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ABSTRACT: Many methods are available to tune proportional
integral (PI) controllers for first order plus time delay (FOPTD)
models of overdamped processes. The two asymptotes for small
and large ratios of time delays over time constants are easily
calculated. These two asymptotes can be used to evaluate and
provide guidelines for the performance and application ranges of
PI controller tuning rules. By matching these two asymptotes, a
simple analytic tuning rule is suggested. For some overdamped
processes whose transfer functions have large zero terms, half-
order plus time delay (HOPTD) models are found to yield better
results than the FOPTD models. Applying the technique of
matching two asymptotes, a simple analytic PI controller tuning
rule has also been proposed for the HOPTD models. To apply these tuning rules to high order processes with known transfer
functions, model reduction methods to obtain the FOPTD and HOPTD models are investigated. Simulation results for empirical
and full models of processes show the performances of the proposed model reduction methods and tuning rules.

1. INTRODUCTION

Proportional integral (PI) controllers are the dominant
controllers in the process industries.1,2 Although they have
only two tuning parameters, field tuning requires systematic
methods. The Ziegler−Nichols method3 is one of the earlier
successful methods to tune PI controllers. It designs the PI
controllers with the ultimate gain and the ultimate period, but it
is criticized for providing too-oscillatory closed-loop responses.
The Cohen−Coon method4 uses the first order plus time delay
(FOPTD) model of process with three parameters of the
overdamped process: steady state gain, time constant, and time
delay. The Cohen−Coon method aims for a closed-loop
response with quarter decay ratio, which is viewed as too
oscillatory.
The iterative continuous cycling method5,6 designs a PI

controller by finding the ultimate gain and the ultimate integral
time of the controller successively. The guaranteed gain and
phase margin method7 yields a PI controller such that the
closed-loop system meets the given gain and phase margins.
When the first order plus time delay model is used, analytic
tuning rules in terms of the FOPTD model parameters are
obtained. Because design purposes of both methods are not
limited to a certain ranges of time delays, both methods can be
valid for wide ranges of time delays.
Many analytic tuning rules that use the FOPTD model such

as the Cohen−Coon method4 are available. Optimum PI
controller parameters can be obtained by minimizing integral
error criteria.8 For the FOPTD models, they can be fitted by
one design parameter, the ratio between time constant and time

delay. PI controller tuning relationships are available for various
integral error criteria, for example, the integral of the absolute
error and integral of the time-weighted absolute error.1,8 These
tuning rules are valid for a certain ranges of time delays due to
fitting.
The direct synthesis method1,9 and the internal model

control method10,11 provide very simple tuning rules for the
FOPTD model. The PI controller is designed for the closed-
loop system to be a given transfer function with one design
parameter, which is the desired closed-loop time constant.
Here, the open-loop time constant is canceled by the controller
zero and consequently load performances can be very sluggish1

when the time delay is small compared to the time constant.
Skogestad12 removed the drawback of the internal model
control method to tune PI controllers simply by limiting the
integral time. It can be ensured by analyzing two asymptotes for
small and large time delays that this modification will be
effective. Various PI controller tuning rules have been filed by
O’Dwyer.13

Here two asymptotes of PI controllers are used to evaluate
existing tuning rules and to propose new tuning rules for
FOPTD and half-order plus time delay (HOPTD) models.
Tuning rules for two extreme cases of small and large time
delays compared to the time constants can be obtained easily.
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By matching these two tuning rules, simple tuning rules are
obtained here. As shown in Lee et al.,14 the FOPTD model can
have difficulty even for some overdamped processes. To
overcome such drawbacks of the FOPTD model-based method,
the half-order plus time delay (HOPTD) model-based
method14 is suggested. The HOPTD model-based method to
tune PI controllers seems to be applicable to almost all
overdamped processes robustly. Here, a simple tuning rule for
the HOPTD model is also suggested.

2. MOTIVATION AND TWO ASYMPTOTES OF PI
CONTROLLER TUNING RULES

Consider the FOPTD model

θ
τ

=
−
+

G s k
s

s
( )

exp( )
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Here k, τ, and θ are the process steady state gain, time constant,
and time delay, respectively. Based on this model, the
proportional integral (PI) controller
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is designed. There are many PI controller tuning rules that can
be applied to FOPTD processes of eq 1.1,2,8,13 Some rules are
limited applications and some are wider applications.
One of the simplest PI controller tuning rules is10,11

τ
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which can be derived by the direct synthesis method1 or the
internal model control method10 with the 1/0 Pade
approximation of time delay. Here λ is the design parameter
representing the closed-loop time constant and its default value
is θ. For a large time delay compared to the time constant, its
closed-loop performances are excellent. However, as the time
delay decreases, its load performances become worse.1,2

Skogestad12 has removed this drawback simply by limiting
the integral time as

τ τ λ θ= +min( , 4( ))I (4)

The closed-loop performances for a small θ are improved
considerably. This simple modification of eq 4 provides two
asymptotes of τI = τ for a large θ and τI = 4(λ + θ) for a small θ.

Here these two asymptotes are studied to evaluate and design
PI controller tuning rules.
When θ≫ τ, PI controller should be designed for the closed-

loop responses to be slow. Hence the process can be
approximated as

θ θ≈ − = − ̃ ̃ =G s k s k s s s( ) exp( ) exp( ), (5)

Tuning rules for this process are given in Table 1, and some
closed-loop performances are shown in Figure 1. All tuning
rules in Table 1 for the process of eq 5 are acceptable.

When θ ≪ τ, PI controller can be designed for the closed-
loop responses to be fast. Hence the working frequencies are
high and the process can be approximated as
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τ
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Tuning rules for this process are given in Table 1, and some
closed-loop performances are shown in Figure 2. Except for the
Ziegler−Nichols open-loop method, all tuning rules in Table 1
for the process of eq 6 are acceptable. Here a set-point filter to
reduce the overshoot for step set-point changes will be
required.

Table 1. PI Controller Tuning Rules for Pure Delay and Integral Plus Time Delay Processes

process method13 kc τI kI design parameter

θ− sexp( ) Astrom−Hagglund 0.195 0.284θ 0.69/θ ζ0 = 0.707

0.135 0.25θ 0.54/θ ζ0 = 1.0
Hansen 0.2 0.3θ 0.67/θ
direct synthesis 0.125 0.25θ 0.5/θ τ = 0, λ = θ

SIMC12 0 0 0.5/θ τ = 0, λ = θ

θ− s
s

exp( )
Ziegler−Nichols 0.9/θ 3θ 0.3/θ2 open-loop method

Tyreus−Luyben 0.487/θ 8.75θ 0.056/θ2

Astrom−Hagglund 0.35/θ 7θ 0.050/θ2

Chien−Fruehauf 0.556/θ 5θ 0.111/θ2 λ = 2θ
O’Dwyer 0.357/θ 4.3θ 0.083/θ2 Am = 4, ϕm = 60°
Cheng−Yu 0.524/θ 8θ 0.066/θ2 Am = 2.83, ϕm = 46.1°
SIMC12 0.5/θ 8θ 0.063/θ2

Figure 1. Closed-loop responses of PI controllers for the pure delay
process, Gp(s) = exp(−s).
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Tuning rules in Table 1 are the desired two asymptotes for
small and large time delays over the time constants. Here these
two asymptotes are used to evaluate existing tuning rules and to
propose new tuning rules by matching them.

3. ASYMPTOTE COMPARISONS
3.1. Ziegler−Nichols (Closed Loop).3 From the ultimate

gain ku and the ultimate period pu, Ziegler−Nichols3 proposed
the tuning rule of kc = 0.45ku and τI = pu/1.2. Now it is one of
the base tuning rules for comparisons.
The ultimate gain and period for G(s) of eq 5 are

θ

=

=

k k

p

1/

2
u

u (7)

and for G(s) of eq 6 are

π πτ
θ

θ

= ̃ =

=

k
k k

p
2 2
4

u

u (8)

Hence two asymptotes for the Ziegler−Nichols method3 are
as shown in Table 2. Considering tuning rules in Table 1, τI for
θ ≫ τ is too high and closed-loop responses will be sluggish for
delay-dominant processes. On the other hand, τI for θ ≪ τ is
somewhat small and closed-loop responses will be oscillatory
for lag-dominant processes. These are well-known drawbacks of
the Ziegler−Nichols method.2,15 The Ziegler−Nichols method
should be used for the moderate range of the time delays
compared to the time constants.
3.2. Cohen−Coon.4 The tuning rule for the Cohen−Coon

method4 is

θ
τ θ

τ θ τ θ
τ θ

= +

= +
+

⎜ ⎟⎛
⎝

⎞
⎠kk

1
0.9

12

30 3
9 20

c

I (9)

The two asymptotes for this tuning rule are given in Table 2.
Considering tuning rules in Table 1, the controller integral time
τI’s for both asymptotes are somewhat low. Hence closed-loop
responses will be oscillatory for both delay- and lag-dominant

processes. Actually the Cohen−Coon method will provide PI
controllers that meet the design concept of quarter decay ratio,
which is viewed as too oscillatory.

3.3. ITAE.1 PI controllers that minimize some error criteria
can be designed. The integral of time-multiplied absolute errors
(ITAE) method is popular due to its conservative perform-
ances.1 The tuning rule for the set-point change is

θ τ τ
θ

τ τ
θ τ

= ≈

=
−

−kk 0.586( / ) 0.586

1.030 0.165 /

c
0.916

I
(10)

Considering tuning rules in Table 1, for a small θ, this tuning
rule can be too sluggish due to too-large τI. For a large θ, it
cannot be used due to negative τI.
The tuning rule for the load change is

θ τ τ
θ

τ τ
θ τ

= ≈

=

−

−

kk 0.859( / ) 0.859

0.674( / )

c
0.977

I 0.680
(11)

It shows quite different asymptotes compared to those in
Table 1 and cannot be used for both small and large θ’s.
Drawbacks of these tuning rules are due to the fitting
limitations of simpler equations of eqs 10 and 11.

3.4. Iterative Continuous Cycling.5,6 The characteristic
equation for the PI control system stability is

θ
τ

+ +
−

+
=

⎛
⎝⎜

⎞
⎠⎟k

k
s

k s
s

1
exp( )

1
0c

I

(12)

The iterative continuous cycling method designs kc first with kI
= 0. Find the ultimate gain kcu and let

ξ=k k /c cu (13)

Then, under kc, find the ultimate integral gain kIu and let

ξ=k k /I Iu (14)

The gain margin ξ can be different for kc and kI.
With the 1/0 Pade approximation of exp(−θs) = −θs + 1, the

analytic tuning rule can be obtained as

τ
ξθ

ξθ
τ

ξ θ

=

= +

kk

kk
1

c

I 2 2
(15)

For the 1/1 Pade approximation of exp(−θs) = (−θs/2 + 1)/
(θs/2 + 1), the analytic tuning rule can be obtained as (ξ = 4 is
used)

τ
θ

τ θ τ θ
θ τ θ

= +

= + +
+

kk

kk

2
0.25

3(2 )(2 5 )
8 (14 3 )

c

I 2
(16)

For the tuning rule of eq 15, with a constant gain margin ξ, it
is impossible for both asymptotes to be similar to those in
Table 1. The gain margin of ξ = 2 for delay-dominant processes
and ξ = 4 for lag-dominant processes will be useful. The tuning
rule of eq 16 has both asymptotes similar to those in Table 1. It
can be used for the whole range of time delays.

Figure 2. Closed-loop responses of PI controllers for the integral plus
time delay process, Gp(s) = exp(−s)/s.
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3.5. Guaranteed Gain and Phase Margins.7 Ho et al.7

proposed PI controller tuning rules based on the given gain and
phase margins. They obtained analytic rules with a linear
approximation of arctangent function in phase computations as

ω τ

τ ω θ
π

ω
τ

ω
ϕ π

θ

=

= − +

=
+ −
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−
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c
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I p p
2

1

p
m m m m
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2

(17)

Here Am and ϕm are the design parameters of gain and phase
margins, respectively. Typical tuning rules are given in Table 2.

Two asymptotes are very similar to those in Table 1, and
excellent closed-loop performances regardless of time delays
will be obtained.

3.6. Direct Synthesis with Taylor Series Matching.9

The close- loop transfer function for the process of eq 1 with
the controller of eq 2 is

=
+

G s
G s C s

G s C s
( )

( ) ( )
1 ( ) ( )cl

(18)

With specifying the closed-loop transfer function as

θ
λ

=
−
+

G s
s

s
( )

exp( )
1cl (19)

the controller C(s) can be obtained as

Table 2. Asymptotes of Various PI Controller Tuning Rules for FOPTD Processes, = θ
τ

−
+G s( ) k s

sp
exp( )

1

asymptotes

θ/τ → ∞ θ/τ → 0

method tuning rules kkc τI (kkI) kkc τI design parameter

Ziegler−Nichols (closed loop)3 kc = 0.45ku 0.45 1.67θ (0.27/θ) 0.71τ/θ 3.33θ
τI = pu/1.2

Cohen−Coon4 eq 9 0.083 0.15θ (0.55/θ) 0.9τ/θ 3.33θ
ITAE1 eq 10 ∼0.6τ/θ negative ∼0.6τ/θ ∼τ set point

iterative continuous cycling5
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direct synthesis with Taylor series matching9
τ
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1
8c 0.125 0.25θ (0.5/θ) 0.5τ/θ τ λ = θ

τ τ θ= + 0.25I

Skogestad internal model control12,15
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3
, 4( )I

AMIGO16 eq 22 0.15 0.3θ (0.5/θ) 0.35τ/θ 7θ
τ
θ

= +kk 0.14 0.28c 0.14 0.33θ (0.42/θ) 0.28τ/θ 7.13θ pure FOPTD process

τ θ τθ
θ τ

= +
+

0.33
6.8

10I

aModified by Grimholt and Skogestad.15
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Various tuning rules according to approximations of the time
delay exp(−θs) can be obtained. For example, with the 1/0
Pade approximation of exp(−θs) = −θs + 1, the tuning rule of
eq 3 is derived.
With truncating the Taylor series of eq 20, Lee et al.9

obtained a PI controller tuning rule

τ
λ θ
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λ θ

τ τ θ
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2

2
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Its asymptotes are shown in Table 2 (λ = θ is used). The
asymptotes for θ ≫ τ are similar to those in Table 1. On the
other hand, the asymptotes for θ ≪ τ are quite different from
those in Table 1. Actually, when θ ≪ τ, the load responses are
very sluggish and some modifications should be applied, for
example, introducing the integral process approximation as in
Seborg et al.1 Other tuning rules based on the direct synthesis
method and internal model control method also suffer from
this drawback.
3.7. Skogestad Internal Model Control (SIMC).12

Skogestad12 has removed the drawback of the direct synthesis
method and the internal model control method simply by
limiting the integral time as in eq 4. This simple modification
provides two asymptotes of τI = τ for a large θ and τI = 4(λ + θ)
for a small θ as in Table 2, which are very similar to those in
Table 1. Excellent closed-loop performances are obtained for
the whole range of time delays. Grimholt and Skogestad15

proposed a tuning rule slightly improved for a large delay.
3.8. AMIGO.16 Hagglund and Astrom16 proposed tuning

rules based on the Ms-constrained integral gain optimization
(MIGO). They maximize the integral gain kc under the
constraint of peak amplitude ratio of sensitivity function (Ms).
One of the approximate explicit tuning rules (AMIGO) is given
as

τ θ θ τ

τ θ τ θ τ

τ θ τ θ
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θ θ τ

θ τ θ τ
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c
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For FOPTD processes, the tuning rule is further simplified as
shown in Table 2. Its two asymptotes are similar to those in
Table 1, showing that the tuning rule can be used for the whole
range of delays. Tuning rules for PID controllers based on this
concept17 are also available.

4. NEW TUNING RULE FOR THE FIRST ORDER PLUS
TIME DELAY (FOPTD) MODEL

The SIMC rule can be interpreted as (the default design
parameter of λ = θ is used)

τ τ θ
τ θ

= ≈ +
−⎛

⎝⎜
⎞
⎠⎟min( , 8 )

1 1
(8 )p p

p

I

1/

(23)

When p goes to infinity, the approximation of eq 23 is exact.18

For p ≈ 8, both terms are nearly the same. The approximation
of eq 23 can be interpreted as the matching of two asymptotes
of τI = τ and τI = 8θ. By adjusting p, the bad effect of switching
near τ = 8θ may also be mitigated. When p = 1, the structure of
eq 23 is equivalent to those of the guaranteed gain and phase
margins method as in Table 2. Utilizing this matching
technique, a new tuning rule is developed.
Here a two degree of freedom (2DOF) controller1,2 as in

Figure 3 is considered. The usual PI controller cannot

guarantee closed-loop performances for both set-point change
and load change in the input. Especially, for lag-dominant
processes, closed-loop performances for the set-point changes
are quite different from those for the load changes in the input.
For delay-dominant processes (θ ≫ τ), a tuning rule based

on the internal model control method is effective and used
here. The set-point filter is not required. The tuning rule is

τ
θ

τ τ
τ τ

=

=
=

kk
2c

I
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For lag-dominant processes (θ≪ τ), a new tuning rule based
on the dominant pole method2 is considered:
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c
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It is derived by specifying that a pole of closed-loop system is at
s = −α(1 + j). The PI controller parameters are calculated
from2

θ
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α=− +
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s

k s
s

1
exp( )

0
s j
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The pole location α is selected to be 1/(2.428θ) so that the
proportional gain is kkc = τ/(2θ). The zero time constant τsp of
the set-point filter is set to be 1/|−α(1 + j)|, which is similar to
that suggested in Astrom and Hagglund.2

Tuning rules of eqs 24 and 25 are combined as

Figure 3. Equivalent 2DOF (two degree of freedom) PI control
systems (τF = bτI).
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Here, based on simulation results, p = 2 for the matching of two
asymptotes is selected. The tuning rule of eq 27 has asymptotes
of eqs 24 and 25, which are similar to those in Table 1, and can
be used for the whole range of time delays.
Figure 4 shows closed-loop responses for load changes in the

process input and step set-point changes. Responses are

compared with the modified SIMC tuning rule.15 For θ =
0.1, the proposed tuning rule shows excellent load and set-point
response, compared to the modified SIMC tuning. The
modified SIMC method shows load response sluggish a little.
It is due to a large integral time of τI = 8θ. However, its choice
will be inevitable for the low overshoot in the set-point
response. With the 2DOF controller, this can be avoided and
here low integral time near τI = 4.31θ is used without worrying
about overshoots. The sluggish load response is relieved and
overshoot in the set-point response is suppressed by the set-
point filter. For θ = 1 and θ = 5, the proposed tuning rule
shows closed-loop responses with a similar shape. The modified
SIMC tuning rule shows slow drifts due to the increased
integral time. However, such drift may not be a severe
disadvantage.
Figure 5 shows several quantitative properties of the

proposed tuning rule compared to the modified SIMC tuning.
Both tuning rules have similar peak amplitude ratios (Ms) near
1.7, showing their robustness. The values of the integral of
absolute errors (IAE) of the proposed tuning rule are higher by
about 10% for a large time delay θ. For a small time delay θ,
those are increased for the set-point changes and decreased for

the load changes. Increments for the set-point changes are due
to the set-point filters used in the proposed control system.
However, the set-point filters will be inevitable to suppress
overshoots in the set-point responses. Except for a very small
time delay θ, overshoots in the set-point responses are well
below 10% for both tuning rules.

5. NEW TUNING RULE FOR THE HALF-ORDER PLUS
TIME DELAY (HOPTD) MODEL

As shown in Lee et al.,14 the FOPTD model can have trouble
even for some overdamped processes. To overcome such
drawbacks of the FOPTD model-based method, the half-order
plus time delay (HOPTD) model-based method can be used.
The HOPTD model-based method to tune PI controllers can
be applied to almost all overdamped processes robustly.
Consider the HOPTD model14

θ
τ

=
−

+
G s

k s
s

( )
exp( )

1 (28)

When θ≫ τ, PI controller should be designed for the closed-
loop responses to be slow. Because the Pade approximation for
the half-order term can be applied, the process becomes

θ
τ

θ
=

−
+

≈
−

+τG s
k s

s
k s

s
( )

exp( )
1

exp( )
1

2 (29)

Applying the SIMC method,12 we have

τ
θ

τ τ

=

=

kk
4

2

c

I (30)

When θ ≪ τ, PI controller can be designed for the closed-
loop responses to be fast. Hence the working frequencies are
high and the process can be approximated as

Figure 4. Closed-loop responses of PI controllers for FOPTD
processes, Gp(s) = exp(−θs)/(s + 1).

Figure 5. Ms (peak amplitude ratios of the sensitivity function, S(s) =
1/(1 + G(s) C(s))), relative IAE (integral of absolute errors of the
proposed FOPTD method over the modified SIMC method15), and
peak values in the unit set-point responses for FOPTD processes,
Gp(s) = exp(−θs)/(s + 1).
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For this lag-dominant model (θ ≪ τ), the dominant pole
method2 as in the above FOPTD model is applied and a tuning
rule is obtained as

τ
θ

τ θ

=

=

kk 0.4619
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c

I (32)

This tuning rule satisfies2
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(1 ) (33)

One of the closed-loop poles is at s = −α(1 + j). Here α is set
to 1/(3θ).
Tuning rules of eqs 30 and 32 are combined as
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I
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2

(34)

Figure 6 shows simulation results. The proposed tuning rule
of eq 34 is compared to that in Lee et al.14 Both closed-loop

performances are similar. However, the proposed tuning rule is
far simpler. Table 3 shows the proposed tuning rules for
FOPTD and HOPTD models.

6. MODIFIED SIMC MODEL REDUCTION METHOD
Processes can often show high order dynamics. When simple
graphical identifications are applied, the FOPTD and HOPTD
models are obtained and the proposed tuning rules can be
applied directly. On the other hand, when elaborate
identification methods are applied, process models obtained

will be high order. To apply the proposed tuning methods, their
orders should be reduced. The SIMC model reduction13 is one
of the simplest model reduction methods and will be useful for
PI controller tuning. Here the SIMC model reduction method
is slightly modified for better performances.19 Consider a high
order process model of

τ τ
τ τ

θ=
+ ··· +
+ ··· +

− >G s k
s s
s s

s n m( )
( 1) ( 1)
( 1) ( 1)

exp( ),m

n

z1 z

p1 p

(35)

6.1. FOPTD Model. The FOPTD consists of six steps.
Step 1. Assume the effective time delay θ̂ that will be near

the time delay of the reduced FOPTD model.12

Step 2. Add all zero time constants with negative τz to the
time delay.
Step 3. Apply the half-rule of SIMC sequentially from the

smallest time constant τp (when τz < τp, skip this step and do
the following step first). For example

+
=

+ + +

≈
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(36)

Step 4. For all pairs of nearest poles and zeros of (τzs + 1)/
(τps + 1), calculate

τ θ

τ θ
τ τ

τ τ θ
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Here θ̂ is the assumed effective time delay in the final FOPTD
model.
Step 5. Apply the model reduction for the pair with the

smallest q as

τ
τ

τ τ
+
+

=

≥

+
τ τ
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(38)

Step 6. Repeat steps 2−5 until the FOPTD model is
obtained.

6.2. HOPTD Model. When the process has a large zero
term, the above FOPTD model can provide poor tuning
results. For such processes, the HOPTD model is considered.
The 1/2 Pade approximation of the half-order process14 is

τ +
≈

+

+ +

τ

τ τ
− +( )( )s

s

s s

1
1

1

1 1
2

4 2 2 4 2 2 (39)

Using this relationship, the HOPTD model is obtained as
follows.
Step 1. Applying the above model reduction technique for

the FOPTD model, obtain

Figure 6. Closed-loop responses of PI controllers for HOPTD

processes, = θ−
+G s( ) s

sp
exp( )

1
.
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Step 2. Apply the Pade approximation of eq 39 with

τ τ= −(4 2 2 ) p1 (41)

Then
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Step 3. Apply the above model reduction technique to the
pole−zero pairs and obtain

τ τ
θ≈

+
̂

̂ +
− ̂G s

s
k

s
s( )

1
1 1

exp( )2
(43)

Step 4. Adjust the pole and time delay in eq 43 by applying
the half-rule of SIMC

τ τ
θ τ≈

̂

+ ̂ +
− ̂ + ̂G s

k
s

s( )
( ) 1

exp( ( /2) )2
(44)

The HOPTD model is used to complement the FOPTD
model. When the time delay of the final FOPTD model,
θFOPTD, is much different from the time delay θ of the process
model eq 40 as

θ θ> 1.1FOPTD (45)

processes will not be approximated well by the FOPTD model
and the HOPTD model is tried.

7. APPLICATIONS
7.1. Process 1. Consider the process

= + − +
+ +

G s
s s

s s
( )

(6 1)( 2 1)
(10 1)( 1)2 (46)

From two points that the open-loop step response reaches
28.3 and 63.2% of the new steady state, FOPTD and HOPTD
models can be obtained.14 This simple graphical identification
method gives two models of

̂ =
−

+
G s

s
s

( )
exp( 1.594 )

4.11 1FOPTD (47)

̂ =
−

+
G s

s
s

( )
exp( 2.43 )

8.08 1HOPTD
(48)

Because the effective time delay for the FOPTD model is too
small, PI controller tuning based on this graphical FOPTD
model shows oscillatory closed-loop responses and is not
considered for comparisons.
When the exact process model of eq 46 is available, model

reduction techniques can be applied to obtain FOPTD and
HOPTD models. The SIMC method provides the approximate
FOPTD model of
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When the proposed model reduction technique is applied, we
have
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Table 3. Proposed Tuning Rules

asymptotes

θ/τ → ∞ θ/τ → 0

process PI controller kkc τI (kkI) kkc τI

θ
τ

−
+

k s
s

exp( )
1

τ
θ

=kk
2c 0.5τ/θ τ (0.5/θ) 0.5τ/θ 4.31θ

τ τ=
+ τ

θ( )
1

1
I

4.31

2

τ τ=
+ τ

θ( )
1

1
sp

1.72

2

θ
τ

−
+

k s
s

exp( )
1

τ
θ

=
+ τ

θ

kk
4

1

1
c

3.41
0.25τ/θ 0.5τ (0.5/θ) τ θ0.46 / 1.41θ

τ τ=
+ τ

θ( )2
1

1
I

2.82

2

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b03966
Ind. Eng. Chem. Res. 2018, 57, 2905−2916

2912

http://dx.doi.org/10.1021/acs.iecr.7b03966


≈ +
+

−
+

≈
+

+
+

+
+

− ≈
+

+

+

+

+
−

=
+

−

( )
( )

( )
( )

G s
s
s

s
s s

s
s

s
s

s
s

s

s
s

( )
6 1

10 1
exp( 2.5 )

1.5 1
1

11.7 1
6 1

5.86 1
1.72 1
1.5 1

exp( 2.5 )
1

11.7 1

1

1

1

1
exp( 2.5 )

1.06
11.7 1

exp( 2.5 )

HOPTD

6
2.5

2

5.86
2.5

2

1.72
2.5

2

1.5
2.5

2

(51)

Tuning rules are applied to approximate models. Table 4
shows final tuning results. Figure 7 shows closed-loop
performances of PI controllers. The proposed tunings based
on HOPTD models that are obtained by the graphical
identification and the model reduction show better closed-
loop responses compared to other tunings.
7.2. Process 2 (Ogunnaike and Ray Column20).

Consider the process which is the last diagonal element of
the Ogunnaike and Ray column.20 Here the time delay is
increased by 2.

=
+ −

+ +
G s

s s
s s

( )
(11.61 1) exp( 3 )
(18.8 1)(3.89 1)p

(52)

From two points that the open-loop step response reaches
28.3 and 63.2% of the new steady state, FOPTD and HOPTD

models can be obtained.14 This simple graphical identification

method gives two models of

Table 4. Tuning Results

process method kc τI (kI) τF gain margin phase margin (deg) Msa

exp(−s) Astrom−Hagglund 0.195 0.284 2.6 61 1.7
direct synthesis 0.125 0.25 3.7 68 1.4
SIMC 0 (0.5) 3.2 61 1.6

−s
s

exp( )
Ziegler−Nichols 0.9 3 1.4 16 4.5

Chien−Fruehauf 0.556 5 2.6 38 2.0
SIMC 0.5 8 3.0 47 1.7

θ−
+

s
s

exp( )
1

θ = 0.1 modified SIMC15 5 0.8 3.1 58 1.6

θ = 0.1 proposed FOPTD 5 0.3958 0.1692 2.9 44 1.8
θ = 1 modified SIMC15 0.6667 1.3333 2.7 66 1.7
θ = 1 proposed FOPTD 0.5 0.9741 0.8641 3.1 60 1.6
θ = 5 modified SIMC15 0.2667 2.6667 3.0 70 1.5
θ = 5 proposed FOPTD 0.1 0.9989 0.9933 3.1 60 1.6

θ−
+

s
s

exp( )
1

θ = 0.1 Lee et al.14 1.6244 0.2021 2.8 67 1.6

θ = 0.1 proposed HOPTD 1.2611 0.1356 3.4 56 1.5
θ = 1 Lee et al. 0.5481 1.1817 2.7 78 1.6
θ = 1 proposed HOPTD 0.2199 0.4712 4.1 64 1.4

+ − +
+ +

s s
s s

(6 1)( 2 1)
(10 1)( 1)2 modified SIMC15 0.8095 5.6667 1.9 82 2.1

proposed FOPTD 0.3382 2.0647 0.9864 3.9 61 1.4
proposed HOPTD 0.7168 3.0170 2.0 63 2.0
HOPTD (graphical ID) 0.5911 2.6127 2.4 61 1.8

+ −
+ +
s s

s s
(11.61 1) exp( 3 )
(18.8 1)(3.89 1)

modified SIMC15 1.0990 10.790 3.6 86 1.4

proposed FOPTD 0.9327 4.2249 3.5537 3.5 56 1.5
proposed HOPTD 0.9966 4.2291 3.3 55 1.6
HOPTD (graphical ID) 0.7326 4.8430 4.7 64 1.3

aPeak amplitude ratio of the sensitivity function, S(s) = 1/(1 + G(s) C(s)).

Figure 7. Closed-loop responses of PI controllers for the example

processes, = + − +
+ +

G s( ) s s
s s

(6 1)( 2 1)
(10 1)( 1)2 . The modified SIMC method15 is

based on the original model reduction rules of Skogestad.12
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Because the effective time delay for the FOPTD model is less
than the actual time delay, PI controller tunings based on this
graphical FOPTD model show oscillatory closed-loop
responses and are not considered for comparisons.
When the exact process model of eq 52 is available, model

reduction techniques can be applied to obtain FOPTD and
HOPTD models. The SIMC method provides the approximate
FOPTD model of
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When the proposed model reduction technique is applied, we
have
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Tuning rules are applied to these approximate models. Table
4 shows final tuning results. Figure 8 shows closed-loop
performances of PI controllers. The proposed tunings based on
FOPTD and HOPTD models that are obtained by the model
reduction show better closed-loop responses compared to other
tunings.

8. CONCLUSION
Two extreme cases of the first order plus time delay (FOPTD)
model for small and large time delays over the time constant
are the integral plus time delay model and the pure time delay
model, respectively. Tuning rules for PI controllers are available
for such cases, and tuning rules for the FOPTD models need
approach them as the time delay varies. These two asymptotes
of PI controller tuning rules are easily calculated and can be
used to evaluate the performances and application ranges of PI
controller tuning rules, providing guidelines for the selection of
PI controller tuning rules. When design parameters are selected

appropriately, the iterative continuous cycling method, the
guaranteed gain and phase margin method, and the Skogestad
internal model control method are found to be applied for the
whole range of time delays.
By matching two asymptotes for small and large time delays

over the time constant, a simple analytic tuning rule for the
FOPTD model has been proposed. For some overdamped
processes whose transfer functions have large zero terms, the
half-order plus time delay (HOPTD) models are found to be
better than the FOPTD models. Applying the technique of
matching two asymptotes, a simple analytic PI controller tuning
rule has also been proposed for the HOPTD models. To apply
these tuning rules to high order processes whose transfer
functions are given, model reduction methods to obtain the
FOPTD and HOPTD models are investigated. Here, the SIMC
model reduction rule is modified and some ambiguities in
practical applications are removed. Simulation results for
empirical and full models of processes are given to show the
performances of the proposed model reduction methods and
tuning rules.

■ APPENDIX: DOMINANT POLE TUNING2

The closed-loop poles for the process G(s) and PI controller
C(s) = kc + kI/s are roots of the characteristic equation
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k
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G s1 ( ) 0c
I

(A1)

When a pair of closed-loop poles is specified, PI controller
parameters can be determined. These poles can be dominant.
For the FOPTD model of eq 1, with the dominant pole

candidates of s = −α(1 + j), we have
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Then

Figure 8. Closed-loop responses of PI controllers for HOPTD

processes, = + −
+ +G s( ) s s

s s
(11.61 1) exp( 3 )
(18.8 1)(3.89 1)

. The modified SIMC method15 is

based on the original model reduction rules of Skogestad.12
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Equating real and imaginary parts of both sides, we have
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With the choice of α = 1/(2.428θ), kkc = 0.5τ/θ and kkI =

0.116τ/θ2 (τI = kc/kI = 4.31θ).

For the FOPTD model of eq 28, with the dominant pole

candidates of s = −α(1 + j), we have
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Equating real and imaginary parts of both sides, we have
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With the choice of α = 1/(3θ)
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Hence, τI = kc/kI = 1.408θ.
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