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The purpose of self-optimizing control (SOC) is minimizing the steady-state economic loss of chemical
processes in the presence of disturbances and measurement noises by keeping selected controlled
variables (CVs) at constant set-points. In self-optimizing control, by defining a desired objective/loss
function and selecting the appropriate combination of process measurements, the average loss, the
worst-case loss, or both can be minimized. In general, the optimization problem of self-optimizing
control is a non-convex problem and there exist some approaches to change it to a convex form by
adding another constraint to the optimization problem, using branch and bound algorithm or mixed
integer quadratic programming method to solve the SOC problem. Linear Matrix Inequalities (LMIs)
are one of the popular and powerful tools to solve convex optimization problems and changing the
optimization problems to the LMI form is gaining popularity. In parallel, for some problems that are
non-convex and cannot be transformed to the LMI form, Bilinear Matrix Inequalities (BMI) have been
developed. In this paper, we present; first a method to change the convex form of SOC problem to
the LMI form and second, reformulate the main and non-convex SOC problem to a BMI form and then
change it to the LMI form. The proposed methods are then evaluated on three benchmark processes: a
binary distillation column, an evaporator, and a Kaibel column. The LMI/BMI methods are implemented
using LMI Control Toolbox and PENBMI of YALMIP toolbox of MATLAB® software. Results show that
the proposed algorithm outperforms other methods in the case of structured measurement matrix H.
The main benefit of LMI approach is that the desired structure of matrix H can be directly implemented
in the optimization method.
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1. Introduction

Optimal operation of chemical processes under various con-
ditions such as external disturbance is vital for the economic
profitability of the chemical plants. Keeping process operating
points near to their designed moving optimal operating points is
highly recommended. Large fluctuations from the optimal oper-
ating points result in an economic cost and may lead to violation
of process operating constraints. Keeping the process close to the
optimal operating point needs good operation of control system
for both normal conditions and in the presence of disturbance.

One of the typical control structures of chemical processes
is a multilayer hierarchical structure of the control system that
includes layers with different time scales [1,2]. Typical time scales
are depicted in Fig. 1 for different layers of this structure in
plantwide control. From the bottom to the top, these layers in-
clude [3]: Control layer (minutes and seconds), Local optimization
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(hours), Site-wide optimization (days), and Scheduling (weeks) [4].
In Fig. 1, CV; to CV, refers to the controlled variables that are used
to control the process.

The business optimization objectives, such as minimizing loss
function or maximizing economic profitability J of plant opera-
tion are attained by cascading the objectives from the top layer
(scheduling) to the bottom layer (control layer). The interaction
and interconnection between different layers of this hierarchical
control structure occur through the set points that flow from
the upper layer to the bottom layer in a cascade structure. It
should be noted that in top layers, setpoints may be updated in
an hour but in bottom layers including the control layer, they
are updated continuously. One of the most important factors
in determining the profitability of the process is control struc-
ture selection. Control structure design determines which process
variables should be measured and controlled and which variables
should be manipulated [1].

The role of controlled variable (CV) selection is highlighted
when the operating conditions vary, which can lead to increased
profitability and reduction in costs.
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Fig. 1. Plantwide Control system hierarchy diagram of chemical plants.

In the literature on process control structure design, the first
step is to formulate the self-optimizing control optimization
problem [5]. This method is identified by the selection of self-
optimizing CVs based on the chosen objective function. The
successful application of self-optimizing control (SOC) needs tools
and methods for choosing good CVs. The major difference be-
tween SOC and other methods in control structure design [6] is
that in SOC, the selection of CVs is done by a specific procedure
to systematically minimize the loss function subject to a given
cost function. Briefly, the selection procedure in SOC method is
started by defining a desired cost function, then by controlling
the SOC CVs at their setpoints, the defined cost function should
be minimized during the plant operation. Continuous chemical
processes usually operate at a steady-state for most of the time,
by occurring disturbances, the effect of the transient responses
can be neglected if the disturbances stay constant for a long
enough time. Therefore, the SOC problem can be stated as an
optimization problem in steady-state conditions. Simply, the SOC
problem leads to finding function h such that the selected CVs
defined by Eq. (1) minimize the defined objective function:

¢ = h(y). (1)

Typically, the measurement variable ¢ = h(y) can be defined as
any kind of function of measurement variables y, but normally
it is selected as a linear function ¢ = Hy where H is a con-
stant matrix with appropriate dimensions. The primal method
for choosing self-optimizing CVs was a brute-force method [5,7].
The idea of brute-force method is to check out the loss for all
possible combinations of candidate CVs for any possible combi-
nation values of measurement noise and disturbances. The main
drawback of brute-force method is that it requires to solve many
optimization problems, and it is more serious when there are
many process disturbances and controlled variable candidates
that makes this approach intractable. Local methods have been
developed to minimize the number of checking for different CVs
and to disqualify poor CV choices in the step of control structure
design. The idea of local methods is to select such a controlled
variable set in a way that it has acceptable local behavior around
the designed operating points, otherwise it may be omitted in-
stantly. A basic idea in the SOC framework [4] is to minimize
the differential loss variable (L = ] — Jop¢(d)) instead of directly
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minimizing the cost J. Sometimes local method is called “loss
minimization” or the “minimum loss method”. By selecting a linear
combination of measurement variables as controlled variables ¢
= Hy, it is implicitly assumed that the steady-state process model
is linear and the cost function J is defined in quadratic form.
Practically, all of the steady-state optimal operation problems can
be approximated by linearizing chemical processes at nominal
optimal point. Local method prepares systematic method to select
CVs. More precisely, the objective of local method is to find a
matrix H (i.e., a linear combination of controlled variables, ¢ =
Hy) such that, by controlling these candidate variables indirectly,
it leads to minimum loss (L) with acceptable operation of process
when disturbances (d) occur in presence of measurement noise
nY. It is also assumed that all active constraints of process has
been controlled and kept constant, and the lower-dimensional
free/unconstrained subspace have been considered as degrees of
freedom.

Originally, the problem of solving SOC optimization problem
and finding optimal CVs (H) was believed to be a non-convex
optimization problem. Hence, it is generally difficult and com-
putationally expensive to solve it numerically [8] with convex
methods. However, in [9] it has been proven that by adding an
extra constraint to the original optimization problem, it can be
reformulated as a convex and quadratic optimization problem
that has linear constraints. In the literature there are other deriva-
tions to find optimal measurement combination matrix (H) where
the idea is to select the candidate variables to reach an optimal
trade-off between measurement noise and rejecting the process
disturbances. In [10,11], eigenvalues of a matrix and general-
ized singular value decomposition (GSVD) method were applied
to solve the SOC optimization problem. However, because of
the combinatorial nature of the problem, selecting measurement
variables individually or linear combinations of a subset of mea-
surements as CVs is more crucial. Practically, it is not required nor
desired to use all of available measurements or combinations of
them in the selected CVs matrix (H). In [10,12], it has been shown
that usually controlling a subset of available measurements can
have a performance similar to using all available measurements,
so it can lead to a plant control structure design with infinitesimal
increase in loss.

In the literature, the problem of finding the best subset mea-
surement selection has been solved in two ways: The first method
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is tailor-made branch and bound algorithms described in [12-14],
and the second one is to formulate the subset measurement selec-
tion problem as a mixed integer quadratic optimization problem
(MIQP) that utilizes standard MIQP solvers to find the best mea-
surement set [15]. Both of these two methods are based on the
convex formulation of the SOC problem which is mentioned in
Theorem 1 of [9]. This convex reformulation is based on adding an
equality constraint and then simplifying the non-convex problem.
It works for full H case and some structured cases mentioned
in [15]. However, it does not work for decentralized and triangu-
lar structures. Although there are some approximation methods
for such cases [16], they cannot guarantee finding the CVs set
with the minimum loss. For practical applications, it may be
needed to impose some limitations on the structure of H. That
is, it may be required that some elements in H be zero.

Sometimes, in order to have good dynamic responses from the
process, we may need structural constraints that lead to struc-
tured H. For example, in the Kaibel column case study, as stated
in [17], to get good dynamic response, at least one temperature
in the prefractionator should be used in the regulatory layer.
Another example is the distillation column case study [18], that
triangular H is dynamically preferable to avoid large time delays
between top stages temperatures and reflux, or we may want
to separate different parts of a process from each other like the
evaporator case study.

Also, it should be considered that the full H case is costly
for practical applications in terms of implementation costs, be-
cause it needs more instruments to measure selected candidate
measurable variables, more cabling and more complicated control
system hardware and software and so on. Therefore, it is tolerable
to have greater loss than optimal loss, but the implementation
cost is reduced.

In [19], a global SOC (gSOC) method has been introduced to
find optimal CVs by minimizing average economic loss in the
whole space. In this approach similar to local methods, the loss
function is formulated as a quadratic form based on the second-
order Taylor series expansion at any disturbance scenarios, rather
than a single reference point in the local method. Then, the opti-
mal matrix H is derived by minimizing the loss function. In [20],
by using neural network, the active constraints changing problem
is handled and a new method for constrained gSOC (cgSOC) has
been proposed. This method finds optimal CVs globally through
offline neural network training. Global SOC has been revisited
in [21] by applying the nonlinear programming (NLP) frame-
work for gSOC and a sequential solution strategy is proposed.
In this method, the polynomial chaos expansion (PCE) is used
to enhance the computation speed and in addition, the active
set change problem has been handled. To overcome high com-
putational loads, time-consuming convergence, and simulation
crashes of flowsheet optimization simulators, in [22] applica-
tion of surrogate models has been evaluated to simulate the
large-scale processes. The multilayer perceptron neural network
(MLP-ANN) with radial basis function has been chosen as the
surrogate model. It has been shown that the MLP surrogate model
has the best performance in predicting the optimal points and
in selecting the best self-optimizing CVs. It should be noted
that all previous methods have utilized the convex form of SOC
introduced in [9].

Another approach to solve the SOC optimization problem,
which is introduced in this work is using bilinear matrix in-
equality (BMI) or linear inequality matrix (LMI) methods. In [9],
the nonlinear SOC optimization problem is solved by adding an
equality equation to the basic nonlinear problem, which is de-
scribed in the next section. BMI or LMI approach can help to solve
the original nonlinear SOC optimization problem as described
in the paper. The focus of this paper is to develop a new ap-
proach to solve the nonlinear SOC optimization problem by using
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BMI or LMI techniques therefore local method or minimum loss
method has been considered. As presented in this paper, LMI/BMI
techniques can overcome the drawbacks of previous methods in
solving SOC problem and it works on all structures of H. The most
important part of using the LMI/BMI method is to reformulate
the main non-convex problem in the LMI/BMI form and then a
standard solver can solve the resulting problem. In this paper, this
reformulation is presented. The main benefit of this reformulation
is that it can find the minimum loss on any structured H case
such as triangular and block diagonal that other methods such
as branch and bound (BAB) and MIQP cannot consider. Moreover,
the structure of H is directly obtained by solving the optimization
problem.

The rest of this paper is organized as follows. In Section 2,
preliminary concepts of the self-optimizing control and minimum
loss method are introduced. The LMI reformulation of the convex
and non-convex forms of the SOC problem is stated in Section 3.
The simulation and evaluation of the proposed methods are pro-
vided for three popular processes in SOC; an evaporator process,
a benchmark binary distillation column that has 41 stages, and a
4-product Kaibel column in Section 4. The conclusion of this work
is presented in Section 5.

2. Preliminary concepts

The basic idea behind local methods is to reduce the number of
CVs and to omit CV candidates that perform poorly in the control
structure design phase. The key concept in the SOC structure is
to minimize the loss (Eq. (2)) from the optimal operation point
when there are disturbances [4]. The SOC procedure is performed
when a tolerable loss is achieved for constant set-points. It should
be noted that with implementation of SOC, when disturbances
occur, it does not need to reoptimize and find new measurement
variables [5].

L=] —Jop(d) @)

More precisely, the aim of SOC is to find CVs such that when
held constant, give an acceptable loss rather than finding optimal
set-points. In Eq. (2), the loss L is characterized as the difference
between the truly optimal value of the defined cost function and
the true value of cost function. First of all, the SOC optimization
problem must be reformulated based on a loss function, which
depends on system matrices.

2.1. SOC problem formulation

Variables have been classified as follows [9,15]:

e u € R™ as inputs for optimization: they are unconstrained
steady-state degrees of freedom (DOF) and should make an
independent set.

d € R™ as disturbances: it is worth mentioning that process

parameter changes can be considered as disturbance.

e y € R™ are all available measurable variables, which are
candidate CVs as well. The manipulated variables (MVs) and
measurable inputs (u) can be considered in the measure-
ment set y too.

e 1Y as measurement noise foryi.e.y, =y + .

e c € R™ as selected controlled variables.

As discussed in [8], it is assumed that all of our considerations
are of local nature and the set of active inequality constraints does
not change with disturbances. Furthermore, SOC uses a linearized
model that is expanded around the operating point. Also, we
assume that cost function J is smooth or more precisely twice
differentiable at the operating point that we are considering.
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Fig. 2. The loss function as a function of disturbance and input [15].

Process cost/objective function has been defined as a quadratic
steady-state function i.e. a second-order Taylor series expansion
of the cost function around the nominal point (u*, d*), where the
objective of the SOC optimization problem is to regulate the input
u so that the cost function J is minimized. It should be noted
that there is no constraint in this optimization problem and all
constraints have been satisfied. The process cost function can be

defined as
1Tau] [, Tl [4u
- T
2| Ad P Ad
(3)

In Eq. (3), Au = u — u* and Ad = d — d* mean deviations from
the nominal optimal point (u*, d*). J; and Jj are first derivatives
of J with respect tou and d, J;;,, Ji'; and J}}, are second derivatives
of | with respect to u, u and d, and d, respectively at (u*, d*).
The nominal point is the current operating point of the process,
but the nominal optimal point is when the current operating
point of the process is the same as the optimal operating point
of the process. For the sake of simplicity, it is assumed that the
nominal point and optimal point are the same, and thus J}
0. Furthermore, it is assumed that process variables have been
shifted so that the process optimal point is zero (u*, d*) = (0, 0)
and y* = 0.

Ju.d) = J(u )+ I )] [33] *

2.1.1. Measurement model
The model that is used for the SOC optimization problem is a
linear steady-state model as

Ad (4)

y=Gu+Gd=G¢ [Au:|
In Eq. (4), @ and Gi; are gain matrices of process in the steady-
state. There are some further assumptions: (1) All active process
constraints have been controlled and the vector u has been used
to control the remaining unconstrained subspace. (2) It is as-
sumed that the dimensions of ¢ and u are the same. It means
that the number of DOF is the same as the number of controlled
variables ¢ (n, = dim(c) = dim(u) = n,) which causes HG’ to be
a square matrix. (3) It is required that the number of independent
measurements y is greater than or equal to the number of DOF
u (n, > n, = nc). (4) In order to normalize the magnitude of
vectors d and Y, they can be written as d = W,d' and n¥
Wnyny' where Wy and W,y are diagonal matrices with the same
dimensions as disturbance and noise respectively and the vectors
of d and ¥ have unit magnitude.
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2.1.2. Problem statement

It is obvious that when the disturbance d occurs if we have
any input u other than u,(d), it will lead to a loss. As illustrated
in Fig. 2, it can be seen that there is a loss when disturbance d
happens and keeping u constant at u,,:(d*). By using a feedback
control loop to maintain ¢, (the measured CVs) at a constant set
point ¢; = 0, the following equation is obtained:

(5)

Next step is dedicated to calculating the magnitude of loss for
a given H and finding the optimal H that results in a minimum
loss.

Two possibilities for loss can be considered. The first one is the
worst-case loss (Ly.) when the 2-norm of the augmented vector
of normalized disturbance and measurement noise is less than 1
as defined in Eq. (6) and the second one is average or expected
loss as defined in Eq. (7). (E(.), is the expectation operator).

d/
n |||,

Lavg = E(L), |:d

¢n=Hy+n)=Hy, =¢=0

<1

(6)

/

(7)

ny/] € X(0,1)

2.1.3. Minimum loss problem solution
In this section, the exact local method or minimum loss prob-

lem solution has been derived [8]. For a disturbance d, the opti-

mal input u can be derived as follows:

(u*, d)

(0,0)
(8)

It is assumed that the input u changes so that it remains opti-
mal; and consequently the optimal u can be calculated by the
following equations:

Ju(u.d) =0

Ju(u, d) =Ji(u*, d*)+J; u+J;,d  where

(9)

u= uopr(d),

U = I, Tud (10)

In the next step, the cost function J is approximated by the second
order Taylor series expansion around the optimal point u,(d),
which yields

J(u, d) = J(ugpe(d), d) + Ju,ope(@ — tgpe(d))

1
+ 5(“ - uopt(d))TJuu,opt(u - uopt(d)) (11)

The Hessian matrices of cost function are assumed to be constant
because the cost function has been defined as a quadratic func-
tion, i.e. Juy = Ji, and Jua = J;3. In Eq. (11) we have J(u,p(d)) =
Jope(d) and J, ope = 0. Finally, the loss can be written as

1 1
L(u, d) =]J(u, d) — Jop(d) = EZTZ =3 llzll3 (12)
where the variable z is defined as
z 2 J12(u — ugp(d)) (13)

From Eq. (10) the optimal input can be written as u,,; = F,d
where F, = —];L}]ud. The optimal sensitivity of the vector y with
respect to d is defined by F, and can be written as follows:

F=(—GJ, Juu+G) (14)

Eq. (14) may not provide a robust way for computing matrix F,
while finding it by its definition and F = (22£) may be more

Tdd
practical. In the following equations, the loss function in Eq. (12)
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is written as a function of disturbance d and measurement noise
w.

u — Uy = (HE) 'H(Fd 4+ ) = (HG’) "H(FW,yd' + W)

d/
—1
= (HG)"'HY [ny':| (15)
According to Eq. (16), the new variable Y is defined as
Y=[FW; Wy (16)

The final equation for loss as a function of normalized disturbance
and measurement noise can be written as [8]

1
L=-2"z where

Z=)y

= M(H) [FW; W]

2w — ugp) = Ji/2(HG' ) HY [FW; Wiy ]
(17)

The magnitude of loss for a pair of normalized disturbance and
noise can be defined in two ways. The worst-case loss [8] and
average loss [23] for a specified H, can be calculated by using the
following theorems.

Theorem 1 (Worst-case Loss, Eq. 38 of [8]). For a given pair of

disturbances and noise, the worst-case loss is
1_

Lwc(H) = EU(M)Z

In Eq. (18), o(.) denotes the maximum singular value, and M is

defined as M(H) = J/*(HG”)"'HY.

(18)

Theorem 2 (Average Loss, Proposition 1 of [23]). For a given pair of

disturbances and noise, the average loss is
1

Lag(H) = &(L) = - IM|; (19)

In Eq. (19), ||.||f denotes the Frobenius norm and M is defined as

M(H) = J/*(HG")~'HY.

Proposition 1 (Proposition 4 of [23]). The matrix H that minimizes
the average loss of Eq. (19) can also minimize the worst-case loss of
Eq. (18) at the same time.

According to the prior statement, the problem of SOC is sum-
marized as finding the output measurement combination matrix
H that can minimize the Frobenius norm of M. The following
theorem describes how to solve the SOC problem.

Theorem 3 (Minimum Loss Method, Eq. 24 of [9]). For a given pair
of disturbances and noise, in order to minimize both the average
and worst-case loss, Lq,g(H) and L,.(H), find the linear matrix H
by solving the following optimization problem:

min |[J,,*(HG")"'HY |, where Y = [FW; Wy] (20)

As shown in Eq. (20), this optimization problem has a non-
convex form. If there is no constraint on the structure of matrix
H, the non-convex problem stated in the following theorem can
be converted to a convex one.

Theorem 4 (Convex Reformulation For Full H Case, Eq. 28 of [9]).
The non-convex problem in Eq. (20) can be converted to a convex
one if there are no structural constraints on H (which means that
H is a “full” matrix), then it can be stated as a convex quadratic
programming problem with linear constraint

HG' =]

min HY |l s.t. b4 (21)
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In this theorem by adding an equality constraint, the non-
convex problem is changed to a convex problem. As was men-
tioned previously, adding equality constraint in Theorem 4 the
non-convex problem of Theorem 3 can be reformulated as a
convex one. However, adding this constraint can cause a problem
in finding H in some structured H cases such as decentralized and
triangular structures or when there is structured H with some
specified zero elements in H or structured H with measurements
selection i.e, specified zero elements and some zero columns in
H. In these cases, Theorem 4 and both the branch and bound and
MIQP methods cannot be used unless the approximation method
is applied [16] but it cannot guarantee the minimum loss. Another
way to solve both the non-convex and convex SOC problems
is using BMI or LMI techniques. In the next section, the SOC
problem is solved by BMI and LMI methods. The main benefit of
solving the SOC problem by using the BMI/LMI technique is that
it reformulates the non-convex problem to the BMI/LMI form and
does not add an equality constraint to the main problem, hence,
it does not have the drawbacks of previous methods.

3. LMI approach to solve minimum loss problem

Many practical optimization problems in the field of system
control can be solved with matrix inequality constraints [24-27].
The main benefit of changing a problem to the optimization prob-
lem with LMIs is that it can be solved with interior-point-based
methods very efficiently and with any desired accuracy [28-31].

Generally, optimization of BMI problems is computationally
expensive and non-deterministic polynomial-time hardness (NP-
hard), although different methods have been developed for solv-
ing BMI problems [32-37].

BMI method has been applied to solve different control ap-
plications such as state-feedback and output-feedback controller
design [38-44]. Due to the variety of non-convex problems, de-
signing an efficient general algorithm has remained an open
problem although some formulations have been derived for some
types of non-convex problems [45]. In [46,47], it has been shown
that BMI-constrained optimization problems are NP-hard.

As seen in the previous section, the minimum loss problem
method in Theorem 3 is a non-convex problem. The purpose of
this paper is two folds. First, the convex formulation of Theorem 4
is solved and then the non-convex problem of Theorem 3 is
solved by using LMI/BMI techniques. First, an upper bound is
found for the Frobenius norm of Theorem 3. Theorem 5 is our key
theorem to solve the SOC problem. Indeed, it changes the problem
of minimizing a Frobenius norm to a problem of minimizing a
trace of a matrix (Minimizing a trace of a matrix is a general form
of problem in BMI/LMI literature).

Theorem 5. Trace(X) is an upper bound for the ||A| if matrix X
satisfies the constraints of Eq. (22).

[A'T ’}]zo, X>0 X=X (22)

Proof. According to the constraints of Eq. (22) and using Schur’s
lemma [25], it is concluded that if

[‘AIT Ax > 0 then ATA < X which means X — ATA > 0. Since
in the assumption of the theorem, matrix X is symmetric and
positive definite, and also ATA is symmetric and positive definite,
then X — ATA is also a symmetric and positive definite matrix,
which means that all its eigenvalues are positive. By the definition
of matrix trace (sum of matrix eigenvalues), it means that the
trace of this matrix is positive.

Tr(X — ATA) > 0 — Tr(X) — Tr(ATA) > 0 then
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Tr(ATA) < Tr(X) (Trace is a linear operator). Since Tr(ATA) =
|A]|Z we can write [|A||Z < Tr(X) which means that Tr(X) can be
an upper bound for the Frobenius norm of A. O

As seen in Theorem 5, the problem of the Frobenius norm min-
imization can be converted to the LMI/BMI form (see Appendix)
and can be solved easily and efficiently by LMI solvers. Therefore,
Theorem 4 can be written as an LMI problem as the following.

Theorem 6. The optimization problem of Theorem 4 can be stated
as a Linear Matrix Inequality (LMI) problem as follows:

e[ 1oAY o
lHY)Y x| =

X=X", H&'=]!?

uu

min trace(X)
H.X

X >0, (23)
Proof. By using Theorem 5 and applying it to Theorem 4 the
optimization problem of Theorem 6 can be concluded directly. O

Since the constraints of the LMI problem in Theorem 6 are
linear, this problem is an LMI and convex and has a global optimal
solution. LMI problems can be solved with different solvers and
one of their benefits is that any element in H matrix can be forced
to zero for solving the problem in the case of structured H. In
the following, a reformulation of the general SOC optimization
problem of Theorem 3 into the BMI/LMI form is presented. Before
that, two helpful lemmas that are needed for the reformulation
of the general SOC optimization problem are stated.

Lemma 1 (Congruence Transformation, Section 4.2.2 of [48]). If the
matrix Q € R™" is a positive definite matrix, and matrix W € R™"
is a real and full rank matrix (i.e. rank(W) = n), then the following
inequality holds

wQwT >0 (24)

Specifically this Lemma says that pre- and post-multiplication
of a positive definite matrix by a full rank real matrix and its
transpose does not change positive/negative definiteness of pri-
mary matrix.

Lemma 2. Consider two matrices F and P that satisfy convex—
concave constraints (Eqs. 7 to 9 of [49]) of Eq. (25), where (.)*

denotes the complex conjugate transpose.
F*F — P*P < yI (25)

In addition, assume that matrices F € C™" and P € C™" are linear
with respect to the optimization variables. A constraint in the form
of Eq. (25) is called the convex-concave constraint and it can be
convexified by using the Taylor series expansion of term P*P around
P. € C™™" which P, is an arbitrary known matrix as:

P*P ~ PP, + (P — P.)*P + PX(P — P,) (26)

It should be noted that the right hand side of Eq. (26) is always
smaller than the left hand side since

P*P > P*P, + P*P — PP, (27)

(P=P)'(P—Pc)=0 (28)

Theorem 7. The optimization problem of Theorem 3 can be refor-
mulated as a Bilinear Matrix Inequality (BMI) problem as follows:

I J/*HG)'HY
X

(*) in Eq. (29) denotes the complex conjugate transpose of symmetric
matrix element.

(29)

min trace(X) s.t. [
H.X *k

}20, X =0,
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Proof. By using Theorem 5 and applying it to Theorem 3 the
optimization problem of Theorem 7 can be concluded directly. O

As seen in this theorem, the term (HG)~'HY makes the opti-
mization problem non-convex. Generally solving the non-convex
and BMI problems are time consuming and solving them is not
straightforward. If it is possible, it would be better to change them
to the LMI problem and then solve it by standard solvers. Fortu-
nately the non-convex optimization problem of Theorem 7 can be
converted to a convex one by using Taylor series approximation
as follows.

Theorem 8. The optimization problem of Theorem 3 can be
reformulated as a Linear Matrix Inequality (LMI) problem by using
Taylor series expansion as follows:

min trace(X) (30)
H.X

T _p T Tp _
s.t. [PCPC (P =Py Pc+Pe(P—Pc) HY} >0, X>0,

* X
(31)

where

I
P =J,/’ (HG) (32)

and P. € C™" is an arbitrary known matrix. (*) in Eq. (30) denotes
the complex conjugate transpose of symmetric matrix element.

It should be noted that any structural constraint H can be
directly imposed by forcing the desired elements of matrix H to
zero.

Proof. Based on Theorem 5, the Eq. (31) which is the constraint
of the optimization problem can be written as

[1 3,{,2(HG)1HY:|
*

X
by applying congruence transformation (Lemma 1) and choosing
W as the matrix stated in Eq. (34) and Q as a matrix in Eq. (33)
we have

>0

(33)

W = diag((HG)J,,* . 1) (34)
wow” — | HOWw T “(HE)  (HE), )i (HG) ™ "HY
* X
—1/2,-T/2
:[(HG)JW w *(HG)' HY} 35)
* X

By defining matrix P as stated in Eq. (32) and applying the
approximation of Eq. (26) and choosing matrix P, as an arbitrary
matrix, the constraint of Eq. (31) is derived. As can be seen, since
only the matrix P is a variable, then the optimization constraint
is linear and the non-convex optimization problem is changed to
a convex one by using the Tylor series approximation and it can
be solved by LMI solvers. O

In the proof of Theorem 8 (after applying congruence transfor-
mation), on the right-hand side of Eq. (35), the non-convex form
is changed to a BMI form. Since matrix P, is an arbitrary matrix,
for solving the optimization problem and getting acceptable re-
sults, an iterative algorithm such as Algorithm 1 can be used to
get better results.

It should be noted that the non-convex optimization problem
of Theorem 7 can be solved by some BMI solvers such as PENBMI
but as will be shown in the simulation results, it takes much more
time to achieve the same accuracy.



M.R. Jafari, M.M. Arefi and M. Panahi

Algorithm 1 Iterative algorithm of SOC problem optimization
based on Theorem 8

INPUT: &, J, Juar G Wy, Wy,
Calculate matrices F (Eq. (14)) and Y (Eq. (16))
Initialize matrix H with random values
while the desired accuracy for loss is not achieved
set P, as Eq. (32)
solve LMI problem of Theorem 8
Calculate loss and update P,
end while if desired accuracy is achieved
OUTPUT: Optimal matrix H and Loss

3.1. The case of structured H

In the previous section, the problem of finding the optimal H
in the case that there is no restriction on the element of matrix
H was formulated. In this section, the case of forcing a specified
structure on the matrix H is considered.

In real applications we may want to impose limitations on
the structure of H, that is, we may require some elements in H
to be zero. Using a structured H is beneficial for several cases,
for instance, when we do not want to associate measurement
variables that are physically located far away from each other, in
the case of escape coupling variables that have different behavior
or dynamics or have long time-delay, or in the case of merg-
ing related measurements with physical meanings for operators.
Sometimes, we want to separate different parts of the process
from each other like something that happens in the evaporator
case study where we want to separate the evaporator from the
condenser unit and separator. For implementing these cases, it
is required that the matrix H has a special structure and some
elements, columns, or rows of H must be zero. In addition, it
should be noted that as previously mentioned, the full H case is
the worst-case for practical implementation in terms of imple-
mentation costs, for the reason that it requires more instruments
to measure selected measurable variables, cabling, complicated
control system hardware and software, and so on. Therefore, it
is strongly desirable to have greater loss than minimum loss but
reduce the cost of practical implementation.

In general, as stated in Theorem 3, SOC problem is a non-
convex optimization problem in the decision variable H. In the
standard case when H is a full matrix, it may be reformulated
as a convex problem. This follows because the optimal H is not
unique and we have enough extra degrees of freedom in H to
impose a constraint on the matrix HG” and we get an equivalent
quadratic programming (QP) problem which is convex as stated
in Theorem 4. In the structured H cases, because of all the zeros
in H, we do not have enough extra degrees of freedom in H to
satisfy the constraint HG' = Jf,{,z. It should be noted that the
key point for solving the optimization problem of Theorem 4 is
that, the matrix H is not unique and all previous methods have
used a transformation like H; = DH where D is a nonsingular
matrix. If we cannot find a matrix D for the specified structure,
then the optimization problem fails. There are some cases that
force us to use structured H matrix rather than full H case. In the
following, some cases that we should specify a structure on H has
been stated.

e Given a subset of measurements. In this case, for some
reason, we will not use some measurements. For example,
assume we have 2 inputs and 5 measurements of which we
will not use measurements 1 and 3, then the columns 1 and
3 in the matrix H will be zero. This is a simple case and
Theorem 4 is applicable. In this case, J,, is not needed and
simply by deleting corresponding rows in G’ and Y, the full
H case can be used to solve the SOC problem.
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e Optimal subset of measurements. In this case, the objec-
tive is to select a certain number (n) of measurements which
means that n, —n columns in H are zero. This case is similar
to the previous case, in any variable selection we have a
dense H, and Theorem 4 can be used.

e Best individual measurements for decentralized control.
This is the case that, where we want to select n = n,
measurements. If we want offset free control of ¢ = Hy, this
case is the minimum feasible number of measurements and
Theorem 4 may handle it.

e Restriction on measurements from different process sec-
tions. Consider a process with n; sections and ny, measure-
ments in section k (k from 1 to s), and for example, we want
to select r, measurements from each section k. This case
cannot be dealt with the BAB method, but MIQP can handle

it.
e Adding extra measurements to a given set of measure-
ments. Consider a process with n, = 5 measurements,

where we have decided to use the measurements 2, 3, and
in addition, we want to add two other measurements (total
4 measurements). This case cannot be dealt with the BAB
method, but MIQP can handle it.

Among different structures for matrix H, triangular and block
diagonal cases cannot be handled by BAB and MIQP methods,
although there is an approximated MIQP method [16] that was
used in our paper for comparison. The point is that, since the
previous methods use the equality constraint of HG' = 3“/,2
in some cases the suitable matrix D cannot be found and the
optimization problem fails, but the LMI method does not need
to satisfy this constraint and there is no significant problem to
find the solution.

In the literature, choosing the best subset of measurement
variables has been done in three ways: The first method is the
tailor-made branch and bound (BAB) algorithms [12-14], and the
second approach is to change the loss optimization problem to
MIQP and using standard MIQP solvers [15], and the third one
is to find the optimal measurement subset by defining a multi-
objective optimization function and optimize it by trading-off
between steady-state loss and maximizing the cardinality of the
H matrix [50]. All of the previous methods use the convex formu-
lation of Theorem 4 and impose restrictions on the structure of
matrix H. It should be noted that the best measurement subset
may not be equal for both the worst-case and average loss. In
the mentioned methods only the BAB approach can search the
total space of subsets and find the best measurement subset
to minimize both the worst-case and average loss, while the
MIQP method can find the measurement variable subset that
minimizes the average loss. However, practically it is not a de-
fect and in most practical cases it is enough to minimize the
average loss, because the worst-case may not occur very often.
The multi-objective method cannot set a pre-structure for H and
the optimization algorithm finds the best structure while in the
MIQP method the structure of H can be defined. In the proposed
method using the LMI formulation, any structure for H can be
defined easily by forcing any desired element of H to zero and as
is shown in the next section the iterative Algorithm 1 can reach
the optimum loss very fast. As has been summarized in , for the
full H case, all three methods can solve the SOC problem but for
the other two cases PBAB method cannot be used and the MIQP
method can only provide an approximate bound for the loss but
LMI method can be used without any limitation.

4. Simulation results

In this section, the capability of the proposed theorems and
algorithm are verified by applying them to three different pro-
cesses. The optimization problems were implemented in the



M.R. Jafari, M.M. Arefi and M. Panahi

Table 1
Comparison of different methods for structured H.
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Method Structured H cases
Full H with optimal Block diagonal H Structured H with
measurement selection (there or Triangular H measurement selection (with
are some zero columns in H) specific zero elements and
some zero columns in H)
PBAB J X X
MIQP Vv provides an provides an approximate
approximate bound
bound
I J J J

MATLAB environment [51] using the LMI Control Toolbox and
PENBMI of the YALMIP toolbox [52]. The minimum loss optimiza-
tion problem has been solved based on Theorem 6 for convex
form, Theorem 7 for nonconvex form using PENBMI toolbox and
finally Theorem 8 and Algorithm 1 for full and structured H
cases. Simulation hardware and software are Windows 7 Ultimate
with Intel®(R) Core(TM) Duo Processor E8400 (3.00 GHz) using

MATIAB = R2016a.
4.1. Binary distillation column

The proposed theorems and algorithm are applied to the col-
umn A distillation column model [18,53]. The feed of the process
is a binary mixture. the relative volatility of column feed is 1.5.
This binary distillation column has 41 trays which counted from
the bottom to the top. The reboiler is considered as stage 1 and
the feed is entered on stage 21. This column is a suitable example
of a process that has a large number of measurement variables.
The reflux (L) of the condenser and boilup (V) of a reboiler
are the unconstrained steady-state degrees of freedom (u). The
column disturbances and their values are: (1) feed flow rate (F)
(1+£0.2), (2) feed composition (zr) (0.5 & 0.1), and (3) fraction
of liquid in the feed (gr) (1 £ 0.1). As composition measurement
is difficult and expensive, the composition has been controlled
indirectly by controlling stage temperatures. The boiling point
difference between the heavy key component (H) and the light
key component (L) is 10 °C. It has been assumed that we have a
constant molar flow rate, no vapor hold up, constant component
relative volatility, constant pressure, and equilibrium on each
stage. By considering the mentioned assumptions, only mass and
component balances are applied in the binary column model.
Furthermore, the temperatures of each stage are approximated as
a linear function of each stage component mole fractions. On each
stage of the column, the temperature on stage i (T;) can be written
as a linear function of the liquid composition (x;) as follows [18]:

T; = Ox; + 10(1 — x;) (36)

The temperature of 41 distillation column stages are selected
as the candidate measurement and they can be measured with
an accuracy of £0.5 °C. It should be noted that the inputs L
and V have not been included in measurements. For indirect
composition control, the cost function J has been defined as
relative composition deviation in the steady-state as

XH

( t

H X

t,s)2+( b -
Xp

L

— X X
b,s \2

J )

(37)

H
xt,s .S

where xf’ denotes the top product heavy key component (H) com-
position, and xﬁ denotes the light key component (L) composition
in bottom product (xﬁ’ = x% = 0.01). The subscript ’s’ refers to the
setpoint value [53] (see Fig. 3).

The results of solving the SOC optimization problem based
on Theorems 6, 7, and Algorithm 1 have been presented in Ta-
ble 2. From this Table, it can be seen that the loss value and
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Fig. 3. A typical distillation column with LV configurations.
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Fig. 4. The loss vs the no. of iterations of Alg. 1 for binary distillation column
example.

optimal measurements are the same as PBAB and MIQP methods
[12,15]. As depicted in Fig. 4, the proposed algorithm in only
two iterations can effectively achieve the optimal loss. In this
paper, our focus was on the reformulation of the SOC problem
as an LMI form and solving some types of structured H cases
such as triangular and block diagonal that were not supported
by previous methods. The presented method cannot select the
optimal combination of measurements for a given number of
measurements in its current form. The measurement combination
selections are driven from [15,16] and are presented here for the
sake of comparison to show that the proposed method can find
the minimum loss similar to or even better than the reported
methods in the literature for structured H case.
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Table 2
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Binary distillation column : Optimal controlled variables, optimal measurements and loss.

No. of meas. (n)

CVs as a function of meas.

Average loss value (Eq. (19))

2 c= Tu} 0.5478
| T30
_ [ 4.6632Ty; +0.1374T5,
3 €= | —3.3491T3 — 3.3916T31] 0.4425
_ 1.3261Ty; + 1.2855T1, + T3
4 €= | 0.2231Ty; + 2.5048Ts) + 2.5708T31:| 0.3437
[£(T1, ..., Tar)
41 c= 0.0813
f(T1. ..., Tar)
Table 3
Distillation column case study: Structured H loss comparison for approximated MIQP and LMI methods.
No. Meas. Structure
Full H* Block diagonal H* Triangular H*
Approximated MIQP [54] LMI Approximated MIQP [54] LMI
v c1 =f(Ti2) ¢1 =f(Ti2) ¢ =f(Ti2) ¢ =f(T12) ¢1 =f(T12)
2 c2 = f(T30) ¢ = f(T30) ¢ = f(T30) ¢2 = f(T30) ¢ = f(T30)
Loss 0.548 0.548 0.548 0.548 0.548
v ¢1 = f(T12, T30, T31) ¢1 = f(T30, T31) ¢1 = f(T30, T31) ¢1 = f(T30, T31) ¢1 = f(T30, T31)
3 c2 = f(T12, T30, T31) ¢ = f(Tr2) ¢ = f(Tr2) 2 = f(T12, T30, T31) 2 = f(T12, T30, T31)
Loss 0.443 0.443 0.443 0.464 0.443
v c1 = f(Tu, Tiz, T30, T31) c1 = f(T30, T31) c1 = f(T30, T31) c1 = f(T30, T31) c1 = f(T30, T31)
4 ¢ = f(T11, Trz, T30, T31) ¢ = f(Ti, Ti2) ¢ = f(Ti1, Ti2) ¢2 = f(T1, Tia, T30, T31) ¢2 = f(T11, Ti2, T30, T31)
Loss 0.344 0.344 0.344 0.353 0.344
v 1 =f(T1,...,Ta1) 1 =f(Ta, ... Ta1) 1 =f(Ta, ... Ta1) 1 =f(Ta, ..., Ta1) 1 =f(Ta,....Ta1)
41 c=f(T1,...,Ts1) ¢ =f(Ty, ..., Tx) ¢ =f(Ty, ..., Tx) ¢ =f(T1,...,Ts) ¢ =f(T1,...,Ts)
Loss 0.081 0.105 0.104 0.094 0.088
2The coefficient of function f is different for full H, approximated MIQP and LMI methods.
Regarding dynamics, for block-diagonal structure in the distil- cooling water
lation column case study, it is desirable to select one combined ¥ densate
measurement from the top section of column (stages 21-41) and gondenser
one from the bottom section (stages 1 to 20). The purpose of the
triangular H structure is to obtain two CVs, where c; is selected seperato
from top stages temperatures and c, is selected from all stages
temperatures. Triangular H is dynamically desirable to avoid the
large time delays between c; and reflux (L) that can arise by nmn
including the bottom tray temperatures in cy. steam 31
The performance of the LMI method versus approximated
MIQP method [54] in the case of structured H has been illustrated
in Table 3. As it can be seen in Table 3, it is reasonable to settle for Evaporator

a slightly higher loss in the structured H case rather than using a
more practically complex full H.

4.2. Evaporator process

The evaporator process is a simple and realistic process. The
model of the process is a modified version of the basic model [55]
as described in [23]. Fig. 5 shows the schematic of this process.
The evaporator process has 3 disturbances, 10 candidates for
measurement, and 2 inputs (steady-state degrees of freedom) as
follows:

u= [ono Fl]T (383)
y=[P, &2 T35 B, Fio Ton Fs F5 Fxo F] (38b)
d= [Xl T, Tzoo]T (38¢)

For this process, the negative profit is selected as the loss func-
tion [23] as shown in Eq. (39).

] = 600F;00 + 0.6F»00 + 1.009(F, + F3) + 0.2F; — 4800F,  (39)
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—

condensate

Feed

L&
& Product
>

Fig. 5. Evaporator process [15].

Similar to the previous example, the results of solving the
SOC optimization problem based on the proposed theorems and
algorithm (6, 7, 1) have been shown in Table 4.

As can be seen in Table 4, the three theorems and algorithm
(6, 7, 1) give the same results as previous methods [9,15] (see
Fig. 6).



M.R. Jafari, M.M. Arefi and M. Panahi

Table 4
Evaporator process :

Journal of Process Control 116 (2022) 172-184

Optimal controlled variables, optimal measurements and loss.

No. of meas. (n)  CVs as a function of meas.

Average loss value (Eq. (19))

2 c=[F  Fu] 56.0260
3 c=[F Fio Fauo] 11.7014
4 c=[R To F  Fao] 9.4807
5 c=[F Foo Tor F  Fo] 8.0960
6 c=[h Fo To F F  Fy 7.7127
7 c= [Pz F, Fioo Tt F Fs ono] 75971
8 €= [P2 L F Fioo To F Fs ono] 7.5756
9 c=[Ph T, B Fw Ta F F FBo F ] 7.5617
10 c= [PZ T, T3 F Fioo To F F  Fo F1] 7.5499
60
50 [ i
D
40 4
> S
= Feed
=
=30 | —
(]
= —> S,
20 i
A
10 i &_/
B
0 ‘ ‘ ‘ ‘ ‘ >
1 15 2 2.5 3 3.5 4

No. of iteration

Fig. 6. The loss vs the no. of iterations of Alg. 1 for evaporator example.

Table 5 compares the LMI and approximated MIQP [54] meth-
ods for different number of measurements in the case of disjoint
measurement sets. For the evaporator case study two disjoint
measurement subsets can be considered; one for the evaporator,
i.e. {Ty, F5, F100, F3, F1} and another for the condenser and sep-
arator unit i.e. {P,, T3, Txo1, F5, F200}. Mainly, for good dynamic
responses, it is desirable to separate the evaporator unit from the
condenser and separator unit, so that H has a structure in the
form of Eq. (40). As can be seen in Table 5, the LMI method can
find a better structure and a lower loss. It should be noted that
the block-diagonal structure of H in the case of 10 measurements
is based on the following matrix H:

hi1o
0

(40)

0

H-| °
~ Lhn

h23

0
has

0
has

0
hag

h1,
0

hi4
0

his
0

ha7
0

4.3. Kaibel distillation column

A Kaibel distillation column process with vertical partitions
[56,57] is a column that can separate a feed mixture of four
products into its pure fractions. The feed of the column is a
mixture of methanol, ethanol, propanol, and butanol labeled as A,
B, C, and D respectively. This column is categorized as a thermally
coupled distillation column and potentially has a high energy
saving characteristic [57]. The objective function J can be defined
to minimize the impurities in the column products as

J =D(1 —x4p)+ S1(1 —xps,) + S2(1 — Xp p) (41)
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Fig. 7. Kaibel distillation column.

where the variables D, S;, S,, and B are the column distillate, side
product 1, side product 2 and bottom flow rate of column per
mol/min, respectively. x;; is the mole fraction of component i
in product j. The inputs of the Kaibel column are L, Sy, Sy, R;.
This column has 7 sections and each section has 10 trays. By
measuring the temperature of each tray plus the temperature of
the reboiler with an accuracy of 0.1 °C, we have 71 temperature
measurements which are used as the candidate measurement
vector (y). The variables of vapor boil up (V), feed flow rate (F),
vapor split (Ry), mole fraction of A in feed stream (z,), mole
fraction of B in feed stream (zp), mole fraction of C in feed stream
(z¢), liquid fraction of the feed stream (qr) are considered as
disturbances which vary between 3 + 0.25, 1 £+ 0.25, 0.4 £ 0.1,
0.25+£0.05, 0.25+0.05, 0.25£0.05, 0.9+ 0.05, respectively [17]
(see Fig. 7).

Similar to previous examples, results of solving the SOC opti-
mization problem based on the proposed theorems and algorithm
(6, 7, 1) have been shown in Table 6.

Simulation results for all examples show that the proposed
algorithm (Alg. 1) improves the computation time for solving
the optimization problem of Theorems 6 and 7. Results are
shown in Table 7. The reason is that solving the LMI problem of
Theorem 6 calls for solving an LMI problem with equality con-
straint which is a strict constraint and thus finding the solution
is time-consuming. For solving the optimization problem with
Theorem 7, the PENBMI package was used to solve the BMI
problem of Theorem 7 and because of the nonlinearity of this
problem, it is time-consuming, but Alg. 1 can solve the problem in
only two iterations. As can be seen in Tables 2 and 4, the proposed
algorithm can find optimal CVs with the same loss as BAB and
MIQP methods. It should be noted that this algorithm cannot do
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Table 5
Evaporator case study: Structured H loss comparison of approximated MIQP and LMI method.
No. Meas. Structure
Full H* Block diagonal H
Approximated MIQP? [54] LMI*
v c1 = f(T) ¢1 = f(T2) c1 = f(T2)
2 ¢ = f(Ta01) ¢ = f(Ta01) ¢ = f(Ta01)
Loss 65.324 65.324 65.324
v ¢y = f(Ty, Fs, F200) ¢ =f(T) ¢ =f(T)
3 ¢ = f(T,, Fs5, F200) ¢z = f(Fs, Fa00) ¢2 = f(Fs, Fa00)
Loss 56.788 58.655 58.207
v ¢1 = f(Fa, Foo, Fs, Fa00) ¢1 = f(F2, Fio0) ¢ = f(F2, F100)
4 c2 = f(F2, Fio0, Fs, Fa0) 2 = f(Fs, Fa00) 2 = f(Fs, F200)
Loss 9.954 11.935 11916
v c1 = f(Py, Fs, Fago, F2, F3) ¢1 = f(Pa, Fs, Fa00) ¢1 = f(Pa, Fs, Fa00)
5 ¢2 = f(Py, Fs, Faoo, F2, F3) ¢ = f(Fy, F3) ¢ =f(F, F3)
Loss 8.000 31.748 20.332
v ca=f) a=fy) ca=fy)
10 = fy) c = fy) e =fy)
Loss 7.550 9.245 8.8847

aThe coefficient of function f is different for full H, approximated MIQP and LMI methods.

Table 6

Kaibel column : Optimal controlled variables, optimal measurements and loss.

No. of meas. (n)

CVs as a function of meas.

Average loss value (Eq. (19))

4 c=[Tz2 To Tsi Tes)
5 c=[Tn Tsi Te Tes
6 c= [le Too Tz Tsy
71 c=[N T ... Tn

11.6589
Teo | 2.9700
Teo  Tea] 1.0140

0.0101

Table 7
Evaporator case study: Computation time of LMI/BMI methods for full H case.

CPU time (s)
Theorem 6 (Equality constraint)
0.0022

Theorem 7 (BMI method)
0.0053

Alg. 1
0.0010

2000

1800 4

1600 4

1400 - 1

1200 - J

1000 [ b

1/2||M]|

©
o
o
T
I

400 [ 1

200 [ 1

1 15 2 25 3 3.5 4
No. of iteration

Fig. 8. The loss vs the no. of iterations of Alg. 1 for Kaibel column example.

the measurement selection but due to its capability to define any
structure for matrix H, we select the same variable as in BAB and
MIQP methods to evaluate the performance of the algorithm to
calculate the loss. Tables 3 and 5 show the superiority of the LMI
method to approximated MIQP method in finding the better loss
in block diagonal and triangular cases where the BAB algorithm
cannot be used (see Fig. Fig. 8).
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5. Conclusion

In this work, LMI techniques have been considered to solve
the main SOC optimization problem. The main objective of this
paper is to develop a method to solve the non-convex problem of
Theorem 3 by LMI techniques. Due to using Tylor series ap-
proximation in the proposed algorithm, a globally optimal so-
lution cannot be guaranteed, but simulation results show that
the method works and can converge to a local minimum very
fast. The main purpose of this work is to change the non-convex
problem of SOC to a convex one but not using global optimization
solvers for the resulting BMI problem. Instead, the non-convex
problem has been solved by PENBMI solver, which it is time
consuming. It was shown that the LMI method has a capability to
work with matrices, and can be used easily for structured H cases
by only forcing the desired LMI variables to zero. In addition, it
was a general solver for both convex and non-convex problems.
According to Theorem 8, the method has the capability of solving
optimization problems not only for full H case but also for any
structured case.
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Appendix. LMI form

A linear matrix inequality (LMI) form is as follows [25]

m
F(x) 2 Fy + inﬁ >0

i=1

(A1)

where x € R™ is the variable and symmetric matrices F; = F,.T €
R™™M are given matrices. The inequality in Eq. (A.1) denotes that
F(x) is a positive definite matrix.
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