameters are described by
the triple {ωn,Yn/Un,φ}. Note that if SW = 4, the identification is performed in open-loop, hence
this approach is applicable for stable plants only.

3.2. PID controller tuning rules based on harmonic excitation

Based on identified plant parameters, PID controller can be tuned using the phase margin and/
or gain margin approaches. In the control loop in Figure 11, switch SW in ”5” and the PID
controller in manual mode. To guarantee a specified phase margin ϕM at the gain crossover
frequency ωa*, the closed-loop characteristic equation under a PID controller 1 + L(jω) =
1 + G(jω)GR(jω) = 0 can be easily broken down into the magnitude and phase conditions (ωa* =
ωn, and ϕM is the required phase margin, L(jω) is the loop transfer function)

G jωnð Þj j GR jωnð Þj j ¼ 1, argG ωnð Þ þ argGR ωnð Þ ¼ �180
� þ φM: (19)

Figure 12. Time responses of (a) u(t); (b) y(t), and (c) location of G(jωn) in the complex plane.

Figure 11. A setup for implementation of the external harmonic excitation based method.
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overshoot ηmax and the settling time ts. However, we ask the question: how to suitably
transform the abovementioned engineering requirements into frequency-domain specifica-
tions applicable for PID controller coefficients tuning? The response can be found in Section 3
in which a novel original PID controller design method is presented.

3. PID controller design for specified performance based on harmonic
excitation

The proposed original method [6] enables to guarantee required closed-loop performance for a
whole family of plants specified by the uncertainty description. The core of it is the recently
developed PID controller design method based on external harmonic excitation [7]—a two-
step PID tuning method for performance specified in terms of maximum overshoot ηmax and
settling time ts.

In the first step, the plant is identified using external harmonic excitation signal (a sinusoid)
with the frequency ωn. In the second step, two developed PID controller design approaches
can be applied:

1. the approach based on guaranteed phase margin ϕM suitable for nonintegrating systems
with/without time delay and for integrating systems as well;

2. the approach based on guaranteed gain margin GM suitable for nonintegrating systems
with unstable zero.

For the ϕM–based approach, the specified performance is achieved by means of developed
quadratic dependences ηmax = f(ϕM,ωn) and ts = f(ϕM,ωn) parameterized by ωn; the
corresponding plots are called B-parabolas. For the GM–based approach similar quadratic
dependences for both the maximum overshoot ηmax = f(GM,ωn) and the settling time ts =
f(GM,ωn) were constructed. These approaches enable to achieve fulfillment of the following
performance measures (ωc is the plant ultimate frequency):

• for plants without integration behavior: ηmax∈〈0%, 90%〉 and ts∈〈6.5/ωc, 45/ωc〉,

• for plants with integration behavior: ηmax∈〈9.5%, 90%〉 and ts∈〈11.5/ωc, 45/ωc〉,

• for plants with unstable zero: ηmax∈〈0%, 90%〉 and ts∈〈8.5/ωc, 45/ωc〉.

A setup for the proposed harmonic excitation based method [7] is in Figure 11, where G(s) is a
transfer function of the controlled plant with unknown mathematical model, GR(s) is a PID
controller transfer function, and SW is a switch.

3.1. Process identification using external harmonic excitation

A sinusoidal excitation signal u(t) = Unsin(ωnt) is injected into the plant G(s) when the switch is
in the position SW = 4. The plant output y(t) is sinusoidal as well with the same frequency ωn,
magnitude Yn and a phase lag φ, that is y(t) = Ynsin(ωnt + φ), where φ = argG(ωn) (Figure 12).
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After obtaining Yn and φ from the recorded time responses u(t) and y(t), one point of the
(unknown) plant frequency characteristics related with the excitation frequency ωn can be
plotted in the complex plane (Figure 12)

G jωnð Þ ¼ G jωnð Þj jejargG ωnð Þ ¼ Yn ωnð Þ
Un ωnð Þ e

jφ ωnð Þ: (18)

It is recommended to choose Un = (3÷7)%umax [7]. Identified plant parameters are described by
the triple {ωn,Yn/Un,φ}. Note that if SW = 4, the identification is performed in open-loop, hence
this approach is applicable for stable plants only.

3.2. PID controller tuning rules based on harmonic excitation

Based on identified plant parameters, PID controller can be tuned using the phase margin and/
or gain margin approaches. In the control loop in Figure 11, switch SW in ”5” and the PID
controller in manual mode. To guarantee a specified phase margin ϕM at the gain crossover
frequency ωa*, the closed-loop characteristic equation under a PID controller 1 + L(jω) =
1 + G(jω)GR(jω) = 0 can be easily broken down into the magnitude and phase conditions (ωa* =
ωn, and ϕM is the required phase margin, L(jω) is the loop transfer function)

G jωnð Þj j GR jωnð Þj j ¼ 1, argG ωnð Þ þ argGR ωnð Þ ¼ �180
� þ φM: (19)

Figure 12. Time responses of (a) u(t); (b) y(t), and (c) location of G(jωn) in the complex plane.

Figure 11. A setup for implementation of the external harmonic excitation based method.
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To guarantee a specified gain margin GM at the phase crossover frequency ωp*, the closed-loop
characteristic equation can be expressed by the magnitude and phase conditions [6] as follows
(ωp* = ωn)

G jωnð Þj j GR jωnð Þj j ¼ 1=GM, argG ωnð Þ þ argGR ωnð Þ ¼ �180
�
: (20)

Graphical interpretation of (19), (20) is shown in Figure 13. Let us denote φ ¼ argG ωnð Þ,
Θ ¼ argGR ωnð Þ, and consider the ideal PID controller (1a), where K is proportional gain, and
Ti, Td are the integral and the derivative time constants, respectively. Substituting for s = jωn

into (1a) we obtain

GR jωnð Þ ¼ K þ jK Tdωn � 1
Tiωn

� �
: (21)

Comparison of (21) with its polar form

GR jωnð Þ ¼ GR jωnð Þj jejΘ ¼ GR jωnð Þj j cosΘþ j sinΘ½ � (22)

yields a complex Eq. (23) for phase margin approach and (24) for gain margin approach

K þ jK Tdωn � 1
Tiωn

� �
¼ cosΘ

G jωnð Þj j þ j
sinΘ
G jωnð Þj j , (23)

K þ jK Tdωn � 1
Tiωn

� �
¼ cosΘ

GM G jωnð Þj j þ j
sinΘ

GM G jωnð Þj j : (24)

Finally, PID controller parameters are obtained from (23), (24) using the substitution |GR(jωn)|
= 1/|G(jωn)| for the phase margin approach and |GR(jωn)| = 1/[GM|G(jωn)|] for the gain

Figure 13. Graphical interpretation of (a) ϕM, ωa* and shifting G into LA at ωa* = ωn; (b) GM, ωf* and shifting G into LF at
ωf* = ωn.
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margin approach resulting from (24). The complex equations (23), (24) are solved as a set of
two real equations (25) for the phase margin or (26) for the gain margin approaches, respec-
tively

K ¼ cosΘ
G jωnð Þj j , K Tdωn � 1

βTdωn

� �
¼ sinΘ

G jωnð Þj j , (25)

K ¼ cosΘ
GM G jωnð Þj j , K Tdωn � 1

βTdωn

� �
¼ sinΘ

GM G jωnð Þj j , (26)

where (25a, 26a) represent general rules for calculating the controller gain K. After substituting
(25a), (26a) and the ratio β = Ti/Td into (25b), (26b), after some manipulations we obtain a
quadratic equation in Td for both approaches

T2
dω

2
nβ� TdωnβtgΘ� 1 ¼ 0: (27)

Expression for calculating Td is the positive solution of (27)

Td ¼ tgΘ
2ωn

þ 1
ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg 2Θ
4

þ 1
β

s
: (28)

Hence, the PID controller parameters are calculated using the expressions (25a), (26a), Ti = βTd
and (28); Θ is obtained from (19b) using (29) for the phase margin approach and (20b) for the
gain margin approach

Θ ¼ �180
� þ ϕM � argG ωnð Þ ¼ �180

� þ ϕM � φ, (29)

Θ ¼ �180
� � argG ωnð Þ ¼ �180

� � φ: (30)

Using the PID controller designed for the phase margin ϕM, the identified point G of the plant
Nyquist plot G(jω) with co-ordinates (1) is moved into the point LA of the open-loop Nyquist
plot located on the unit circle M1 (Figure 13a). In this way, the gain crossover LA of the open-
loop L(jω) is specified

LA � L jωnð Þ ¼ L jωnð Þj j; arg L ωnð Þ½ � ¼ 1;ϕM

� �
, (31)

for which the designed PID controller guarantees the required phase margin ϕM; so for ωn is
|L(jωn)| = 1. In case of PID controller design for gain margin GM, the identified point G of the
plant Nyquist plot G(jω) with co-ordinates (1) is moved into the open-loop frequency response
point LF lying on the negative real half-axis of the complex plane (Figure 13b). In this way, the
phase crossover LF of the open-loop L(jω) is specified

LF � L jω∗
f � ωn

� �
¼ L jωnð Þj j; argL ωnð Þ½ � ¼ 1

GM
;�180

�
� �

: (32)

Location of the points G(jωn) and L(jωn) in the complex plane is shown in Figure 13.
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To guarantee a specified gain margin GM at the phase crossover frequency ωp*, the closed-loop
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margin approach resulting from (24). The complex equations (23), (24) are solved as a set of
two real equations (25) for the phase margin or (26) for the gain margin approaches, respec-
tively

K ¼ cosΘ
G jωnð Þj j , K Tdωn � 1

βTdωn

� �
¼ sinΘ

G jωnð Þj j , (25)

K ¼ cosΘ
GM G jωnð Þj j , K Tdωn � 1

βTdωn

� �
¼ sinΘ

GM G jωnð Þj j , (26)

where (25a, 26a) represent general rules for calculating the controller gain K. After substituting
(25a), (26a) and the ratio β = Ti/Td into (25b), (26b), after some manipulations we obtain a
quadratic equation in Td for both approaches

T2
dω

2
nβ� TdωnβtgΘ� 1 ¼ 0: (27)

Expression for calculating Td is the positive solution of (27)

Td ¼ tgΘ
2ωn

þ 1
ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg 2Θ
4

þ 1
β

s
: (28)

Hence, the PID controller parameters are calculated using the expressions (25a), (26a), Ti = βTd
and (28); Θ is obtained from (19b) using (29) for the phase margin approach and (20b) for the
gain margin approach

Θ ¼ �180
� þ ϕM � argG ωnð Þ ¼ �180

� þ ϕM � φ, (29)

Θ ¼ �180
� � argG ωnð Þ ¼ �180

� � φ: (30)

Using the PID controller designed for the phase margin ϕM, the identified point G of the plant
Nyquist plot G(jω) with co-ordinates (1) is moved into the point LA of the open-loop Nyquist
plot located on the unit circle M1 (Figure 13a). In this way, the gain crossover LA of the open-
loop L(jω) is specified

LA � L jωnð Þ ¼ L jωnð Þj j; arg L ωnð Þ½ � ¼ 1;ϕM

� �
, (31)

for which the designed PID controller guarantees the required phase margin ϕM; so for ωn is
|L(jωn)| = 1. In case of PID controller design for gain margin GM, the identified point G of the
plant Nyquist plot G(jω) with co-ordinates (1) is moved into the open-loop frequency response
point LF lying on the negative real half-axis of the complex plane (Figure 13b). In this way, the
phase crossover LF of the open-loop L(jω) is specified

LF � L jω∗
f � ωn

� �
¼ L jωnð Þj j; argL ωnð Þ½ � ¼ 1

GM
;�180

�
� �

: (32)

Location of the points G(jωn) and L(jωn) in the complex plane is shown in Figure 13.
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PI, PD and PID tuning formulas for both approaches (ϕM and GM) are summed up in Table 8.

The excitation frequency can be adjusted according to the empirical relations [6].

ωn ∈ 0:2ωc; 0:95ωch i
ϕM�approach

;ωn ∈ 0:5ωc; 1:25ωch i
GM�approach

: (33)

3.3. Controller structure selection using the “triangle ruler” rule

The argument Θ in the tuning rules in Table 8 indicates the angle to be contributed to the
identified phase φ at ωn by the controller to obtain the resulting open-loop phase (�180�+ ϕM)
necessary to guarantee the required phase margin ϕM (or the gain margin GM). Working range
of the PID controller argument is given by the union of PI and PD controllers phase ranges

ΘPID ∈ΘPI∪ΘPD ¼ �90
�
; 0

�� �
∪ 0

�
;þ90

�� � ¼ �90
�
;þ90

�� �
, (34)

which is symmetric with respect to 0� and due to frequency properties of PI, PD and PID
controllers also upper- and lower-bounded. The working range (34) can be interpreted using a
pretended transparent triangular ruler turned according to Figure 14; its segments to the left
and right of the axis of symmetry represent the PD and PI working ranges, respectively.

Figure 14a shows the situation, when the identified point G is situated in the 1st quadrant of
the complex plane. In case of phase-margin approach, put this ruler on Figure 14a, the middle
of the hypotenuse on the origin of the complex plane and turn it so that its axis of symmetry
merges with the ray (0,G). Thus, the ruler determines in the complex plane the cross-hatched
area representing the full working range of the PID controller argument. The controller type is
chosen depending on the situation of the ray (0,LA) forming with the negative real half-axis the
angle ϕM: situation of the ray (0,LA) in the left-hand sector suggests a PD controller, and in the

No. Design method, year Controller K Ti Td Range
of Θ

44. Ext. sinusoidal excitation method, Phase-margin
approach 2017, Θ ¼ �180

� þ ϕM � φ
PI cosΘ

G jωnð Þj j
�1

ωn tgΘ
�

45. Ext. sinusoidal excitation method, Phase-margin
approach 2017, Θ ¼ �180

� þ ϕM � φ
PD cosΘ

G jωnð Þj j � 1
ωn

tgΘ

46. Ext. sinusoidal excitation method, Phase-margin
approach 2017, Θ ¼ �180

� þ ϕM � φ
PID cosΘ

G jωnð Þj j tgΘ
2ωn

þ 1
ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg 2Θ
4 þ 1

β

q
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right-hand sector the PI controller. Figure 14a shows the case, when the phase margin ϕM is
achievable using both PI or PID controller. According to Figure 14b, the identified point G is
placed in 2nd quadrant of the complex plane. Applying the gain-margin approach, the ruler is
to be put on Figure 14b according to the similar setup than in case of phase-margin approach.
The controller type is chosen depending on the situation of the ray (0,LF) lying on the border of
the second and third quadrants of the complex plane; in this case, PI or PID controller type has
to be chosen.

3.4. Closed-loop performance

This subsection answers the following question: how to transform the practical performance
requirements in terms of maximum overshoot ηmax and settling time ts into the couple of
frequency-domain parameters (ωn,ϕM) needed for identification and PID controller coeffi-
cients tuning?

3.4.1. Systems without integrator

Looking for an appropriate transformation ℜ: (ηmax,ts)!(ωn,ϕM) we will consider typical
phase margins ϕM given by the set

φMj

n o
¼ 20

�
; 30

�
; 40

�
; 50

�
; 60

�
; 70

�
; 80

�
; 90

�� �
, (35)

j = 1…8. Let us split (33a) into 5 equidistant sections Δωn = 0.15ωc, and generate the set of
excitation frequencies

Figure 14. Controller structure selection using the “triangle ruler“ rule with respect to the situation of (a) G and LA; (b) G
and LF.
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ωnkf g ¼ 0:2; 0:35; 0:5; 0:65; 0:8; 0:95ð Þωcf g ¼ σkωcf g, (36)

k = 1…6. Its elements divided by the plant critical frequency ωc determine the set of so-called
excitation levels

σkf g ¼ 0:2; 0:35; 0:5; 0:65; 0:8; 0:95f g, (37)

k = 1…6. Let us demonstrate the qualitative effect of ωnk and ϕMj on closed-loop step response
for the plant

G3 sð Þ ¼ 1
sþ 1ð Þ 0:5sþ 1ð Þ 0:25sþ 1ð Þ 0:125sþ 1ð Þ (38)

under PID controllers designed for three phase margins ϕM = 40�, 60�, 80� on three excitation
levels σ1 = ωn1/ωc = 0.2; σ3 = ωn3/ωc = 0.5 and σ5 = ωn5/ωc = 0.8. Related closed-loop step
responses are shown in Figure 15.

Achieving required ts and ηmax was tested by designing PID controller for a vast set of
benchmark examples [2] at excitation frequencies and phase margins expressed by a Cartesian
product ϕMj�ωnk of the sets (35) and (36) for j = 1…8, k = 1…6. Resulting dependences ηmax =
f(ϕM,ωn) and ts = (ϕM,ωn) are plotted in Figure 16 [6].

Considering the frequencies ωa* = ωn are equal which results from the assumptions of the
sinusoidal excitation method, the settling time can be expressed by the relation

ts ¼ γπ
ωn

(39)

similar to (16c) [6], where γ is the curve factor of the step response; in the relation (16c) for the
2nd order closed-loop, γ is from the interval (1;4) and depends on the relative damping [14]. In
case of the proposed sinusoid excitation based method γ varies over a considerably broader
interval (0.5;16) found empirically and depends strongly on ϕM, that is γ = f(ϕM) at the given
excitation frequency ωn. To examine closed-loop settling times for plants with different
dynamics, it is advantageous to define the relative settling time [7]

Figure 15. Closed-loop step responses of G3(s) for various ϕM and ωn.
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τs ¼ tsωc: (40)

Substituting for ωn = σωc into (39) and (40), we obtain a relation for the relative settling time

τs ¼ π
σ
γ, (41)

where ts is related to the critical frequency ωc. Due to introducing ωc the right-hand side in (41)
is constant for the given plant and independent of ωn. The dependency (41) obtained empiri-
cally for different excitation frequencies ωnk is depicted in Figure 16b; it is evident that at every
excitation level σk with increasing phase margin ϕM the relative settling time τs first decreases
and after achieving its minimum τs_min it increases again. The empirical dependences in
Figure 16 have been approximated by quadratic regression curves, thus they are called B-
parabolas [7].

3.4.1.1. Discussion

When choosing ϕM = 40� on the B-parabola corresponding to the excitation level σ5 = ωn5/
ωc = 0.8 (further denoted as B0.8 parabola), maximum overshoot ηmax = 40% and relative
settling time τs≈10 are expected (see Figure 16). Point corresponding to these parameters
and is located on the left (falling) portion of B0.8 yielding oscillatory step response (see
response in Figure 15c). If the phase margin to ϕM = 60� increases, the relative settling time
decreases into the point on the right (rising) portion of the B0.8 parabola; the corresponding
step response in Figure 15c is weakly aperiodic. For the phase margin ϕM = 80�, the B0.8

parabola indicates a zero maximum overshoot, the relative settling time τs = 20 corresponds to
the position on the B0.8 parabola with aperiodic step response (Figure 15c). If the maxi-
mum overshoot ηmax = 20% is acceptable, then ϕM = 53� yields the least possible relative
settling time τs = 6.5 on the given level σ5 = 0.8 (“at the bottom” of B0.8).

Figure 16. Dependences: (a) ηmax = f(ϕM,ωn); (b) τs = ωcts = f(ϕM,ωn) for ϕMj�ωnk, j = 1…8, k = 1…6 (relative settling time
τs = tsωc).
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3.4.1.2. Example 1

Using the sinusoid excitation method, design ideal PID controllers (1a) for an operating
amplifier modeled by the transfer function GA(s)

GA sð Þ ¼ 1

TAsþ 1ð Þ3 ¼
1

0; 01sþ 1ð Þ3 : (42)

The control objective is to guarantee maximum overshoots ηmax1 = 30%, ηmax2 = 5% and a
maximum relative settling time τs = 12 in both cases.

3.4.1.3. Solution

1. Critical frequency of the plant identified by the Rotach test is ωc = 173.216[rad/s] (the
process is “fast”). The prescribed settling time is ts = τs/ωc = 12/173.216[s] = 69.3[ms].

2. For the expected performance (ηmax1;τs) = (30%;12) (Design No. 1) a satisfactory choice is
(ϕM1;ωn1) = (50�;0.5ωc) resulting from the B0.5 parabola in Figure 16. The performance in
terms of (ηmax2;τs) = (5%;12) (Design No. 2) can be achieved by choosing (ϕM2;ωn2) =
(70�;0.8ωc) resulting from the B0.8 parabola in Figure 16.

3. Identified points for the first and second designs are GA(j0.5ωc) = 0.43e�j120� and
GA(j0.8ωc) = 0.19e�j165�, respectively. According to Figure 17a, both points are located in
the quadrant II of the complex plane, on the Nyquist plot GA(jω) (continuous curve) which
verifies the identification.

Figure 17. (a) Open-loop Nyquist plots; (b) closed-loop step responses of the operational amplifier, required performance
ηmax1 = 30%, ηmax2 = 5% and τs = 12.
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4. Using the PID controller designed for (ϕM1;ωn1) = (50�;0.5ωc), the point GA(j0.5ωc) is
moved into the gain crossover LA1(j0.5ωc) = 1e�j130� on the unit circle M1, which verifies
achieving the phase margin ϕM1 = 180��130� = 50� (dashed Nyquist plot). The point
GA(j0.8ωc) has been moved by the PID controller designed for (ϕM2;ωn2) = (80�;0.8ωc) into
LA2(j0.8ωc) = 1e

�j110� yielding a phase margin ϕM2 = 180��110� = 70� (dotted Nyquist plot).

5. Achieved performance read-off from the closed-loop step response in Figure 17b (dashed
line) is ηmax1* = 29.7%, ts1* = 58.4[ms]. Performance in terms of ηmax2* = 4.89%, ts2* = 60.5
[ms] identified from the closed-loop step response in Figure 17b (dashed line) complies
with the required performance.

3.4.2. Systems with time delay

The sinusoid excitation method is applicable also for plants with time delay commonly consid-
ered as difficult-to-control systems [1]. It is a well-known fact that at each frequency ωn∈〈0,∞)
the time delay D turns the phase by ωnD with respect to the delay-free system [44]. For time-
delayed systems, the phase condition (29) is extended by an additional phase φD = �ωnD

φ0 þ φð Þ þΘ ¼ �180
� þ ϕM, (43)

where φ0 is the phase of the delay-free system and

φ ¼ φ0 þ φD (44)

is the identified phase of the plant including the time delay.

The added phase φD = �ωnD is associated with the required phase margin ϕM according to

φ0 þΘ ¼ �180
� þ ϕM þ ωnD

� �
: (45)

The only modification in using the PID tuning rules in Table 9 is that an increased required
phase margin is to be specified.

Model ηmax,τs ωc [rad/s] ts [s] B-par. ϕM/GM ωn/ωc G(jωn) GR(jωn) ηmax* ts* [s]

GA(s) 30%,12 173.2 0.069 Figure 16 50� 0.5 0.43e�j120� 2.31e�j10� 29.7% 0.058

GA(s) 5%,12 173.2 0.069 Figure 16 70� 0.8 0.19e�j165� 5.20ej55
�

4.89% 0.061

GB(s) 30%,12 0.352 34.1 Figure 16 55 + 45.9� 0.35 1.03e�j23� 0.97e�j56� 18.6% 24.78

GB(s) 5%,12 0.352 34.1 Figure 16 70 + 26.2� 0.2 1.09e�j13� 0.92e�j71� 0.15% 28.69

GC(s) 30%,20 0.241 83.1 Figure 21 53 + 10.1� 0.35 12.7e�j122� 0.08ej5.8
�

29.6% 81.73

GC(s) 20%,20 0.241 83.1 Figure 21 62 + 14.5� 0.5 8.10e�j129� 0.12e�j28� 19.7% 82.44

GD(s) 30%,12 0.049 245.9 Figure 25 15 dB 1.25 0.14e�j204� 1.47ej24
�

24.5% 241.9

GD(s) 5%,12 0.049 245.9 Figure 25 18 dB 0.65 0.38e�j136� 0.38e�j44� 4.55% 243.4

Table 9. PID controller design parameters, required and achieved performance, identified plant parameters for GA(s),
GB(s), GC(s) and GD(s).
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GD(s) 30%,12 0.049 245.9 Figure 25 15 dB 1.25 0.14e�j204� 1.47ej24
�

24.5% 241.9

GD(s) 5%,12 0.049 245.9 Figure 25 18 dB 0.65 0.38e�j136� 0.38e�j44� 4.55% 243.4

Table 9. PID controller design parameters, required and achieved performance, identified plant parameters for GA(s),
GB(s), GC(s) and GD(s).
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ϕ0
M ¼ ϕM þ ωnD (46)

and the controller working angle Θ is to be computed using the relation

Θ ¼ �180
� � φ0 þ ϕM þ ωnD

� �
: (47)

The phase delay ωnD increases with increasing frequency ωn of the sinusoidal excitation
signal. It is recommended to use the smallest possible added phase φD = �ωnD to lessen the
impact of time delay on closed-loop dynamics.

3.4.2.1. Discussion

The time delay D can be easily specified during identification of the critical frequency as a time
D = Ty�Tu, that elapses since the start of the test at time Tu until time Ty, when the system
output starts responding to the excitation signal u(t). A small added phase φD = �ωnD due to
time delay can be achieved by choosing the smallest possible ωn attenuating the effect of D in
(47) and subsequently in the PID controller design. Therefore when designing a PID controller
for time delayed systems, it is recommended to choose the lowest possible excitation level
when using B-parabolas (most frequently ωn/ωc = 0.2 resp. 0.35) and corresponding couples of
B-parabolas in Figure 16. From the given couple (ηmax;ts), ϕM is specified using the chosen
couple of B-parabolas, however its increased value ϕM0 given by (46) is to be supplied in the
design algorithm thus minimizing effect of the time delay on closed-loop dynamics.

3.4.2.2. Example 2

Using the sinusoid excitation method, design ideal PID controllers (1a) for a distillation col-
umn model given by the transfer function GB(s)

GB sð Þ ¼ KBe�DBs

TBsþ 1
¼ 1:11e�6,5s

3:25sþ 1
: (48)

Control objectives are the same as in Example 1.

3.4.2.3. Solution and discussion

1. Critical frequency of the plant is ωc = 0.3521[rad/s]. Based on comparison of critical
frequencies, GB(s) is 500-times slower than GA(s). Required settling time is ts = τs/
ωc = 12/0.3521[s] = 34.08[s].

2. Because DB/TB = 2 > 1, the plant is a so-called “dead-time dominant system.“ Due to a large
time delay, it is necessary to choose the lowest possible excitation frequency ωn to mini-
mize the added phase ωnDB in (47). Hence, for the required performance (ηmax2;τs) =
(5%;12) (Design No. 2) we choose the B0.2 parabolas in Figure 16 at the lowest possible
level ωn/ωc = 0.2 to find (ϕM2;ωn2) = (70�;0.2ωc). The added phase value is ωn2DB =
0.2ωcDB = 0.2�0.3521�6.5�180/π = 26.2�, hence the phase supplied to the PID design algorithm
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is ϕ́
M2 = ϕM2 + ωn2DB = 70�+ 26.2� = 96.2� (instead of ϕM2 = 70� for a delay-free system). The

required performance (ηmax1;τs) = (30%;12) (Design No. 1) can be achieved by choosing
(ϕM1;ωn1) = (55�;0.35ωc) from the B0.35 parabolas in Figure 16 (i.e., ωn/ωc = 0.35). The phase
margin ϕ́

M1 = 55�+ 45.9� supplied into the design algorithm was increased by ωn1DB =
0.35ωcDB = 0.35�0.3521�6.5�180/π = 45.9� comparedwithϕM1 = 55� in case of delay-free system.

3. Figure 18a shows that identified points GB(j0.35ωc) = 1.03e�j23� and GB(j0.2ωc) = 1.09e�j13�

are located in the quadrant I of the complex plane at the beginning of the frequency
response GB(jω) (continuous curve).

4. The point GB(j0.2ωc) (Design No. 2) was shifted by the PID controllers to the open-loop
amplitude crossover LB2(j0.2ωc) = 1e�j110� (dotted Nyquist plot in Figure 18a). Note that
LB2 has the same position in the complex plane as LA2 in Figure 17a, however at a
considerably lower frequencyωn2B = 0.2�0.3521 = 0.07[rad/s] compared toωn2A = 0.8�173.216
= 138.6[rad/s] (ts2_B* = 28.69[s] is almost 500 times larger than ts2_A* = 0.0584[s] which
demonstrates the key role of ωn in achieving required closed-loop dynamics). The identi-
fied point GB(j0.35ωc) (Design No. 1) was moved by the designed PID controller into the
amplitude crossover LB1(j0.35ωc) = 1e�j125� (dashed Nyquist plot in Figure 18a).

5. Achieved performances (ηmax1* = 18.6%, ts1* = 24.78[s], dashed line), (ηmax2* = 0.15%,
ts2* = 28.69[s], dotted line) in terms of the closed-loop step responses in Figure 18b comply
with the required performance specification.

3.4.3. Systems with 1st order integrator

Corresponding B-parabolas in Figures 19–21 were obtained by applying the sinusoid excita-
tion method on a set of benchmark systems with first-order integrator (for a Cartesian product

Figure 18. (a) Open-loop Nyquist plots; (b) closed-loop step responses of the distillation column, required performance
ηmax1 = 30%, ηmax2 = 5% and τs = 12.
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ϕ0
M ¼ ϕM þ ωnD (46)

and the controller working angle Θ is to be computed using the relation
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� � φ0 þ ϕM þ ωnD

� �
: (47)

The phase delay ωnD increases with increasing frequency ωn of the sinusoidal excitation
signal. It is recommended to use the smallest possible added phase φD = �ωnD to lessen the
impact of time delay on closed-loop dynamics.

3.4.2.1. Discussion
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output starts responding to the excitation signal u(t). A small added phase φD = �ωnD due to
time delay can be achieved by choosing the smallest possible ωn attenuating the effect of D in
(47) and subsequently in the PID controller design. Therefore when designing a PID controller
for time delayed systems, it is recommended to choose the lowest possible excitation level
when using B-parabolas (most frequently ωn/ωc = 0.2 resp. 0.35) and corresponding couples of
B-parabolas in Figure 16. From the given couple (ηmax;ts), ϕM is specified using the chosen
couple of B-parabolas, however its increased value ϕM0 given by (46) is to be supplied in the
design algorithm thus minimizing effect of the time delay on closed-loop dynamics.

3.4.2.2. Example 2

Using the sinusoid excitation method, design ideal PID controllers (1a) for a distillation col-
umn model given by the transfer function GB(s)

GB sð Þ ¼ KBe�DBs

TBsþ 1
¼ 1:11e�6,5s

3:25sþ 1
: (48)

Control objectives are the same as in Example 1.

3.4.2.3. Solution and discussion

1. Critical frequency of the plant is ωc = 0.3521[rad/s]. Based on comparison of critical
frequencies, GB(s) is 500-times slower than GA(s). Required settling time is ts = τs/
ωc = 12/0.3521[s] = 34.08[s].

2. Because DB/TB = 2 > 1, the plant is a so-called “dead-time dominant system.“ Due to a large
time delay, it is necessary to choose the lowest possible excitation frequency ωn to mini-
mize the added phase ωnDB in (47). Hence, for the required performance (ηmax2;τs) =
(5%;12) (Design No. 2) we choose the B0.2 parabolas in Figure 16 at the lowest possible
level ωn/ωc = 0.2 to find (ϕM2;ωn2) = (70�;0.2ωc). The added phase value is ωn2DB =
0.2ωcDB = 0.2�0.3521�6.5�180/π = 26.2�, hence the phase supplied to the PID design algorithm
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3. Figure 18a shows that identified points GB(j0.35ωc) = 1.03e�j23� and GB(j0.2ωc) = 1.09e�j13�

are located in the quadrant I of the complex plane at the beginning of the frequency
response GB(jω) (continuous curve).

4. The point GB(j0.2ωc) (Design No. 2) was shifted by the PID controllers to the open-loop
amplitude crossover LB2(j0.2ωc) = 1e�j110� (dotted Nyquist plot in Figure 18a). Note that
LB2 has the same position in the complex plane as LA2 in Figure 17a, however at a
considerably lower frequencyωn2B = 0.2�0.3521 = 0.07[rad/s] compared toωn2A = 0.8�173.216
= 138.6[rad/s] (ts2_B* = 28.69[s] is almost 500 times larger than ts2_A* = 0.0584[s] which
demonstrates the key role of ωn in achieving required closed-loop dynamics). The identi-
fied point GB(j0.35ωc) (Design No. 1) was moved by the designed PID controller into the
amplitude crossover LB1(j0.35ωc) = 1e�j125� (dashed Nyquist plot in Figure 18a).

5. Achieved performances (ηmax1* = 18.6%, ts1* = 24.78[s], dashed line), (ηmax2* = 0.15%,
ts2* = 28.69[s], dotted line) in terms of the closed-loop step responses in Figure 18b comply
with the required performance specification.

3.4.3. Systems with 1st order integrator

Corresponding B-parabolas in Figures 19–21 were obtained by applying the sinusoid excita-
tion method on a set of benchmark systems with first-order integrator (for a Cartesian product

Figure 18. (a) Open-loop Nyquist plots; (b) closed-loop step responses of the distillation column, required performance
ηmax1 = 30%, ηmax2 = 5% and τs = 12.
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ϕMj�ωnk of the sets (35) and (36), j = 1…8, k = 1…6 and three various ratios Ti/Td: β = 4, 8
and 12).

3.4.3.1. Discussion

Inspection of Figures 19a, 20a and 21a reveals that increasing β results in decreasing of the
maximum overshoot ηmax, narrowing of the B-parabolas of relative settling times τs = f(ϕM,ωn)
for each identification level ωn/ωc and consequently increasing the settling time.

Consider for example, the B0.95 parabolas in Figures 19b, 20b and 21b: if ϕM = 70� and β = 4 the
relative settling time is τs = 30, for β = 8 it grows up to τs = 40, and for β = 12 even to τs = 45. If a
10% maximum overshoot is acceptable for the given system with integrator, then the standard

Figure 19. B-parabolas: (a) ηmax = f(ϕM,ωn); (b) τs = ωcts = f(ϕM,ωn) for systems with integrator β = 4.

Figure 20. B-parabolas: (a) ηmax = f(ϕM,ωn); (b) τs = ωcts = f(ϕM,ωn) for systems with integrator β = 8.
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interaction PID controller can be used with no need to use the setpoint filter; however a larger
settling time is expected.

3.4.3.2. Example 3

Using the sinusoidal excitation method, let us design ideal PID controllers for a flow valve
modeled by the transfer function GC(s) (system with an integrator and a time delay)

GC sð Þ ¼ KCe�DCs

s TCsþ 1ð Þ ¼
1:3e�2:1s

s 7:51sþ 1ð Þ : (49)

The control objective is to guarantee a maximum overshoot of the closed-loop step response
ηmax1 = 30%, ηmax2 = 20% and a maximum relative settling time τs = 20.

3.4.3.3. Solution and discussion

1. Critical frequency of the plant identified by the Rotach test is ωc = 0.2407[rad/s]. Then, the
required settling time is ts = τs/ωc = 20/0.2407[s] = 83.09[s].

2. For GC(s) the time delay/time constant ratio is DC/TC = 2.1/7.51 = 0.28 < 1, hence, the
influence of the time constant prevails—GC(s) is a so-called “lag-dominant system” with
integrator, therefore B-parabolas are to be chosen carefully. From one side, due to time
delay it would be desirable to choose B-parabolas from Figures 19, 20 or 21with the lowest
identification level ωn/ωc = 0.2. However, the minima of B0.2 parabolas in Figure 19b (for β
= 4), Figure 20b (for β = 8) and Figure 21b (for β = 12) indicate that the smallest feasible
relative settling time τs = 36.5 (for β = 4), τs = 33 (for β = 8) and τs = 34 (for β = 12), which do
not satisfy the required value τs = 20.

Figure 21. B-parabolas: (a) ηmax = f(ϕM,ωn); (b) τs = ωcts = f(ϕM,ωn) for systems with integrator β = 12.
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3. The first performance specification (ηmax1;τs) = (30%;20) can be provided using the B0.35

parabolas for β = 12 (Figure 21b) at the level ωn/ωc = 0.35 and for parameters
(ϕM1;ωn1) = (53�;0.35ωc) (Design No. 1), supplying the augmented open-loop phase margin
ϕ´

M1 = ϕM1 + ωn1DC = 53� + 10.1� = 63.1� into the PID controller design algorithm. The
second performance specification (ηmax2;τs) = (20%,20) can be achieved using the B0.5

parabolas in Figure 21 for β = 12 and ωn/ωc = 0.5 and parameters (ϕM2;ωn2) = (62�;0.5ωc)
(Design No. 2). To reject the influence of DC, instead of ϕM2 = 62� the augmented open-loop
phase margin ϕ´

M2 = ϕM2 + ωn1DC = 62� + 14.5�= 76.5� was supplied into the PID controller
design algorithm.

4. Identified points GC(j0.35ωc) = 12.7e�j122� and GC(j0.5ωc) = 8.10e�j129� are located on the
plant frequency response GC(jω) (continuous curve) in Figure 22a verifying correctness of
the identification.

5. Using the PID controller, the first identified point GC(j0.35ωc) (Design No. 1) was moved
into the gain crossover LC1(j0.35ωc) = 1e�j127� located on the unit circle M1; this verifies
achieving the phase margin ϕM1 = 180��127� = 53� (dashed Nyquist plot in Figure 22a).
Achieved performance in terms of the closed-loop step response in Figure 22b is
ηmax1* = 29.6%, ts1* = 81.73[s] (dashed line).

6. The second identified point GC(j0.5ωc) (Design No. 2) was moved into LC2(j0.5ωc) = 1e
�j118�

achieving the phase margin ϕM2 = 180��118� = 62� (dotted Nyquist plot in Figure 22a).
Achieved performance in terms of the closed-loop step response parameters (Figure 22b)
ηmax2* = 19.7%, ts2* = 82.44[s] (dotted line) meets the required specification. Frequency
characteristics LC1(jω), LC2(jω) begin near the negative real half-axis of the complex plane
because both open-loops contain a 2nd order integrator.

Figure 22. (a) Open-loop Nyquist plots; (b) closed-loop step responses of the flow valve, required performance
ηmax1 = 30%, ηmax2 = 20% and τs = 20.
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3.4.4. Systems with unstable zero

Consider typical gain margins GM given by the set

GMj
� � ¼ 3dB; 5dB; 7dB; 9dB; 11dB; 13dB; 15dB; 17dBf g (50)

for j = 1…8. Let us split (33b) into five equal sections and generate the set of excitation
frequencies

ωnkf g ¼ 0:5ωc; 0:65ωc; 0:8ωc; 0:95ωc; 1:1ωc; 1:25ωcf g (51)

for k = 1…6. Its elements divided by the plant critical frequency ωc determine excitation levels

σk ¼ ωnk=ωcf g ) σkf g ¼ 0:5; 0:65; 0:8; 0:95; 1:1; 1:25f g (52)

for k = 1…6. Figure 23 shows closed-loop step response shaping using different GM and ωn in
the PID tuning for the plant (53b) with parameters T3 = 0.75, α3 = 1.3, for four required gain
margins GM = 5 dB, 9 dB, 11 dB and 13 dB, and three different excitation levels σ1 =ωn1/ωc = 0.5,
σ3 = ωn3/ωc = 0.8 and σ5 = ωn5/ωc = 1.1.

Consider the following benchmark plants

G2 sð Þ ¼ �α2sþ 1
T2sþ 1ð Þn2 , G3 sð Þ ¼ �α3sþ 1

sþ 1ð Þ T3sþ 1ð Þ T2
3sþ 1

� �
T3
3sþ 1

� � : (53)

The proposed method has been applied for each element of the Cartesian product ωnk � GMj of
the sets (51) and (50). Significant differences between dynamics of individual control loops
under designed PID controllers can be observed for the benchmark systems (53).

Consider the benchmark plants G2(s) and G3(s) with following parameters: G2.1(s): (T2,
n2,α2) = (0.75,8,0.2); G2.2(s): (1,3,0.1); G2.3(s): (0.5,5,1); G3(s): T3 = 0.5, α3 = 1.3.

Couples of examined plants [G3(s), G2.3(s)] and [G2.2(s), G2.1(s)] differ principally by the ratio α/
T, which is significant for the closed-loop performance assessment for plants with an unstable
zero (for the 1st couple [α3/T3 = 2.6, α2.3/T2.3 = 2], for the 2nd couple [α2.2/T2.2 = 0.1, α2.1/
T2.1 = 0.27]).

Figure 23. Closed-loop step responses of the plant G3(s) under PID controllers designed for various GM and ωn.
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3. The first performance specification (ηmax1;τs) = (30%;20) can be provided using the B0.35

parabolas for β = 12 (Figure 21b) at the level ωn/ωc = 0.35 and for parameters
(ϕM1;ωn1) = (53�;0.35ωc) (Design No. 1), supplying the augmented open-loop phase margin
ϕ´

M1 = ϕM1 + ωn1DC = 53� + 10.1� = 63.1� into the PID controller design algorithm. The
second performance specification (ηmax2;τs) = (20%,20) can be achieved using the B0.5

parabolas in Figure 21 for β = 12 and ωn/ωc = 0.5 and parameters (ϕM2;ωn2) = (62�;0.5ωc)
(Design No. 2). To reject the influence of DC, instead of ϕM2 = 62� the augmented open-loop
phase margin ϕ´

M2 = ϕM2 + ωn1DC = 62� + 14.5�= 76.5� was supplied into the PID controller
design algorithm.

4. Identified points GC(j0.35ωc) = 12.7e�j122� and GC(j0.5ωc) = 8.10e�j129� are located on the
plant frequency response GC(jω) (continuous curve) in Figure 22a verifying correctness of
the identification.

5. Using the PID controller, the first identified point GC(j0.35ωc) (Design No. 1) was moved
into the gain crossover LC1(j0.35ωc) = 1e�j127� located on the unit circle M1; this verifies
achieving the phase margin ϕM1 = 180��127� = 53� (dashed Nyquist plot in Figure 22a).
Achieved performance in terms of the closed-loop step response in Figure 22b is
ηmax1* = 29.6%, ts1* = 81.73[s] (dashed line).

6. The second identified point GC(j0.5ωc) (Design No. 2) was moved into LC2(j0.5ωc) = 1e
�j118�

achieving the phase margin ϕM2 = 180��118� = 62� (dotted Nyquist plot in Figure 22a).
Achieved performance in terms of the closed-loop step response parameters (Figure 22b)
ηmax2* = 19.7%, ts2* = 82.44[s] (dotted line) meets the required specification. Frequency
characteristics LC1(jω), LC2(jω) begin near the negative real half-axis of the complex plane
because both open-loops contain a 2nd order integrator.

Figure 22. (a) Open-loop Nyquist plots; (b) closed-loop step responses of the flow valve, required performance
ηmax1 = 30%, ηmax2 = 20% and τs = 20.
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Consider typical gain margins GM given by the set

GMj
� � ¼ 3dB; 5dB; 7dB; 9dB; 11dB; 13dB; 15dB; 17dBf g (50)

for j = 1…8. Let us split (33b) into five equal sections and generate the set of excitation
frequencies

ωnkf g ¼ 0:5ωc; 0:65ωc; 0:8ωc; 0:95ωc; 1:1ωc; 1:25ωcf g (51)

for k = 1…6. Its elements divided by the plant critical frequency ωc determine excitation levels

σk ¼ ωnk=ωcf g ) σkf g ¼ 0:5; 0:65; 0:8; 0:95; 1:1; 1:25f g (52)

for k = 1…6. Figure 23 shows closed-loop step response shaping using different GM and ωn in
the PID tuning for the plant (53b) with parameters T3 = 0.75, α3 = 1.3, for four required gain
margins GM = 5 dB, 9 dB, 11 dB and 13 dB, and three different excitation levels σ1 =ωn1/ωc = 0.5,
σ3 = ωn3/ωc = 0.8 and σ5 = ωn5/ωc = 1.1.

Consider the following benchmark plants

G2 sð Þ ¼ �α2sþ 1
T2sþ 1ð Þn2 , G3 sð Þ ¼ �α3sþ 1

sþ 1ð Þ T3sþ 1ð Þ T2
3sþ 1
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T3
3sþ 1

� � : (53)

The proposed method has been applied for each element of the Cartesian product ωnk � GMj of
the sets (51) and (50). Significant differences between dynamics of individual control loops
under designed PID controllers can be observed for the benchmark systems (53).

Consider the benchmark plants G2(s) and G3(s) with following parameters: G2.1(s): (T2,
n2,α2) = (0.75,8,0.2); G2.2(s): (1,3,0.1); G2.3(s): (0.5,5,1); G3(s): T3 = 0.5, α3 = 1.3.

Couples of examined plants [G3(s), G2.3(s)] and [G2.2(s), G2.1(s)] differ principally by the ratio α/
T, which is significant for the closed-loop performance assessment for plants with an unstable
zero (for the 1st couple [α3/T3 = 2.6, α2.3/T2.3 = 2], for the 2nd couple [α2.2/T2.2 = 0.1, α2.1/
T2.1 = 0.27]).

Figure 23. Closed-loop step responses of the plant G3(s) under PID controllers designed for various GM and ωn.
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According to the ratio α/T unknown plants with an unstable zero can be classified in following
two groups [7]:

1. plants with α/T < 0.3;

2. plants with α/T > 0.3.

With respect to this classification, B-parabolas ηmax = f(GM,ωn), τs = f(GM,ωn) for nonminimum
phase systems with an unstable zero constructed for different open-loop gain margins GM and
excitation levels σ are depicted in Figure 24 (for α/T > 0.3) and in Figure 25 (for α/T < 0.3).

3.4.4.1. Example 4

Using the sinusoid excitation method, ideal PID controllers are to be designed for a heating
plant described by the transfer function GD(s) (a system with an unstable zero)

GD sð Þ ¼ KD �Tzsþ 1ð Þ
TDsþ 1ð Þ3 ¼ 0:8 �7:5sþ 1ð Þ

27:5sþ 1ð Þ3 : (54)

The control objective is to guarantee a maximum overshoot ηmax1 = 30%, ηmax2 = 5% and
maximum relative settling time τs = 12.

3.4.4.2. Solution and discussion

1. Critical frequency of the plant identified by the Rotach test is ωc = 0.0467[rad/s], the system
is ”slow“. The required settling time is ts = τs/ωc = 12/0.0488 = 245.90[s].

2. Because α/TD = 7.5/27.5 = 0.27 < 0.3, the gain margin GM and the excitation frequency ωn of
the controlled object GD(s) will be determined using B-parabolas in Figure 25. For the
required performance (ηmax1,τs) = (30%,12) the appropriate values of gain margin and

Figure 24. B-parabolas: (a) ηmax = f(GM,ωn); (b) τs = ωcts = f(GM,ωn) for nonminimum phase systems, α/T > 0.3.
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excitation frequency are (GM1,ωn1) = (15 dB,1.25ωc), that is “gray parabolas” in Figure 25.
Similarly, the performance (ηmax2,τs) = (5%,12) can be achieved by choosing
(GM2,ωn2) = (18 dB,0.65ωc) according to “violet” B-parabolas in Figure 25.

3. Examination of the Nyquist plots of the controlled object GD(jω) and the open-loops
LD1(jω), LD2(jω) in Figure 26a reveals that the first identified point GD(j1.25ωc) is located
in the quadrant III of the complex plane, and its identification is carried out under a
relatively low frequency 1.25ωc = 1.25�0.0467 = 0.0584[rad/s], hence no high-frequency

Figure 25. B-parabolas: (a) ηmax = f(GM,ωn); (b) τs = ωcts = f(GM,ωn) for nonminimum phase systems, α/T < 0.3.

Figure 26. (a) Open-loop Nyquist plots; (b) closed-loop step responses of the heating system, required performance
ηmax1 = 30%, ηmax2 = 5% and τs = 12.
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excitation frequency are (GM1,ωn1) = (15 dB,1.25ωc), that is “gray parabolas” in Figure 25.
Similarly, the performance (ηmax2,τs) = (5%,12) can be achieved by choosing
(GM2,ωn2) = (18 dB,0.65ωc) according to “violet” B-parabolas in Figure 25.

3. Examination of the Nyquist plots of the controlled object GD(jω) and the open-loops
LD1(jω), LD2(jω) in Figure 26a reveals that the first identified point GD(j1.25ωc) is located
in the quadrant III of the complex plane, and its identification is carried out under a
relatively low frequency 1.25ωc = 1.25�0.0467 = 0.0584[rad/s], hence no high-frequency

Figure 25. B-parabolas: (a) ηmax = f(GM,ωn); (b) τs = ωcts = f(GM,ωn) for nonminimum phase systems, α/T < 0.3.

Figure 26. (a) Open-loop Nyquist plots; (b) closed-loop step responses of the heating system, required performance
ηmax1 = 30%, ηmax2 = 5% and τs = 12.
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noise corrupting the excitation and output signals u(t) and y(t), respectively, is expected
during identification. If, however, the identification at the excitation level ωn = 1.25ωc were
carried out for a “fast” object with a high value of ωc, it would be necessary to choose the
lowest possible excitation level in order to reject the identification noise. The second
identified point GD(j0.65ωc) is placed in the quadrant II of the complex plane.

4. Using the PID controller designed for (GM1,ωn1) = (15 dB,1.25ωc) the point GD(j1.25ωc) was
compensated into the target point LD1 j1:25ωcð Þ ¼ 1=10GM1=20

h i
e�j180

�
located on the negative

real half-axis where the gain margin GM1 of the open-loop LD1(jω) (red Nyquist plot) is
satisfied. The achieved performance evaluated from the closed-loop step response in
Figure 26b is ηmax1* = 24.5%, ts1* = 241.88[s].

5. Using the PID controller designed for (GM2,ωn2) = (18 dB,0.65ωc), the point GD(j0.65ωc)
was moved to the target point LD2 j0:65ωcð Þ ¼ 1=10GM2=20

h i
e�j180

�
where the gain margin GM2 of

the open-loop LD2(jω) (green Nyquist plot) is satisfied. The achieved performance
ηmax2* = 4.55%, ts2* = 243.42[s] evaluated from the closed-loop step response in Figure 26b
satisfies the control objective.

Time-domain performance requirements specified by the process technologist, identified plant
parameters needed for PID controller tuning (for two PID controllers of all four plants GA(s), GB(s),
GC(s) and GD(s)) along with specified and achieved performance measure values are summarized
inTable 9. The asterisk “*“ indicates closed-loop performance complyingwith the required one.

3.5. Robust PID controller design for specified performance

When identifying an uncertain plant, the sinusoidal excitation with the frequency ωn is
repeated for individual parameter changes to obtain a set of points Gi from the set of frequency
responses of the uncertain plant

Gi jωnð Þ ¼ Gi jωnð Þj jejargGi ωnð Þ ¼ ai þ jbi, (55)

i = 1,2…N. Plant parameter changes are reflected in changes of the magnitude and the phase |
Gi(jωn)| and argGi(ωn), respectively; i = 1…N; N = 2p is the number of identification experi-
ments and p is the number of varying technological quantities of the plant. The nominal model
G0(jωn) is obtained from mean values of the real and imaginary parts of Gi(jωn)

G0 jωnð Þ ¼ a0 þ jb0 ¼
1
N

XN

i¼1

ai þ j
1
N

XN

i¼1

bi, (56)

i = 1,2…N. Obviously

G0 jωnð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 þ b20

q
¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ai

h i2
þ
XN

i¼1
bi

h i2� �s
; argG0 jωnð Þ ¼ arctg

b0
a0

¼ arctg
PN

i¼1 biPN
i¼1 ai

,

(57)
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where φ0(ωn) = arg{G0(jωn)}. The points Gi represent some elements of the family of plants and
can be enclosed by a circle MG centered in G0(jωn) with the radius RG�RG(ωn) corresponding
to the maximum distance between Gi(jωn) and G0(jωn)

RG ¼ max
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai � a0ð Þ2 þ bi � b0ð Þ2

q� �
, (58)

i = 1,2…N. Actually, the control law generated by the robust controller GRrob(s) designed for
the nominal point G0(jωn) performs the mapping

℘ : RG ! RL : RL ¼ GRrobj jRGf g (59)

of the set of identified points Gi(jωn) encircled by MG with the radius RG onto the set of points
Li(jωn) delineated by ML and calculates the radius RL�RL(ωn) of the dispersion circle ML which
encloses the points Li(jωn) of the Nyquist plot so as to guarantee fulfillment of the robust
performance condition.

A robust PID controller is designed using the sinusoidal excitation method with input data for
the nominal model G0(jωn): {|G0(jωn)|; φ0 = argG0(ωn)}. Substituting them into (25a), (26a), (29)
and (30), the expressions for calculating robust PID controller parameters according to Table 8
are obtained. Obviously, the phase and gain margins ϕM and GM, respectively, are robust PID
controller tuning parameters and at the same time attractive robustness measures [6].

3.5.1. Robust performance condition

Theorem 1 (Sufficient condition for robust performance under a PID controller).

Consider an uncertain continuous-time stable dynamic system described by a nominal model
and unstructured uncertainty. The PID controller GR(s) tuned according to the rules in Table 8
guarantees robust closed-loop performance if the following conditions are satisfied

φM > arccos 1� 1
2

χLRG ωnð Þ
G0 jωnð Þj j þ χS sinφS

� �2
 !

, GM >
1þ χL

RG ωnð Þ
G0 jωnð Þj j
h i

1� χS
GS�1
GS

h i , (60)

where ϕM and GM are the required phase and gain margins, respectively, ωn is the excitation
frequency, χL = RL

+/RL and χS = RS
+/RS are safety factors of radii of the dispersion circles ML

and MS, respectively, delineating prohibited areas; RG(ωn) is the radius of the dispersion circle
at the Nyquist plot of the plant at ωn, and G0(ωn) is a point at the Nyquist plot of the nominal
plant at ωn. The prohibited area MS can be defined in terms of ϕM or GM using the expressions
ϕS = arcsin(RS) or GS = 1/(1�RS), respectively.

Proof:

The proof is straightforward using Figures 27 and 28. If the nominal open-loop L0(s) = G0(s)
GR(s) is stable, then according to the Nyquist stability criterion the closed-loop with the
uncertain plant will be stable if the distance between L0 and (�1, j0), that is |1 + L0(jωn)| is
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noise corrupting the excitation and output signals u(t) and y(t), respectively, is expected
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e�j180
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satisfies the control objective.
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GC(s) and GD(s)) along with specified and achieved performance measure values are summarized
inTable 9. The asterisk “*“ indicates closed-loop performance complyingwith the required one.

3.5. Robust PID controller design for specified performance

When identifying an uncertain plant, the sinusoidal excitation with the frequency ωn is
repeated for individual parameter changes to obtain a set of points Gi from the set of frequency
responses of the uncertain plant

Gi jωnð Þ ¼ Gi jωnð Þj jejargGi ωnð Þ ¼ ai þ jbi, (55)

i = 1,2…N. Plant parameter changes are reflected in changes of the magnitude and the phase |
Gi(jωn)| and argGi(ωn), respectively; i = 1…N; N = 2p is the number of identification experi-
ments and p is the number of varying technological quantities of the plant. The nominal model
G0(jωn) is obtained from mean values of the real and imaginary parts of Gi(jωn)
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N
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q
¼ 1

N
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XN
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b0
a0
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PN
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i¼1 ai
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where φ0(ωn) = arg{G0(jωn)}. The points Gi represent some elements of the family of plants and
can be enclosed by a circle MG centered in G0(jωn) with the radius RG�RG(ωn) corresponding
to the maximum distance between Gi(jωn) and G0(jωn)

RG ¼ max
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai � a0ð Þ2 þ bi � b0ð Þ2

q� �
, (58)

i = 1,2…N. Actually, the control law generated by the robust controller GRrob(s) designed for
the nominal point G0(jωn) performs the mapping

℘ : RG ! RL : RL ¼ GRrobj jRGf g (59)

of the set of identified points Gi(jωn) encircled by MG with the radius RG onto the set of points
Li(jωn) delineated by ML and calculates the radius RL�RL(ωn) of the dispersion circle ML which
encloses the points Li(jωn) of the Nyquist plot so as to guarantee fulfillment of the robust
performance condition.

A robust PID controller is designed using the sinusoidal excitation method with input data for
the nominal model G0(jωn): {|G0(jωn)|; φ0 = argG0(ωn)}. Substituting them into (25a), (26a), (29)
and (30), the expressions for calculating robust PID controller parameters according to Table 8
are obtained. Obviously, the phase and gain margins ϕM and GM, respectively, are robust PID
controller tuning parameters and at the same time attractive robustness measures [6].

3.5.1. Robust performance condition

Theorem 1 (Sufficient condition for robust performance under a PID controller).

Consider an uncertain continuous-time stable dynamic system described by a nominal model
and unstructured uncertainty. The PID controller GR(s) tuned according to the rules in Table 8
guarantees robust closed-loop performance if the following conditions are satisfied
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2

χLRG ωnð Þ
G0 jωnð Þj j þ χS sinφS

� �2
 !

, GM >
1þ χL

RG ωnð Þ
G0 jωnð Þj j
h i

1� χS
GS�1
GS

h i , (60)

where ϕM and GM are the required phase and gain margins, respectively, ωn is the excitation
frequency, χL = RL

+/RL and χS = RS
+/RS are safety factors of radii of the dispersion circles ML

and MS, respectively, delineating prohibited areas; RG(ωn) is the radius of the dispersion circle
at the Nyquist plot of the plant at ωn, and G0(ωn) is a point at the Nyquist plot of the nominal
plant at ωn. The prohibited area MS can be defined in terms of ϕM or GM using the expressions
ϕS = arcsin(RS) or GS = 1/(1�RS), respectively.

Proof:

The proof is straightforward using Figures 27 and 28. If the nominal open-loop L0(s) = G0(s)
GR(s) is stable, then according to the Nyquist stability criterion the closed-loop with the
uncertain plant will be stable if the distance between L0 and (�1, j0), that is |1 + L0(jωn)| is
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greater than the sum of the radii RL(ωn) of the circle ML centered in L0, and RS(ωn) of the circle
MS centered in (�1.0j), that is

RL þ RS < 1þ L0 jωnð Þj j: (61)

3.5.1.1. Robust performance condition: phase margin approach

According to Figure 27, the distance between (�1.0j) and the open-loop Nyquist plot L0(jωn) at
ωn, that is |1 + L0(jωn)| can be calculated by applying the cosine rule to the triangle given by
the vertices (�1.0,L0) (ϕM is the phase margin)

1þ L0j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L0j j2 � 2 L0j j cosφM

q
: (62)

From the principles of the sinusoidal excitation PID controller tuning method results that the
robust controller shifts the nominal point of the plant frequency response G0 to the point L0

situated on the unit circle. Thus, ωn becomes the gain crossover frequency. As the point L0 is
situated on the unit circle M1, the magnitude |L0(jωn)| equals one, that is |L0| = |G0||GR| = 1,
yielding the transformation ratio |GR| = |G0|

�1 between the radii RG and RL of the circles MG

and ML, respectively. The radius RL of the dispersion circle ML can be expressed as

RL ¼ RG GRj j ¼ RG

G0j j : (63)

Substituting (62) and (63) in (61) yields the robust performance condition

χLRG ωnð Þ
G0 jωnð Þj j þ χSRS

� �2

< 2� 2 cosφM, (64)

Figure 27. Dispersion circles MG and ML and the prohibited area delineated by the circle MS for the phase-margin
approach.
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which after some manipulations is identical to the proven condition (60a). Typical values of
safety factors are χL = 1.1 and χS = 1.2. The value of ϕM chosen according to the robust
performance condition used in the tuning rules in Table 1 yields robust PID controller coeffi-
cients. The design procedure is illustrated in Section 3.5.1.3.

3.5.1.2. Robust performance condition: gain margin approach

According to Figure 28, |1 + L0(jωn)| is a complement of |0,L0| = |L0| to the unit value. Thus

L0 jωnð Þj j þ 1þ L0 jωnð Þj j ¼ 1 ) 1þ L0 jωnð Þj j ¼ 1� L0 jωnð Þj j: (65)

From the principles of the proposed PID tuning method results that the robust controller shifts
the point G0(ωn) of the plant nominal frequency response to L0 situated on the negative real
half-axis of the complex plane. From the relation |L0(jωn)| = |G0(jωn)||GR(jωn)| = 1/GM results
the ratio |GR(jωn)| = 1/[GM|G0(jωn)|] between the radii RG and RL = |GR|RG of the circles MG

and ML, respectively. The radius RL of the dispersion circle ML is calculated as follows

RL ¼ RG GRj j ¼ RG

GM G0 jωnð Þj j : (66)

Substituting (65) and (66) into the general robust performance condition (61) and considering
the safety factors χL and χS, the following inequality is obtained

GM � 1
GM

>
χLRG

GM G0 jωnð Þj j þ χSRS, (67)

which after some manipulations is identical to the proven condition (60b). According to the
robust performance condition, the chosen value GM is substituted into (26a) and robust PID
controller parameters are obtained from Table 8. ϕS and GS are found from the B-parabolas
(Figures 16, 19–21, 24, 25) considering ηmaxN and τsN of the worst-case plant.

Figure 28. Dispersion circles MG and ML and the prohibited area delineated by the circle MS for gain-margin approach.
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greater than the sum of the radii RL(ωn) of the circle ML centered in L0, and RS(ωn) of the circle
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situated on the unit circle M1, the magnitude |L0(jωn)| equals one, that is |L0| = |G0||GR| = 1,
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and ML, respectively. The radius RL of the dispersion circle ML can be expressed as
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which after some manipulations is identical to the proven condition (60a). Typical values of
safety factors are χL = 1.1 and χS = 1.2. The value of ϕM chosen according to the robust
performance condition used in the tuning rules in Table 1 yields robust PID controller coeffi-
cients. The design procedure is illustrated in Section 3.5.1.3.

3.5.1.2. Robust performance condition: gain margin approach

According to Figure 28, |1 + L0(jωn)| is a complement of |0,L0| = |L0| to the unit value. Thus

L0 jωnð Þj j þ 1þ L0 jωnð Þj j ¼ 1 ) 1þ L0 jωnð Þj j ¼ 1� L0 jωnð Þj j: (65)

From the principles of the proposed PID tuning method results that the robust controller shifts
the point G0(ωn) of the plant nominal frequency response to L0 situated on the negative real
half-axis of the complex plane. From the relation |L0(jωn)| = |G0(jωn)||GR(jωn)| = 1/GM results
the ratio |GR(jωn)| = 1/[GM|G0(jωn)|] between the radii RG and RL = |GR|RG of the circles MG

and ML, respectively. The radius RL of the dispersion circle ML is calculated as follows

RL ¼ RG GRj j ¼ RG

GM G0 jωnð Þj j : (66)

Substituting (65) and (66) into the general robust performance condition (61) and considering
the safety factors χL and χS, the following inequality is obtained

GM � 1
GM

>
χLRG

GM G0 jωnð Þj j þ χSRS, (67)

which after some manipulations is identical to the proven condition (60b). According to the
robust performance condition, the chosen value GM is substituted into (26a) and robust PID
controller parameters are obtained from Table 8. ϕS and GS are found from the B-parabolas
(Figures 16, 19–21, 24, 25) considering ηmaxN and τsN of the worst-case plant.

Figure 28. Dispersion circles MG and ML and the prohibited area delineated by the circle MS for gain-margin approach.
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3.5.1.3. Examples

3.5.1.3.1. Example 5

Consider the plant model GA(s) from Subsection 3.4

GA0 sð Þ ¼ KA0

TA0sþ 1ð Þ3 ¼
1

0:01sþ 1ð Þ3 (68)

to be the nominal model of an uncertain system where KA and TA are uncertain parameters
varying within �15% from their nominal values KA0 and TA0 (i.e., the total dispersion is κ =
30%). Let us design a robust PID controller to guarantee ηmaxN = 30% and a relative settling
time τsN = 12 for the worst-case model of GA(s).

3.5.1.3.2. Robust PID controller design for the uncertain plant GA(s)—solution and discussion

1. The measured ultimate frequency of the nominal model is ωc0 = 173.216[rad/s]. From the
robust performance condition results tsN = τsN/ωc = 12/173.216 = 69.3[ms].

2. For the required performance (ηmaxN,τsN) = (30%,12) the corresponding values of phase
margin and excitation frequency have been selected (ϕM,ωn0) = (50�,0.5ωc0) using the pair
of ”red“ B-parabolas in Figure 16. As there are two uncertainties in GA(s) (KA and TA), the
number of identification experiments is N = 22 = 4.

3. For ωn0 = 0.5,ωc0 = 0.5�173.21 = 86.61[rad/s], four points of the family of Nyquist plots
corresponding to the uncertain plant model were identified using the sinusoidal excitation:
GA1(jωn0), GA2(jωn0), GA3(jωn0) and GA4(jωn0) (blue ”x “in Figure 29a). The nominal point
GA0(jωn0) calculated from the coordinates of all identified points GAi(jωn0), i = 1, 2, 3, 4 is

Figure 29. (a) Nyquist plots for GA(s), ηmaxN = 30% and τsN = 12; (b) closed-loop step responses satisfy the required
performance ηmaxN = 30% and τsN = 12 (upper plot: worst-case plant model; lower plot: nominal plant model).
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located on the “blue” Nyquist plot of the nominal model GA0(jωn). The dispersion circle
MG is centered in GA0(jωn0) with the radius RG = 0.199.

4. The desired robust performance ηmaxN = 30%, τsN = 12 can be achieved using ϕS = 50� at
the excitation level ωn0 = 0.5ωc0.

5. R.H.S. of the robust performance condition (60a) is δ0_RP = 89.39�, thus the robust perfor-
mance condition (60a) ϕM>δ0_RP will be satisfied if choosing for example ϕM = 90�.

6. Using the designed PID controller, the nominal point GA0(jωn0) is shifted to LA0(jωn0) =
GA0(jωn0)GR_rob(jωn0) = 1e�j90� on the unit circle M1 (Figure 29a).

7. The smallest phase margin estimated from the location of the worst-case point LAN =
1.13e�j114� is ϕMN = 66.2�. The achieved smallest phase margin ϕ+

MN = 61� is given by the
intersection of the “red” Nyquist plot and the unit circle M1 (closest to the negative real
half-axis).

8. Radius of the prohibited area RS = sinϕS = sin(50�3.14/180) = 0.766/χS = 0.6383 multiplied by
the expansion coefficient χS = 1.2, as well as the χS = 1.1-times enlarged radius RL of the
dispersion circle ML guarantee that none of the open-loop Nyquist plots enters the
prohibited area delineated by the MS circle. The enlarged circles ML

+ and MS
+ (dotted plots

in Figure 29a) are touching, which indicates fulfillment of the robust performance condition.

9. From the closed-loop step response of the worst-case plant model (Figure 29b, red plot)
results ηmaxN_obtained = 8.2% and the relative settling time τsN_obtained = ωc0tsN_obtained =
173.216�0.0671 = 11.62, which proves achievement of the specified performance. Using the
phase margin ϕM = 90� at the identification level ωn0 = 0.5ωc0 (“red” B-parabolas in
Figure 16a) corresponds to the nominal performance ηmax0 = 2% and τs0 = 10. The closed-
loop step response in Figure 29b (green plot) corresponding to the nominal model satisfies
ηmax0_obtained = 0% and τs0_obtained = 173.216�0.0469 = 8.12 as expected.

3.5.1.3.3. Example 6

Consider the plant model from the Subsection 3.4

GD0 sð Þ ¼ KD0 �αDsþ 1ð Þ
TD0sþ 1ð Þ3 ¼ 0:8 �7:5sþ 1ð Þ

27:5sþ 1ð Þ3 (69)

to be the nominal model of the uncertain plant GD(s) with parameters KD, TD and αD varying
within �15% from their nominal values KS0, TS0 and αD0 (the total dispersion is κ = 30%). A
robust PID controller is to be designed to guarantee specified performance in terms of a maxi-
mum overshoot ηmaxN = 5% and a relative settling time τsN = 12 for the worst-casemodel of GD(s).

3.5.1.3.4. Robust PID controller design for the uncertain plant GD(s)—solution and discussion

1. The measured ultimate frequency of the nominal model is ωc0 = 0.0488[rad/s]. From the
requirements on the nominal closed-loop performance results: ts = τs0/ωc = 12/0.0488 =
245.9[s].
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of ”red“ B-parabolas in Figure 16. As there are two uncertainties in GA(s) (KA and TA), the
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Figure 29. (a) Nyquist plots for GA(s), ηmaxN = 30% and τsN = 12; (b) closed-loop step responses satisfy the required
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located on the “blue” Nyquist plot of the nominal model GA0(jωn). The dispersion circle
MG is centered in GA0(jωn0) with the radius RG = 0.199.
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MN = 61� is given by the
intersection of the “red” Nyquist plot and the unit circle M1 (closest to the negative real
half-axis).

8. Radius of the prohibited area RS = sinϕS = sin(50�3.14/180) = 0.766/χS = 0.6383 multiplied by
the expansion coefficient χS = 1.2, as well as the χS = 1.1-times enlarged radius RL of the
dispersion circle ML guarantee that none of the open-loop Nyquist plots enters the
prohibited area delineated by the MS circle. The enlarged circles ML

+ and MS
+ (dotted plots

in Figure 29a) are touching, which indicates fulfillment of the robust performance condition.

9. From the closed-loop step response of the worst-case plant model (Figure 29b, red plot)
results ηmaxN_obtained = 8.2% and the relative settling time τsN_obtained = ωc0tsN_obtained =
173.216�0.0671 = 11.62, which proves achievement of the specified performance. Using the
phase margin ϕM = 90� at the identification level ωn0 = 0.5ωc0 (“red” B-parabolas in
Figure 16a) corresponds to the nominal performance ηmax0 = 2% and τs0 = 10. The closed-
loop step response in Figure 29b (green plot) corresponding to the nominal model satisfies
ηmax0_obtained = 0% and τs0_obtained = 173.216�0.0469 = 8.12 as expected.

3.5.1.3.3. Example 6

Consider the plant model from the Subsection 3.4

GD0 sð Þ ¼ KD0 �αDsþ 1ð Þ
TD0sþ 1ð Þ3 ¼ 0:8 �7:5sþ 1ð Þ

27:5sþ 1ð Þ3 (69)

to be the nominal model of the uncertain plant GD(s) with parameters KD, TD and αD varying
within �15% from their nominal values KS0, TS0 and αD0 (the total dispersion is κ = 30%). A
robust PID controller is to be designed to guarantee specified performance in terms of a maxi-
mum overshoot ηmaxN = 5% and a relative settling time τsN = 12 for the worst-casemodel of GD(s).

3.5.1.3.4. Robust PID controller design for the uncertain plant GD(s)—solution and discussion

1. The measured ultimate frequency of the nominal model is ωc0 = 0.0488[rad/s]. From the
requirements on the nominal closed-loop performance results: ts = τs0/ωc = 12/0.0488 =
245.9[s].
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2. For the required performance (ηmaxN,τsN) = (5%,12) the corresponding values of gain
margin and excitation frequency have been selected (GM,ωn) = (18 dB,0.65ωc0) using the
pair of ”red“ B-parabolas in Figure 25. As there are three uncertain parameters in GD(s)
(KD, TD and αD), the number of identification experiments is N = 23 = 8.

3. For ωn0 = 0.65ωc0 = 0.65�0.04880 = 0.03172[rad/s], eight points of the family of Nyquist plots
corresponding to the uncertain plant model were identified using the sinusoidal excitation:
GD1(jωn)…GD8(jωn) (depicted by blue ”x“ in Figure 30). The nominal point GD0(jωn)
calculated from the coordinates of all identified points GDi(jωn), i = 1…8 is located on the
Nyquist plot of the nominal model GD0(jωn) (blue curve) thus proving correctness of the
identification. Radius of the dispersion circle MG centered in the nominal point GD0(jωn0)
with the radius RG = 0.164.

4. The desired robust performance ηmaxN = 30%, τsN = 12 can be achieved using ϕS = 50� at
the excitation level ωn0 = 0.5ωc0.

5. Using the designed robust PID controller, the nominal point GD0(jωn0) of the plant is
shifted to the point LD0(jωn0) = GD0(jωn0)GR_rob(jωn0) = 0.0841e�j180� located on the unit
circle. The nominal open-loop Nyquist plot (green plot) crosses LD0(jωn0) (Figure 14), the
radius of the circle ML is RL = 0.0400.

6. The smallest gain margin G+
MN = 18.8 dB is estimated from the position of the worst-case

point LDN(jωn0) = 0.112e�j197�. The achieved smallest gain margin is given by the intersec-
tion point of the red Nyquist plot with the negative real half-axis of the complex plane
G+

MN = 16.9 dB.

Figure 30. (a) Nyquist plots for GD(s), ηmaxN = 5% and τsN = 12; (b) closed-loop step responses with GD(s) for the required
performance ηmaxN = 5% and τsN = 12 (upper plot: worst-case plant model; lower plot: nominal plant model).
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7. Both the radius of the prohibited area RS = (GS�1)/GS = (1018/20–1)/1018/20 = 0.8741/χS = 0.699
multiplied by the expansion coefficient χS = 1.2, as well as the radius RL of the dispersion
circle ML enlarged χS = 1.1-times guarantee that none of the open-loop Nyquist plots enters
the prohibited area delineated by the MS circle. The enlarged circles ML

+ a MS
+ in Figure 30a

(dotted curves) touch, which indicates fulfillment of the robust performance condition.

8. As GM = 21.5 dB at the excitation level ωn0 = 0.65ωc0 has been considered, according to ”pink
“B-parabolas in Figure 25a nominal performance ηmax0 = 1.5% and τs0 = 21 is expected. The
nominal closed-loop step response in Figure 30b (green plot) shows the nominal perfor-
mance in terms of ηmax0_obtained = 0% and τs0_obtained = 0.0488�381 = 18.59 as expected.

9. From the closed-loop step response of the worst-case plant model (Figure 30b, red plot)
results ηmaxN_obtained = 4.8% and the relative settling time τsN_obtained = ωc0tsN_obtained =
0.0488�237 = 11.57 which proves achievement of the specified performance. Using the gain
margin GM = 21.5 dB at the excitation levelωn0 = 0.65ωc0 (“pink“ B-parabolas in Figure 25a)
indicates the expected nominal performance ηmax0 = 1.5% and τs0 = 21. The closed-loop
step response in Figure 30b (green plot) corresponding to the nominal model satisfies
ηmax0_obtained = 0% and τs0_obtained = 0.0488�381 = 18.59 as expected.

4. Conclusion

A novel frequency-domain PID design method for performance specified in terms of maxi-
mum overshoot and settling time is presented applicable for uncertain systems with paramet-
ric uncertainties. One of the main results is developed empirical charts called B-parabolas; this
insightful graphical tool is used to transform engineering time-domain performance specifica-
tions (maximum overshoot and settling time) into frequency-domain performance measures
(phase margin and gain margin). The developed PID design method is based on shaping the
closed-loop step response using various combinations of excitation signal frequencies and
required phase and gain margins. Using B-parabolas, it is possible to shape time responses of
processes with various types of dynamics. By applying appropriate PID controller design
methods including the above presented, it is possible to achieve cost-effective control of
processes with uncertainties. The presented advanced external harmonic excitation-based
design method contributes to improve the unfavorable statistical ratio between the properly
tuned to all implemented PID controllers in industrial control loops.
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Abstract

In this chapter, we deal with the problem of controlling Takagi-Sugeno (TS) fuzzy model by
PID controllers using the particle swarm optimization (PSO). Therefore, a new algorithm is
proposed. This algorithm relies on the use of a new objective function taking into account
both the performance indices and the error signal. The advantages of this approach are
discussed through simulations on a numerical example.

Keywords: nonlinear system, TS fuzzy model, PID, self-tuning of PID controller, PSO

1. T-S fuzzy model

The theory of modeling based on multiple models has evolved greatly. Indeed, several tech-
niques have been developed in the literature. The common feature of all these modeling
techniques is the decomposition of the dynamic behavior of the system into a number of
operating zones. Each zone is characterized by a local linear model. Fuzzy logic based on the
use of linguistic rules, heuristic strategies and the operator’s know-how. Subsequently, it has
undergone a major evolution mainly in Japan where it has been applied in several industrial
applications. This type of model proposed by Takagi and Sugeno (1985) makes it possible to
express a nonlinear system in several locally linear subsystems. The validity of each local
model is defined by a weighting function with bounded support.

The TS model is built on a set of rules of type:

• Ri: “IF premises THEN consequence”

where the premises are obtained from the linguistic propositions allowing the evaluation of
the weighting functions and where the consequences corresponding to the local models.
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We consider a class of nonlinear systems defined by:

y tþ 1ð Þ ¼ f X tð Þð Þ (1)

with the regressor vector X tð Þ is:

X tð Þ ¼ y tð Þ; y t� 1ð Þ;…; y t�m; u tð Þ; u t� 1ð Þ;…; u t�mð Þð �½ (2)

where k represents the discrete time, n and m denote, respectively, the number of delayed
output and the number of delayed input. The function f x tð Þð Þ is approximated by a TS fuzzy
model which is charities by consequent rules that are local linear function of the input vari-
ables [1]. The fuzzy rules of the TS model take the following general form:

Ri : if X1 isAi
1 and if Xz is Ai

z Then yi tð Þ ¼ X tð Þ 1½ �θT
i (3)

where Ri denotes the ith IF-THEN rule, r is the number of rules, Ai
j j ¼ 1;…; zð Þ is the fuzzy

subset, u tð Þ is the system input variable, y tð Þ is the system output, θi ¼ ai1; ai2;…; aiz; bi0½ � is the
parameter vector of the corresponding local linear model. Let μi X tð Þð Þ is the normalized

membership function of the inferred fuzzy set Ai, where Ai ¼ Πz
j¼1A

i
j. The final output is

calculated as the average of the outputs corresponding to the rules Ri, weighted by the
normalized degree of completion (membership), according to the following expression:

by ¼
Xr

i¼1

μityi (4)

The membership values μit have to satisfy the following conditions:

μit ∈ 0 1½ � i ¼ 1,…, r (5)

Xr

i¼1

μit ¼ 1 t ¼ 1,…, N (6)

0 <
XN

k¼1

μit < N i ¼ 1,…, r (7)

Once the parameters of the premises are fixed, the parameters of the consequent for each
rule can be obtained using the recursive weighted least squares technique, using the values
of the membership degrees of the fuzzy partition matrix of the classification process as
weights [2]:

The steps of the WRLS method are summarized in the following algorithm:

Initialize: θig 0ð Þ ¼ 0 and Pi 0ð Þ ¼ αiI.

for g ¼ 1, …, ci

PID Control for Industrial Processes122

θig tð Þ ¼ θig t�1ð Þ þ Li tð Þ yi tð Þ � xi tð Þ 1
� �

θT
ig t�1ð Þ

� �
(8)

Li tð Þ ¼
Pi t�1ð Þ xi tð Þ 1

� �T

1=μigt þ xi tð Þ 1
� �

Pi t�1ð Þ xi tð Þ 1
� �T (9)

Pi tð Þ ¼ Pi t�1ð Þ � Li tð Þ xi tð Þ 1
� �

Pi t�1ð Þ (10)

with k ¼ 1,…, N,Pi t�1ð Þ ∈ℜ Miþ1ð Þ� Miþ1ð Þ and Li tð Þ ∈ℜ Miþ1ð Þ.

end for

2. PID control by pole placement

This section is intended to model the digital PID controller in a new form RST. The control
structure RST is the establishment of three polynomials R q�1

� �
, S q�1
� �

and T q�1
� �

. According
to the first section, the local linear systems can be represented by:

Y q�1� �
A q�1� � ¼ B q�1� �

u q�1� �
(11)

Indeed, the vector xk takes the following form: xk ¼ �y k� 1ð Þ � y k� 2ð Þ…� y k� nð Þu k� 1ð Þ…½
u k�mð Þ�. This form is heardwhen determining PID controller parameters by themethod of poles
placement. Figure 1 shows the standard form of RST controller.

In this chapter, we consider only two branches R and S, as shown in Figure 2, that is to say:

T q�1� � ¼ R q�1� �
(12)

The transfer function in a closed loop is given by:

Hbf ¼
B q�1
� �

A q�1ð ÞS q�1ð Þ þ B q�1ð ÞR q�1ð Þ (13)

again:

Figure 1. Standard form of RST.

PID Control for Takagi-Sugeno Fuzzy Model
http://dx.doi.org/10.5772/intechopen.74295

123



We consider a class of nonlinear systems defined by:

y tþ 1ð Þ ¼ f X tð Þð Þ (1)

with the regressor vector X tð Þ is:

X tð Þ ¼ y tð Þ; y t� 1ð Þ;…; y t�m; u tð Þ; u t� 1ð Þ;…; u t�mð Þð �½ (2)

where k represents the discrete time, n and m denote, respectively, the number of delayed
output and the number of delayed input. The function f x tð Þð Þ is approximated by a TS fuzzy
model which is charities by consequent rules that are local linear function of the input vari-
ables [1]. The fuzzy rules of the TS model take the following general form:

Ri : if X1 isAi
1 and if Xz is Ai

z Then yi tð Þ ¼ X tð Þ 1½ �θT
i (3)

where Ri denotes the ith IF-THEN rule, r is the number of rules, Ai
j j ¼ 1;…; zð Þ is the fuzzy

subset, u tð Þ is the system input variable, y tð Þ is the system output, θi ¼ ai1; ai2;…; aiz; bi0½ � is the
parameter vector of the corresponding local linear model. Let μi X tð Þð Þ is the normalized

membership function of the inferred fuzzy set Ai, where Ai ¼ Πz
j¼1A

i
j. The final output is

calculated as the average of the outputs corresponding to the rules Ri, weighted by the
normalized degree of completion (membership), according to the following expression:

by ¼
Xr

i¼1

μityi (4)

The membership values μit have to satisfy the following conditions:

μit ∈ 0 1½ � i ¼ 1,…, r (5)

Xr

i¼1

μit ¼ 1 t ¼ 1,…, N (6)

0 <
XN

k¼1

μit < N i ¼ 1,…, r (7)

Once the parameters of the premises are fixed, the parameters of the consequent for each
rule can be obtained using the recursive weighted least squares technique, using the values
of the membership degrees of the fuzzy partition matrix of the classification process as
weights [2]:

The steps of the WRLS method are summarized in the following algorithm:

Initialize: θig 0ð Þ ¼ 0 and Pi 0ð Þ ¼ αiI.

for g ¼ 1, …, ci

PID Control for Industrial Processes122

θig tð Þ ¼ θig t�1ð Þ þ Li tð Þ yi tð Þ � xi tð Þ 1
� �

θT
ig t�1ð Þ

� �
(8)

Li tð Þ ¼
Pi t�1ð Þ xi tð Þ 1

� �T

1=μigt þ xi tð Þ 1
� �

Pi t�1ð Þ xi tð Þ 1
� �T (9)

Pi tð Þ ¼ Pi t�1ð Þ � Li tð Þ xi tð Þ 1
� �

Pi t�1ð Þ (10)

with k ¼ 1,…, N,Pi t�1ð Þ ∈ℜ Miþ1ð Þ� Miþ1ð Þ and Li tð Þ ∈ℜ Miþ1ð Þ.

end for

2. PID control by pole placement

This section is intended to model the digital PID controller in a new form RST. The control
structure RST is the establishment of three polynomials R q�1

� �
, S q�1
� �

and T q�1
� �

. According
to the first section, the local linear systems can be represented by:

Y q�1� �
A q�1� � ¼ B q�1� �

u q�1� �
(11)

Indeed, the vector xk takes the following form: xk ¼ �y k� 1ð Þ � y k� 2ð Þ…� y k� nð Þu k� 1ð Þ…½
u k�mð Þ�. This form is heardwhen determining PID controller parameters by themethod of poles
placement. Figure 1 shows the standard form of RST controller.

In this chapter, we consider only two branches R and S, as shown in Figure 2, that is to say:

T q�1� � ¼ R q�1� �
(12)

The transfer function in a closed loop is given by:

Hbf ¼
B q�1
� �

A q�1ð ÞS q�1ð Þ þ B q�1ð ÞR q�1ð Þ (13)

again:

Figure 1. Standard form of RST.

PID Control for Takagi-Sugeno Fuzzy Model
http://dx.doi.org/10.5772/intechopen.74295

123



Hbf ¼
B q�1
� �

P0 q�1ð Þ (14)

with:

e kð Þ ¼ yr kð Þ � y kð Þ
B q�1
� � ¼ b1q�1 þ b2q�2

A q�1
� � ¼ 1þ a1q�1 þ a2q�2

R q�1
� � ¼ r0 þ r1 q�1

� �þ r2 q�2
� �

S q�1
� � ¼ 1� q�1

� �
1þ s1 q�1

� �� �
(15)

For a characteristic polynomial P1 q�1
� �

, the poles of the closed loop transfer function are
imposed to arrive at the performances required by the follow-up of the specifications.

This problem boils down to solving the following equation:

P
0
q�1� � ¼ A q�1� �

S q�1� �þ B q�1� �
R q�1� �

(16)

From the after Scheme 4, the equation of regulator is written by:

C q�1� � ¼ KP 1þ 1
TI 1� q�1ð Þ þ

Nf Td

TdþNf Te
1� q�1
� �

1� Td
TdþNf Te

q�1

0
@

1
A (17)

To simplify Eq. (17), we substitute:

a ¼ Te
TI

(18)

b ¼ Td

Td þNf Te
(19)

from which we obtain the following standard form:

C q�1� � ¼ Kp 1þ a
1� q�1 þNf b

1� q�1

1� bq�1

 !
(20)

Figure 2. RST structure.
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The parameters of the digital PID regulator (r0, r1, r2 and s1) are chosen according to the
desired poles defined by the polynomial P q�1

� �
.

The characteristic polynomial can be in the following form:

P0 q�1� � ¼ 1þ p1q
�1 þ p2q

�2 (21)

The values of p1 and p2 are chosen from the specifications imposed by the specifications (rise
time, damping, overshoot, etc.) defined in general by comparing the behavior of the process to
that of continuous system of second order.

p1 ¼ �2eζwnTecos wnTe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p� �

p1 ¼ e�2ζwnTe

8<
: (22)

where zeta is a damping coefficient and wn is a pulsation. We wrote:

P q�1� � ¼ A q�1� �
S q�1� �þ B q�1� �

R q�1� �
(23)

By identification, we find:

b1r0 þ s1 ¼ p1 þ 1� a1

b2r0 þ b1r1 þ a1 � 1ð Þs1 ¼ p2 þ a1 � a2

b2r1 þ b1r2 þ a2 � a1ð Þs1 ¼ a2

b2r2 � a2s1 ¼ 0

8>>>>><
>>>>>:

(24)

The control law is:

u q�1� � ¼ R q�1
� �

S q�1ð Þ e q�1� �
(25)

From where:

u kð Þ ¼ r0e kð Þ þ r1e k� 1ð Þ þ r2e k� 2ð Þ þ 1� s1ð Þu k� 1ð Þ þ s1u k� 2ð Þ (26)

The structure of the corrector is the standard structure discretized by the approximation upper
rectangles, and to find the values of the PID parameters will take the following expression:

Kp ¼ r0s1 � r1 � 2þ s1ð Þr2
1þ s1ð Þ2

Ti ¼
TeKp 1þ s1ð Þ
r0 þ r1 þ r2

Td ¼
Te s21r0 � s1r1 þ r2
� �

Kp 1þ s1ð Þ3

8>>>>>>>>>><
>>>>>>>>>>:

(27)
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Hbf ¼
B q�1
� �

P0 q�1ð Þ (14)

with:

e kð Þ ¼ yr kð Þ � y kð Þ
B q�1
� � ¼ b1q�1 þ b2q�2

A q�1
� � ¼ 1þ a1q�1 þ a2q�2

R q�1
� � ¼ r0 þ r1 q�1

� �þ r2 q�2
� �

S q�1
� � ¼ 1� q�1

� �
1þ s1 q�1

� �� �
(15)

For a characteristic polynomial P1 q�1
� �

, the poles of the closed loop transfer function are
imposed to arrive at the performances required by the follow-up of the specifications.

This problem boils down to solving the following equation:

P
0
q�1� � ¼ A q�1� �

S q�1� �þ B q�1� �
R q�1� �

(16)

From the after Scheme 4, the equation of regulator is written by:

C q�1� � ¼ KP 1þ 1
TI 1� q�1ð Þ þ

Nf Td

TdþNf Te
1� q�1
� �

1� Td
TdþNf Te

q�1

0
@

1
A (17)

To simplify Eq. (17), we substitute:

a ¼ Te
TI

(18)

b ¼ Td

Td þNf Te
(19)

from which we obtain the following standard form:

C q�1� � ¼ Kp 1þ a
1� q�1 þNf b

1� q�1

1� bq�1

 !
(20)

Figure 2. RST structure.
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The parameters of the digital PID regulator (r0, r1, r2 and s1) are chosen according to the
desired poles defined by the polynomial P q�1

� �
.

The characteristic polynomial can be in the following form:

P0 q�1� � ¼ 1þ p1q
�1 þ p2q

�2 (21)

The values of p1 and p2 are chosen from the specifications imposed by the specifications (rise
time, damping, overshoot, etc.) defined in general by comparing the behavior of the process to
that of continuous system of second order.

p1 ¼ �2eζwnTecos wnTe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p� �

p1 ¼ e�2ζwnTe

8<
: (22)

where zeta is a damping coefficient and wn is a pulsation. We wrote:
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R q�1� �
(23)
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b2r2 � a2s1 ¼ 0

8>>>>><
>>>>>:

(24)

The control law is:
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� �

S q�1ð Þ e q�1� �
(25)
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3. PID controller based on PSO

3.1. PSO algorithm

Particle swarm optimization (PSO) is a stochastic technique based on collective intelligence,
inspired by nature. It was developed by Kennedy and Eberhart [3]. The PSO algorithm is
inspired by collective behavior in certain social animals such as fish and migratory birds. This
algorithm shares many similarities with evolutionary computational techniques such as
genetic algorithms. Indeed, the latter are initialized with random solutions and search for
optimums by updating generations involved. However, the PSO has no evolutionary operator
such as the crossing and the mutation in the image of genetic algorithms.

In the PSO, each individual of the population is called particle, while the population is known
as swarm. It should be noted that a particle can benefit from the movements of other particles
in the same population to adjust its position and velocity during the optimization process.
Each individual uses local information to which he can access the movement of his nearest
neighbors to decide his own move. Very simple rules like “staying close to other people,”
“going in the same direction” and “going at the same speed” are enough to maintain the
cohesion of the whole group. At each displacement, the performance of each particle is
measured by its position and velocity by minimizing a performance function called fitness [4].

The PSO’s basic algorithm works on a population called a swarm of possible solutions, which
are called particles. These particles are placed randomly in the search space of the objective
function. At each iteration, the particles move, taking into account their best position (selfish
displacement) but also the best position of its vicinity. In fact, the new speed is calculated from
the following formula [3]:

Vid tþ 1ð Þ ¼ wVid tð Þ þ c1r1 pid tð Þ � xid tð Þ� �þ c2r2 pgd tð Þ � xid tð Þ
� �

(28)

In this equality, t is the number of iteration, Vid tð Þ and xid tð Þ stand for separately the speed of
the particle i at its t times and the d-dimension quantity of its position, c1 and c2 are the
acceleration coefficients, r1 and r2 are two random numbers drawn uniformly in 01½ �. pid and
pgd are, respectively, the best position reached and the best position of the vicinity reached of

the particle i and w is an inertial coefficient defined by:

w ¼ wmax
wmax � wmin

itermax

� �
iter (29)

where itermax is the maximum of iteration in evolution process, wmin and wmax are the mini-
mum and maximum values of w, respectively, and iter is the current value of iteration. The
position of the particle can then be determined by the speed that we have just calculated:

xid ¼ xid þ Vid (30)

We generate Vid 0ð Þ and xid 0ð Þ at the beginning of our algorithm. The PSO algorithm stops if
one of these convergence criteria is reached:
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• the maximum number of iterations tmax is reached;

• the speed variation tends to zero; and

• the fitness function is satisfied.

3.2. Tuning of PID using PSO optimization

The PSO optimization module complete the self-tuning of PID parameters with a micropro-
cessor that achieves the optimum of PID parameters. These parameters are used to retune the
PID controller in PID controller module. To seek the optimum parameters kp, ki and kd of PID
controller, PSO program should search in D-dimensional search space. The function optimiza-
tion problem can be viewed as a 3-dimensional space in this chapter. That is, tuning of PID
controller parameters is to search optimization value in kp, ki and kd, the 3-dimensionsal search
spaces. With the optimized parameters based on PSO algorithm, the PID controller can achieve
the optimal properties, that is, a fast system with a minimum of overrun, there is a compromise
between performance and minimum energy [5].

In most cases, PID controller work with an error signal (e) that is calculated from the process
variable (y) and setpoint (yr). The error represents the deviation of the process variable from
the setpoint. Then, the error signal is described as:

e tð Þ ¼ yr tð Þ � y tð Þ (31)

A PID controller optimized with PSO algorithm was developed for a TS Fuzzy system. It was
also called the PSO-PID controller. PSO algorithm is mainly utilized to determine three opti-
mal PID gains.

Adjusting the parameters of a PID controller can be considered as an optimization problem
where it is a matter of finding the optimal solution of the gains of the controller in a
predefined search space in order to allow the system to have certain desired performances.
In this context, the PSO algorithm can be applied to find the optimal combination of the
proportional, integral and derivative gains of the PID controller. During the application of the
PSO, the initial population will be created randomly with Np individuals containing three
decision variables: kp, ki and kd. To evaluate the individuals, we inject these gains into the
PID controller and measure the parameters of the corresponding system output using the
parameters of the TS model. The choice of the cost function is determined by the objective to
be achieved. These objectives are determined by the performance defined in the specifica-
tions. Typically, this is static error, rise time, stabilization time and maximum allowed
exceedance.

In the literature, we can find a multitude of performance indices. Most of these indices are
based on the optimization error. The integrated square error (ISE) is given by:

J ¼
ð∞

0

e2 tð Þ�� ��dt (32)
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Another fitness function is integrated time weight square error (ITSE), which is given as
follows:

J ¼
ð∞

0

t e2 tð Þ�� ��dt (33)

It seems simpler, yet it is hard to get the ideal time response too. Another widely used fitness
function is:

J ¼
ð∞

0

w1 e tð Þj j þ w2u2 tð Þ� �
dt (34)

where e tð Þ and u tð Þ represent, respectively, the system error and the output of controller, the
utilization of this second item is to limited energy (Figure 3).

Since, more than the error signal, the performance indices in the time domain are also the
overshoot (D%), steady-state error (Ess) the settling time (Ts) and the rise time (Tr). The
performance criteria must include all these performances. Therefore, we proposed a new
objective function and it is described by the following equation:

J ¼ 1� exp �β
� �� �

D%þ Essð Þ þ exp �β
� �

Ts � Trð Þ �
ð∞

0

t e2 tð Þ�� ��dt (35)

The framework of online parameter self-tuning for nonlinear system based on TS Fuzzy model
is depicted in Figure 3.

Figure 3. Block diagram of a PID-PSO algorithm.
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4. Simulation results

This section presents a simulation example to show an application of the proposed control
algorithm and its satisfactory performance.

The nonlinear system is characterized by this equation [6]:

y kð Þ ¼ a1∗ sin y k� 1ð Þð Þ þ a2∗y k� 2ð Þ þ a3∗u k� 2ð Þ∗y k� 3ð Þ þ b1∗u k� 1ð Þ þ b2∗ tanh 0:7∗u k� 3ð Þð Þ2
� �

(36)

with a1 ¼ 0:4; a2 ¼ 0:3; a3 ¼ 0:1; b1 ¼ 0:6; and b2 ¼ 1:8. Here, y kð Þ is the output and u kð Þ is the
input which is uniformly bounded in the region �2; 2½ �.
We choose �y k� 1ð Þ;�y k� 2ð Þ; u k� 1ð Þ; u k� 2ð Þ½ � as inputs variables, and the number of
fuzzy rules is four. The setup applied in this work was the following: the population size was
20, the stopping criterion was 30 generations, wmin ¼ 0:5, wmax ¼ 0:9 and c1 ¼ c2 ¼ 2.

We simulated two experimental cases. In case 1, the simulation result of the control pole
placement for the nonlinear system is shown in Figure 4.

It can be seen from Figure 4, we note that the output of command has an important overshoot-
ing. In case 2, the PSO algorithm is adding to PID control. Figure 5 shows simulation results of
the output signal of the control system.

We make a comparative study of PID control by pole placement method and the optimization
algorithm of PSO (Table 1).

We note though, the advantage of optimizing the parameters of PID controller by PSO com-
pared with the method of pole placement quality control, we observed that the overshoot
decreases and the algorithm converges in minimum time.

Figure 4. Output signal: PID-pole placement method.
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5. Conclusion

We studied the PID control of a nonlinear system of Takagi-Sugeno for a square input signal
using pole placement technique. With this method, we obtain results with an important
overshooting. To solve this problem, we have compiled the PID control algorithm with PSO
optimization algorithm that it has given good results.
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Figure 5. Output signal: PID-optimization of PSO.
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Abstract

Dynamic simulations are used to model systems that are in transition from a steady state 
to dynamic state. The dynamic model is used to evaluate different basic control schemes 
and later to evaluate and test the control strategy. In this chapter, a steady-state simula-
tion and dynamic simulation for debutanizer column are performed using a plant pro-
cess simulator, HYSYS™. The objective of this chapter is to study the process variables 
of each controller at the column by using different tuning relations and identify the best 
tuning methods for the controllers in order to optimise the performance of the column. 
Two tuning methods are used in determining the controller settings for each controller. 
The process variable for each controller are used by using two different tuning meth-
ods are being studied. Furthermore, the effect on the process variables of each controller 
when using the controller settings based on real plant data and calculated using the PID 
equation is also being analysed. As for conclusion, the different tuning methods could 
give the different results on the behaviour of the response for each controller and the 
optimum response for each controller could be determined by considering the behaviour 
of the response and the value of integral square of the error (ISE) and integral of absolute 
value of error (IAE). All the research and findings obtained will be used to improve the 
overall performance of the plant as well as to improve the quality of the product and 
maximise profitability. The successful outcome of this chapter will be a great helping 
hand for industrial application.

Keywords: distillation column, steady state, dynamic state, PID controller, tuning

1. Introduction

The process industries are dynamic in nature. Process plants rarely run at a steady-state con-
dition on dynamic. Feed and environmental disturbances, equipment vibrations, changes in 
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tuning methods for the controllers in order to optimise the performance of the column. 
Two tuning methods are used in determining the controller settings for each controller. 
The process variable for each controller are used by using two different tuning meth-
ods are being studied. Furthermore, the effect on the process variables of each controller 
when using the controller settings based on real plant data and calculated using the PID 
equation is also being analysed. As for conclusion, the different tuning methods could 
give the different results on the behaviour of the response for each controller and the 
optimum response for each controller could be determined by considering the behaviour 
of the response and the value of integral square of the error (ISE) and integral of absolute 
value of error (IAE). All the research and findings obtained will be used to improve the 
overall performance of the plant as well as to improve the quality of the product and 
maximise profitability. The successful outcome of this chapter will be a great helping 
hand for industrial application.
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1. Introduction

The process industries are dynamic in nature. Process plants rarely run at a steady-state con-
dition on dynamic. Feed and environmental disturbances, equipment vibrations, changes in 
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ambient conditions, heat exchanger fouling and degrading equipment performance that will 
effect smooth running of a process operation [1]. The transient behaviour of the process sys-
tem is best studied using a dynamic simulation tool like HYSYS™. HYSYS™ contains a wide 
variety of property packages which provide accurate thermodynamic, physical and transport 
property predictions for hydrocarbon, non-hydrocarbon, petrochemical and chemical fluids. 
This powerful simulation program provides an environment for exploration of thermody-
namic model behaviour, proper determination and tuning of interaction parameters and 
physical properties, as well as alternative designs for distillation systems.

Through dynamic simulation analyses, users are able to effectively study the impacts that 
change operating conditions and design modifications have on the operation of a process 
[2]. Process configurations and control system designs can be evaluated to ensure that they 
will meet corporate manufacturing objectives regardless of changing process and market con-
ditions. The optimization and design of a process involves both steady-state and dynamic 
behaviour. Steady-state models consist of steady-state material and energy balances in order 
to evaluate different plant scenarios. The process engineer can use steady-state model to opti-
mise the process industry by reducing equipment costs and capital while production maxi-
mising. Dynamic models allow the design engineer to design and compare alternative control 
strategies, examine the dynamic response to system disturbances and optimise the tuning of 
controllers in order to improve the overall performance of the plant [3, 4].

2. Literature review

2.1. Modelling under steady state

Steady-state simulations are widely used in process design, optimization and provide infor-
mation for process flow sheets in terms of material and energy balances. It is also used for 
process design equipment such as heat exchangers, reactors and distillation columns. These 
simulations consist blocks of unit operations connected together and physical property data 
for the input streams chemical components specified by the user.

Steady-state models can perform steady-state energy and material balances and evaluate dif-
ferent plant scenarios. The design engineer can use steady-state simulation to optimise the 
process by reducing capital and equipment costs while maximising production.

However, the one obvious limitation of steady-state modelling is that it tells us nothing about 
the dynamic response, making it difficult to compare the dynamic disturbance rejection capa-
bility of alternative control schemes [6].

2.2. Dynamic modelling

Dynamic models are used to predict how to control a process and respond to various upsets 
in terms of function of time. They are widely used to evaluate equipment configurations, 
control schemes and determine the reliability and safety of a certain design before capital is 
committed to the implementation of a process. For an optimum process, dynamic simulation 
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can be used to assess transient conditions that could determine the process design pressures 
and temperatures. In many cases, unnecessary capital expenditures can be neglected using 
dynamic simulation.

Dynamic simulation during process design could lead to profit during plant start-up. 
Expensive field changes and impact schedule can be minimised if the control system and 
equipment are validated using dynamic simulation. Shutdown and start-up can be tested 
using dynamic simulation [7].

During start-up dynamic simulation could also provide controller-tuning parameters. In a lot 
of cases, accurate tuning controller settings can prevent expensive shutdowns and accelerate 
plant start-up. Dynamic simulation models used for process design are not based on transfer 
functions that are run from operator training simulators, but on actual physical equations 
governing the process and fundamental engineering principles [8].

Dynamic simulation models that are used for process design include:

• From differential balances for equipment models that include mass and energy inventory.

• Rigorous thermodynamics based on property correlations, steam tables and equations of 
state.

• Actual valve, piping, distillation tray, equipment hydraulics for both incompressible and 
compressible and lastly critical flow.

These models are so detailed that the results can influence engineering design decisions and 
ensure a realistic prediction of the process and the control system’s interaction to assess con-
trol system stability [11].

2.3. PID controller

A proportional-integral-derivative controller (PID controller) is a general control loop feed-
back mechanism (controller) widely used in industry. A PID controller attempts to correct the 
error between a desired setpoint and a measured process variable by calculating it and then a 
corrective action that can adjust the process accordingly to keep the error minimal.

The PID controller involves three important parameters: which are proportional, integral and 
derivative. The proportional controller determines the reaction to the error calculated, the inte-
gral determines the reaction based on the sum of recent errors and the derivative determines 
the reaction based on the rate at which the error that has been changed. The weighted sum 
of these three actions is used to adjust the process control element such as the opening of a 
control valve (manipulated variable) or the power supply of a heating element [9].

The three constants are tuned in the PID controller equation; the controller can provide con-
trol action designed for specific requirements. The response of the controller could be decided 
in terms of the responsiveness of the controller to the required error, the degree to which the 
controller overshoots the setpoint and the degree of oscillation. The use of the PID algorithm 
for control does not guarantee optimal control of the system and stability.
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To some extent, the applications may require using only one or two mode to provide the 
appropriate control. This could be achieved by setting the gain of the control outputs to zero. 
A PID controller will be called a PI, PID, PD, or P controller in the absence of the respective 
control actions. PI controllers are particularly widely used, since derivative action is sensi-
tive to measurement noise and the absence of an integral value may prevent the system from 
reaching its setpoint value due to the control action [10].

The PID control scheme is named after its three correcting terms, whose sum constitutes the 
manipulated variable (MV). Hence:

  MV (t)  =  P  out   +  I  out   +  D  out    (1)

Once the process gain, time constant time delay calculated for first-order response in the open 
loop tuning, the values are used in the Cohen Coon formula and input in HYSYS to peform 
the closed loop tuning in the PID equation. The first-order model of different loops are as fol-
lows; Temp 1 is controlled by regulating the heat duty of the reboiler using feedback control. 
Flow 3 is controlled by regulating the bottom liquid flowrate of the column. Pressure 1 is 
controlled using split range control of the vapour flowrate of the column and outlet vapour 
of the condenser. Flow 2 is controlled regulated using the distillate flowrate of the column.

3. Methodology

3.1. Data collection

The relevant data are identified and gathered after the problem is clearly defined. The steady-
state and dynamic simulation by using HYSYS was performed in order to determine which 
data are needed for the simulation. The data collected from the plant information (PI) systems 
with the helping of an engineer in oil refinery industry [12].

3.1.1. Debutanizer column

Table 1 shows the debutanizer column description. The column plant data tabulated in Table 1 
are important in order for the HYSYS simulation to run.

3.1.2. Composition in the feed in mass fraction including components in the feed

Table 2 shows the composition of the feed debutanizer column which is important to analyse 
as the column consists of multicomponent.

3.1.3. Hypothetical components properties

Table 3 shows the important properties of the hypothetical components that are used for 
the simulation and the component not available therefore need to input the information in 
HYSYS.

PID Control for Industrial Processes136

3.1.4. Operational parameters

3.1.4.1. Temp 1, Flow 3, Pressure 1 and Flow 2

Table 4 shows the operational parameters for Temp 1, Flow 3, Pressure 1 and Flow 2 that are 
obtained in industry input in the simulation.

Number of tray of the column 35

Feed tray-stage number 23

Type of tray used Valve

Column diameter 1.3 m

Column height 23.95 m

Type of condenser Partial

Feed mass flowrate 44,106 kg/h

Feed temperature 113°C

Feed pressure 823.8 kPa

Overhead vapour mass flowrate 11,286 kg/h

Overhead liquid mass flowrate 5040 kg/h

Pressure condenser 823.8 kPa

Pressure reboiler 853.2 kPa

Table 1. Debutanizer column plant data.

Composition Mass fraction

Propane 0037

i-Butane 0093

n-Butane 0062

i-Pentane 0082

n-Pentane 0110

Hypo50_13* 0017

Hypo60_13* 0191

Hypo70_13* 0245

Hypo80_13* 0063

Hypo90_13* 0070

Hypo100_13* 0029

Hypo110_13* 0003

Hypo120_13* 0001

Table 2. Composition at the feed.
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Component Boiling 
temp 
(°C)

Critical 
P (kPa)

Critical 
T (°C)

Critical 
volume (m3/
kgmol)

Molecular 
weight

SG Viscosity 
50°C (cSt)

TVP 
(kPa)

Hypo40_13* 38 3363 2017 03171 7134 6422 0 0

Hypo50_13* 45 4545 221 02483 7013 7603 021 6845

Hypo60_13* 55 3162 221 03475 8598 666 021 4781

Hypo70_13* 65 3053 2322 03658 8569 6818 021 4431

Hypo80_13* 75 3957 261,7 0,303 83,83 774,9 0,21 26,61

Hypo90_13* 85 2907 2559 03983 9902 7047 021 172

Hypo100_13* 95 3141 2741 03813 9844 7368 021 1463

Hypo110_13* 105 3262 290 0377 105 7582 02114 8582

Hypo120_13* 115 2739 2934 04474 1117 7372 02213 6168

Table 3. Properties of the hypothetical components.

3.1.4.2. Temp 1, Flow 3, Pressure 1 and Flow 2

Table 5 shows the PID controller for Temp 1, Flow 3, Pressure 1 and Flow 2 that are obtained 
in industry input in the simulation.

3.1.4.3. Temp 1, Flow 3, Pressure 1 and Flow 2

Table 6 shows the ISE and IAE values for Temp 1, Flow 3, Pressure 1 and Flow 2 that are cal-
culated using Microsoft Excel.

3.2. Steady-state modelling using HYSYS

HYSYS™ is widely used for designing a steady-state model for the Debutanizer column 
before the steady state is transitioned to the dynamic model. Within HYSYS™, steady-state 

Temp 1 Flow 3 Pressure 1 Flow 2

Mode Auto Auto Auto Cascade

Action Reverse Reverse Reverse Reverse

SP 140.7°C 19.37 m3/h 823.8 kPa 8.8206 m3/h

OP 52.00% 74.20% 25.30% 54.30%

Kc 250 0.1 0.5 0.2

Ti 1.33 min 0.5 min 0.7 min 0.2 min

Td 0.333 min — — —

PV Minimum 125.15°C 19.37 m3/h 552.60 kPa 0.00 m3/h

PV Maximum 145.55°C 56.40 m3/h 903.58 kPa 15.80 m3/h

Table 4. Operational parameter Temp 1, Flow 3, Pressure 1 and Flow 2.
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simulations can be easily converted into dynamic simulations by specifying pressure/flow 
relationships, additional engineering details and equipment dimensions. The HYSYS™ envi-
ronment consists of the basic environment and the simulation environment. The basic envi-
ronment is used to select the chemical components that are involved in the simulation, as well 
as the thermodynamic property suitable for the components.

The simulation environment consists of the process flow diagram (PFD) and worksheet. The 
worksheet contains the information on every heat and flow stream which are involved in 

Temp 1 Flow 3 Pressure 1 Flow 2

Controller 
settings

Real plant 
data

PID 
equation

Real plant 
data

PID 
equation

Real plant 
data

PID 
equation

Real plant 
data

PID equation

Kc 250 250 0.1 0.1 0.5 0.5 0.2 0.2

Ti (s) 80 3.125 30 0.003 42 0.012 12 0.0167

Td (s) 20 5000 — — — — — —

Table 5. PID controller for Temp 1, Flow 3, Pressure 1 and Flow 2.

Temp 1 Flow 3 Pressure 1 Flow 2

Controller 
settings

Real plant 
data

PID 
equation

Real plant 
data

PID 
equation

Real plant 
data

PID 
equation

Real plant 
data

PID 
equation

ISE 2863.68 12099.97 8058.76 8108.98 1,380,285 1,313,971 892.9 2072.93

IAE 771.49 2863.68 560.32 596.14 19749.54 19406.04 193.9 394.55

Table 6. ISE and IAE for Temp 1, Flow 3, Pressure 1 and Flow 2.

Figure 1. Process flow diagram (PFD) of debutanizer column in steady state.
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the simulation. Most of the streams require inputs while HYSYS™, depend on the degree of 
freedom, will calculate the output streams automatically. The PFD will graphically show the 
unit’s operation streams that are involved. The necessary information such as feed condi-
tions, feed compositions, reflux ratio, pressure condenser, pressure reboiler and so on have to 
be provided for the chosen unit operation in order to be able to design the unit automatically.

3.3. Dynamic modelling using HYSYS

Figure 1 shows the process flow diagram of debutanizer column and Figure 2 shows the 
process flow diagram of debutanizer column in dynamic state. The setpoint that is used in 

Figure 2. Process flow diagram (PFD) of debutanizer column in dynamic state.
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the simulation is used based on the parameter in Table 4. The setpoint value is fixed and then 
once the transition from steady state to dynamic state the change of setpoint is increased 
slight about 5% change from the actual setpoint in each controller in the dynamic state.

3.4. Approach methodology

The block diagram in Figure 3 shows the approach that has been conducted in this chapter. 
Each step has been done thoroughly in order to fulfil the objective of this chapter. Furthermore, 
it can be done smoothly by constructing this approach.

4. Results and discussion

4.1. Comparison of process variable for controller settings based on real plant data 
and PID

Process variables for controller settings are based on real plant data are compared with the 
controller settings that are calculated using the PID equation.

PID equation

   G  c   (s)  =  K  c   (1 +   1 ___  T  i   s
   +  T  d   s)   (2)

Figure 3. Flow of Modelling.
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controller settings that are calculated using the PID equation.

PID equation

   G  c   (s)  =  K  c   (1 +   1 ___  T  i   s
   +  T  d   s)   (2)

Figure 3. Flow of Modelling.
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The controller variable response for all controllers are also compared with using the integral 
square of the error (ISE) and integral of absolute value of error (IAE) [5], where

  ISE =  ∑ 
i=0

       ( y  sp   −  y  i  )    2  IAE =  ∑ 
i=0

     ∣  ( y  sp   −  y  i  )  ∣  (3)

4.1.1. Temp 1

Figure 4 represents the process variables of reboiler outlet temperature to column for control-
ler settings based on real plant data and PID equation. Plant data show optimum response as 
it fluctuates within the set point and takes a shorter time to settle. Meanwhile, PID equation 
response decreases dramatically and exceeds the lower limit at 1300 s. Plant data response 
gives the smallest value of ISE and IAE which are 2863.68 and 771.49, respectively.

Figure 4. Process variables of Temp 1 for controller settings based on real plant data and PID equation.

Figure 5. Process variables of Flow 3 for controller settings based on real plant data and PID equation.
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4.1.2. Flow 3

Figure 5 represents the process variables of light naphta flow to storage for controller settings 
based on real plant data and PID equation. The response of real plant data reaches the settling 
time faster than PID equation and exhibits the more stable response with no large oscillation 
and fluctuates within its set point. Meanwhile, PID equation response shows the large over-
shoot and exceeds the high limit at 2500 and 3180 s. Plant data response gives the smallest 
value of ISE and IAE which are 8058.76 and 560.32, respectively.

4.1.3. Pressure 1

Figure 6 represents the process variables of debutanizer overhead pressure for controller set-
tings based on real plant data and PID equation. The responses shows a different trend where 
the real plant data exhibit the larger overshoot and take a longer settling time compared to 

Figure 7. Process variables of Flow 2 for controller settings based on real plant data and PID equation.

Figure 6. Process variables of Pressure 1 for controller settings based on real plant data and PID equation.
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PID equation. After both responses had settled, the responses were almost similar to the rapid 
and smooth response but slightly deviate from the set point. PID equation response gives the 
smallest value of ISE and IAE which are 1,313,971 and 19406.04, respectively.

4.1.4. Flow 2

Figure 7 represents the process variables of LPG flow to storage for controller settings based 
on real plant data and PID equation. The response of real plant data reaches the settling time 
faster than PID equation and exhibits the more rapid and smooth response compared to PID 
equation. Plant data response gives the smallest value of ISE and IAE which are 892.99 and 
193.98, respectively.

5. Conclusion

This chapter is mainly about modelling a steady-state and dynamic model for debutanizer 
column in order to optimise the performance of the column and to identify the best tuning 
methods for each controller at the column. Debutanizer column in Crude Distillation Unit 
(CDU) of oil refinery has been chosen as a model for this chapter.

From results and discussion, it is concluded that the different tuning methods could give the 
different results on the behaviour of the response for each controller. The optimum response 
for each controller has been chosen by considering the behaviour of the response and the 
value of integral square of the error (ISE) and integral of absolute value of error (IAE).

All the findings obtained will be used to improve the overall performance of the plant as well 
as to improve the quality of the product and maximise profitability. The successful outcome 
of this chapter will be a great helping hand for industrial application.

5.1. Recommendation

1. Determine the second-order approximation of the transfer function and the process model 
for each controller.

2. Calculate the controller settings for PI and PID controller by using the process model that 
determined from the second-order approximation of the transfer function.

3. Implement the model predictive control (MPC) for each controller.
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Abstract

This chapter introduces the closed-form analytical design of proportional-integral (PI)
controller parameters for the optimal control subjected to operational constraints. The
main idea of the design is not only to minimize the control performance index but also to
cope with the constraints in the process variable, controller output, and its rate of change.
The proposed optimization-based approach is examined to regulatory and servo control
of integrating processes with three typical operation constraints. To derive an analytical
design formula, the constrained optimal control problem in the time domain was
transformed to an unconstrained optimization in a new parameter space associated with
closed-loop dynamics. By taking the advantage of the proposed analytical approach, the
optimal PI parameters can be found quickly based on the graphical analysis without
complex numerical optimization. The resulting optimal PI controller guarantees the glob-
ally optimal closed-loop response and handles the operational constraints precisely.

Keywords: constrained optimal control, industrial PI controller, analytical design,
constraint handling, integrating process, optimal servo and regulatory control

1. Introduction

Many units used in the chemical process industry, such as heating boilers, batch chemical
reactors, liquid storage tanks, or liquid level systems, are integrating processes in which the
dynamic response is very slow with a large dominant time constant. In modern control, the
integrating process also appears in many applications including space telescope control sys-
tems, lightweight robotic arms, and pilot crane control systems. Constraints are inherent in

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74301

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 7

Constraint Handling Optimal PI Controller Design for
Integrating Processes: Optimization-Based Approach
for Analytical Design

Rodrigue Tchamna and Moonyong Lee

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74301

Provisional chapter

Constraint Handling Optimal PI Controller Design for
Integrating Processes: Optimization-Based Approach
for Analytical Design

Rodrigue Tchamna and Moonyong Lee

Additional information is available at the end of the chapter

Abstract

This chapter introduces the closed-form analytical design of proportional-integral (PI)
controller parameters for the optimal control subjected to operational constraints. The
main idea of the design is not only to minimize the control performance index but also to
cope with the constraints in the process variable, controller output, and its rate of change.
The proposed optimization-based approach is examined to regulatory and servo control
of integrating processes with three typical operation constraints. To derive an analytical
design formula, the constrained optimal control problem in the time domain was
transformed to an unconstrained optimization in a new parameter space associated with
closed-loop dynamics. By taking the advantage of the proposed analytical approach, the
optimal PI parameters can be found quickly based on the graphical analysis without
complex numerical optimization. The resulting optimal PI controller guarantees the glob-
ally optimal closed-loop response and handles the operational constraints precisely.

Keywords: constrained optimal control, industrial PI controller, analytical design,
constraint handling, integrating process, optimal servo and regulatory control

1. Introduction

Many units used in the chemical process industry, such as heating boilers, batch chemical
reactors, liquid storage tanks, or liquid level systems, are integrating processes in which the
dynamic response is very slow with a large dominant time constant. In modern control, the
integrating process also appears in many applications including space telescope control sys-
tems, lightweight robotic arms, and pilot crane control systems. Constraints are inherent in

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74301

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



any industrial control systems, either implicitly or explicitly. They are generally associated
with both the process variable and controller output. Indeed, typical operational constraints
usually include the actuator magnitude and its rate saturation, process/output variable, and
internal state variables. The objective of constrained optimal control is to minimize the control
cost subjected to constraints on state variables and/or output variables. The importance of
taking constraints into account during the design stage of the controller is no more questioned.
In fact, a well-designed optimal control would fail in a real-life situation if the constraints are
not taken into account while designing the controller. However, optimal control of a process
with multiple constraints is still challenging even for a process with simple dynamics. In a
popular approach using Pontryagin’s principle or the Hamilton-Jacobi-Bellman equation for a
classical optimal control framework [1, 2], the optimal controller parameters are obtained via
numerical solution of the nonlinear constrained optimization. However, the existing numerical
methods neither guarantee a global optimal solution nor provide useful insights and physical
interpretations of the complex relationships existing between the process parameters and
control performance. To address this issue, the analytical solutions of optimal proportional-
integral (PI) controller under constraints were previously proposed using the optimization-
based approach for integrating systems [3–7] and extended to first-order systems [8–11]. This
chapter introduces the optimization-based approach for the analytical design of optimal PI
controller parameters for integrating processes without violating the operational constraints
under a unified framework.

2. Formulation of constrained optimal PI control problem

Figure 1 presents the schematic diagram of an integrating process considered in this chapter. It
is a type-C PI controller, also called I-P controller, which is a modified type of PID controller
where the set point is removed from the proportional term in order to avoid the initial quick on
the manipulated variable for a step change in the set point.

The major resulting transfer functions of this closed-loop system are expressed as

Figure 1. Block diagram of the feedback control of integrating process.

PID Control for Industrial Processes148

Y sð Þ ¼ 1
τcτI s2 þ τIsþ 1

Ysp sð Þ þ KpτcτIs
τcτIs2 þ τIsþ 1

D sð Þ (1)

U sð Þ ¼ 1
Kp

s
τcτI s2 þ τIsþ 1

Ysp sð Þ � τIsþ 1
τcτIs2 þ τIsþ 1

D sð Þ (2)

where

τc ¼ 1
KpKc

; Kp ¼ K
τ

(3)

The closed-loop damping ratio of the above system becomes

ζ ¼ 1
2

ffiffiffiffiffi
τI
τc

r
(4)

The goal of a constrained optimal problem is to minimize the weighted sum of the process
variable error, e(t), and the rate of change in the manipulated variable, u0(t), for a given step
change, ΔD=s, in disturbance (i.e., optimal regulatory control) or that, ΔYsp=s, in set point (i.e.,
optimal servo control) subjected to the following three typical operational constraints: the
maximum allowable limit in (1) the controlled variable, ymax, (2) the rate of change in the
manipulated variable, u0max, and (3) the manipulated variable, umax.

Consequently, the constrained optimal control problem is formulated as

minΦ ¼
ð∞
0

ωy y tð Þ � ysp tð Þ
� �2

þ ωu0 u0 tð Þð Þ2
� �

dt (5a)

subject to

y tð Þj j ≤ ymax (5b)

u0 tð Þj j ≤ u0max (5c)

u tð Þj j ≤umax (5d)

Through some mathematical operations, the above optimal control problem formulated in the
time domain can be transformed to the form with the two new design parameters ζ and τc as
expressed in Table 1. As shown in Table 1, the three constraints are also expressed as only a
function of ζ and τc. Then, a simple graphical examination of the contour of the objective
function and the constraints in ζ; τcð Þ space allows to find the location of global optimal
solution without complex numerical optimization process.
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3. PI controller design

3.1. Optimal regulatory control

Applying the Lagrangian multiplier [12], it converts the constrained optimization problem in
Table 1 to an equivalent unconstrained problem. In regulatory control, the constrained prob-
lem can be converted as

minL ζ; τc;ϖ; σð Þ ¼ Φr ζ; τcð Þ þ ϖ1 γh � hr ζ; τcð Þ � σ21
� �

þ ϖ2 γg � gr ζð Þτc � σ22
� �

þ ϖ3 γf � f r ζ; τcð Þ � σ23
� � (6)

where ϖi and σi are the Lagrange multiplier and the slack variable, respectively.

The necessary conditions for an optimal solution are then

∂L
∂τc

¼ ∂Φr

∂τc
þ ϖ1 � ∂hr ζ; τcð Þ

∂τc

� �
þ ϖ2 �gr ζð Þ� �þ ϖ3 � ∂f r ζ; τcð Þ

∂τc

� �
¼ 0 (7a)

∂L
∂ζ

¼ ∂Φr

∂ζ
� ϖ1

∂hr ζ; τcð Þ
∂ζ

� ϖ2τc
∂gr ζð Þ
∂ζ

� ϖ3
∂f r ζ; τcð Þ

∂ζ
¼ 0 (7b)

∂L
∂ϖ1

¼ γh � hr ζ; τcð Þ � σ21 ¼ 0;
∂L
∂ϖ2

¼ γg � τcgr ζð Þ � σ22 ¼ 0;
∂L
∂ϖ3

¼ γf � f r ζ; τcð Þ � σ23 ¼ 0 (7c)

∂L
∂σ1

¼ �2ϖ1σ1 ¼ 0;
∂L
∂σ2

¼ �2ϖ2σ2 ¼ 0;
∂L
∂σ3

¼ �2ϖ3σ3 ¼ 0 (7d)

The simultaneous solutions of Eqs. (7a)–(7d) for possible combinations of σi ¼ 0, σi 6¼ 0, ϖi ¼ 0,
and ϖi 6¼ 0 are associated with the corresponding optimal cases. Note that instead of introduc-
ing the slack variables, Karush-Kuhn-Tucker conditions [13] can also be utilized for solving the
constrained optimization problem, which finds the same optimal PI parameters by the
Lagrangian multiplier method.

Figure 2 presents seven possible cases for the location of global optima: the global optimum
can be found inside the feasible region (case A), or on the boundary of one constraint (cases B,
C, and E), or on the intersection point of two constraints (cases D, F, and G).

The global optima of the seven cases can be evaluated by inspecting their geometrical charac-
teristics in ζ; τcð Þ space as well as the corresponding conditions of the Lagrange multipliers and
slack variables as follows:

Case A ϖ1 ¼ ϖ2 ¼ ϖ3 ¼ 0ð Þ: The extreme point, ζ†; τ†c
� �

, which is located inside the feasible
region, is therefore the global optimum. Solving Eqs. (7a) and (7b) simultaneously, the global
optimum can be determined in explicit form as
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3. PI controller design

3.1. Optimal regulatory control

Applying the Lagrangian multiplier [12], it converts the constrained optimization problem in
Table 1 to an equivalent unconstrained problem. In regulatory control, the constrained prob-
lem can be converted as

minL ζ; τc;ϖ; σð Þ ¼ Φr ζ; τcð Þ þ ϖ1 γh � hr ζ; τcð Þ � σ21
� �

þ ϖ2 γg � gr ζð Þτc � σ22
� �

þ ϖ3 γf � f r ζ; τcð Þ � σ23
� � (6)

where ϖi and σi are the Lagrange multiplier and the slack variable, respectively.

The necessary conditions for an optimal solution are then

∂L
∂τc

¼ ∂Φr

∂τc
þ ϖ1 � ∂hr ζ; τcð Þ

∂τc

� �
þ ϖ2 �gr ζð Þ� �þ ϖ3 � ∂f r ζ; τcð Þ

∂τc

� �
¼ 0 (7a)

∂L
∂ζ

¼ ∂Φr

∂ζ
� ϖ1

∂hr ζ; τcð Þ
∂ζ

� ϖ2τc
∂gr ζð Þ
∂ζ

� ϖ3
∂f r ζ; τcð Þ

∂ζ
¼ 0 (7b)

∂L
∂ϖ1

¼ γh � hr ζ; τcð Þ � σ21 ¼ 0;
∂L
∂ϖ2

¼ γg � τcgr ζð Þ � σ22 ¼ 0;
∂L
∂ϖ3

¼ γf � f r ζ; τcð Þ � σ23 ¼ 0 (7c)

∂L
∂σ1

¼ �2ϖ1σ1 ¼ 0;
∂L
∂σ2

¼ �2ϖ2σ2 ¼ 0;
∂L
∂σ3

¼ �2ϖ3σ3 ¼ 0 (7d)

The simultaneous solutions of Eqs. (7a)–(7d) for possible combinations of σi ¼ 0, σi 6¼ 0, ϖi ¼ 0,
and ϖi 6¼ 0 are associated with the corresponding optimal cases. Note that instead of introduc-
ing the slack variables, Karush-Kuhn-Tucker conditions [13] can also be utilized for solving the
constrained optimization problem, which finds the same optimal PI parameters by the
Lagrangian multiplier method.

Figure 2 presents seven possible cases for the location of global optima: the global optimum
can be found inside the feasible region (case A), or on the boundary of one constraint (cases B,
C, and E), or on the intersection point of two constraints (cases D, F, and G).

The global optima of the seven cases can be evaluated by inspecting their geometrical charac-
teristics in ζ; τcð Þ space as well as the corresponding conditions of the Lagrange multipliers and
slack variables as follows:

Case A ϖ1 ¼ ϖ2 ¼ ϖ3 ¼ 0ð Þ: The extreme point, ζ†; τ†c
� �

, which is located inside the feasible
region, is therefore the global optimum. Solving Eqs. (7a) and (7b) simultaneously, the global
optimum can be determined in explicit form as
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ζ† ¼
ffiffiffi
1
2

r
(8a)

τ†c ¼
β
α

� �1=4

(8b)

Case B σ1 ¼ ϖ2 ¼ ϖ3 ¼ 0ð Þ: The global optimum, symbolized as ζ∗h; τ∗hc
� �

, is positioned on

the constraint, γh ¼ hr ζ; τcð Þ. ζ∗h and τ∗hc can be obtained by substituting σ1 ¼ ϖ2 ¼ ϖ3 ¼ 0 into
the equation of necessary conditions, thus solving the following system of equations:

γh � hr ζ; τcð Þ ¼ 0 (9a)

∂Φr

∂ζ
� ∂Φr

∂τc

∂hr
∂τc

� ��1 ∂hr
∂ζ

¼ 0 (9b)

Figure 2. Contours, constraints, and possible locations of the global optimum in regulatory control case.
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Case C ϖ1 ¼ σ2 ¼ ϖ3 ¼ 0ð Þ: The global optimum, ζ∗g; τ∗gc
� �

, is located on the constraint,
γg ¼ τcgr ζð Þ, and obtained by solving the following system of equations:

γg � gr ζð Þτc ¼ 0 (10a)

∂Φr

∂ζ
gr � τc

∂Φr

∂τc

∂gr
∂ζ

¼ 0 (10b)

Case D σ1 ¼ σ2 ¼ ϖ3 ¼ 0ð Þ: The global optimum represented by ζgh; τghc
� �

is located on the

intersection point by γh ¼ hr ζ; τcð Þ and γg ¼ τcgr ζð Þ, thus can be calculated by solving

γg � τcgr ζð Þ ¼ 0 (11a)

γh � hr ζ; τcð Þ ¼ 0 (11b)

Case E ϖ1 ¼ ϖ2 ¼ σ3 ¼ 0ð Þ: The global optimum, ζ∗f; τ∗fc
� �

, is located on the constraint,

γf ¼ f r ζ; τcð Þ, and can be found by solving

γf � f r ζ; τcð Þ ¼ 0 (12a)

∂f r
∂τc

∂Φr

∂ζ
� ∂f r

∂ζ
∂Φr

∂τc
¼ 0 (12b)

Case F ϖ1 ¼ σ2 ¼ σ3 ¼ 0ð Þ: The global optimum, ζgf; τgfc
� �

, which is on the intersection point

created by γf ¼ f r ζ; τcð Þ and γg ¼ τcgr ζð Þ, is calculated by solving

γf � f r ζ; τcð Þ ¼ 0 (13a)

γg � τcgr ζð Þ ¼ 0 (13b)

Case G σ1 ¼ ϖ2 ¼ σ3 ¼ 0ð Þ: The global optimum, ζfh; τfhc
� �

, is located on the intersection point

of the constraints γf ¼ f r ζ; τcð Þ and γh ¼ hr ζ; τcð Þ, and calculated by solving

γf � f r ζ; τcð Þ ¼ 0 (14a)

γh � hr ζ; τcð Þ ¼ 0 (14b)

After the global optimum is determined in ζ; τcð Þ space, the optimal PI parameters
corresponding to each case can then be calculated from Eqs. (3) and (4) as

Kopt
c ¼ 1

Kpτ
opt
c

; τoptI ¼ 4 ζopt
� �2

τoptc (15)

One of main advantages of the optimization-based graphical approach is that the conditions
for the seven possible cases can be directly evaluated based on a meticulous analysis of the
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Case C ϖ1 ¼ σ2 ¼ ϖ3 ¼ 0ð Þ: The global optimum, ζ∗g; τ∗gc
� �

, is located on the constraint,
γg ¼ τcgr ζð Þ, and obtained by solving the following system of equations:

γg � gr ζð Þτc ¼ 0 (10a)

∂Φr

∂ζ
gr � τc

∂Φr

∂τc

∂gr
∂ζ

¼ 0 (10b)

Case D σ1 ¼ σ2 ¼ ϖ3 ¼ 0ð Þ: The global optimum represented by ζgh; τghc
� �

is located on the

intersection point by γh ¼ hr ζ; τcð Þ and γg ¼ τcgr ζð Þ, thus can be calculated by solving

γg � τcgr ζð Þ ¼ 0 (11a)

γh � hr ζ; τcð Þ ¼ 0 (11b)

Case E ϖ1 ¼ ϖ2 ¼ σ3 ¼ 0ð Þ: The global optimum, ζ∗f; τ∗fc
� �

, is located on the constraint,

γf ¼ f r ζ; τcð Þ, and can be found by solving

γf � f r ζ; τcð Þ ¼ 0 (12a)

∂f r
∂τc

∂Φr

∂ζ
� ∂f r

∂ζ
∂Φr

∂τc
¼ 0 (12b)

Case F ϖ1 ¼ σ2 ¼ σ3 ¼ 0ð Þ: The global optimum, ζgf; τgfc
� �

, which is on the intersection point

created by γf ¼ f r ζ; τcð Þ and γg ¼ τcgr ζð Þ, is calculated by solving

γf � f r ζ; τcð Þ ¼ 0 (13a)

γg � τcgr ζð Þ ¼ 0 (13b)

Case G σ1 ¼ ϖ2 ¼ σ3 ¼ 0ð Þ: The global optimum, ζfh; τfhc
� �

, is located on the intersection point

of the constraints γf ¼ f r ζ; τcð Þ and γh ¼ hr ζ; τcð Þ, and calculated by solving

γf � f r ζ; τcð Þ ¼ 0 (14a)

γh � hr ζ; τcð Þ ¼ 0 (14b)

After the global optimum is determined in ζ; τcð Þ space, the optimal PI parameters
corresponding to each case can then be calculated from Eqs. (3) and (4) as

Kopt
c ¼ 1

Kpτ
opt
c

; τoptI ¼ 4 ζopt
� �2

τoptc (15)

One of main advantages of the optimization-based graphical approach is that the conditions
for the seven possible cases can be directly evaluated based on a meticulous analysis of the
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graphical shape of the constraints and contours in ζ; τcð Þ space. The concept of the relative
locations between the extreme point and its projections to the constraints is used mainly to
develop the conditions to discriminate each case associated with the corresponding global
optimum. Figure 3 shows an example of the projection of the extreme point and its notation

rule used in this graphical analysis for the optimal PI design. The notation, ζ†f , represents the

abscissa of the projection of the extreme point on the constraint curve by f. Similarly, τ†hc and τ†gc
indicate the ordinate of the projection of the extreme point on the constraint curves by h and g,
respectively. If τ†c is such that τ†c

h ≤ τ†c ≤ τ
†
c
g, then the global optimum is above the constraint, h,

and below the constraint, g. Referring to Figure 2, this corresponds to cases A, E, or possibly G.

In this case, it is apparent from Figure 2 that if ζ†f < ζ†, it belongs to case A (i.e., the extreme
point is the global optimum), otherwise it belongs to either case E or G. Cases E and G can be

distinguished simply by comparing τ∗fc and τfhc , where τfhc is the ordinate of the intersection of

the constraints by f and h. As seen in Figure 2, if τ∗fc > τfhc , the global optimum case belongs to
case E, otherwise case G.

Figure 3. Projection of the extreme point on the constraints in ζ; τcð Þ space.
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Using similar reasoning, the conditions to discriminate each of seven cases associated with the
global optimum can be established according to the relative locations between the extreme
point and its projections to the constraints. Table 2 lists the results for the conditions and
characteristics of the global optima.

3.2. Optimal servo control

The constrained optimization problem in Table 1 can be converted into an equivalent uncons-
trained problem by applying the Lagrangian multiplier [12] as follows:

minL τc; ζ;ϖ; σð Þ ¼ ατc 4ζ2 þ 1
� �þ β 4τ2cζ

2 þ τ2
� �

τ2τ3cζ
4 þ ϖ1 τ2cγh � hs ζð Þ � σ21

� �

þ ϖ2 γg � gs ζð Þ � σ22
� �

þ ϖ3 γf � f s ζ; τcð Þ � σ23
� �

(16)

where ϖi and σi are the Lagrange multiplier and the slack variable, respectively.

Applying the same way used in the regulatory control case, the seven optimal cases can be
found by solving the necessary conditions of the above unconstrained problem for the
corresponding combination of slack variable and Lagrange multiplier. Figure 4 illustrates the
seven possible locations of the global optimum.

After obtaining the global optimum for a particular case, the optimal parameters of the PI

controller can be calculated using Eq. (15), i.e., Kc ¼ 1=Kpτ
opt
c ; τI ¼ 4 ζopt

� �2
τoptc . Table 3 sum-

marizes the conditions that lead to each global optimal location.

4. Design and evaluation of feasible constraints

The optimal solutions in Tables 2 and 3 are only true if the constraint set is such that a solution
exists. Indeed, depending on the constraint set, the optimal solution may not have a feasible
solution. Therefore, before applying the constrained optimal control formulation, either any
given constraint set should first be screened quickly to determine its basic feasibility or a
constraint set should be designed to be feasible.

4.1. Optimal regulatory control

Conditions for a feasible ymax; u
0
max

� �
: For a given ymax, there is a minimum available u0max

value below which the optimal control problem is not feasible. Figure 5 demonstrates the
effects of the constraint specifications on the feasible region in ζ; τcð Þ space. The constraint
imposed by Eq. (5d) lies on a vertical line that shifts and bends rightward as umax decreases.
The constraint given in Eq. (5c) shifts upward as u0max decreases, whereas the constraint in
Eq. (5b) shifts downward as ymax decreases. Note that the feasible region only exists when the
constraint curve of u0max is below that of ymax.
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graphical shape of the constraints and contours in ζ; τcð Þ space. The concept of the relative
locations between the extreme point and its projections to the constraints is used mainly to
develop the conditions to discriminate each case associated with the corresponding global
optimum. Figure 3 shows an example of the projection of the extreme point and its notation

rule used in this graphical analysis for the optimal PI design. The notation, ζ†f , represents the

abscissa of the projection of the extreme point on the constraint curve by f. Similarly, τ†hc and τ†gc
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respectively. If τ†c is such that τ†c
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and below the constraint, g. Referring to Figure 2, this corresponds to cases A, E, or possibly G.

In this case, it is apparent from Figure 2 that if ζ†f < ζ†, it belongs to case A (i.e., the extreme
point is the global optimum), otherwise it belongs to either case E or G. Cases E and G can be
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the constraints by f and h. As seen in Figure 2, if τ∗fc > τfhc , the global optimum case belongs to
case E, otherwise case G.
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Using similar reasoning, the conditions to discriminate each of seven cases associated with the
global optimum can be established according to the relative locations between the extreme
point and its projections to the constraints. Table 2 lists the results for the conditions and
characteristics of the global optima.

3.2. Optimal servo control

The constrained optimization problem in Table 1 can be converted into an equivalent uncons-
trained problem by applying the Lagrangian multiplier [12] as follows:

minL τc; ζ;ϖ; σð Þ ¼ ατc 4ζ2 þ 1
� �þ β 4τ2cζ

2 þ τ2
� �

τ2τ3cζ
4 þ ϖ1 τ2cγh � hs ζð Þ � σ21

� �

þ ϖ2 γg � gs ζð Þ � σ22
� �

þ ϖ3 γf � f s ζ; τcð Þ � σ23
� �

(16)

where ϖi and σi are the Lagrange multiplier and the slack variable, respectively.

Applying the same way used in the regulatory control case, the seven optimal cases can be
found by solving the necessary conditions of the above unconstrained problem for the
corresponding combination of slack variable and Lagrange multiplier. Figure 4 illustrates the
seven possible locations of the global optimum.

After obtaining the global optimum for a particular case, the optimal parameters of the PI

controller can be calculated using Eq. (15), i.e., Kc ¼ 1=Kpτ
opt
c ; τI ¼ 4 ζopt

� �2
τoptc . Table 3 sum-

marizes the conditions that lead to each global optimal location.

4. Design and evaluation of feasible constraints

The optimal solutions in Tables 2 and 3 are only true if the constraint set is such that a solution
exists. Indeed, depending on the constraint set, the optimal solution may not have a feasible
solution. Therefore, before applying the constrained optimal control formulation, either any
given constraint set should first be screened quickly to determine its basic feasibility or a
constraint set should be designed to be feasible.

4.1. Optimal regulatory control

Conditions for a feasible ymax; u
0
max

� �
: For a given ymax, there is a minimum available u0max

value below which the optimal control problem is not feasible. Figure 5 demonstrates the
effects of the constraint specifications on the feasible region in ζ; τcð Þ space. The constraint
imposed by Eq. (5d) lies on a vertical line that shifts and bends rightward as umax decreases.
The constraint given in Eq. (5c) shifts upward as u0max decreases, whereas the constraint in
Eq. (5b) shifts downward as ymax decreases. Note that the feasible region only exists when the
constraint curve of u0max is below that of ymax.
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As indicated in Figure 5, the feasible region reduces in size as u0max and ymaxdecrease,
exhibiting continued reduction until ceasing to exist if the constraints are lower than some
minimum allowable values. Therefore, there exists a tangent point ζt; τtc

� �
in ζ; τcð Þ space,

where the two constraint curves of u0max and ymax meet at a single point; this point equates to
the smallest feasible u0max for a given ymax (or the smallest feasible ymax for a given u0max) for
different specifications of u0max and ymax.

Let u0tmax be the smallest possible value of u0max. u
0t
max can be obtained when ζ ¼ ζt. ζt can be

calculated by solving the following equation:

dhr ζ; τcð Þ
dζ

¼
dhr ζ;γggr

�1
� �

dζ
¼ 0 (17)

Figure 4. Contours, constraints, and possible locations of the global optimum in servo control case.
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As indicated in Figure 5, the feasible region reduces in size as u0max and ymaxdecrease,
exhibiting continued reduction until ceasing to exist if the constraints are lower than some
minimum allowable values. Therefore, there exists a tangent point ζt; τtc

� �
in ζ; τcð Þ space,

where the two constraint curves of u0max and ymax meet at a single point; this point equates to
the smallest feasible u0max for a given ymax (or the smallest feasible ymax for a given u0max) for
different specifications of u0max and ymax.

Let u0tmax be the smallest possible value of u0max. u
0t
max can be obtained when ζ ¼ ζt. ζt can be

calculated by solving the following equation:

dhr ζ; τcð Þ
dζ

¼
dhr ζ;γggr

�1
� �

dζ
¼ 0 (17)

Figure 4. Contours, constraints, and possible locations of the global optimum in servo control case.
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Once ζt is obtained, u0tmax can then be derived as follows:

u0tmax ¼ hr ζt
� �

ΔDj j (18)

To sum up, if u0max ≥u
0t
max, the constraint set ymax; u

0
max

� �
is feasible; otherwise, it is infeasible.

Similarly, for a given u0max, there is a minimum available ymax value below which the optimal

control problem is not feasible. Let ytmax be the smallest possible ymax. The values of y
t
max and ζt

can be obtained by solving the following system of equations simultaneously:

hr ζ;γggr
�1

� �
¼ γh (19)

dhr ζ; γggr
�1

� �

dζ
¼ 0 (20)

To sum up, if ymax ≥ y
t
max, then the constraint set ymax; u

0
max

� �
is feasible; otherwise, it is infeasible.

Figure 5. Effects of the constraint specifications ymax, umax, and u0max on the feasible region.
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Once ζt is obtained, u0tmax can then be derived as follows:

u0tmax ¼ hr ζt
� �

ΔDj j (18)

To sum up, if u0max ≥u
0t
max, the constraint set ymax; u

0
max

� �
is feasible; otherwise, it is infeasible.

Similarly, for a given u0max, there is a minimum available ymax value below which the optimal

control problem is not feasible. Let ytmax be the smallest possible ymax. The values of y
t
max and ζt

can be obtained by solving the following system of equations simultaneously:

hr ζ;γggr
�1

� �
¼ γh (19)

dhr ζ; γggr
�1

� �

dζ
¼ 0 (20)

To sum up, if ymax ≥ y
t
max, then the constraint set ymax; u

0
max

� �
is feasible; otherwise, it is infeasible.

Figure 5. Effects of the constraint specifications ymax, umax, and u0max on the feasible region.
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Feasible umax for a given feasible set ymax; u
0
max

� �
: For a feasible ymax; u

0
max

� �
, it can be intui-

tively inferred from the geometrical analysis of the constraint curves that any positive
umax ≥ ΔDj j will result in a feasible region if there is no intersection between the constraint

curves of τcgr ζð Þ ¼ γg and hr ζ; τcð Þ ¼ γh. Furthermore, if the intersection, ζgh, exists, the con-

straint, umax, is feasible if ζgh ≥ ζgf . To evaluate the existence of an intersection between the two
constraint curves τcgr ζð Þ ¼ γg and hr ζ; τcð Þ ¼ γh, it is important to calculate τc ∞ð Þ, the value of
τc where the two constraint curves are secant when ζ ! ∞. τc ∞ð Þ of each constraint curve can
be obtained by solving the following equations:

τc ∞ð Þgr ζð Þ ¼ γg

h i
ζ!∞

(21a)

hr ζ; τc ∞ð Þð Þ ¼ γh

� �
ζ!∞ (21b)

Because lim
ζ!∞

gr ζð Þ ¼ 1 and lim
ζ!∞

hr ζ; τcð Þ ¼ 1=τc ¼ γh, τc ∞ð Þ of the two constraint curves are as

follows:

τgc ∞ð Þ ¼ γg (22a)

τhc ∞ð Þ ¼ 1
γh

(22b)

A vertex ζgh exists when τgc ∞ð Þ ≥ τhc ∞ð Þ. Therefore,

γg ≥
1
γh

(23)

which yields

ymax

KpΔD

����
����
u0max

ΔD

����
���� ≥ 1 (24)

Overall, for a given feasible ymax; u
0
max

� �
, umax is feasible under either of the following condi-

tions: (1) Eq. (24) is not satisfied or (2) Eq. (24) is satisfied and ζgh ≥ ζgf . Otherwise, umax is not
feasible and should be increased until one of the conditions is satisfied. Note that if
ymax
KpΔD

���
��� u0max

ΔD

���
��� < 1, no vertex point is formed by γg ¼ τcgr ζð Þ and γh ¼ hr ζ; τcð Þ, i.e., case D does

not exist. In such a situation, for the purpose of evaluating the conditions presented in Table 2,

any extremely large value can be assigned to ζgh.

Figure 6 illustrates a procedure applied to design a feasible constraint set ymax; u
0
max; umax

� �
and test its feasibility.

4.2. Optimal servo control

It is clear from their approaching values of y tð Þ, u tð Þ, u0 tð Þ as t ! ∞ that for the constraints by
ymax and umax to be feasible, they must be greater than ΔYsp

�� �� and ΔYsp=K
�� ��, respectively,

whereas the constraint by u0max can be set to any nonnegative value. Figure 7 illustrates how
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Figure 6. Procedure to design and test a feasible constraint set for optimal regulatory PI control of integrating system.

Figure 7. Effects of the constraint specifications ymax, umax, and u0max on the feasible region.
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the three constraint specifications affect the feasible region. The constraint γg ≥ gs ζð Þ vertically
splits the region into two, while the constraints imposed by τ2cγh ≥ hs ζð Þ and γf ≥ f s ζ; τcð Þ have a
similar shape in ζ; τcð Þ space. It shows that for any feasible constraint set ymax; u

0
max; umax

� �
, the

feasible region is bounded below but unbounded in the upper side. This means that a decrease
in ymax, umax and u0max will narrow down the feasible region delimited by the three constraints,
but the feasible region will always exist. Moreover, the shape of the three constraints indicates
the feasible region is always convex.

5. Closed-loop performance

5.1. Optimal regulatory control

Consider the following integrating process as

Gp sð Þ ¼ 1
s

(25)

Table 4 presents the examples of the seven possible aforementioned cases, as based on various
constraint specifications. Simulations are carried out for weighting factors ωy ¼ ωu0 ¼ 0:5.

Figure 8 presents the resulting process variable, y tð Þ, controller output, u tð Þ, and its rate of
change, u0 tð Þ, for the seven examples. As can be seen from the figure, the PI controller designed
by the proposed method not only yields optimal control performance, but also strictly satisfies
the respective ymax, umax, and u0max constraint requirements.

5.2. Optimal servo control

Consider the following integrating process

Example Case Constraint specification PI parameter

ymax umax u0max KC τI

1 A 0.70 2.70 2.70 1.41 1.41

2 B 0.70 2.70 1.11 1.10 1.10

3 C 0.36 2.70 2.70 1.93 1.51

4 D 0.285 2.70 2.10 2.10 0.69

5 E 0.70 1.105 2.70 1.96 2.95

6 F 0.30 1.20 2.70 2.18 0.98

7 G 0.70 1.20 1.37 1.37 1.56

Table 4. Constraint requirements and corresponding optimal PI parameters for regulatory control example.
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Gp sð Þ ¼ 10
s

(26)

Table 5 lists the examples of the seven possible cases based on various constraint specifica-
tions. Simulations are carried out for weighting factors, ωy ¼ ωu0 ¼ 0:5. Figure 9 presents the
time responses by the proposed optimal PI controller for the seven examples. As seen in the
responses, the resulting optimal PI controllers not only provide the stable and optimal closed-
loop responses, but also satisfy the ymax, umax, and u0max requirements, strictly.

Figure 8. Time responses of the system for cases A to G: regulatory system.
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Example Case Constraint specification PI parameter

ymax umax u0max KC τI

1 A 1.2 0.5 1.5 1.41 1.414

2 B 1.2 0.5 0.5 0.79 1.58

3 C 1.03 0.5 1.5 1.52 1.46

4 D 1.03 0.5 1.03 1.51 1.47

5 E 1.2 0.3 1.5 1.53 2.42

6 F 1.03 0.41 1.5 1.38 1.61

7 G 1.2 0.4 1.17 2.15 1.83

Table 5. Constraint requirements and corresponding optimal PI parameters for servo control example.

Figure 9. Time responses of the system for cases A to G: servo system.
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6. Conclusions

A novel analytical design approach is introduced for optimal regulatory and servo PI control
subjected to operational constraints and examined to integrating processes. Owing to incisive
parameterization, a complex constrained optimal control problem can be reformulated and
converted to a simple algebraic form in the new design parameter ζ; τcð Þ space, which allows
finding the conditions and locations for the global optima by graphical analysis without
having to rely on the numerical or black-box optimization effort. The proposed closed-form
solution of the constrained optimal controller establishes a direct relationship between the
control and plant parameters by which the optimal PI parameters can be obtained in an easy
and quick manner. This approach also provides the following useful insights into how the
control parameters affect the plant and how a feasible constraint set can be designed and
checked in the constrained optimal control.
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Abstract

This chapter presents the design and implementation of a decoupling control strategy for
an experimental platform and pilot plant, dedicated to the study of the fouling phenom-
ena which occur in industrial tubes. Initially, a set of tests was done for the identification
and validation of FOPDT models suitable to the four processes of the multivariable
system: flow-voltage, flow-current, pressure-voltage, and pressure-current. After, the
interaction between the inputs and outputs of the system was analyzed by the RGA and
RNGA matrices. The static decoupling and decentralized PID controllers tuned by the
Ziegler-Nichols and IMC methods were designed. Then, the set point tracking response
was simulated and implemented using MATLAB and LabVIEW software, respectively.
Finally, the concept of soft sensor was applied to monitor the output variables of the
experimental platform, for a better performance of the decoupling control.

Keywords: multivariable system, FOPDT process, PID control, decoupling, soft sensor

1. Introduction

Automatic control arose from the need to improve performance of the systems, in search of
better products at lower costs, and has made great advances in engineering, becoming of great
importance in industrial processes. The increase in the complexity of the systems and the high
level of automation present in the most diverse areas of the productive sectors has indicated
the need to develop more precise and robust models, in order to make processes more reliable
and to reduce the operating costs [1].
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Abstract

This chapter presents the design and implementation of a decoupling control strategy for
an experimental platform and pilot plant, dedicated to the study of the fouling phenom-
ena which occur in industrial tubes. Initially, a set of tests was done for the identification
and validation of FOPDT models suitable to the four processes of the multivariable
system: flow-voltage, flow-current, pressure-voltage, and pressure-current. After, the
interaction between the inputs and outputs of the system was analyzed by the RGA and
RNGA matrices. The static decoupling and decentralized PID controllers tuned by the
Ziegler-Nichols and IMC methods were designed. Then, the set point tracking response
was simulated and implemented using MATLAB and LabVIEW software, respectively.
Finally, the concept of soft sensor was applied to monitor the output variables of the
experimental platform, for a better performance of the decoupling control.
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better products at lower costs, and has made great advances in engineering, becoming of great
importance in industrial processes. The increase in the complexity of the systems and the high
level of automation present in the most diverse areas of the productive sectors has indicated
the need to develop more precise and robust models, in order to make processes more reliable
and to reduce the operating costs [1].
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In general, industrial processes have a multivariable nature, with multiple inputs and outputs,
which configure multi-input multi-output (MIMO) systems. If these processes have two inputs
and two outputs, then they can be referred to as two-input two-output (TITO) systems.
Besides, many MIMO systems are treated as several TITO subsystems in practice [2].

Multivariable systems are more difficult to control due to interactions between input and
output variables on each control loop. Thus, many problems associated with multivariable
control are solved by means of the application of decentralized control theory. In this type of
control, design techniques for single-input single-output (SISO) control systems are used in the
pairing of manipulated variables (i.e., plant input signals on control) and process variables
(i.e., output signals of the plant on control) [3, 4].

When the interactions between the control loops are not so significant, a diagonal controller
(decentralized control) may be sufficient to guarantee control of the system. However, if the
interactions are more significant, a complete matrix controller (centralized control) is more
appropriate. One of the strategies for implementing centralized control is the use of
decoupling devices together with a decentralized controller. Furthermore, the decoupling in a
MIMO control system also allows the application of SISO control techniques, such as the
proportional-integral-derivative (PID) controller tuning methods [5, 6].

The main advantage of PID control in industry can be attributed by the simplicity and ease of
implementation for robustness over a wide range of operating conditions. The PID structure
has three elements: a proportional term to close the feedback loop, an integral term to assure
zero error to constant reference and disturbance inputs, and a derivative term to improve or
realize the stability and good dynamic response. The preference for using the time constants of
this controller in the industry refers to the physical meaning given to the operator on the
system behavior to be controlled [7].

The task of a control system is to ensure the stability of the process, to minimize the influence
of disturbances, and to optimize the overall performance. Thus, the industrial processes are
instrumented with a large number of sensors. The purpose of sensors is to acquire data of the
system. Currently, soft sensors have been used in industries to make physical systems meet
the specifications of performance previously established with success, such as reconstructing
the missing measurements during the operating of process and assisting in monitoring,
control, and optimization of plant [8].

The soft sensors can be considered as the result of the intersection of the techniques of system
modeling and identification and the intelligent instrument technology, instruments that, com-
bined with digital systems like microprocessors or microcontrollers, modify their behavior,
manipulating computationally the information to adapt to the collection and manipulation of
the process data and transmitting them in the best possible way. The term “soft sensor” is a
combination of the words “software” and “sensors,” because the models are usually a set of
software routines and represent similar measurements of the real sensors [9].

Specific modeling techniques for soft sensors using artificial neural networks (ANNs) consti-
tute an interesting development to be searched. This study has led to the interest in the
development of soft sensors, using a computer program; the variables are estimated from the
information collected by other measurements, without the industrial process being paralyzed.
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In this context, the aim of this chapter is the design and implementation of a decoupling control
strategy for an experimental platform dedicated to study the fouling phenomena. Besides, the
concept of soft sensor allied to neural networks is applied to start the output variable monitoring
of the platform, for a better performance of the decoupling control.

This chapter is structured as follows. Section 2 presents the basic concepts of MIMO control
system using decoupling. Section 3 describes the experimental platform under study. Section 4
presents the methodology used for modeling and control of the system. Section 5 discusses the
results obtained. Section 6 presents the special topic on an application of soft sensor for the
closed-loop control. Section 7 summarizes a conclusion about the implementation.

2. Fundamentals of multivariable control systems

Multivariable systems, also called MIMO systems, are systems that have more than one input
variable and more than one output variable. The main difference between a SISO system and a
MIMO system is the presence of combinations (or directions) in the system.

The combinations are present in vectors and matrices, which compose the MIMO systems, but
are not in scalars, that characterize the SISO systems, as observed in Figure 1. However, ideas
and techniques applied to SISO systems can be extended to multivariable systems [10].

Consider a multivariable system with m inputs u tð Þ and n outputs y tð Þ in the time domain.
The matrix representation of the system in the Laplace s domain is given according to
Eq. (1):

Y sð Þ ¼ Gp sð ÞU sð Þ)

Y1 sð Þ
Y2 sð Þ
⋮

Yn sð Þ

2
6664

3
7775¼

Gp11 sð Þ Gp12 sð Þ ⋯ Gp1m sð Þ
Gp21 sð Þ Gp22 sð Þ ⋯ Gp2m sð Þ

⋮ ⋮ ⋱ ⋮
Gpn1 sð Þ Gpn2 sð Þ ⋯ Gpnm sð Þ

2
6664

3
7775∙

U1 sð Þ
U2 sð Þ
⋮

Um sð Þ

2
6664

3
7775 (1)

where Y sð Þ is the output vector representing a set of process variables Y1 sð Þ, Y2 sð Þ, …, Yn sð Þ,
with order n� 1; U sð Þ is the input vector representing a set of manipulated variables U1 sð Þ,
U2 sð Þ, …, Um sð Þ, with order m� 1; and Gp sð Þ is the transfer function matrix of the plant, with
order n�m.

Figure 1. Block diagrams for (a) SISO and (b) MIMO systems. Source: Own author (2018).
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In the multivariable system, if one of the inputs is modified and this affects the other outputs,
then there is an interaction between the inputs and the outputs of the system. The interaction
determines the level of coupling of the multivariable system, which can be:

• Poorly coupled or uncoupled, when u1 only affects y1, u2 only affects y2, and so on.

• Strongly coupled, when the change in ui, with i ¼ 1, …, m, affects all outputs of the system,
i.e., y1, y2, …, yn. If the effect of the manipulated variable is greater than the others in the
plant, then the coupling has dominance in the system [11].

Thus, a multivariable control system can be treated as a control system that involves several
manipulated and process variables to reduce the interferences caused by the interaction
between the control loops. A feedback control loop for a MIMO system is observed in Figure 2,
where e tð Þ is the error between the output y tð Þ and the reference yr tð Þ.
When the elements outside the diagonal of the plant matrix are elevated, one type of MIMO
control strategy denominated as decoupling control has the ability to removing the interactions
between two or more variables. For example, the decoupling configuration of a TITO systemwith

decentralized control is observed in Figure 3. The process variable Y sð Þ ¼ Y1 sð Þ Y2 sð Þ½ �T tracks

the set point Yr sð Þ ¼ Yr1 sð Þ Yr2 sð Þ½ �T by means of the control strategies implemented in the
decentralized controller matrix Gc sð Þ. Furthermore, this matrix produces the manipulated vari-

able U sð Þ ¼ U1 sð Þ U2 sð Þ½ �T to actuate in the plant matrix Gp sð Þ.

Figure 2. General structure of a feedback control loop for a MIMO system. Source: Own author (2018).

Figure 3. The decoupling configuration of a TITO system. Source: Own author (2018).
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For a TITO system, the plant matrix Gp sð Þ can be expressed by Eq. (2):

Gp sð Þ¼ Gp11 sð Þ Gp12 sð Þ
Gp21 sð Þ Gp22 sð Þ

" #
¼

Y1 sð Þ
U1 sð Þ

Y1 sð Þ
U2 sð Þ

Y2 sð Þ
U1 sð Þ

Y2 sð Þ
U2 sð Þ

2
664

3
775 (2)

where Gpij sð Þ, with i, j ranging from 1 to 2, is the transfer function of each SISO process in the

Laplace domain, resulting from possible input-output combinations in a TITO system.

Since the decentralized controller matrix Gc sð Þ has order compatible with the plant matrix
Gp sð Þ, then it can be expressed according to Eq. (3):

Gc sð Þ¼ Gc1 sð Þ 0
0 Gc2 sð Þ

� �
(3)

where Gci sð Þ, with i varying from 1 to 2, is the transfer function of the implemented controller
in the decentralized control structure in the Laplace domain.

If the interaction between the inputs and outputs was poorly coupled, then the output C sð Þ of
the decentralized controller equals the manipulated variable U sð Þ. Otherwise, if necessary to
apply the decoupling on the system, then the controller output and the plant input are distinct
by means of the design of the decoupling matrix D sð Þ, as represented in Eq. (4):

U sð Þ¼D sð ÞC sð Þ) U1 sð Þ
U2 sð Þ

� �
¼ D11 sð Þ D12 sð Þ

D21 sð Þ D22 sð Þ

� �
∙
C1 sð Þ
C2 sð Þ

� �
(4)

When replacing Eq. (4) in Eq. (1), considering this matrix with compatible order to the TITO
system, the resulting matrix T sð Þ is obtained with the decoupling, as represented in Eq. (5):

Y sð Þ¼Gp sð ÞU sð Þ ¼ Gp sð ÞD sð ÞC sð Þ)Y sð Þ¼T sð ÞC sð Þ (5)

In this case, the resulting matrix becomes diagonal and represents the desired dynamic for the
decoupled TITO system [12], according to Eq. (6):

T sð Þ¼Gp sð ÞD sð Þ) T11 sð Þ 0
0 T22 sð Þ

� �
¼ Gp11 sð Þ Gp12 sð Þ

Gp21 sð Þ Gp22 sð Þ

" #
∙
D11 sð Þ D12 sð Þ
D21 sð Þ D22 sð Þ

� �
(6)

Therefore, the product of the inverse of plant matrix with the resulting matrix obtains the
decoupling matrix, according to Eq. (7):

D sð Þ¼Gp sð Þ�1T sð Þ ¼ 1
Gp11 sð ÞGp22 sð Þ � Gp12 sð ÞGp21 sð Þ ∙

Gp22 sð ÞT11 sð Þ �Gp12 sð ÞT22 sð Þ
�Gp21 sð ÞT11 sð Þ Gp11 sð ÞT22 sð Þ

" #
(7)

For a simulation example on MIMO system, consider a Luyben and Vinnate distillation
column model, cited in [13], with diagonal pairing (y1 � u1 /y2 � u2), is given by Eq. (8).
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Gp sð Þ¼
�2:16
8sþ 1

e�s 1:26
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e�0:3s

�2:75
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e�1:8s 4:28
9:2sþ 1

e�0:35s

2
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3
775 (8)

The static decoupling matrix D sð Þ is given by Eq. (9):

D j0ð Þ ¼ 1 0:5833
0:6425 1

� �
(9)

The set point tracking response of the control loops simulated by means of MATLAB software
is shown in Figure 4, using the PI controllers tuned by Internal Model Control (IMC) method
(better explained in Section 4), according to Table 1.

After the basic concepts of a multivariable control system, the description of the plant under
test and the formulation of the control problem are shown in Section 3.

Figure 4. The simulation of set-point tracking response: (a) the flow and (b) pressure control loops with static decoupling
– ZN and IMC methods. Source: Own author (2018).

Tuning method Process Controller KPin
Tlin

IMC 11 Gc1(s) �3.9352 8.5000

22 Gc2(s) 6.2583 9.3750

Source: Own author (2018).

Table 1. PID controllers obtained with IMC tuning method.
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3. Experimental platform

To study the process of fouling formation in industrial tubes, an experimental platform was
built in the Laboratory of Electronic Instrumentation and Control (LIEC) of the Electrical
Engineering Department at Federal University of Campina Grande, Brazil.

The experimental platform shown in Figure 5 is characterized as a distributed monitoring of
fluid transport system with galvanized iron tubes of different diameters (100, 1 1/200, 200). The 200

tubes are assumed as the main tube, and the other tubes are used for generation of distur-
bances in the system.

For the monitoring and control of the phenomena in study, three flow sensors and three
pressure sensors were chosen, which were fixed in each type of tube and one temperature
sensor which was submerged in the fluid (in this case, the water) stored in a 100 liter tank.
Besides, on the experimental platform, there is one control valve with electric actuator and two
manual valves for outflow control, even as one frequency inverter used for the rotate velocity
control of the water pump.

Furthermore, there is one programmable logic controller (PLC) responsible by the integra-
tion between sensors, actuators, and computer on the experimental platform. The sensors
communicate with the PLC via 4–20 mA standard, and the actuators communicate with
controller using the 4–20 mA or 0–10 V standard.

To determine the control structure for the experimental platform considering as a TITO system,
the following definitions were done [14]:

• The U1 sð Þ and U2 sð Þ represent the voltage signal V sð Þ and the current signal I sð Þ applied
on the actuators of the experimental platform, i.e., the frequency inverter and the control
valve.
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The static decoupling matrix D sð Þ is given by Eq. (9):

D j0ð Þ ¼ 1 0:5833
0:6425 1

� �
(9)

The set point tracking response of the control loops simulated by means of MATLAB software
is shown in Figure 4, using the PI controllers tuned by Internal Model Control (IMC) method
(better explained in Section 4), according to Table 1.

After the basic concepts of a multivariable control system, the description of the plant under
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Figure 4. The simulation of set-point tracking response: (a) the flow and (b) pressure control loops with static decoupling
– ZN and IMC methods. Source: Own author (2018).

Tuning method Process Controller KPin
Tlin
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Source: Own author (2018).

Table 1. PID controllers obtained with IMC tuning method.
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• The Y1 sð Þ and Y2 sð Þ represent the flow measure Q sð Þ and the pressure measure P sð Þ
monitored by means of the flow and pressure sensors in the main tube.

• The Yr1 sð Þ and Yr2 sð Þ represent the reference flow Qr sð Þ and the reference pressure Pr sð Þ
which will be adopted for operating in the main tube.

In the implementation of the control structure proposed for the experimental platform, it is
necessary that:

• The plant operates in the percentage range of the reference values, in order to minimize
the unplanned interventions resulting from the fouling phenomena.

• The conditions of the multivariable control system do not exceed the operating limits of
the plant, such as the measurements made by the flow sensors and pressure and the
actuations performed by the frequency inverter and control valve within the full-scale
range of these transducers.

The methodology adopted for the development of a decoupling control on the experimental
platform is discussed in Section 4.

4. System modeling, interaction analysis, and control design

The plant matrix Gp sð Þ in the experimental platform is composed of four processes: Gp11 sð Þ
representing the flow-voltage process, Gp12 sð Þ representing the flow-current process, Gp21 sð Þ
representing the pressure-voltage process, and Gp22 sð Þ representing the pressure-current pro-
cess. In this work, each transfer function Gpij sð Þ is assumed as a first-order plus dead time

(FOPDT) process, according to Eq. (10):

Gpij sð Þ ¼ Kije�Lijs

τijsþ 1
(10)

where Kij is the gain of the process [dimensionless], Lij is the dead time [s], and τij is the time
constant of FOPDT process [s].

For the identification of the models experimentally, the behavior of the output signals is
observed by means of the application of known input signals in each process. In practice,
consecutive tests are done on the system, and the input and output data are stored. Then,
these data are processed in a specific software to adjust the experimental curves obtained to the
known theoretical models. At last, the model obtained is valid for each process.

Thus, these tests were executed in the four processes of the system. All FOPDT process models
were obtained individually from the experiments based on the critical point of the plant, which
consists in the application of consecutive switches in the manipulated variable in a determined
time interval, taking into account the dynamics of the system. At the end of the switches, the
application of a pulse was executed. Subsequently, the parameters of each FOPDT process
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model were estimated and validated by means of a software developed in C#, better described
in Barros et al. [15], in which the frequency response method was used as the identification
method and Theil coefficient as validation method.

The standard coefficient U, proposed by Theil [16], can be interpreted as the division of the
root mean square error (RMSE) of the proposed prediction for the variable, by the RMSE value
of the original variable, as expressed by Eq. (11):

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1

by tð Þ � y tð Þð Þ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1
by2

s
tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1

y2 tð Þ
s (11)

where by tð Þ is the predicted (estimated) value, y tð Þ is the observed (measured) value, and N is
the number of measurements.

If U equals 1, it means that the proposed model is as good as the real system. If U is greater
than 1, the predicted model should be discarded. Thus, the coefficient U should only be
considered when it is greater than 0 and less than 1, indicating a greater accuracy of the
obtained model. When U is closer to 0, the prediction should be improved [17].

To determine the best loop pairing in the control structure, the Relative Gain Array (RGA) and
Relative Normalized Gain Array (RNGA) matrices were calculated, as proposed by Bristol [18]
and He et al. [19], respectively. The RGA matrix only requires information on the steady-state
system to measure the process interactions and thus to recommend on the most efficient parity.
In this way, the elements of RGA matrix are dependent on the steady-state system gains,
according to Eq. (12):

Λ ¼ K⨂K�T (12)

where K¼Gp j0ð Þ, with Kij ¼ Gpij j0ð Þ being the steady-state gain, and ⊗ denotes element-by-

element multiplication.

For a TITO system, the corresponding RGA matrix can be calculated from Eq. (13):

Λ ¼ λ11 λ12

λ21 λ22

� �
¼ λ11 1� λ11

1� λ11 λ11

� �
(13)

where λ11 ¼ 1
1�κ , with κ ¼ K21K12

K11K22
being the interaction coefficient.

The correct interpretation of the elements of the RGAmatrix allows quantifying the interaction
measure involved in all the possible control configurations of a N �N system. Thus, it is
recommended to choose the control configuration that has the least interaction as follows:

i. Choose the control configuration with the diagonal or off-diagonal elements λij as close to 1.

ii. If possible, avoid to choose a control configuration where λij > > 1.
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iii. Settings with λij < 0 are totally undesirable, because the negative values indicate the
possibility of a closed-loop unstable.

In order to overcome the deficiency of the RGAmethod of not including the dynamic behavior,
the RNGA matrix was used. In this matrix, steady-state behavior can be easily characterized
by the matrix K, whereas dynamic behavior can be obtained by the response time of the
process variable relative to the manipulated variable.

Thus, the RNGA matrix is defined in Eq. (14), and it depends of the normalized gain matrix
KN, which considers both characteristics mentioned above. Similar to RGA matrix, the best
loop pairing is chosen when the diagonal or off-diagonal elements ϕij are close to 1:

Φ ¼ KN⨂K�T
N (14)

where KN¼Gp j0ð Þ ⊙ Tar, with kNij ¼
Gpij j0ð Þ
τarij

being the normalized gain, where Gpij j0ð Þ is the

steady-state gain and τarij is the mean residence time, which is an indicator of the speed of the
response of yi given the action of uj, and ⊙ being the element-by-element division.

Once loop pairing has been defined, the decoupling matrixD sð Þwas calculated using the static
decoupling. This type of decoupling allows the resulting matrix T sð Þ to be diagonal at steady
state, i.e., only s ¼ j0. In the case of a TITO system, the static decoupled matrix can be given
according to Eq. (15):

D j0ð Þ¼
1 �Gp12 j0ð Þ

Gp11 j0ð Þ

�Gp21 j0ð Þ
Gp22 j0ð Þ 1

2
6664

3
7775¼

1 �K12

K11

�K21

K22
1

2
664

3
775 (15)

For closing the control loop proposed, the elements of decentralized controller matrix Gc sð Þ
were obtained by means of the PID theory, which combines proportional, integral, and deriv-
ative actions to control each process, as expressed by Eq. (16):

Gci sð Þ ¼ KPi 1þ 1
TIi s

þ TDi s
� �

(16)

where KPi is the proportional gain [dimensionless], TIi is integral time constant [s], and TDi is
the derivative time constant [s].

To calculate the parameters for each decentralized controller Gci sð Þ, the PID tuning methods
were applied on the control structure proposed. The tuning method proposed by Ziegler and
Nichols [20] determines that the controller parameters are obtained from the time response of
the process to be controlled. Thus, for a FOPDT process model, the PID controller parameters
can be calculated with the Ziegler-Nichols (ZN) method according to Table 2.

Other PID tuning methods originally proposed by Garcia and Morari [21] consider the process
model as an integral part of the controller. The central idea of the Internal Model Control (IMC)
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method is that the controller can be obtained only if the control system incorporates, explicitly
or implicitly, some representation of the process to be controlled.

For a FOPDT process model, this method considers that the dead time process can be approx-
imated using the first-order Padé approximation. Besides, the general form of the PID controller
tuned by the IMC method has a low pass filter with a filtering component τc, which is used
precisely to decrease the sensitivity to modeling errors [22]. The calculation of PID controller
parameters can be calculated according to Table 3.

At last, to evaluate the output control performance, the Integral Absolute Error (IAE) and
Integral Squared Error (ISE) metrics were used as quantitative performance measures, according
to Eqs. (17) and (18), respectively:

IAE ¼
ðT
0

e tð Þj jdt (17)

ISE ¼
ðT
0
e2 tð Þdt (18)

where T = ts, which is the settling time of the system.

With all the necessary parameters obtained, the decoupling control was simulated in the
MATLAB software and implemented using a Human Machine Interface (HMI) developed in
the LabVIEW software. For the system test, 20 liters per minute (LPM) was used as flow set
point and 40 mBar as pressure set point, according to the turbulent flow regime of the
experimental platform proposed in Melo et al. [23].

The results obtained on the development of the decoupling control are shown in Section 5.

Controller Parameters

Gci sð Þ KPi TIi TDi

PID 1:2τij
KijLij

2Lij Lij
2

Source: Own author (2018).

Table 2. PID tuning by the ZN method.

Controller Parameters

Gci sð Þ KPi TIi TDi

PID 2τijþLij
Kij τcþLijð Þ τij þ Lij

2
τijLij

2τijþLij

Source: Own author (2018).

Table 3. PID tuning by the IMC method.
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5. Results and discussion

The actual response curve of the flow-voltage process is shown in Figure 6a, while the
comparative of the responses curve between the identified mathematical model and the exper-
imental model of the process is shown in Figure 6b. Similar results were obtained for other
processes of the plant matrix, thus validating the mathematical models identified. Besides, the
input and output signals in this figure are represented as words on a decimal basis of the
analog-to-digital converter (ADC) on the PLC, which can be converted in the measuring units
by means of the equivalence relations in the HMI.

The obtained models were approximated by FOPDT process model with sufficient dead time
to reliably model the system in question. Among the models obtained using the software
developed in C#, the best models that were chosen according to the Theil coefficient criterion
are shown in Table 4.

From these models, the best loop pairing present in the system was defined according to the
RGA and RNGA matrices obtained, as expressed in Eqs. (19) and (20), respectively:

Λ ¼ �1:9116 2:9116
2:9116 �1:9116

� �
(19)

Φ ¼ �4:1699 5:1699
5:1699 �4:1699

� �
(20)

Based on the elements of both matrices, it can be observed that the loop pairing suggested to
control the TITO system in study is the off-diagonal pairing, i.e., y1 � u2 /y2 � u1. Therefore,
the flow variable must be controlled by the current signal, applied to the control valve, while
the pressure variable must be controlled by voltage applied to the frequency inverter.

After the choice of the best loop pairing for the control loops, the static decoupling matrix was
calculated, as expressed in Eq. (21). The objective of the decoupling is to make the decentralized
controllers operate on two independent processes in control loops: pressure-voltage and flow-
current. Therefore, to ensure the correctness of operating the decoupling control, the processes
associated to both control loops were reallocated for diagonal elements of the plant matrix:

D j0ð Þ¼ 1 �0:7276
�0:9023 1

� �
(21)

Besides, the decentralized controllers were designed for the selected control loops. The con-
troller parameters obtained by tuning methods described are shown in Table 5. For the
calculation of the filtering component τc in the IMC method, this work proceeded according
to Skogestad [24].

The set point tracking response of the flow and pressure control loops simulated by means of
MATLAB software is shown in Figure 7, using the PID controllers tuned by the Ziegler-
Nichols and IMC methods with static decoupling. In this case, the choice of τc leads to
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aggressive control action, principally to compensate the sluggish dynamic of the flow-current
process.

In order to compare the output control performance of both PID tuning methods, the ISE and
IAE metrics were used. The values obtained for these metrics are shown in Table 6. According
to these performance metrics, it was verified that the strategy of control with the lowest values
was the IMC controller for both control loops used.

The set point tracking response of the flow and pressure control loops on the experimental
platform, supervised by the HMI developed in LabVIEW software, is shown in Figure 8, using
the PID controllers tuned by the ZN and IMC methods with static decoupling.

Process Transfer function U

Flow-voltage Gp11 sð Þ ¼ 0:8622
9:9680sþ1 e

�8:2500s 0.0448

Pressure-voltage Gp21 sð Þ ¼ 0:0469
5:2040sþ1 e

�10:0100s 0.1119

Flow-current Gp12 sð Þ ¼ 1:1850
18:7900sþ1 e

�6:0840s 0.0660

Pressure-current Gp22 sð Þ ¼ 0:0423
10:8200sþ1 e

�6:0840s 0.0796

Source: Own author (2018).

Table 4. FOPDT process models obtained experimentally.

Figure 6. System modeling: (a) the response curve of the flow-voltage process and (b) the response curve of the identified
model and the experimental model. Source: Own author (2018).

Decoupling Control and Soft Sensor Design for an Experimental Platform
http://dx.doi.org/10.5772/intechopen.75708

179



5. Results and discussion

The actual response curve of the flow-voltage process is shown in Figure 6a, while the
comparative of the responses curve between the identified mathematical model and the exper-
imental model of the process is shown in Figure 6b. Similar results were obtained for other
processes of the plant matrix, thus validating the mathematical models identified. Besides, the
input and output signals in this figure are represented as words on a decimal basis of the
analog-to-digital converter (ADC) on the PLC, which can be converted in the measuring units
by means of the equivalence relations in the HMI.

The obtained models were approximated by FOPDT process model with sufficient dead time
to reliably model the system in question. Among the models obtained using the software
developed in C#, the best models that were chosen according to the Theil coefficient criterion
are shown in Table 4.

From these models, the best loop pairing present in the system was defined according to the
RGA and RNGA matrices obtained, as expressed in Eqs. (19) and (20), respectively:

Λ ¼ �1:9116 2:9116
2:9116 �1:9116

� �
(19)

Φ ¼ �4:1699 5:1699
5:1699 �4:1699

� �
(20)

Based on the elements of both matrices, it can be observed that the loop pairing suggested to
control the TITO system in study is the off-diagonal pairing, i.e., y1 � u2 /y2 � u1. Therefore,
the flow variable must be controlled by the current signal, applied to the control valve, while
the pressure variable must be controlled by voltage applied to the frequency inverter.

After the choice of the best loop pairing for the control loops, the static decoupling matrix was
calculated, as expressed in Eq. (21). The objective of the decoupling is to make the decentralized
controllers operate on two independent processes in control loops: pressure-voltage and flow-
current. Therefore, to ensure the correctness of operating the decoupling control, the processes
associated to both control loops were reallocated for diagonal elements of the plant matrix:

D j0ð Þ¼ 1 �0:7276
�0:9023 1

� �
(21)

Besides, the decentralized controllers were designed for the selected control loops. The con-
troller parameters obtained by tuning methods described are shown in Table 5. For the
calculation of the filtering component τc in the IMC method, this work proceeded according
to Skogestad [24].

The set point tracking response of the flow and pressure control loops simulated by means of
MATLAB software is shown in Figure 7, using the PID controllers tuned by the Ziegler-
Nichols and IMC methods with static decoupling. In this case, the choice of τc leads to
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aggressive control action, principally to compensate the sluggish dynamic of the flow-current
process.

In order to compare the output control performance of both PID tuning methods, the ISE and
IAE metrics were used. The values obtained for these metrics are shown in Table 6. According
to these performance metrics, it was verified that the strategy of control with the lowest values
was the IMC controller for both control loops used.

The set point tracking response of the flow and pressure control loops on the experimental
platform, supervised by the HMI developed in LabVIEW software, is shown in Figure 8, using
the PID controllers tuned by the ZN and IMC methods with static decoupling.

Process Transfer function U

Flow-voltage Gp11 sð Þ ¼ 0:8622
9:9680sþ1 e

�8:2500s 0.0448

Pressure-voltage Gp21 sð Þ ¼ 0:0469
5:2040sþ1 e

�10:0100s 0.1119

Flow-current Gp12 sð Þ ¼ 1:1850
18:7900sþ1 e

�6:0840s 0.0660

Pressure-current Gp22 sð Þ ¼ 0:0423
10:8200sþ1 e

�6:0840s 0.0796

Source: Own author (2018).

Table 4. FOPDT process models obtained experimentally.

Figure 6. System modeling: (a) the response curve of the flow-voltage process and (b) the response curve of the identified
model and the experimental model. Source: Own author (2018).
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Tuning method Process Controller KPin
Tlin TDin

ZN Pressure-voltage Gc1(s) 0.6239 20.0200 5.0050

Flow-current Gc2(s) 3.7061 12.1680 3.0420

IMC Pressure-voltage Gc1(s) 14.4972 10.2090 2.5513

Flow-current Gc2(s) 2.0188 21.8320 2.6181

Source: Own author (2018).

Table 5. PID controllers obtained with both tuning methods.

Figure 7. The simulation of set-point tracking response: (a) the flow and (b) pressure control loops with static decoupling
– ZN and IMC methods. Source: Own author (2018).

Tuning method Process Controller IAE ISE

ZN Pressure-voltage Gc1(s) 64.1477 46.7040

Flow-current Gc2(s) 52.1777 42.4687

IMC Pressure-voltage Gc1(s) 49.1532 34.0354

Flow-current Gc2(s) 39.0924 28.9877

Source: Own author (2018).

Table 6. IAE and ISE performance metrics.
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During the time interval around 30 s, it is observed that rapid pressure fluctuations in the system
with ZN method resulted in flow reversals, i.e., a suction phenomenon was caused by the action
opening of control valve, and this situation leads to an undesirable response in the closed-loop
control. From the 140 s, both the process variables had already reached the steady state.

For the control system implemented to continue operating correctly, a good process instru-
mentation is fundamental. From this, the use of the soft sensor with the control system already
designed with the objective of reducing the dependence of the physical sensors, as described in
Section 6, is proposed.

6. Practical application of soft sensor

The concept of the use of the soft sensor aims at mathematical modeling of processes with
focus on the prediction of the property, from available measurements of the other plant vari-
ables [25]. Mathematical models of processes designed to estimate relevant process variables to
control can help to reduce the need for measuring devices, improve system reliability, and
develop tight control policies. Thus, soft sensors offer a number of attractive properties to
make the control process more reliable.

Irrespective of whether a maintenance intervention is programmed or accidental, the measur-
ing hardware needs to be turned off and suitably substituted. The backup of measuring

Figure 8. The implementation of set-point tracking response: (a) the flow and (b) pressure control loops on the experi-
mental platform. Source: Own author (2018).
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instrumentation is a typical application of soft sensors. Thus, soft sensor is a mechanism used
to replace the temporary or permanent unavailability of a physical sensor in a plant, which can
happen due to the real sensor failure or removal for maintenance [26, 27].

For example, in the network scheme for a MIMO system as shown in Figure 9, the soft sensor
running in parallel with the physical process is updated in real time with the same control
signal data transmitted on the network to the actuators. When the physical sensor is not
available for measurement, the switch at the sensor output changes from the position P to
position S to get the output generated by the soft sensor [28].

The use of artificial intelligence techniques in the modeling of nonlinear dynamic systems has
been diffused in the literature in recent years. This interest is motivated by the characteristics of
these techniques that allow the development of models that are universal approximation of
functions. In fact, depending on the technique, it is possible to approximate with arbitrary
precision a continuous nonlinear function defined in a compact region (limited and closed)
based on quantitative and qualitative information [29, 30].

Among the techniques of artificial intelligence used in the modeling of dynamic systems,
artificial neural networks can be emphasized. The application of artificial neural networks in
the prediction of variables can be auxiliary in the implementation of the soft sensor to process
monitoring, in search of the processes with better performance and that are more reliable.
Thus, the concept of soft sensor allied to ANNs is applied to start the output variables
monitoring of the experimental platform.

On this platform, as mentioned in Section 3, there are two processes for monitoring and control
which can be distinguished by the actuator element: valve position (current) or variation in the
operation frequency of the motor pump (voltage). It is necessary to define a fixed operating
point for one of the actuators. For example, in Figure 10 the illustration of the inputs and
outputs of the process can be observed, where, in the case 1, the position of the valve is fixed
and the operation frequency of the motor pump is varied and, in the case 2, the motor pump
working with fixed operating frequency is used and the position of the valve is varied, in both
cases, to monitor and control the flow and pressure values in the tube.

Initially, to visualize a soft sensor working in the process, the monitoring of the flow values
was done on the platform using a soft sensor designed by neural networks, with the fixed
valve position, and varying the frequency (voltage) to pump the water inside the tube.

To test flow value monitoring, a frequency was applied to pump the water inside the tube, and
the flow values measured and estimated (soft sensor) were observed. In a certain time, the flow

Figure 9. Feedback control loop with a soft sensor. Source: Own author (2018).
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sensor was withdrawn, losing the measured signal by the real sensor. With the loss of the
measured signal, to avoid stop the process, the neural network, based on the process input,
estimates the flow value, so that the process can be monitored by continuing its operation,
with the estimated values (soft sensor), while the real sensor signal is not recovered.

In Figure 11, the graph with the monitoring of the flow values as a function of time, for a better
visualization of time duration of the transition from the estimated value response (soft sensor)
to the measured real value, is observed. In the transition with the return of the real sensor
signal, three samples were passed, lasting 3.39 seconds, which is the duration that the system
worked without both signals, real and soft sensor. The purpose is a transition as short as
possible, obtaining a process monitored for a longer time.

As presented, it was possible to estimate the flow values. In the case of the signal loss of the
real sensor, it is possible to use the implemented soft sensor for monitoring of the process,
avoiding unnecessary stopping. The conclusions obtained with this work and the perspectives
for the improvement of the control system proposed are shown in Section 7.

7. Conclusion and future works

The present chapter consisted in the design and implementation of a decoupling control
strategy for an experimental platform dedicated to study the fouling phenomena. This plat-
form is considered as a TITO system, i.e., the voltage and current signals as the input system
and the flow and pressure measurements as the output system.

Figure 10. Operating point of the process for soft sensor design. Source: Own author (2018).

Figure 11. Flow variable monitoring in the MATLAB software. Source: Own author (2018).

Decoupling Control and Soft Sensor Design for an Experimental Platform
http://dx.doi.org/10.5772/intechopen.75708

183



instrumentation is a typical application of soft sensors. Thus, soft sensor is a mechanism used
to replace the temporary or permanent unavailability of a physical sensor in a plant, which can
happen due to the real sensor failure or removal for maintenance [26, 27].

For example, in the network scheme for a MIMO system as shown in Figure 9, the soft sensor
running in parallel with the physical process is updated in real time with the same control
signal data transmitted on the network to the actuators. When the physical sensor is not
available for measurement, the switch at the sensor output changes from the position P to
position S to get the output generated by the soft sensor [28].

The use of artificial intelligence techniques in the modeling of nonlinear dynamic systems has
been diffused in the literature in recent years. This interest is motivated by the characteristics of
these techniques that allow the development of models that are universal approximation of
functions. In fact, depending on the technique, it is possible to approximate with arbitrary
precision a continuous nonlinear function defined in a compact region (limited and closed)
based on quantitative and qualitative information [29, 30].

Among the techniques of artificial intelligence used in the modeling of dynamic systems,
artificial neural networks can be emphasized. The application of artificial neural networks in
the prediction of variables can be auxiliary in the implementation of the soft sensor to process
monitoring, in search of the processes with better performance and that are more reliable.
Thus, the concept of soft sensor allied to ANNs is applied to start the output variables
monitoring of the experimental platform.

On this platform, as mentioned in Section 3, there are two processes for monitoring and control
which can be distinguished by the actuator element: valve position (current) or variation in the
operation frequency of the motor pump (voltage). It is necessary to define a fixed operating
point for one of the actuators. For example, in Figure 10 the illustration of the inputs and
outputs of the process can be observed, where, in the case 1, the position of the valve is fixed
and the operation frequency of the motor pump is varied and, in the case 2, the motor pump
working with fixed operating frequency is used and the position of the valve is varied, in both
cases, to monitor and control the flow and pressure values in the tube.

Initially, to visualize a soft sensor working in the process, the monitoring of the flow values
was done on the platform using a soft sensor designed by neural networks, with the fixed
valve position, and varying the frequency (voltage) to pump the water inside the tube.

To test flow value monitoring, a frequency was applied to pump the water inside the tube, and
the flow values measured and estimated (soft sensor) were observed. In a certain time, the flow

Figure 9. Feedback control loop with a soft sensor. Source: Own author (2018).

PID Control for Industrial Processes182

sensor was withdrawn, losing the measured signal by the real sensor. With the loss of the
measured signal, to avoid stop the process, the neural network, based on the process input,
estimates the flow value, so that the process can be monitored by continuing its operation,
with the estimated values (soft sensor), while the real sensor signal is not recovered.

In Figure 11, the graph with the monitoring of the flow values as a function of time, for a better
visualization of time duration of the transition from the estimated value response (soft sensor)
to the measured real value, is observed. In the transition with the return of the real sensor
signal, three samples were passed, lasting 3.39 seconds, which is the duration that the system
worked without both signals, real and soft sensor. The purpose is a transition as short as
possible, obtaining a process monitored for a longer time.

As presented, it was possible to estimate the flow values. In the case of the signal loss of the
real sensor, it is possible to use the implemented soft sensor for monitoring of the process,
avoiding unnecessary stopping. The conclusions obtained with this work and the perspectives
for the improvement of the control system proposed are shown in Section 7.
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strategy for an experimental platform dedicated to study the fouling phenomena. This plat-
form is considered as a TITO system, i.e., the voltage and current signals as the input system
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Initially, a set of tests were done to identify FOPDT process models of the plant matrix, using
the frequency response method for parameter estimation in each model and the Theil coeffi-
cients for the validation models. Then, the interaction between the inputs and outputs of the
system was analyzed using RGA and RNGA matrices, which suggested the off-diagonal
pairing as the best pairing loops, i.e., the flow-current and pressure-voltage processes for the
closed-loop control.

Due to strong coupling loops, the static decoupling matrix was calculated, and finally the
decentralized controller matrix was obtained using the ZN and IMC methods as PID tuning
techniques. After the simulation and implementation of the decoupling control proposed,
using MATLAB and LabVIEW software, respectively, the IAE and ISE performance metrics
were calculated to analyze the output performance of the control loops.

Therefore, for the system under study, the best decoupling control strategy is associated with
the IMC method. Even if the decoupling to be calculate for an exact mathematical model, the
PID controllers obtained using this tuning method has the ability to ensure robust control
against possible modeling errors.

For a better performance of the decoupling control, the soft sensor design was applied to start
the output variable monitoring of the experimental platform. The general idea was to design a
fully monitored process via computer program, so that if the measurement of the output
variable fails for any reason, it is possible to use the soft sensor to infer the flow rate values
(in this case, variable of interest in monitoring).

In the future works, it is possible to develop other soft sensors that will be integrated into the
feedback control loop proposed to avoid interruptions performed to solve problems that could
be solved without stopping the process. This makes the process more reliable, with better
performance and with less difficulty to detect and solve possible failures.
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Motor drive systems are indispensable for applications in the industrial field. High-speed
and high-accuracy control is required for motor drive systems. However, solutions to
meet these requirements can cause mechanical resonance vibrations to occur in the system
as a result of miniaturization and system weight reduction. It is therefore necessary to
model these systems as multi-mass resonance systems with multiple masses and finite
rigid shafts, gears, and loads. In addition, vibration suppression control should be applied
to these systems. This chapter provides two off-line tuning methods for a digital
proportional-integral-derivative (PID)-type controller for a two-mass resonance system to
suppress its mechanical resonance vibrations. These methods include a coefficient dia-
grammethod and a fictitious reference iterative tuning method. The former method uses a
nominal mathematical model of the object while the latter method uses only the initial
experimental data without use of the mathematical model. In this chapter, the two
methods are compared. A controller is proposed that consists of a modified integral-
proportional derivative (I-PD) speed controller and a proportional-integral (PI) current
controller, and requires no information about the load side state variables. Finally, the
effectiveness of the proposed method is confirmed through computer simulations and
experimental results.
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nominal mathematical model of the object while the latter method uses only the initial
experimental data without use of the mathematical model. In this chapter, the two
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general, motor drive systems consist of electric motors, gears, belts, flexible shafts, and mechan-
ical load equipment. Recently, the overall stiffness of these systems has been decreasing because
of demands for high-speed and high-accuracy system responses, miniaturization, system weight
reduction, and low system costs. Additionally, the system constructions have become more
complex and the central processing unit (CPU) processing speeds that are required to perform
the system calculations have increased exponentially. Consequently, torsional resonance vibra-
tions occur between the motor and the load side. It is therefore necessary to model the system
as a multi-mass resonance system, which is composed of several masses with finite rigid shafts,
gears, and loads. In addition, a vibration suppression control method should be applied to
the system.

The first-order approximation model of the multi-mass resonance system has the form of a
two-mass resonance model. Several control methods are effective for control of a two-mass
resonance system [1–5]. PID-type controllers are the most commonly used controllers for
industrial applications because of their simplicity and their practicality for use with multi-
mass systems. Various PID controller design methods have been proposed; examples of these
methods include the limit sensitivity method, the Ziegler and Nichols tuning method, and
methods that use the system polynomial. These controller design methods, which are called
model-based design methods, may be able to produce the required results in cases where both
the system equation and the real system’s parameters are unknown.

In the industrial fields in which many typical motor drive systems are used, experienced
technicians often adjust the control system on site to suit the needs of the manufacturing
equipment. However, engineer shortages in these fields are becoming a serious problem. It is
therefore essential to develop a simple controller design method for industrial applications.

Under these circumstances, and to save both the time required and the cost of tuning the
controllers for the motor drive systems, some direct controller tuning methods have been
proposed based on the transient response data from closed-loop systems, without modeling
of the plant. The fictitious reference iterative tuning (FRIT) method is one of the most promis-
ing candidate methods for practical direct parameter tuning [6, 7]. Using the FRIT method, the
controller gains can be designed using only single-shot experimental input-output data with-
out knowledge of the model parameters of the object to be controlled.

This chapter introduces two types of approaches to PID-type controller design for suppression
of the two-mass resonance system. The first method is based on the assumption that the
mathematical model of the object to be controlled is known. This design method is called the
coefficient diagram method (CDM) [8–10]. The CDM is an algebraic approach designed to
produce the characteristic polynomial directly in the parameter space. The design of the
coefficient diagram of the control system is performed using a differential evolution (DE)
procedure to obtain the optimal controller gains in a short time [11–13]. The second design
method is a FRIT method, which is a PID controller design approach based on one-shot
experimental data only and does not use the mathematical model of the object to be controlled
[14–16]. The effectiveness of the two proposed design methods is confirmed using a combina-
tion of computer simulations and experiments.

PID Control for Industrial Processes188

2. Two-mass speed control system applying PID-type control

2.1. Description of two-mass resonance model

The model consists of two rigid masses and a torsional shaft. The multiple masses on the load
side of the actual system are approximated as one inertial element. Similarly, several shafts and
gears are approximated as a single torsional shaft. The typical two-mass model is depicted
schematically in Figure 1 below [14–17].

Here, J and ω denote the moment of inertia and the angular speed, respectively, and the
suffixes M and L indicate the motor side and the load side, respectively. Tin is the input torque,
Tdis is the torsional torque, TL is the load torque, and Ks is the shaft stiffness. The continuous
state equations of this two-mass resonance model are shown as Eqs. (1) to (3). Additionally, a
current loop is considered in this research for high-speed torque control. Eq. (4) is indicative of
the voltage equation when using a permanent magnet dc servo motor as the driving motor. In
the equations, Kt is the torque constant of the dc motor, La is the armature current, Ra is the
total resistance, uc is the control input, Ke is the back-electromotive force (back-EMF) constant,
and the viscous friction and nonlinear friction sources such as the Coulomb torque are
neglected. Therefore, the torque input is calculated using Tin = Ktia.

JM
dωM

dt
¼ Ktia � Tdis (1)

JL
dωL

dt
¼ Tdis � TL (2)

dTdis

dt
¼ Ks ωM � ωLð Þ (3)

La
dia
dt

þ Raia ¼ Euc � KeωM (4)

The research in this case deals with a normalized model to provide generality for the design of
the proposed control system. Eqs. (5)–(8) show the normalized state equations. The state
equation parameters are normalized as shown in Eq. (9), where the suffix pu indicates a
normalized parameter, K0 [V/pu] is the converter gain, Ka [pu/A] is the current feedback
coefficient, Kω [pu/(rad/s)] is the angular speed feedback gain, and τe [s] is an electrical time
constant.

Figure 1. Two-mass resonance model.
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JMpu
dωM

dt
¼ ia � Tdis (5)

JLpu
dωL

dt
¼ Tdis � TL (6)

dTdis

dt
¼ Kspu ωM � ωLð Þ (7)

τe
dia
dt

þ ia ¼ uc � KepuωM (8)

JMpu ¼ Ka

KtKω
JM, JLpu ¼ Ka

KtKω
JL, Kspu ¼ Ka

KtKω
Ks, Kepu ¼ 1

K0Kω
Ke (9)

Therefore, the unit for all state variables is [pu]. Figure 2 shows a block diagram of the
normalized two-mass resonance model.

Eq. (10) gives the resonance angular frequency, the anti-resonance angular frequency, and the
inertia ratio, respectively.

ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kspu

JMpu
þ Kspu

JLpu

s
, ωa ¼

ffiffiffiffiffiffiffiffiffi
Kspu

JLpu

s
, R ¼ JLpu

JMpu
(10)

The next equation gives the simplified transfer function for the two-mass mechanical element,
in which the input and the output are ia and ωM, respectively.

ΩM sð Þ
Ia sð Þ ¼ s2 þ ω2

a

JMpus s2 þ ω2
r

� � (11)

Figure 2. Block diagram of normalized two-mass resonance model.
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The nominal parameters for the two-mass resonance model in this chapter are given in Table 1
below. In this chapter, the proposed CDMmethod is evaluated through computer simulations,
while the proposed FRIT method is evaluated experimentally using the experimental setup
shown below.

Figure 3 shows a photograph of the experimental system that was constructed in this research.
The two-mass resonance system is simulated using the dc servo motor and a dc generator with
a finite rigid coupling. The controller is realized using a digital signal processor that calculates
the pulse-width modulation (PWM) signal to send to a four-quadrant dc chopper [17].

The digital signal processor (DSP) board (PE-PRO/F28335 Starter Kit, Myway Plus Corp.),
consists of the DSP (TMS320F28335PGFA), a digital input/output (I/O), ABZ counters for the
encoder signals, analogue-to-digital (A/D) converters and digital-to-analogue (D/A) converters
[18]. The motor and load angles and the angular speeds are detected using 5000 pulses-per-
revolution encoders. The dc servo motor current is measured using a current sensor and the A/D
converter.

The control period (Ts) and the detection period of the encoder are both 1 ms and the current
detection period is 10 μs. While we considered the application of the system to specific
apparatus, we then constructed a digital control system that contains a discrete controller.
In addition, we used MATLAB/Simulink software to perform the proposed off-line tuning
process based on simulations and constructed the PID-type control system as a continuous
system [19]. A disturbance is added to the dc generator as a torque using the electric load
device on constant current mode. Figure 4 shows the apparatus for the two-mass resonance
model that was used in the experimental setup. Figure 5 shows the experimental system
configuration [17].

Symbol Value Symbol Value

JM 2.744 � 10�4 (kgm2) JL 2.940 � 10�4 (kgm2)

Ks 18.5 (Nm/rad) Ra 2.884 (Ω)

La 6.676 (mH) E 25.0 (V)

Kt 0.2778 (Nm/A) Ke 0.2778 (V/(rad sec))

Table 1. Nominal parameters of the two-mass resonance model.

Figure 3. Overview of the experimental system.
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2.2. Modified-IPD speed controller and PI current controller

In this chapter, classical PID speed and current controllers are used to suppress the resonance
vibrations for the two-mass resonance model. In general, the PI controller, which consists of a
proportional controller and an integral controller that are placed in parallel to determine the
speed error, is used as the angular speed controller. However, because the resonance system has
a complex structure, it is difficult to suppress the vibrations using the classic PI controller alone.
Therefore, the I-PD controller is used in this chapter and a first-order lag element is also used to
increase the degrees of freedom for the controller design. Additionally, a simple PI controller is

Figure 4. Photograph of the experimental two-mass resonance model.

Figure 5. Configuration of the experimental system (for the two-mass resonance model).
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used to realize the high-speed torque response for the current minor loop. The continuous
control system proposed here is shown in Figure 6. In the figure, ωref is the reference angular
speed, Kp, Ki, Kd, and Td represent the m-IPD speed controller gains, and Kap and Kai are the PI
current controller gains. This chapter proposes two design methods for these six controller gains
(i.e., Kp, Ki, Kd, Td, Kap, and Kai). Then, during the simulations and experiments, a digital control
system is used, as shown in Figure 7. In this case, the D-control element of the speed controller
performs a z-transform in combination with the first lag element of the speed controller to
construct a difference equation and avoid the need for a complete differentiation procedure.

Figure 6. Proposed control system (continuous controller model).

Figure 7. Proposed control system (discrete controller model).
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(i.e., Kp, Ki, Kd, Td, Kap, and Kai). Then, during the simulations and experiments, a digital control
system is used, as shown in Figure 7. In this case, the D-control element of the speed controller
performs a z-transform in combination with the first lag element of the speed controller to
construct a difference equation and avoid the need for a complete differentiation procedure.

Figure 6. Proposed control system (continuous controller model).

Figure 7. Proposed control system (discrete controller model).
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3. Controller design using coefficient diagram method

3.1. Coefficient diagram method

First, this section explains the coefficient diagram method (CDM) for design of the proposed
controller, which is required to suppress the resonance vibrations for the two-mass resonance
model. The CDM is an algebraic approach that is used to design the characteristic polynomial
directly in the parameter space. In the CDM, a coefficient diagram (CD) is used to perform the
controller design. The CD provides the ability to analyze the time response, stability and
robustness qualities of the controller using a diagram. In the CD, the vertical axis shows the
coefficient of the characteristic polynomial (ai), the stability indices (γi), and the equivalent time
constant (τ) logarithmically, while the horizontal axis shows the order i values that correspond
to the coefficient. Here, the characteristic polynomial is as shown in Eq. (12).

P sð Þ ¼ ansn þ an�1sn�1 þ⋯þ a1sþ a0 ¼
Xn

i¼0

aisi (12)

In the CDM, the stability indices (γi), which are defined in Eq. (13) below, are indicators of the
stability of the control system.

γi ¼
a2i

aiþ1ai�1
, i ¼ 1~n � 1 (13)

The equivalent time constant τ, which represents the transient response characteristic, is
expressed using the following equation:

τ ¼ a1
a0

(14)

The coefficient ai can then be calculated using τ and the stability indices γi as shown in Eq. (15).

aiþ1 ¼ a0τi

γi�1γ
2
i�2⋯γi�2

2 γi�1
1

(15)

In the CDM, use of the standard values of the stability indices is recommended, and these
values are listed as follows:

γn�1 ¼ ⋯ ¼ γ3 ¼ γ2 ¼ 2:0, γ1 ¼ 2:5 (16)

This form is called “the standard form of the stability indices.”

3.2. Design method for the controller gains using the CDM

The CDM is a very simple and effective method for controller design. However, in higher
order systems, it is difficult to complete the design by trial and error alone. In this work, the
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design of the CD for the control system is performed using the differential evolution (DE)
method. The DE method is an optimization search method [12, 13].

In the proposed design method, the reference value of the equivalent time constant τref is first
specified. Then, the coefficients of the characteristic polynomial are calculated using the six
controller gains with random initial settings. Each of the coefficients is determined using the
following equations:

a7 ¼ JMpuTτe (17)

a6 ¼ JMpuτe þ JMpuT þ JMpuKapT (18)

a5 ¼ JMpu þ JMpuKap þ KapKd þ KepuT þ JMpuKaiT þ JMpuTτeω
2
r (19)

a4 ¼ Kepu þ JMpuKai þ KaiKd þ KapKp þ JMpuTω
2
r þ JMpuτeω

2
r þ JMpuKapTω2

r (20)

a3 ¼ JMpuω
2
r þ KapKi þ KaiKp þ JMpuKapω2

r þ KapKdω2
a þ KepuTω2

a þ JMpuKaiTω2
r (21)

a2 ¼ Kepuω2
a þ KaiKi þ JMpuKaiω2

r þ KaiKdω2
a þ KapKpω2

a (22)

a1 ¼ KapKiω2
a þ KaiKpω2

a (23)

a0 ¼ KaiKiω2
a (24)

The stability indices are then computed using these calculated coefficients and the evaluation
function F in Eq. (25) is calculated using the terms from Eqs. (26)–(30). In this case, the evaluation
function F consists of an evaluation to match with the set reference value of the equivalent time
constant, an evaluation to reduce the change in the next stability index, and an evaluation to
match the standard forms of the stability indices γs,i. The weights w1 to w5 of the evaluation
functions are set to have values of (w1, w2, w3, w4, w5) = (100, 2, 10, 1, 4), respectively. These steps
are subsequently repeated to obtain the optimal controller gains by the DE method.

F ¼ 1
w1f 1 þ w1f 1 þ w1f 1 þ w1f 1 þ w1f 1

(25)

f 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τref � τ
� �2q

(26)

f 2 ¼
X2

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γs, i � γi

� �2r
(27)

f 3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γs,3 � γ3

� �2r
(28)

f 4 ¼
X5

i¼3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γi � γiþ1

� �2q
(29)

f 5 ¼
X6

i¼4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γs, i � γi

� �2r
(30)
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3.3. Simulation results

Figure 8 shows an example of the simulation results in the form of the angular speed step
responses for the control input. The resonance vibrations can be seen in this figure.

Figure 9 shows the frequency response characteristics of the two-mass resonance model from
the control input uc to the motor angular speed ωM. The peak point of the mechanical reso-
nance can be observed in this figure. It is therefore essential to construct the controller design
method such that it reduces this resonance peak gain.

Table 2 shows the controller gains that were designed using the proposed method, where the
reference time constant τref is set to 0.05. Figure 10 shows the designed CD. In the figure, each
coefficient is multiplied by 100n, where n is the order of the characteristic polynomial. The
figure shows that the form of the diagram is very smooth and that the convex shape is
appropriately upward. The designed stability indices are shown in Figure 11. The results in
this figure confirm that the stability indices nearly fit the standard form of these indices, and
the fluctuations in the numerical values of adjacent indices are also small.

Figure 8. Angular speeds of the step responses of the two-mass model.

Figure 9. Frequency responses of the two-mass resonance model from uc to ωM.
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Figure 12 shows the simulation results, where the speed reference command input ωref is
changed from 0 to 30 rad/s at t = 0 s, and the disturbance torque input is changed from 0 to
20% of the rated torque at t = 0.25 s. The figure indicates that the wave provides a good
reference-following performance and illustrates the validity of the vibration suppression char-
acteristics and the disturbance response simultaneously. Additionally, the gain characteristic
that was derived using the proposed method over the range from the reference speed ωref to

Gain name Value Gain name Value Gain name Value

Kp 2.792 � 102 Ki 9.007 � 103 Kd 3.522

T 0.4368 Kap 1.834 Kai 96.53

Table 2. Controller gain results when designed using the proposed CDM method.

Figure 10. Designed coefficient diagram.

Figure 11. Designed and standard form stability indices.
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the motor angular speedωM is illustrated in Figure 13. The effectiveness of the proposedmethod
is confirmed by the characteristic shown in this figure because the resonance peak is reduced
considerably. Therefore, the results for the proposed method show that it is effective as a design
method for the vibration suppression controller for the two-mass resonance system.

4. Controller design using fictitious reference iterative tuning (FRIT)

In this section, an off-line tuning method for the vibration suppression-type speed and current
controller gains for the two-mass system is proposed based on the FRIT method; this method
uses only single-shot experimental input-output data and does not use either the model
parameters or the state equation of the two-mass resonance model. While most FRIT designs
only use one state variable, this method uses specific multiple state variables to design the
controller gains when using the FRIT method [6, 7, 14–16].

Figure 12. Simulation results when using the proposed method.

Figure 13. Gain characteristics when using the proposed method over the range from ωref to ωM.
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4.1. Frit

Figure 14 shows a typical control system, in which G is the transfer function of the object to be
controlled, r is the reference signal, r represents the controller gains, C(r) represents the
controller, u is the control input parameter, and y is the output parameter. In this case, the
mathematical model of G is not known in advance and is not required for this method.

Initially, as shown in Figure 15, a single-shot experiment is performed using the initial controller
gains r0, and the control input u0 and output y0 are measured. Then, the reference model M(s),
which matches the desired response, is determined. A fictitious reference signal is then generated
using the controller, the control input u0, and the output y0, as shown in Eq. (31) below. This
means that the initial data u0 and y0 can be obtained using any value of r if ~r rð Þ is input to the
closed-loop system used to implement C(r).

~r rð Þ ¼ C rð Þ�1u0 þ y0 (31)

The optimal controller gains that are required to achieve yM = y0 are then determined, as shown
in Figure 16, using an optimization search method. Finally, these controller gains then repre-
sent the best available solutions that allow the desired control system response to be obtained.
Therefore, the controller design process can be performed without any prior information about
either the model parameters or the state equations.

4.2. Vibration suppression controller design method by FRIT

Figure 17 shows a simplified form of the proposed vibration suppression control system,
where Cω1, Cω2, Cω3, and Ci are the controllers. While the FRIT method generally uses one

Figure 14. Typical closed-loop system.

Figure 15. Measurement of the initial data.

Figure 16. Reference model showing the input of the fictitious reference signal.
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control input and one state variable for the initial experimental data, the proposed method
uses one control input, uc, plus two state variables, ωM and ia. The controller gain vector r is
given as follows:

r ¼ Kp Ki Kd TKap Kai
� �T (32)

Therefore, the fictitious reference signal ~ωref rð Þ can be calculated using the following equation
without any need for the two-mass resonance model.

~ωref rð Þ ¼ 1þ C�1
ω1Cω2

� �
ωM0 þ C�1

ω1C
�1
ω3 ia0 þ C�1

ω1C
�1
ω3C

�1
i uc0 (33)

Here, uc0, ωM0 and ia0 represent the initial experimental data. The reference model M(s), as
shown in Eq. (34), is then used depending on the purpose of the system, where the time
constant τ is a reference model parameter.

M sð Þ ¼ 1

τsþ 1ð Þ3 (34)

Here, τ is calculated using the following equation with the 99% response time parameter T99.

τ ¼ T99

4:4� 30:6
(35)

The differential evolution method is then used to search for the optimal gains. The perfor-
mance index function F is then defined as shown in Eq. (36) below using ωM0 and
yM ¼ M sð Þ~ωref rð Þ.

F rð Þ ¼ M sð Þ~ωref rð Þ � ωM0
�� ��

2 (36)

4.3. Experimental results

Figure 18 shows an example of the experimental results in the form of the angular speed step
response of the control input. The resonance vibrations can again be observed in a similar
manner to the case of the simulation results shown in Figure 8 above.

Figure 19 shows the gain characteristics of the frequency responses from the experimental
results shown in Figure 18, which relate the input voltage to the motor angular speed ωM and
the load angular speed ωL. From these characteristics, the peak resonance vibrations at approx-
imately 300 rad/s are also observed. These results were calculated based on the experimental

Figure 17. Simplified proposed control system.
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input and output waves of the voltage step response using the method that was proposed in
[20]. Additionally, both the resonance and anti-resonance points can be found in these figures.

Figure 20 shows the experimental results obtained when using the general PI speed and
current controller for comparison with the effects of the proposed control system. Figure 21
shows the gain characteristics for the frequency responses shown in Figure 20, which relate
ωref to ωM and ωL, where ωref is 30 rad/s. These characteristics show that the peak gain of the

Figure 18. Angular speeds of the step responses (DC voltage input).

Figure 19. Calculated frequency responses to dc voltage input (left: uc to ωM, right: uc to ωL).

Figure 20. Experimental results obtained using conventional PI controller.
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resonance is not greatly attenuated. Figures 22–24 show the initial experimental waves for
ωM0, ia0 and uc0, respectively, that were obtained using the values of the initial controller gain
r0, which are listed as follows:

r0 ¼ 0:1 30 0:0001 0:001 1 10½ �T (37)

Both the initial rise and the oscillation can be observed in these figures.

Table 3 shows the results for the controller gains determined using the proposed FRIT design
method with searching by the DE method, where T99 was set at 0.2 s. Figure 25 shows a
comparison of the experimental results obtained using the controller gains that were designed
using the proposed method with the simulated results for the reference output yM. The results
in the figure show that the proposed off-line tuning method works very well, despite the fact
that the design was performed using the initial one-shot experimental data alone. Figure 26

Figure 21. Frequency responses of conventional PI speed control system (left: ωref to ωM; right: ωref to ωL).

Figure 22. Initial ωM0 data.
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shows the experimental results that were obtained for ωM, ωL, and ia when the proposed FRIT
method was used. Here, ωref is stepped from 0 to 30 rad/s when t is 0 s. The figure shows the
good response of the proposed vibration suppression speed controller. Figure 27 shows the
experimental results, where ωref is stepped from 30 to 50 rad/s when t is 0 s and the disturbance
torque is increased from 0 to 10% of the rated torque when t is 0.5 s. As these figures show,
good waves were observed in terms of their reference-following performance and disturbance
response.

Figure 23. Initial ia0 data.

Figure 24. Initial uc0 data.

Gain name Value Gain name Value Gain name Value

Kp 1.24 Ki 17.0 Kd 6.53 � 10�3

T 8.59 � 10�4 Kap 2.37 Kai 135

Table 3. Controller gain results when designed using the proposed FRIT method.
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good response of the proposed vibration suppression speed controller. Figure 27 shows the
experimental results, where ωref is stepped from 30 to 50 rad/s when t is 0 s and the disturbance
torque is increased from 0 to 10% of the rated torque when t is 0.5 s. As these figures show,
good waves were observed in terms of their reference-following performance and disturbance
response.

Figure 23. Initial ia0 data.

Figure 24. Initial uc0 data.

Gain name Value Gain name Value Gain name Value

Kp 1.24 Ki 17.0 Kd 6.53 � 10�3

T 8.59 � 10�4 Kap 2.37 Kai 135

Table 3. Controller gain results when designed using the proposed FRIT method.

PID Controller Design Methods for Multi-Mass Resonance System
http://dx.doi.org/10.5772/intechopen.74298

203



Figure 28 shows the gain characteristics of the frequency responses of the proposed control
system, where these characteristics are shown from the perspectives of ωref relative to ωM and
ωL. The resonance vibration suppression effect can be observed in these figures. Therefore, the
effectiveness of the proposed control system and the design method based on use of the FRIT
method can be confirmed. Additionally, Figure 29 shows the experimental results (ωL) that
were obtained for various values of the speed reference time parameter, where T99 = 0.15,
0.175, 0.2, 0.25, 0.3, and 0.35. As shown in this figure, the response times change satisfactorily
and the proposed design method for the controller gains can thus also be used to design the
response times arbitrarily.

Figure 25. Initial experimental results for ωM0 and simulation results for yM.

Figure 26. Experimental results for ωM, ωL, and ia obtained when the proposed FRIT method.
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Figure 27. Experimental results for speed step response and disturbance response.

Figure 28. Frequency responses of the proposed control system (left: ωref to ωM; right: ωref to ωL).

Figure 29. Experimental responses of ωL to various values of T99.
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Figure 27. Experimental results for speed step response and disturbance response.

Figure 28. Frequency responses of the proposed control system (left: ωref to ωM; right: ωref to ωL).

Figure 29. Experimental responses of ωL to various values of T99.
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5. Conclusion

This chapter has proposed two design methods for the controller gains required for vibration
suppression control in a two-mass resonance system. The proposed controller consists of a
modified-IPD speed controller and a PI current controller. The proposed controller design
methods are based on application of the coefficient diagram method (CDM) and application
of the fictitious reference iterative tuning (FRIT) method. Both methods use the motor side
variables only, including the motor’s angular speed and the armature current. The CDM
method uses the coefficient of the characteristic polynomial of the control system and can
determine the control performance based on the shape of the coefficient diagram and the
stability indices. In this chapter, the fitting performances for the standard form of the stability
indices and the coefficient values were used to determine the controller gains, which were
designed using the differential evolution method. The effectiveness of the proposed CDM was
confirmed by the simulation results. The FRIT method can be used to design the controller
without knowledge of the model state equations and their parameters. Furthermore, a ficti-
tious signal that was calculated using the initial experimental data for multi-state variables was
also proposed in this chapter. The effectiveness of the proposed FRIT method was confirmed
using the experimental results. Consequently, the CDM and the FRIT method were shown to
produce the same design performance. The CDM is useful for controller design when the
mathematical model and the object parameters are known. The FRIT method is effective when
the mathematical model is unknown but the initial experimental data can be observed.
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