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1. INTRODUCTION

My purpose in this paper is not to present some new theory
or procedure; rather my aim is to discuss some difficul-
ties or obstacles that impede the successful application
of Model Predictive Control. These difficulties are both
theoretical and practical. Our subject now has an excellent
foundation created by many researchers. This foundation
is not threatened. However, in my opinion, some research
does not address industrial needs sufficiently well and there
are some topics for which more research is needed. Using
a recent review (Mayne (2014)) and a recent paper on
model predictive control in industry (Forbes et al. (2015))
some areas of current research that need further attention
or redirection are described. Main attention is given to
robust and stochastic model predictive control because
these forms of control often require the on-line solution
of complex optimal control problems. It is hoped that this
paper will stimulate further research in these areas.

2. BACKGROUND

The system to be controlled is usually described by

x+ = f(x, u) (1)

if there is no disturbance or by

x+ = f(x, u, w) (2)

if a disturbance w is present. The state x ∈ Rn, the control
u ∈ Rr and the disturbance w ∈ Rp. Model uncertainty is
described in the usual way by

x+ = f(x, u, w)

y = h(x) (3)

w = ∆(y(·)) (4)

∆ is a causal input-output operator representing the un-
modelled dynamics with input y(·) and output w; ∆ does
not necessarily have a finite-dimensional state representa-
tion.

The output y ∈ Rs and ∆ is an operator representing the
unmodelled dynamics that, at time t, maps the output se-
quence {. . . , y(−1), y(0), y(1), . . . , y(t)} (over the interval

(−∞, t]) into w(t). The system is usually subject to some
constraints, i.e. the control u is required to lie in a compact
set U ⊂ Rm and the state may be required to lie in a closed
set X ⊂ Rn. The equilibrium (target) state-control pair
(x̄, ū) is required to be such that (x̄, ū) lies in the interior
of X × U. In addition the state x is required to lie in the
closed set X ⊂ Rn. In addition, the finite horizon optimal
control problem PN (x) solved on-line (N is the horizon)
may require the terminal state to lie in the compact set
Xf ⊂ Rn; this is a constraint on the optimal control
problem and is not a system constraint. In robust model
predictive control it is assumed that the disturbance w
takes values in the compact set W ⊂ Rp that contains the
origin in its interior. In stochastic model predictive control
{w(t)} is a random process, a sequence of independent,
identically distributed random variables taking values in a
not necessarily compact set set W ⊂ Rp. In the stochastic
case it is assumed that there is an underlying probability
space with probability measure P .

The decision variable for the optimal control problem
varies considerably. In conventional model predictive con-
trol in which the system is described by (1), the decision
variable is the control sequence u = {u(0), u(1), . . . , u(N−
1)} ∈ RNm; this is one of the big attractions of model
predictive control since off-line determination of a control
law κ : Rn → Rm, a complex task, is replaced by on-
line determination of a control sequence u for each en-
countered value of the state x. The decision variable u is
also employed fairly often in the literature on robust on
stochastic model predictive control. In order to overcome
the disadvantages, discussed below, of using u as a decision
variable for robust or stochastic model predictive control,
a feedback policy π � {µ0( · ), µ1( · ), . . . , µN−1( · )}, a se-
quence of measurable control laws, is also employed; for
each i, µi : Rn → Rm. Optimizing over arbitrary functions
is obviously too complex so π is often parameterized by
a vector v = (v0, v1, . . . , vN−1) with µi(x) � θ(x, vi); e.g.

θ(x, vi) =
∑

j∈J vjiφj(x) in which {φj( · ) | j ∈ J} is a

set of pre-specified functions. When the system f( · ) is
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(x̄, ū) is required to be such that (x̄, ū) lies in the interior
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linear, a common choice is µi(x) = θ(x, vi) = vi + Kx,
K chosen so that A + BK is stable, a parameterization
suggested by Rossiter et al Rossiter et al. (1998). The
decision variable u may be regarded as a degenerate pol-
icy in which µi(x) = θ(x, vi) = vi = ui for all i, all
x. Let Π denote the class of policies π defined above,
i.e. Π � {π = {µ0( · ), µ1( · ), . . . , µN−1( · ) | µi(x) =
θ(x, vi), i = 0, 1, . . . N − 1}. Optimizing with respect to
π ∈ Π is equivalent to optimizing with respect to the vector
sequence v = {v0, v1, . . . , vN−1}.

2.1 Definition of cost function VN (x,u) or VN (x, π)

We next define the cost function that is optimized to de-
termine the current control. For nominal model predictive
control, in which the system is assumed to satisfy (1),
xu(i;x) denotes the solution of (1) at time i given that
the initial state is x at time 0 and the control is u. For
robust or stochastic model predictive control, in which the
system is assumed to satisfy (2), xπ(j;x,w) denotes the
solution of

x(i+ 1) = f(x(i), µi(x(i)), w(i)), i = 0, 1, . . . , N − 1 (5)

at time j given that the initial state is x(0) = x and the
control policy is π = {µ0( · ), µ1( · ), . . . , µN−1( · )} ∈ Π.
The definition of cost depends on the type of model
predictive control: conventional, robust or stochastic:

1. Conventional MPC:

VN (x,u) �
N−1∑
i=0

�(xu(i;x), u(i)) + Vf (x
u(N ;x)) (6)

2a: Robust MPC - Nominal cost:

VN (x, π) �
N−1∑
i=0

�(xπ(i;x,0), µi(x
π(i;x,0))+Vf (x

π(N ;x,0))

(7)
2b: Robust MPC -Worst case cost:

VN (x, π) � max
w∈WN

N−1∑
i=0

�(xπ(i;x,w), µi(x
π(i;x,w))

+ Vf (x
π(N ;x,w)) (8)

in which 0 � {0, 0, . . . , 0} is a sequence of zero vectors.

3a. Stochastic MPC - Nominal cost:

VN (x, π) �
N−1∑
i=0

�(xπ(i;x,0), µi(x
π(i;x,0))

+ Vf (x
π(N ;x,0) (9)

3b. Stochastic MPC - Expected cost:

VN (x, π) � E|x

N−1∑
i=0

�(xπ(i;x,w), µi(x
π(i;x,w))

+ Vf (x
π(N ;x,w)) (10)

in which E|x( · ) � E(· | x) and E is expectation under
P , the probability measure of the underlying probability
space.

2.2 Definition of constraint set UN (x) or ΠN (x)

Constraints also depend on the type of model predictive
control that is employed:

1. Nominal MPC: For each x, UN (x) is the set permis-
sible control sequences u. Each u ∈ UN (x) satisfies:

u(i) ∈ U, xu(i;x) ∈ X, ∀i ∈ I0:N−1,

xu(N ;x) ∈ Xf (11)

It is assumed here and in the sequel that Xf ⊂ X.

2. Robust MPC: For each x, ΠN (x) is the set of permissi-
ble control policies. Each π = {µ0( · ), µ1( · ), . . . , µN ( · )} ∈
ΠN (x) satisfies:

µi(x
π(i;x,w)) ∈ U, xπ(i;x,w) ∈ X, ∀i ∈ I0:N−1,

xπ(N ;x,w) ∈ Xf , ∀w ∈ WN (12)

in which Ia:b � {a, a+ 1, . . . , b− 1, b}.
3. Stochastic MPC: Because the probability density of
the disturbance w does not have finite support, it is impos-
sible to satisfy the state and terminal constraints almost
surely. To obtain a meaningful optimal control problem, it
is necessary to ‘soften’ the state and terminal constraints.
In contrast, for process control applications, the control
constraint must always be satisfied, a requirement some-
times ignored in the literature. Two methods for ‘soften-
ing’ the constraint have been used in the literature. In the
first (Primbs and Sung (2009)), ‘hard’ constraints of the
form x(w) ∈ X for all w ∈ W are replaced by the average
constraint E(x(w)) ∈ X. In the second (Kouvaritakis et al.
(2010); Prnadini et al. (2012)) the constraint x(w) ∈ X for
all w ∈ W is replaced by P (x(w) ∈ X) ≥ 1 − ε. Hence,
the constraints employed in the optimal control problem
solved on-line take the form

µi(x
π(i;x,w)) ∈ U, E|x(x

π(i;x,w)) ∈ X ∀i ∈ I0:N−1,

E|x(x
π(N ;x,w)) ∈ Xf ) ∀w ∈ WN , (13)

in which E|x( · ) � E(( · ) | x) when average constraints are
employed, or

µi(x
π(i;x,w)) ∈ U P|x(x

π(i;x,w)) ∈ X) ≥ 1− ε

∀i ∈ I0:N−1, P|x(x
π(N ;x,w)) ∈ Xf ) ∀w ∈ WN (14)

in which P|x|( · ) � P (· | x) when probabilistic constraints
are employed. Let ΠN (x) denote the set of policies π ∈ Π
satisfying the appropriate constraints, average or proba-
bilistic. The possibility of satisfying the hard control con-
straint, which is necessary in process control applications,
is discussed below.

2.3 Definition of constraint set UN (x) or ΠN (x)

Constraints also depend on the type of model predictive
control that is employed:

1. Nominal MPC: For each x, UN (x) is the set permis-
sible control sequences u. Each u ∈ UN (x) satisfies:

u(i) ∈ U, xu(i;x) ∈ X, ∀i ∈ I0:N−1,

and xu(N ;x) ∈ Xf (15)

It is assumed here and in the sequel that Xf ⊂ X.

2. Robust MPC: For each x, ΠN (x) is the set of permissi-
ble control policies. Each π = {µ0( · ), µ1( · ), . . . , µN ( · )} ∈
ΠN (x) satisfies:

µi(x
π(i;x,w)) ∈ U, xπ(i;x,w) ∈ X, ∀i ∈ I0:N−1,

xπ(N ;x,w) ∈ Xf , ∀w ∈ WN (16)

in which Ia:b � {a, a+ 1, . . . , b− 1, b}.
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N−1∑
i=0

�(xπ(i;x,w), µi(x
π(i;x,w))

+ Vf (x
π(N ;x,w)) (8)

in which 0 � {0, 0, . . . , 0} is a sequence of zero vectors.

3a. Stochastic MPC - Nominal cost:

VN (x, π) �
N−1∑
i=0

�(xπ(i;x,0), µi(x
π(i;x,0))

+ Vf (x
π(N ;x,0) (9)

3b. Stochastic MPC - Expected cost:

VN (x, π) � E|x

N−1∑
i=0

�(xπ(i;x,w), µi(x
π(i;x,w))

+ Vf (x
π(N ;x,w)) (10)

in which E|x( · ) � E(· | x) and E is expectation under
P , the probability measure of the underlying probability
space.

2.2 Definition of constraint set UN (x) or ΠN (x)

Constraints also depend on the type of model predictive
control that is employed:

1. Nominal MPC: For each x, UN (x) is the set permis-
sible control sequences u. Each u ∈ UN (x) satisfies:

u(i) ∈ U, xu(i;x) ∈ X, ∀i ∈ I0:N−1,

xu(N ;x) ∈ Xf (11)

It is assumed here and in the sequel that Xf ⊂ X.

2. Robust MPC: For each x, ΠN (x) is the set of permissi-
ble control policies. Each π = {µ0( · ), µ1( · ), . . . , µN ( · )} ∈
ΠN (x) satisfies:

µi(x
π(i;x,w)) ∈ U, xπ(i;x,w) ∈ X, ∀i ∈ I0:N−1,

xπ(N ;x,w) ∈ Xf , ∀w ∈ WN (12)

in which Ia:b � {a, a+ 1, . . . , b− 1, b}.
3. Stochastic MPC: Because the probability density of
the disturbance w does not have finite support, it is impos-
sible to satisfy the state and terminal constraints almost
surely. To obtain a meaningful optimal control problem, it
is necessary to ‘soften’ the state and terminal constraints.
In contrast, for process control applications, the control
constraint must always be satisfied, a requirement some-
times ignored in the literature. Two methods for ‘soften-
ing’ the constraint have been used in the literature. In the
first (Primbs and Sung (2009)), ‘hard’ constraints of the
form x(w) ∈ X for all w ∈ W are replaced by the average
constraint E(x(w)) ∈ X. In the second (Kouvaritakis et al.
(2010); Prnadini et al. (2012)) the constraint x(w) ∈ X for
all w ∈ W is replaced by P (x(w) ∈ X) ≥ 1 − ε. Hence,
the constraints employed in the optimal control problem
solved on-line take the form

µi(x
π(i;x,w)) ∈ U, E|x(x

π(i;x,w)) ∈ X ∀i ∈ I0:N−1,

E|x(x
π(N ;x,w)) ∈ Xf ) ∀w ∈ WN , (13)

in which E|x( · ) � E(( · ) | x) when average constraints are
employed, or

µi(x
π(i;x,w)) ∈ U P|x(x

π(i;x,w)) ∈ X) ≥ 1− ε

∀i ∈ I0:N−1, P|x(x
π(N ;x,w)) ∈ Xf ) ∀w ∈ WN (14)

in which P|x|( · ) � P (· | x) when probabilistic constraints
are employed. Let ΠN (x) denote the set of policies π ∈ Π
satisfying the appropriate constraints, average or proba-
bilistic. The possibility of satisfying the hard control con-
straint, which is necessary in process control applications,
is discussed below.

2.3 Definition of constraint set UN (x) or ΠN (x)

Constraints also depend on the type of model predictive
control that is employed:

1. Nominal MPC: For each x, UN (x) is the set permis-
sible control sequences u. Each u ∈ UN (x) satisfies:

u(i) ∈ U, xu(i;x) ∈ X, ∀i ∈ I0:N−1,

and xu(N ;x) ∈ Xf (15)

It is assumed here and in the sequel that Xf ⊂ X.

2. Robust MPC: For each x, ΠN (x) is the set of permissi-
ble control policies. Each π = {µ0( · ), µ1( · ), . . . , µN ( · )} ∈
ΠN (x) satisfies:

µi(x
π(i;x,w)) ∈ U, xπ(i;x,w) ∈ X, ∀i ∈ I0:N−1,

xπ(N ;x,w) ∈ Xf , ∀w ∈ WN (16)

in which Ia:b � {a, a+ 1, . . . , b− 1, b}.
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3. Stochastic MPC: Because the probability density of
the disturbance w does not have finite support, it is impos-
sible to satisfy the state and terminal constraints almost
surely. To obtain a meaningful optimal control problem, it
is necessary to ‘soften’ the state and terminal constraints.
In contrast, for process control applications, the control
constraint must always be satisfied, a requirement some-
times ignored in the literature. Two methods for ‘soften-
ing’ the constraint have been used in the literature. In the
first (Primbs and Sung (2009)), ‘hard’ constraints of the
form x(w) ∈ X for all w ∈ W are replaced by the average
constraint E(x(w)) ∈ X. In the second (Kouvaritakis et al.
(2010); Prnadini et al. (2012)) the constraint x(w) ∈ X for
all w ∈ W is replaced by P (x(w) ∈ X) ≥ 1 − ε. Hence,
the constraints employed in the optimal control problem
solved on-line take the form

µi(x
π(i;x,w)) ∈ U, E|x(x

π(i;x,w)) ∈ X ∀i ∈ I0:N−1,

E|x(x
π(N ;x,w)) ∈ Xf ) ∀w ∈ WN , (17)

in which E|x( · ) � E(( · ) | x) when average constraints are
employed, or

µi(x
π(i;x,w)) ∈ U P|x(x

π(i;x,w)) ∈ X) ≥ 1− ε

∀i ∈ I0:N−1, P|x(x
π(N ;x,w)) ∈ Xf ) ∀w ∈ WN (18)

in which P|x|( · ) � P (· | x) when probabilistic constraints
are employed. Let ΠN (x) denote the set of policies π ∈ Π
satisfying the appropriate constraints, average or proba-
bilistic. The possibility of satisfying the hard control con-
straint, which is necessary in process control applications,
is discussed below.

2.4 Definition of nominal optimal control problem PN (x)

For nominal model predictive control, the optimal control
problem, PN (x), that is solved on-line is:

PN (x) : V 0
N (x) = min

u∈UN (x)
VN (x,u) (19)

with VN ( · ) defined in (6) and UN (x) defined in (11). The
optimising control sequence is u0(x) = {u0

0(x), u
0
1(x), . . . ,

u0
N−1(x). The control applied to the system is the first

element of this sequence, i.e. u = µN (x) � u0
0(x).

For robust and stochastic model predictive control, the
optimal control problem is

PN (x) : V 0
N (x) = min

π∈ΠN (x)
VN (x, π) (20)

with VN ( · ) defined in (7) - (8) for robust model predictive
control and in (9)-(10) for stochastic model, predictive
control. The constraint set ΠN (x) is defined in (12) for
robust model predictive control and in (13) or (14) for
stochastic model predictive control. The optimising control
policy is π0(x). The control applied to the system is µ0

0(x)
where µ0

0(x) is the first element of the optimising policy
π0(x).

3. STABILISING CONDITIONS

3.1 Conventional Model Predictive Control

Because the optimal control problem PN (x) has finite
horizon, the resultant receding horizon control law is not
necessarily stabilising. Conditions that ensure stability

are well known and take two different forms: addition
to the optimal control problem of a suitable terminal
cost Vf ( · ) and terminal constraint x(N) ∈ Xf ensures
closed-loop stability as shown, for example, in (Mayne
et al. (2000)); alternatively closed-loop stability may be
achieved by a suitably large value of the horizon (Grüne
and Pannek (2011)). One argument for using the latter is
that a terminal constraint is not employed in most process
control applications. However any hard state constraint,
including a terminal constraint, is avoided in the process
industry since it may lead, because of unmodelled factors,
to infeasibility of PN (x) necessitating an extra recovery
mechanism. It therefore makes no sense to omit the termi-
nal constraint if other hard state constraints are included
in the problem formulation. For each (x, j), let Xj denote
the feasible set for Pj(x). If there are no hard constraints,
XN = Rn and recursive feasibility is ensured. Otherwise, if
an appropriate terminal cost and constraint are employed,
the equilibrium state is asymptotically stable with a region
of attraction XN . Also the feasible sets {Xj} are forward
nested, satisfying Xf = X0 ⊂ X1 ⊂ . . . XN−1 ⊂ XN ,
thereby ensuring recursive feasibility (in the absence of
unmodelled factors). It is shown in (Mayne (2013)) that
if recursive feasibility is required when hard state con-
straints are employed it is necessary that PN (x) has an
explicit or implicit terminal constraint that is control in-
variant. Let P ∗

N (x) denote the optimal control problem
when the terminal constraint is removed. It is shown in
(Limon et al. (2006)) that there exist a sequence of sets
{X∗

N , X∗
N1

, . . . , X∗
1 , X

∗
0 = Xf} that is forward nested and

satisfies X∗
i ⊂ Xi for all i . The terminal state of the

solution to P ∗
i (x) lies in Xf for all x ∈ X∗

N so that the
equilibrium state is asymptotically stable with a region
of attraction X∗

N . In this case we refer to x(N) ∈ Xf as
an implicit terminal constraint. If all state constraints are
soft, P ∗

N (x) is feasible for all x ∈ Rn.

3.2 Robust model predictive control

Similar considerations apply when there is a bounded
additive disturbance provided that the terminal cost and
terminal constraint are replaced by robust versions; the
terminal cost is now required to be a robust local Lyapunov
function and the terminal constraint set to be robustly
control invariant (Mayne et al. (2000)), i.e. for each x ∈ Xf

there exists a u ∈ U such that x+ = f(x, u, w) ∈ Xf and
Vf (x

+) + �(x, u) ≤ Vf (x) for all w ∈ W. It is possible
to determine a Vf ( · ) and Xf with these properties if the
linearization of f( · ) at the nominal (w = 0) equilibrium
state is stabilizable, f( · ) is sufficiently smooth, �( · ) is
positive definite and W is sufficiently small.

3.3 Stochastic model predictive control

Because the probability density of the disturbance w
does not necessarily have finite support, the problem of
finding a terminal cost and constraint that ensure closed-
loop stability (in the stochastic sense) has not yet been
satisfactorily resolved although efforts in this direction
have been made. It is clearly impossible to find a terminal
cost Vf ( · ) and compact Xf satisfying the conditions for
robust mode predictive control given above. Primbs and
Sung in (Primbs and Sung (2009)) consider control of a
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stochastic linear system with multiplicative noise C(x, u)w
that tends to zero in magnitude as (x, u) tends to zero. As
discussed above, hard constraints are softened so that the
terminal constraint x(N) ∈ Xf , for example, is replaced by
E(x(N) | x(0) = x) ∈ Xf . Primbs and Sung assume the
existence of a linear terminal controller κf ( · ) such that
the terminal cost Vf ( · ) is a stochastic Lyapunov function
satisfying, for all x ∈ Rn,

E(Vf (x
+) | x) + �(x, κf (x)) ≤ Vf (x) (21)

in which x+ = f(x, u, w) = Ax + Bu + C(x, u)w with
u = κf (x) and Vf ( · ) is quadratic and positive definite,
a requirement similar to the control Lyapunov property
employed in robust model predictive control. However,
unlike in robust model predictive control, we cannot as-
sume that Xf � {x | Vf (x) ≤ α} for some α > 0
is robustly control invariant. Instead, Primbs and Sung
assume inter alia that, if the current state x and policy
π = {µ0( · ), µ1( · ), . . . , µN−11( · )} satisfy the terminal
constraint E(xπ(N ;x) | x) ∈ Xf , so does (x, π̃) where

π̃ � {µ0( · ), µ1( · ), . . . , µN−11( · ), κf ( · )} from which it
follows that V 0

N+1(x) ≤ V 0
N (x), i.e., as in the robust case,

the value function decreases monotonically with the hori-
zon N . However, to establish recursive feasibility, terminal
constraint difficulties require modification of the model
predictive algorithm; the modified algorithms switches
permanently to the optimal infinite horizon unconstrained
policy once the state leaves a given sub-level set of V 0

N ( · ).
Similar difficulties occur when probabilistic constraints are
employed. More recent work therefore assumes that the
random disturbance w is bounded (Kouvaritakis et al.
(2010)) or that there are no state (or terminal) constraints
(Chatterjee and Lygeros (2015)). The latter paper is inter-
esting because it introduces advanced results on stochas-
tic stability that should underlie all research on stability
of stochastic model predictive control. Interestingly the
optimal control problem considered in this paper has a
terminal cost Vf ( · ) that bears some resemblance to that
employed in robust model predictive control. The condi-
tion is the existence of a terminal control law κf ( · ), a
positive constant b and a bounded terminal set Xf such
that

sup
x∈Xf

E|xVf (x
+) + �(x, κf (x)) ≤ Vf (x) + b

E|xVf (x
+) + �(x, κf (x)) ≤ Vf (x) ∀x �∈ Xf

in which x+ � f(x, κf (x), w). This condition is similar to
a global Control Lyapunov Function for the set Xf ; the
condition is strong if the open-loop system x+ = f(x, u, 0)
is unstable.

One concludes that there is not yet a fully satisfactory
treatment of stabilizing terminal conditions for stochastic
model predictive control. Can satisfactory terminal condi-
tions be obtained or not?.

4. THE ON-LINE OPTIMAL CONTROL PROBLEM
PN (X)

4.1 Conventional model predictive control

In conventional model predictive control, the optimal con-
trol problem PN (x) for linear systems with quadratic costs
is a standard quadratic program if the terminal constraint

set is polytopic or omitted; if omitted an implicit terminal
constraint (confining the initial state to belong to an ap-
propriate set) or a sufficiently large horizon can ensure
closed-loop stability. Polytopic terminal constraint sets,
widely used in the literature, cannot be reliably computed
for large problems. For many applications, especially in
process control, soft state constraints are usually employed
and the terminal constraint omitted. Large problems en-
countered in industry (state dimensions in the hundreds,
thousands of constraints) can be handled. For nonlinear
systems, a global solution to PN (x) cannot be guaranteed
necessitating the use of suboptimal model predictive con-
trol (Scokaert et al. (1999)).

4.2 Potential objections to robust and stochastic model
predictive control

The explosive growth in the use of model predictive control
is largely due to the process industries where it is now
very widely used. Unlike the situation in the automotive
industry where sophisticated design effort can be devoted
to the development by experts of a controller that is
widely used, the large number and diversity of processes
require management of the plant and controller by oper-
ators. Maintenance of the model predictive controller is,
therefore, the responsibility of non-experts who, therefore,
should be able to understand what the controller is doing.
It has been noted (Qin and Badgwell (2003)) that the in-
creasing complexity of model predictive control is affecting
serviceability and maintainability. Increased complexity
requires process engineers to possess increased skills but
there is a paucity of engineers with these skills. One way
to help operators understand the controller is to provide
predicted trajectories of key variables together with con-
straints that these trajectories should satisfy (Forbes et al.
(2015)). Some of the proposals for robust and stochastic
model predictive control will be examined in the light of
these requirements.

4.3 Robust model predictive control

Complexity The complexity of the optimal control prob-
lem may be seen by inspection of (7) and (8), which
define the cost function VN ( · ), and (12), which defines
the constraints. The decision variable has dimension Nq
where q is the dimension of parameterization employed in
each control law µi( · ); this can be as low as Nm, the
dimension of the decision variable in conventional model
predictive control if the system f( · ) is linear and the
common parameterization u = Kx + v is employed. The
number of control constraints is Nqu if qu is the number of
constraints that define U and if the u is used as the decision
variable; because of the disturbance w, this number could
be considerably higher if a policy π is employed as the deci-
sion variable. The number of state constraints in Nqxqw if
qx is the number of constraints that define X and qw is the
number of possible realizations of the disturbance sequence
w ∈ WN ; qw can be as low as NV where V is the number
of vertices of the set W if the system f( · ) is linear but
could otherwise be infinite. If min-max model predictive
control is employed, i.e. if the cost is defined by (8) and
if the optimal control problem problem is reformulated as
minπ h subject to the additional constraint
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stochastic linear system with multiplicative noise C(x, u)w
that tends to zero in magnitude as (x, u) tends to zero. As
discussed above, hard constraints are softened so that the
terminal constraint x(N) ∈ Xf , for example, is replaced by
E(x(N) | x(0) = x) ∈ Xf . Primbs and Sung assume the
existence of a linear terminal controller κf ( · ) such that
the terminal cost Vf ( · ) is a stochastic Lyapunov function
satisfying, for all x ∈ Rn,

E(Vf (x
+) | x) + �(x, κf (x)) ≤ Vf (x) (21)

in which x+ = f(x, u, w) = Ax + Bu + C(x, u)w with
u = κf (x) and Vf ( · ) is quadratic and positive definite,
a requirement similar to the control Lyapunov property
employed in robust model predictive control. However,
unlike in robust model predictive control, we cannot as-
sume that Xf � {x | Vf (x) ≤ α} for some α > 0
is robustly control invariant. Instead, Primbs and Sung
assume inter alia that, if the current state x and policy
π = {µ0( · ), µ1( · ), . . . , µN−11( · )} satisfy the terminal
constraint E(xπ(N ;x) | x) ∈ Xf , so does (x, π̃) where

π̃ � {µ0( · ), µ1( · ), . . . , µN−11( · ), κf ( · )} from which it
follows that V 0

N+1(x) ≤ V 0
N (x), i.e., as in the robust case,

the value function decreases monotonically with the hori-
zon N . However, to establish recursive feasibility, terminal
constraint difficulties require modification of the model
predictive algorithm; the modified algorithms switches
permanently to the optimal infinite horizon unconstrained
policy once the state leaves a given sub-level set of V 0

N ( · ).
Similar difficulties occur when probabilistic constraints are
employed. More recent work therefore assumes that the
random disturbance w is bounded (Kouvaritakis et al.
(2010)) or that there are no state (or terminal) constraints
(Chatterjee and Lygeros (2015)). The latter paper is inter-
esting because it introduces advanced results on stochas-
tic stability that should underlie all research on stability
of stochastic model predictive control. Interestingly the
optimal control problem considered in this paper has a
terminal cost Vf ( · ) that bears some resemblance to that
employed in robust model predictive control. The condi-
tion is the existence of a terminal control law κf ( · ), a
positive constant b and a bounded terminal set Xf such
that

sup
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E|xVf (x
+) + �(x, κf (x)) ≤ Vf (x) + b

E|xVf (x
+) + �(x, κf (x)) ≤ Vf (x) ∀x �∈ Xf

in which x+ � f(x, κf (x), w). This condition is similar to
a global Control Lyapunov Function for the set Xf ; the
condition is strong if the open-loop system x+ = f(x, u, 0)
is unstable.

One concludes that there is not yet a fully satisfactory
treatment of stabilizing terminal conditions for stochastic
model predictive control. Can satisfactory terminal condi-
tions be obtained or not?.

4. THE ON-LINE OPTIMAL CONTROL PROBLEM
PN (X)

4.1 Conventional model predictive control

In conventional model predictive control, the optimal con-
trol problem PN (x) for linear systems with quadratic costs
is a standard quadratic program if the terminal constraint

set is polytopic or omitted; if omitted an implicit terminal
constraint (confining the initial state to belong to an ap-
propriate set) or a sufficiently large horizon can ensure
closed-loop stability. Polytopic terminal constraint sets,
widely used in the literature, cannot be reliably computed
for large problems. For many applications, especially in
process control, soft state constraints are usually employed
and the terminal constraint omitted. Large problems en-
countered in industry (state dimensions in the hundreds,
thousands of constraints) can be handled. For nonlinear
systems, a global solution to PN (x) cannot be guaranteed
necessitating the use of suboptimal model predictive con-
trol (Scokaert et al. (1999)).

4.2 Potential objections to robust and stochastic model
predictive control

The explosive growth in the use of model predictive control
is largely due to the process industries where it is now
very widely used. Unlike the situation in the automotive
industry where sophisticated design effort can be devoted
to the development by experts of a controller that is
widely used, the large number and diversity of processes
require management of the plant and controller by oper-
ators. Maintenance of the model predictive controller is,
therefore, the responsibility of non-experts who, therefore,
should be able to understand what the controller is doing.
It has been noted (Qin and Badgwell (2003)) that the in-
creasing complexity of model predictive control is affecting
serviceability and maintainability. Increased complexity
requires process engineers to possess increased skills but
there is a paucity of engineers with these skills. One way
to help operators understand the controller is to provide
predicted trajectories of key variables together with con-
straints that these trajectories should satisfy (Forbes et al.
(2015)). Some of the proposals for robust and stochastic
model predictive control will be examined in the light of
these requirements.

4.3 Robust model predictive control

Complexity The complexity of the optimal control prob-
lem may be seen by inspection of (7) and (8), which
define the cost function VN ( · ), and (12), which defines
the constraints. The decision variable has dimension Nq
where q is the dimension of parameterization employed in
each control law µi( · ); this can be as low as Nm, the
dimension of the decision variable in conventional model
predictive control if the system f( · ) is linear and the
common parameterization u = Kx + v is employed. The
number of control constraints is Nqu if qu is the number of
constraints that define U and if the u is used as the decision
variable; because of the disturbance w, this number could
be considerably higher if a policy π is employed as the deci-
sion variable. The number of state constraints in Nqxqw if
qx is the number of constraints that define X and qw is the
number of possible realizations of the disturbance sequence
w ∈ WN ; qw can be as low as NV where V is the number
of vertices of the set W if the system f( · ) is linear but
could otherwise be infinite. If min-max model predictive
control is employed, i.e. if the cost is defined by (8) and
if the optimal control problem problem is reformulated as
minπ h subject to the additional constraint
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N−1∑
i=0

�(xπ(i;x,w), µi(x
π(i;x,w)) + Vf (x

π(N ;x,w))

≤ h ∀w ∈ WN

The number of constraints in PN (x) is therefore increased
by qe, the number of possible realizations of the distur-
bance sequence w, which can be infinite if the system is
nonlinear. If the optimization is over a feedback policy π,
it is not obvious how the basis functions {φj( · )} should
be chosen. When the system in nonlinear, the resultant
optimal control problem, in which a control law must be
chosen for each j ∈ {1, 2, . . . , N − 1} seems to be more
complex than the problem of choosing offline a single
control law κ( · ) for the nonlinear system, a problem that
model predictive control was intended to avoid!

The optimal control problem is considerably more complex
than that for conventional model predictive control even if
the system f( · ) is linear. If the system is nonlinear, the
problem is too complex to be solved exactly and scenario-
based optimization techniques (Bernardini and Bemporad
(2009); Calafiore and Fagaino (2013)) may have to be
employed to get an approximate solution.

Prediction accuracy A poor prediction accuracy has two
consequences:

1: In the nonlinear case, the optimal control problem is
made more difficult and possibly infeasible. One reason is
that it is unlikely that a suitably accurate parameteriza-
tion of π can be easily found; probably because of this,
most papers propose optimization over control sequences
u rather than over control policies π. Because of this,
the estimated spread of the predicted trajectories can
easily become excessive even to the extent of making the
optimal control problem PN (x) infeasible. This is easily
seen if f( · ) is open-loop unstable and optimization is over
control sequences. In such a case, the policy π that is
determined (if possible) will not converge to the optimal
policy determined by dynamic programming as the horizon
N tends to infinity, unlike the case when conventional
model predictive control is employed. A consequence is
that the predicted trajectories can differ considerably from
the actual trajectories, again unlike the case when conven-
tional model predictive control is employed.

2: The inaccuracy of the predicted trajectories means that
reliable estimates cannot be provided for the operators.

Unlike in conventional model predictive control, the accu-
racy of the estimated trajectories does not improve with
horizon length N if the optimal control problem is solved
by optimization over control sequences or parsimonious
parameterizations of π.

4.4 Stochastic model predictive control

The cost function VN (x, π) is either expressed as a nominal
cost (9), which is independent of the disturbance sequence
w, or as an expectation (10). As discussed above, con-
straints are defined as expectations (13) or probabilisti-
cally (14). When the system is linear, the decision variable
is a control sequence, and the additive disturbance is
Gaussian, the expectations can be computed. Otherwise,
computationally expensive Monte Carlo simulations have
to be performed. To avoid generalities, we examine two

proposals that exploit recent advances in stochastic opti-
mization (Calafiore and Campi (2006); Campi and Garatti
(2008)).

In (Calafiore and Fagaino (2013)), the problem of con-
trolling the system x+ = A(θ)x + B(θ)u + C(θ)w is
considered, in which θ is a vector of uncertain parameters
andw is a sequence on independent, identically distributed
random variables. The system is subject to the state con-
straint x ∈ X(θ) and the control constraint u ∈ U(θ).
The assumptions, which are rather strong for stochastic,
as compared with robust, model predictive control, are
that A(θ), B(θ) and C(θ) are bounded and that w ∈ W
with W a bounded set, that (A(θ), B(θ)) is a stabilizable
pair for all θ. These assumptions are strong enough to
ensure the existence of robust terminal constraint set Xf

as defined towards the end of §3.2. The control param-
eterization u = Kx + v is employed so that the system
description becomes x+ = AK(θ)x+B(θ)v + C(θ)w with

AK(θ) � A(θ) + B(θ)K. The problem is formulated as
a min-max problem, minimizing the maximum over all
realizations of (θ,w) of a cost J(x,v, (θ,w)) in which the
stage cost is �(x, v) = d(x,Xf )+|v|2R. Suitably transcribed,
an approximate version of the problem is:

min
s

{c′s | h(x, s, (θ,w)i) ≤ 0, ∀i ∈ I1:M} (22)

in which I1:M � {1, 2, . . . ,M), the decision variable is

s � (v, z, q) with z ∈ R an upper bound to J(x,v, (θ,w)i)
for all i ∈ I1:M , and q ∈ R is a slack variable for each of
the constraints specifying x ∈ X, x ∈ Xf , v + Kx ∈ U
and (θ,w)i is the ith realization of (θ,w); the solution
to the approximate problem minimizes the maximum of
J over M realizations rather that over all realizations of
(θ,w). the function h( · ) is convex in (x, s) so the useful
theory in (Calafiore (2010)) can be employed. Given any
ε ∈ (0, 1) (e.g. ε = 10−9), an integer M can be computed
such that the solution to the problem (18) satisfies all
the constraints (slackened constraints in this case) with
probability not less than 1 − ε). the crucial fact is that
N grows at most logarithmically with 1/ε so that almost
certain (probability greater that 1− ε) satisfaction of con-
straints can be achieved with relatively modest values of
M . With receding horizon control, i.e. with current control
u = v0(x)+Kx, the state is steered to Xf with probability
not less than 1−ε along a trajectory that satisfies the state
and control constraints, again with probability not less
than 1−ε. However even relatively modest values onM can
make the use of this controller for typical process control
problems problematic. A modest process control problem
has state dimension n = 150, control dimension m = 50,
nx ≥ 50 (soft) state constraints (constraints on outputs)
, m control constraints. Even for conventional model pre-
dictive control, a problem of this size necessitates choosing
a horizon N ≤ 10 for the associated deterministic control
problem in order to contain the complexity of the optimal
control problem. For the corresponding uncertain problem,
the number of state constraints is roughlyMnx whereM is
several thousand and nx ≈ 50, giving rise to approximately
100, 000 constraints in the optimal control problem. A
large process control problem could have m = 283 and
n > nx = 603 ((Qin and Badgwell, 2003, Table 6)).
Also, slackened constraints cannot be employed for control
constraints that are ‘hard’. To reduce the complexity of the
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optimal control problem, a novel procedure is proposed
in (Zhang et al. (2013)) where the controller policy pa-
rameterization u(i) = vi + Mi(w(0), w(1), . . . , w(i − 1))′

due to (Goulart et al. (2006)) is used. The advantage of
this parameterization is that it converts the problem into
determination of a feedforward rather than a feedback
controller. The scenario approach (Campi and Garatti
(2008)) is first employed to select, for each i ∈ I0:i−1, a
parameterized convex set Wi with the property that the
probability that {w(0), w(1), . . . , w(i−1)} ∈ Wi is not less
than 1 − εi is specified in (Campi and Garatti (2008)).
In the second stage, robust model predictive control is
employed to minimize, at each i ∈ I0:i−1, the cost for
the associated optimal control problem subject to the
constraint {w(0), w(1), . . . , w(i−1)} ∈ Wi. The procedure
requires much lower computation time (on the problem
with state dimension 3 examined in the paper) than direct
use of the controller parameterization policy of (Goulart
et al. (2006)). Nevertheless the computation times and
storage requirements do not appear to make the method
suitable for process control problems of the complexity
routinely encountered.

5. POSSIBLE ALTERNATIVE

5.1 Introduction

It seems therefore that, at present, model predictive con-
trol that requires optimization subject to satisfaction of
constraints for all realizations, or a realistic sample, of
disturbance trajectories is not practical at present for
robust model predictive control of nonlinear systems or
stochastic model predictive control of linear or nonlinear
systems. This is a consequence of the complexity of the
resultant optimal control problem. It is the purpose of this
section to propose an alternative that has the advantage
that the on-line optimal control problem is considerably
simpler but that also has some disadvantages. The main
objective of the proposed alternative is to replace searching
over disturbance trajectories in the on-line optimal control
problem by a suitable offline optimization problem that
determines parameters which ensure the simpler on-line
controller is satisfactory.

The underlying idea (Mayne et al. (2011)) is very sim-
ple. Suppose the system is described as usual by x+ =
f(x, u, w) with x ∈ X, u ∈ U and w ∈ W. At the
initial state x, a nominal optimal control problem Pnom

N (x)
with tightened constraints on z and v (e.g. z ∈ 0.5X,
v ∈ 0.5U) is solved to steer the initial state x(0) of
the nominal system z+ = f(z, v, 0) to the origin in
N steps yielding the central control and state trajecto-
ries v∗ � {v∗(0), v∗(1), . . . , v∗(N)} and z∗ � {z∗(0) =
x(0), z∗(1), . . . , z∗(N) = 0}. The terminal equality con-
straint z(N) = 0 is chosen to simplify the choice of
terminal conditions for the model predictive controller,
considered next, that attempts to steer the state of the
uncertain system x+ = f(x, u, w) back to the central
trajectory.

At each subsequent ‘event’ (x, t) (state x, time t) the
following nominal optimal control problem P0

N (x, i) is
solved:

V 0
N (x, t) = min{VN (x, t,u) | u ∈ UN} (23)

with VN ( · ) defined by

VN (x, t,u) � Vf (x(N))+

N−1∑
i=0

�(x(i)−z∗(t+i), u(i)−v∗(t+i))

(24)

Let u0(x, t) � {u0(0;x, t), . . . , u0(N − 1;x, t) denote the
optimizing control sequence x0(x, t) the associated state

sequence and let κN (x, t) � u0(0;x, t). It is easily seen
that V 0

N (x, t) = 0 if x = z∗(t), i.e. V 0
N (x, t) = 0 for all

(x, t) lying on the central state trajectory and positive
elsewhere. Note, there are no state or terminal constraints
in the problem P0

N (x, t). The lack of a terminal constraint
may be overcome. A local Lyapunov function Vf ( · ) may
be determined in the usual way, e.g. as in (Michalska
and Mayne (1993)), together with an associated control

invariant set Xf � {x | Vf (x) ≤ α} for some α > 0.
It can be shown, following (Limon et al. (2006)) that,
for all c > 0, all (x, t) in a compact neighbourhood N
of the tube T � {(x, t) | V 0

N (x, t) ≤ c} there exists a
β > 0 such that x0(N ;x, t) ∈ Xf . It then follows, under
the usual assumptions including twice differentiability of
f( · ) and �( · ), that, for all c > 0, there exist constants
c2 > c > 1 > 0, and γ ∈ (0, 1) such that:

c1|x− z∗(t)|2 ≤ V 0
N (x, t) ≤ c3|x− z∗(t)|2 (25)

V 0
N (x+, t+) ≤ γV 0

N (x, t) (26)

for all (x, t) ∈ N . It follows from (25) that any initial
state x with V 0

N (x, 0) ≤ c of the nominal system x+ =
f(x, κN (x, t), 0), t+ = t + 1) will be steered towards the

trajectory z0 � {z∗, 0, 0, . . .} and, thus, to the origin
exponentially fast. Also

z∗(i) = 0, v∗(i) = 0, ∀i ≥ N (27)

V 0
N (x, t) = V ∗

N (x) � V 0
N (x, T ) ∀x, ∀t ≥ T (28)

Hence this strategy reverts to conventional model predic-
tive control for t ≥ N . The use of this control strategy
for robust and stochastic model predictive control will be
examined next.

5.2 Robust model predictive control

For this problem it is customary to assume that the
disturbance w is bounded, i.e w ∈ W, a compact set
constraining the origin in its interior. Using the same
control law κN ( · ) defined above, the disturbance w ob-
viously prevents convergence of the solution xκN ,w( · ;x)
of x+ = f(x, κN (x, t), w), t+ = t + 1), with state x at
time 0, to z0. However, because V 0

N (x, t) increases as x
diverges from z0(t), because W is compact and because
x �→ V 0

N (x, t) is uniformly Lipschitz continuous (if f( · )
and �( · ) are), (25), which holds for the nominal system,
is replaced by:

V 0
N (x+, t+) ≤ γV 0

N (x, t) + c3|w| (29)

for the uncertain system. Consequently there exists a tube
T � {(x, t) | V 0

N (x, t) ≤ c}, for some c > 0, such that
any initial event (x, t) in a compact neighbourhood of T is
steered by the controller κN ( · ) to T and, once in T , the
event (x, t) remains there.

When the system f( · ) is linear, the cross section of the

tube at time t, i.e. the set Sc(t) � {x− z0(t) | (x, t) ∈ T },
does not vary with t and takes the form Sc(t) = z0(t) +
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in (Zhang et al. (2013)) where the controller policy pa-
rameterization u(i) = vi + Mi(w(0), w(1), . . . , w(i − 1))′

due to (Goulart et al. (2006)) is used. The advantage of
this parameterization is that it converts the problem into
determination of a feedforward rather than a feedback
controller. The scenario approach (Campi and Garatti
(2008)) is first employed to select, for each i ∈ I0:i−1, a
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use of the controller parameterization policy of (Goulart
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storage requirements do not appear to make the method
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section to propose an alternative that has the advantage
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objective of the proposed alternative is to replace searching
over disturbance trajectories in the on-line optimal control
problem by a suitable offline optimization problem that
determines parameters which ensure the simpler on-line
controller is satisfactory.

The underlying idea (Mayne et al. (2011)) is very sim-
ple. Suppose the system is described as usual by x+ =
f(x, u, w) with x ∈ X, u ∈ U and w ∈ W. At the
initial state x, a nominal optimal control problem Pnom
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with tightened constraints on z and v (e.g. z ∈ 0.5X,
v ∈ 0.5U) is solved to steer the initial state x(0) of
the nominal system z+ = f(z, v, 0) to the origin in
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ries v∗ � {v∗(0), v∗(1), . . . , v∗(N)} and z∗ � {z∗(0) =
x(0), z∗(1), . . . , z∗(N) = 0}. The terminal equality con-
straint z(N) = 0 is chosen to simplify the choice of
terminal conditions for the model predictive controller,
considered next, that attempts to steer the state of the
uncertain system x+ = f(x, u, w) back to the central
trajectory.

At each subsequent ‘event’ (x, t) (state x, time t) the
following nominal optimal control problem P0

N (x, i) is
solved:

V 0
N (x, t) = min{VN (x, t,u) | u ∈ UN} (23)

with VN ( · ) defined by

VN (x, t,u) � Vf (x(N))+

N−1∑
i=0
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Let u0(x, t) � {u0(0;x, t), . . . , u0(N − 1;x, t) denote the
optimizing control sequence x0(x, t) the associated state

sequence and let κN (x, t) � u0(0;x, t). It is easily seen
that V 0

N (x, t) = 0 if x = z∗(t), i.e. V 0
N (x, t) = 0 for all

(x, t) lying on the central state trajectory and positive
elsewhere. Note, there are no state or terminal constraints
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N (x, t). The lack of a terminal constraint
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and Mayne (1993)), together with an associated control
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V 0
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N (x, 0) ≤ c of the nominal system x+ =
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z∗(i) = 0, v∗(i) = 0, ∀i ≥ N (27)

V 0
N (x, t) = V ∗

N (x) � V 0
N (x, T ) ∀x, ∀t ≥ T (28)

Hence this strategy reverts to conventional model predic-
tive control for t ≥ N . The use of this control strategy
for robust and stochastic model predictive control will be
examined next.

5.2 Robust model predictive control

For this problem it is customary to assume that the
disturbance w is bounded, i.e w ∈ W, a compact set
constraining the origin in its interior. Using the same
control law κN ( · ) defined above, the disturbance w ob-
viously prevents convergence of the solution xκN ,w( · ;x)
of x+ = f(x, κN (x, t), w), t+ = t + 1), with state x at
time 0, to z0. However, because V 0

N (x, t) increases as x
diverges from z0(t), because W is compact and because
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S where S can be precomputed. For this problem it is
possible to replace determination of κN (x, t) by the simple
affine control u = v+K(x−z) whereK defines a stabilizing
feedback controller; for example,K is the optimal feedback
for the infinite horizon unconstrained problem. It is then
easy to determine how much the constraints x ∈ X, u ∈ U
should be tightened for the nominal control problem to
ensure so that z0 and v0 satisfy z0(t)+S ∈ X and v0(t)+
KS ∈ U for all t ≥ 0 thereby ensuring x(t) = xκN (t;x) ∈ X
and u(t) = κN (x(t)) ∈ U for all t ≥ 0.

In the nonlinear case, considered here, for a given initial
state x, the cross section varies with t ∈ I0:N−1 and is
constant for t ∈ IN :∞ and cannot be easily pre-computed
and stored. Indeed, the constant c that defines the tube
cannot be easily computed. Instead the following, complex,
off-line problem is solved. Let θ ∈ Θ be a parameter vector
that defines the tightened constraints for the nominal
control problem Pnom

N (x) and let XI denote the desired set
of initial states. The offline problem P is determination of
a θ ∈ Θ such that

xκN ,w(t;x) ∈ X (30)

for all x ∈ XI , all t ≥ 0 and all w ∈ WN ; κN ( · ) depends
implicitly on θ. The control constraint is automatically
satisfied because of the definition of the optimal control
problem PN (x). Although the problem is complex, the
dimension of the decision variable θ is relatively low. The
constraint dimension is infinite, but scenario optimization
may be employed if satisfaction of state constraints with
a pre-specified probability is acceptable.

5.3 Stochastic model predictive control

In stochastic model predictive control, the disturbance is
a random variable with a specified probability distribution
and is not usually confined to lie in a compact set.
A fair amount of attention is given in the literature
to consideration of control of a stochastic linear system
defined by

x+ = f(x, u), w) = Ax+Bu+ w (31)

where {w(0), w(1), w(2), . . .} is a sequence of independent,
identically distributed random variables. The system is
subject to the control constraint u ∈ U and the state
constraint x ∈ X. Sometimes the parameters A and
B are also random but, for simplicity, that case is not
considered here although much of the proposed procedure
is relevant. The procedures proposed in the literature
and accompanying analysis are complex even for linear
systems. Consider the following naive procedure when
x+ = Ax is asymptotically stable and there are no
state constraints. For a given initial state x compute a
control sequence {v(i)} that steers the state of the nominal
system z+ = Az +Bv asymptotically to the origin. Then,
the state of the system x+ = Ax + Bv + w satisfies
x = z + e where e satisfies e+ = Ae + w. Suppose the
sequence {w(i)} is Gaussian with zero mean and variance
Σ. Then e is Gaussian with variance Σe(i) satisfying
Σe(i+ 1) = AΣe(i)A

′ + Σ that converges to Σ̄e satisfying
Σ̄e = AΣ̄eA

′ + Σ̄e so that the long run average expected
cost is trace(Σ̄eQ). It is not obvious how to obtain a
feedback controller analogous to the robust case discussed
above where the disturbance is bounded.

As pointed out in (Chatterjee and Lygeros (2015)), state
constraints are very difficult to handle in stochastic model
predictive control and it does not seem possible to have
a local stabilizing terminal condition similar to those
employed in conventional model predictive control. The
paper (Chatterjee and Lygeros (2015)) therefore employs a
global stochastic Lyapunov function Vf ( · ) as the terminal
cost and no terminal constraint. The terminal cost is
assumed to have the following properties:

H1: There exists a terminal control law κf : Rn → U, a
constant b > 0 and a compact Xf such that:

E|xVf (x
+) + �(x, κf (x)) ≤ Vf (x) ∀x �∈ Xf (32)

E|xVf (x
+) + �(x, κf (x)) ≤ Vf (x) + b ∀x ∈ Xf (33)

in which x+ � f(x, κf (x), w). This assumption is rather
strong and seems to imply (because the control is
bounded) that A is a stability matrix. Suppose that a
central trajectory (z∗, v∗) is generated as above and that
subsequently the control u is determined by solving the
optimal control problem PN (x, t) defined by

V 0
N (x, t) � min

u
E|x{VN (x, t,u,w) | u ∈ UN} (34)

in which VN ( · ) is defined by

VN (x, t,u,w) � Vf (x(N))+
N−1∑
i=0

�(x(i)− z∗(t+ i), u(i)− v∗(t+ i)) (35)

with w now defined by w � {w(0), 0, . . . , 0}. Let u0(x, t)
denote the optimizing sequence and κN (x, t) the first
element of this sequence. The procedure is simpler than
that described in (Chatterjee and Lygeros (2015)) in that
optimization is now over control sequences rather than
policies and the expectation is with respect to a single
disturbance w(0) rather than with respect to a disturbance
sequence {w(0), w(1), . . . , w(N − 1)}; the optimization
implicitly yields a control policy. However, the problem is
still complex since an expected cost (36) is employed even
though the expectation is over a single random variable
rather than a sequence. Given this cost, it is conjectured
that a result similar to Theorem 3 in (Chatterjee and
Lygeros (2015)) may be obtained:

E|xV
0
N (f(x, κN (x, t), w)) ≤ V 0

N (x, t)− �(x, κN (x, t)) + b
(36)

and that E|xV
0
N (x, t) is bounded for all t ≥ 0.

The usefulness of this conjecture, if true, is questionable
since the terminal cost assumption appears to be equiva-
lent to knowing, a priori, a global, stabilizing control law
κf ( · ), an assumption that model predictive control was
intended to avoid!

The difficulties encounted in stochastic model predictive
control remind us of an early warning on optimal stochas-
tic control (Wonham (1969)):

Since the mathematical model is usually greatly compli-
cated by explicitly including stochastic features, it is always
to be asked whether the extra effort is worthwhile, i.e.
whether it leads to a control markedly superior to one
designed on the assumption that stochastic disturbances
are absent. In the case of feedback controls the general con-
clusion is that only marginal improvements can be obtained
unless the disturbance level is very high in which case the
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fractional improvement from stochastic optimization may
be large but the system is useless anyway.

It is to be hoped that this forecast is wrong but it does
suggest that the performance of proposed stochastic model
predictive controllers should be compared with the perfor-
mance of conventional model predictive control.

6. CONCLUSIONS

In robust model predictive control, the control κN (x) for
state x is often obtained by solving an optimal control
problem that requires optimization subject to satisfaction
by the model of constraints for all possible disturbance
sequences; in stochastic model predictive control the re-
quirement is minimization of an expected cost where the
expectation is with respect to disturbance sequences. In
both cases the computational expense for solving the op-
timal control problem is high, possibly too high for situa-
tions routinely encountered in the process control industry,
especially if the system being controlled is nonlinear. It
is argued that a profitable research direction is to search
for much simpler on-line strategies that can be designed
employing possibly extensive off-line optimization. For
example, for robust model predictive control, a possible
strategy is to employ conventional model predictive control
with tightened constraints together with extensive off-
line optimization to determine the tightened constraints.
Examples of using simple algorithms for complex control
problems occur elsewhere. In adaptive control nobody at-
tempts to solve on-line the dual optimal control problem;
instead a relative simple problem is solved on-line, and
conditions that ensure its properties are satisfactory are
separately determined. The examples given in this paper
should be regarded merely as ‘existence’ results that show
it is possible to employ simpler on-line strategies. The
research community is surely able to improve considerably
on these few proposals.
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ings are gratefully acknowledged.
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