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Abstract

This paper addresses the development and application of a first-principles, steady-state modeling framework in multivariable

control applications. A rigorous approach based on detailed nonlinear models calibrated with reconciled online measurements is

presented. Sensitivity analysis of this model is then applied in order to generate steady-state gain (inferential) models used in a

DMC-based control application of a refinery unit. The benefits of using open-equation based inferential models to account for

online product quality control are demonstrated in the context of a real-time model predictive control system, applied to a refinery.

Finally, the direct economic impact of this application is assessed in a detailed quantitative manner and offered along with the

relevant business process changes and operational practice recommendations for sustaining the benefits achieved.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The fierce increase in competition over the last few
years combined with large oil price fluctuations has
forced most oil and petrochemical companies to find
ways to streamline and optimize plant operations. At
the same time increased computing power combined
with improved modeling tools has provided the oppor-
tunity to use rigorous modeling for generating accurate
product quality predictions. Those predictions are
invaluable in the context of advanced multi-variable
control strategies, especially since traditional quality
control via laboratory testing is no longer practical or
acceptable due to the time-scale differences (order of
seconds for a controller cycle versus a few hours for lab
data). A linear model predictive control (MPC) algo-
rithm (DMC in this particular application, as described
e front matter r 2004 Elsevier Ltd. All rights reserved.
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in Cutler and Ramaker (1979) utilizes this information
in the context of an optimizer that solves for the control
trajectory over a future time horizon based on a
dynamic model of the process. This general control
methodology has been successfully employed for solving
constrained multiple-input/multiple-output (MIMO)
problems, which are often encountered in the process
industries (see VanDoren (1998) for a review). Currently
there are over two thousand online applications of MPC
in the chemical process industry, mainly in the refining,
petrochemical, and chemical industries as well as in pulp
and paper and food processing (Qin & Badgwell, 1997).

Inferential product quality control (IFQ) has elevated
traditional quality control to a higher level of total
quality management. In the traditional approach, plant
operators monitored product quality behavior as a
sequence of discrete points lagging real-time by 4 h and
being 4 h apart of each other. This operating paradigm is
not particularly relevant or useful in the context of
advanced control applications where both the control
applications cycle every minute and the process
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dynamics are fast. The new IFQ based approach
provides operators with the capability of observing
product quality (inferred) on a minute-by-minute basis
and therefore enabling them to monitor and analyze
plant constraints, plant performance and the associated
economic considerations.

In the last decade, a number of approaches to
property prediction and inferential calculations have
been developed in the contexts of advanced control and
regulatory monitoring operations. These approaches
range, in terms of rigor, from empirical correlations, to
‘‘black box’’ neural networks, to simplified ‘‘short-cut’’
models, to first principles and rigorous auto-calibrated
models. Although the advantages and disadvantages of
the above have been debated, it is generally accepted
that as confidence in our ability to develop adequate
representations of plant behavior has grown, there has
been a trend to move towards more rigorous and
detailed implementations. This fact is only compounded
by the ever-increasing availability of low cost high-
powered computing.

There is a long tradition in the process industries of
using fundamental knowledge captured in the form of
mathematical models to aid plant operations (Varvar-
ezos, 1994). Recent advances in open-equation based
modeling technology, in the context of real time
optimization (RTO), have provided the foundation for
generating inferential model calculations of high quality
comparable—in some cases—to that of hardware
analyzers. Those first principles based models (Aspen
Pluss), with the embedded capabilities of equation
oriented data reconciliation and parameter estimation
(RT-Opts), and the power of state-of-the-art, SQP-
based (Han, 1977), large-scale nonlinear optimization
engines (DMO), form the backbone of this technology
(Lowery, McConville, Yocum, & Hendon, 1993). The
fact that these models incorporate analytic derivative
information for all model variables and equations makes
sensitivity analysis possible for any pair of variables in
the process.

This paper presents the methodology for creating
those inferential calculations; it describes the implemen-
tation details and provides an account of the benefits
derived from such an application in a refinery crude
unit. All the above are presented in the context of a
project at the Petronas Melaka refinery along with
insights on the tangible and intangible benefits achieved
in the project implementation lifecycle. The contribution
of this work is two-fold. First, it provides a demon-
strated success story of first principles model based
steady-state gain calculations. Although the concept of
utilizing an engineering model for MPC has been used
before (Gillette & Prett, 1979), this work introduces the
methodology and relevant issues associated with the
model validation and data reconciliation of a large scale
model in the context of an MPC application. It is also
presents an analytic way of generating the steady-state
based inferential calculations in a simultaneous fashion.
The second contribution of this paper lies in the detailed
quantitative and qualitative assessment of the economic
benefits associated with this work, since it highlights the
technical and economic importance of such a modeling
approach in large-scale advanced control applications,
as well as the important interplay between advanced
control and closed-loop real-time optimization.

The rest of this paper is devoted to developing the
above ideas and is organized as follows. The second
section deals with the problem definition and description
of the project requirements. In the third section, we offer
a description of the advanced control model formulation
along with the associated processes for constructing
such a model. In particular, we discuss the assessment of
laboratory data quality and the plant testing procedures.
In Section 4, the rigorous process model is detailed
along with a powerful approach to inferential model
development. In Section 5, we outline the benefits
derived through this advanced control strategy. Special
attention is given to the lessons learned that have
an impact at the refinery organizational level and
involve business processes and human factors. Finally,
in Section 6, we discuss the conclusions of this work
and the resulting technical and operational recommen-
dations.
2. Problem statement

This work was primarily motivated by an advanced
control project for the crude unit complex (CDU) at the
Petronas Panipisan Melaka refinery. The goal of this
project was to effectively and optimally control the
CDU operations. The CDU was designed to process
100,000 barrels per day of crude oil and condensates,
and it is typically operated at 10–15% over the design
capacity.

There are three different types of feed processed at
this refinery. They are Tapis crude, Bintulu and
Terranganu condensate. Normally Terranganu and
Bintulu condensate are processed at the condensate
tower where mid-distillate product and condensate
naphtha are produced. The bottoms of the condensate
tower are fed to the CDU via the FC004 flow meter. The
Terranganu condensate and Tapis crude are fed to the
CDU combined with the condensate tower bottom
product.

The combined crude feed to the CDU is passed
through two parallel preheat trains which consist of
several heat exchangers, desalters, pre-flash towers and
furnaces. The two parallel preheat trains are then
combined to feed to tray #4 of the atmospheric tower.

A graphic description of the process with all the flows
and their respective prices are shown in Fig. 9.
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Table 1

List of inferential properties

Inferential properties Controller

HNN 95% distillation Point CDU

Kerosene 95% distillation point CDU

Kerosene flash point CDU

Kerosene freeze point CDU

Diesel flash point CDU

Diesel 95% distillation point CDU

Diesel pour point CDU

AGO pour point CDU

AGO 95% distillation point CDU

LSWR pour point CDU

Condensate naphtha 95% distillation point CND

LNN RVP GRP

Medium naphtha 95% distillation point GRP
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3. Advanced control formulations

The PSR1-CDU optimization project started with a
detailed study to determine the potential economic benefit
of implementing a multivariable control and optimization
system in the CDU complex at the Petronas Penapisan
Melaka refinery. The study identified a potential benefit of
approximately US$685,000 per year for implementing the
advanced control and optimization system (DMCplus).
The timeline for the project was as follows. After the
approval of the benefits study results in February, the
kickoff meeting and pre-test was started and completed
by the end of March. A detailed design of the controllers
was issued for review and approval in May. Initial plant
test was successfully completed a month later. Preliminary
analysis of the data collected during the plant test revealed
that there may be a need for additional data to obtain
better models. Further analysis and the second plant test
were conducted in July. Final data analysis and model
identification was completed in August. Throughout this
time, Petronas control engineers and operation personnel
were actively involved in the model building and data
analysis activities. This has greatly contributed to the
success of the implementation of the project for reasons
that will be outlined later in this paper. Controller
commissioning was started in September and completed
by the end of the month. Minor improvement for the
inferential work was performed during the month of
November. The controllers then ran on-line without any
major problem.

There are three controllers running on the DEC/
Alpha 4100 server machine. The controller for the main
crude fractionator (CDU), the controller for the
condensate tower (CND), and the controller for the
gas recovery plant (GRP).

From an operational standpoint, the refinery mainly
runs under two distinct modes of operation: maximum

diesel mode and maximum kerosene mode. The differ-
ence between the two modes of operation is the
significant change in the diesel and kerosene product
specifications and product prices.

Inferentials for product qualities were developed from
a rigorous real-time optimization (RT-Opts) model of
the crude fractionator. There are a total of 13 inferential
qualities provided for control purposes. They form part
of the control variable (CV) list for all three controllers.
Table 1 details the list of inferential properties developed
for this project.

The objectives of the overall control strategy are to:
�
 Maintain safe plant operation.

�
 Maximize crude charge to the unit (throughput).

�
 Maximize incremental product yields for optimum

benefit.

�
 Improve equipment reliability and operational stabi-

lity.
These objectives were achieved by the three separate
DMCplus controllers one on each of the CDU, CND
and GRP units. In conjunction with the three con-
trollers, extensive efforts were involved in developing
rigorous, model-based, steady-state inferentials for side
stream product quality predictions and control.
4. Rigorous nonlinear steady-state modeling

4.1. Overview

The methodology for developing inferential estimates
based on first-principles models involves the following
steps:
�
 Develop a steady state model of the process from
engineering principles. In this particular case it
involved detailed mass and energy balances for tray-
by-tray distillation involving non-ideal thermody-
namics and non-ideal liquid–vapor equilibrium calcu-
lations. This model involves over 100,000 variables
and equations. There are over 1,000,000 non-zero
entries 2

3
being nonlinear. The solution times vary

(based on the particular data instance) and are
typically less than 3 min elapsed time on a current
computing platform.
�
 Employ a solution analysis methodology to obtain the
sensitivity ðdy=dxÞ of any property of interest
(dependent variable, y) with respect to any model
variable of interest (independent variable, x), using
the analytic derivatives (Jacobian) of the entire steady-
state model to obtain the total derivatives as indicated
in Eq. (1):

dy

dx
¼

XN

i¼1

1

�
qhi

qy

� �
qhi

qx
(1)
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This calculation is done in one step for all the variable
pairs of interest (x, y) and does not involve any
numerical perturbation of the model. An important
property of this methodology is that it is designed to
be independent of the optimum active set (the bounds
that the variables may encounter at the optimal solution
of the steady-state model), which frequently changes
during the course of the control optimization execu-
tions. This is particularly important since it is not
known a priori which constraints will be active at the
control level at any given time. This ‘‘unconstrained’’
(independent of the optimum active set) sensitivity is
achieved by performing the sensitivity analysis at the
beginning of the optimization cycle (where the degrees
of freedom are not ‘‘saturated’’) and not at the end
(where several variables are at their bounds).
�
 Use the information above to develop an under-
standing of the correlation between product proper-
ties and independent variables selected differently for
each property. The selection of independent variables
for each property is performed using the under-
standing of the process unit operations, the particular
parametric modeling context (i.e. quality of related
measurements and updated parameters) and longtime
project experience in developing such specifications. It
is interesting to note here that a ‘‘poor’’ selection of
independent variables typically results in an ill-
conditioned steady-state problem.
�
 Add the lab update module to maintain consistency
between measured and estimated values.

This methodology offers significant advantages over
the other methods proposed for modeling major refining
processes. The main disadvantage of these other methods
is that statistical, empirical, and neural network based
models tend to behave very erratically when significant
changes in operating conditions occur. For instance,
when the unit is processing a new crude slate or is
operating in a new domain in the space of temperature,
pressure and/or composition, historical data used in the
context of these models are grossly inadequate to predict
all properties. First principles models, on the other hand,
have the capability to predict the properties accurately in
as yet unobserved regions of the operating space since all
of the major inputs, such as crude properties, are
included as independent variables in the model. There-
fore, even if plant operations are moved to a new domain
the models are still valid. This is the result of using a
detailed fundamental model combined with a robust
parameter estimation strategy (the latter is necessary in
order to match the reconciled plant measurements).

The Lab bias update module makes sure that the
models are sufficiently correct to predict the actual
properties. The measured properties were the distillation
D86ASTM percent cut-points for all products. The
quality of the models was demonstrated using the lab
repeatability of the measured properties plus a tolerance
of 0.5 1C to 1 1C. The exact inferential performance
repeatability is described in the following equation:

IR ¼ LR þ �; (2)

where IR is the inferential repeatability, LR the lab
repeatability and e the tolerance.

The tolerance (dead-band) for each property varies
between 0.5 1C and 1.0 1C.

4.2. Rigorous model development

Prior to this MPC control application, a steady state
model of the crude and condensate units was developed
for the purpose of debottlenecking the plant. For the
optimization benefits study, the model was modified to
incorporate the following capabilities:
�
 Selection of feed by crude assay name.

�
 Side-stream product qualities specified as convergence

criteria.

�
 Elimination of the use of product back-blending.

�
 Removed the condensate tower model for faster

convergence.

Tapis Crude, Bintulu condensate, and Trengganu
condensate assay data were entered into the modeling
system. Product distillation D86ASTM 95% cutpoints
specifications were added. As a result, the rigorous
model was reconciled to match data taken from the
plant with the same feed source and mode of operation.

Once the model parameters were identified through
least-squares reconciliation, the new model was saved as
a base case for the study. Key operating variables were
each perturbed at least three or four times to establish a
relationship between them and the overall plant operat-
ing profits.

4.3. Base case model results

Table 2 compares the simulation results and the
actual plant test data. From this table, it can be seen
that the simulation results fit very well against the
original plant data collected during the test runs with the
exception of the flash zone temperature and the tower
bottom temperature. It was noted that the pour point
for the LSWR stream does not match well with the lab
data. This is because the pour point property curve was
not available for the CTB stream assay.

4.4. Assumptions

The following assumptions were used in this work:
�
 78,000 barrels per day (KBP) throughputs.

�
 Test run plant data for the base case.
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Table 2

Base case simulation results

Description Units Price Actual Simulation % Diff

Tower temperature and operating conditions

OVHD condenser (tray 1) 1C 46 48.70 5.87

Tower top temperature (tray 2) 1C 102 100 �1.96

Top pumparound draw temp (tray 5) 1C 120 119 �1.67

HN draw temperature (tray 17) 1C 150 147 �2.00

Kero draw temperature (tray 27) 1C 187 186 �0.53

Diesel draw temperature (tray 35) 1C 260 260 0.00

AGO draw temperature (tray 43) 1C 304 306 0.66

Flash zone temperature (tray 49) 1C 323 339 4.95

Bottom crude tower temperature (tray 54) 1C 311 326 4.82

TPA flow rate m3/h 635 630 �0.79

TPA duty mm kcal/h �13.50 �13.50 0.00

TPA return temperature 1C 67 68.10 1.64

HN pumparound flow rate m3/h 529 530 0.19

HN PA duty mm kcal/h �10.70 �10.70 0.00

HN PA return temperature 1C 101.70 0.00

Diesel pumparound flow rate m3/h 224 220 �1.79

Diesel PA duty mm kcal/h �9.10 �9.10 0.00

Diesel PA return temperature 1C 181.50 0.00

AGO pumparound flow rate m3/h 105 100 �4.76

AGO PA duty mm kcal/h �5.40 �5.40 0.00

AGO PA return temperature 1C 210.77 �0.01

Atmospheric heater overflash % 2.50 0.00

Atmospheric condenser pressure kg/cm2 0.66 0.60 �9.09

Atmospheric bottom stripping steam kg/h 1650 1650 0.00

Kero stripping steam kg/h 1500 1500 0.00

Diesel stripping steam kg/h 1170 1170 0.00

AGO stripping steam kg/h 198.70 198.70 0.00

Atmospheric heater outlet temp. 1C 334 334 0.00

Product flowrates and qualities

OVHD gas T/h 193 0.58 0.58 0.00

OVHD liquid m3/h 18.75 188 184 �2.13

HN m3/h 22 21 21.80 3.81

Kerosene m3/h 25.5 134 130.20 �2.84

Diesel m3/h 24.5 91 93.30 2.53

AGO m3/h 24.5 24 24.20 0.83

LSWR m3/h 17 71 74.10 4.37

HNN 95% 1C 144 149 3.47

KERO 95% 1C 243 240 �1.23

KERO flash point 1C 44.50 49.40 11.01

KERO freeze point 1C �52 �58.60 12.69

DIESEL 95% 1C 347 340 �2.02

DIESEL cloud point 1C N/A 1.40 N/A

DIESEL pour point 1C N/A �13.30 N/A

AGO 95% 1C 410 390 0.98

AGO pour point 1C 17.70 20.20 14.12

LSWR 95% 1C N/A 721 N/A

LSWR pour point 1C 41.25 27 �34.55

Feed to the units

Tapis crude $/BBL 20.5 50 900 50 900 0.00

Condensate to crude unit $/BBL 19.3 24 039 24 039 0.00

CTB $/BBL 19.4 4800 4800 0.00

Total feed to the unit m3/h 531.59 531.59 0.00

Total feed cost $/day 1 600 522.70 1 600 522.70 0.00

Utility cost $/day 15 813.37 15 813.37 �0.29

MP steam T 7.5 813.37 813.37 0.00

LP steam T 7

Fuel gas �0.65

Electricity 15000 15 000 0.00

Total product flow rates m3/h 529.58 528.18 �0.26

Total product revenue $/day 1 716 977.77 1 710 925.27 �0.35

Total profit $/day 100 641.70 94 589.20
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Current operating constraints.

�
 Current product and crude pricing as supplied by

planning operations.
4.5. Economic objective function

In order to evaluate the improvement in profitability
due to changing operating conditions in the simulation,
an objective function calculates a ‘‘unit profit’’ which is
the total product value minus the feed and utility costs.
The objective function (to be maximized in this case)
was formulated as follows:

FEconomic ¼
XNProd

i¼1

CiPi �
XNFeed

j¼1

CjF j �
XNUtil

k¼1

CkPk; (3)

where Ci is the product price Cj the feed Cost Ck the
utility cost, Pi the product flow rate Fj the feed flow rate
Uk the utility flow rate.

For the online objective function, the following
objective function, F, is recommended. This function
accounts for the amount of product drawn and also
penalizes the production of off-specification product (Ds

is the absolute value of the quality deviation from the
specification). The steady state gains Gi could be
inferred during model development after the plant test.
For the benefits study this formulation is not being used
since off-specification product does not occur in the
simulation.

FOnline ¼
XNProd

i¼1

CiðPi � GiDsÞ �
XNFeed

j¼1

CjFj �
XNUtil

k¼1

CkUk;

(4)

where Ds is the |quality – specification| Gi the gain of
quality vs. product draw.

4.6. Data reconciliation objective function

The data reconciliation objective function is used to
minimize an L2 norm of the difference between
measured data and model predictions around key
process measurements. In addition, the reconciliation
objective function includes a second group of weighted
least squares terms that allow feed characterization by
ble 3

vanced control benefits summary

scription CDU con

erage profit when controller is ON (US$/HR) $1298

erage profit when controller is OFF (US$/HR) $1245

remental economic benefit (percent) 4.3%

remental economic benefit (US$/HR) $53

tal profit for implementing DMCplus (US$/YR) $465,607
allowing a refinement around a base feed profile
(known). This is achieved through the minimization of
deviations from a characteristic TBP analysis curve for
the processed crude. The need for this type of
augmented objective function becomes particularly
important for crude unit optimization where feed
composition is constantly changing due to a number
of reasons including mixing and stratification. The
nonlinear least-squares weighting strategy involves
individual weights on measurements based on standard
deviation, as well as an overall weighting factor for the
feed characterization portion of the objective, as
described in (5).

FRecon ¼
XNMeas

i¼1

wiðyi � ymeas
i Þ

2

þ a
XNFeeds

j¼1

XNTBPpts

k¼1

ðxjk � x
ref
jk Þ

2; ð5Þ

where yi is the model prediction for variable i, yi
meas the

actual measurement for variable i, wi the weight factor
for measurement i, xjk the model value for TBP point k

of feed j, xjk
ref the assay reference value for TBP point k

of feed j, and a the overall weight for the feed
characterization term.

Prior to the parameter estimation phase, there is a
gross-error detection step by which few, selected
measurements are identified as ‘‘unreasonable’’ and are
discarded.
5. Benefit calculation

5.1. Standard tangible benefits

The standard economic benefits are outlined in
Table 3 and are derived from the calculation of the
profit function as described in Table 4 and the off-specs
product re-run as outlined in Table 5 (annual off-specs
product). These benefits are true measures of the real
savings that were obtained in the Petronas Melaka crude
unit operation since implementing this control and
optimization strategy. The product and feed flows were
obtained during the post-audit exercises where the
troller CND controller GRP controller

$76 $407

$49 $401

55.1% 1.5%

$27 $6

$237,335 $49,732



ARTICLE IN PRESS

Table 4

Profit function calculation

Description Formulae

CDU Profit ¼ P11*11FC002+P12*11ZFC004+P13*11FC062+P14*11FC050+P15*FC049*P16*11FC047+P17*11FC048+P18*11FC053

CND Profit ¼ P21*11FC501+P22*11FC502+P23*11FC518+P24*11FC514+P25*11FC507

GRP Profit ¼ P31*11FC518+P32*11FC062+P33*11FC068+P34*11FC522+P35*11FI071+P36*11FC072+P37*11FC077+P38*11FC083

Notes:

P11 ¼ �89.32 Tapis crude cost ($US/M3)

P12 ¼ �83.02 Bintulu condensate cost ($US/M3)

P13 ¼ 69.2 stabilizer feed product price (use light naphtha price) ($US/M3)

P14 ¼ 90.57 HNN product prices ($US/M3)

P15 ¼ 96.86 kerosene price at Max KERO mode ($US/M3)

P16 ¼ 89.32 diesel Prices at Max KERO mode ($US/M3)

P17 ¼ 96.23 AGO product prices ($US/M3)

P18 ¼ 64.16 LSWR product prices ($US/M3)

P21 ¼ �83.02 Bintulu condensate price ($US/M3)

P22 ¼ �81.77 Terrenganu condensate price ($US/M3)

P23 ¼ 78.0 condensate tower OVHD (use light naphtha price) ($US/M3)

P24 ¼ 91.83 condensate naphatha product prices ($US/M3)

P25 ¼ 83.02 condensate bottoms product prices ($US/M3)

P31 ¼ �78.0 condensate tower OVHD (use light naphtha price) ($US/M3)

P32 ¼ �69.2 stabilizer feed product price (use light naphtha price) ($US/M3)

P33 ¼ 64.16 crude stabilizer OVHD to SAT gas plant ($US/M3)

P34 ¼ 64.16 condensate stabilizer OVHD to SAT GAS ($US/M3)

P35 ¼ 86.8 medium naphtha to tank ($US/M3)

P36 ¼ 86.8 medium naphtha product to HDS unit ($US/M3)

P37 ¼ 69.19 light naphtha to storage ($US/M3)

P38 ¼ 64.16 IC5 to storage ($US/M3)

Table 5

Product off-specs annually

Description With DMCplus Without DMCplus

Total kero to slop (bbl) 12,532a 66,012

Total diesel to slop (bbl) 12,365a 49,084

Total AGO to slop 0 11,553

Total LSWR to slop 0 6371

Total LPG to slop 0 25,853

Heavy naphtha 0 118

Medium naphtha 0 71,731

Light naphtha 0 90,856

Ic5 0 58,199

Total off-spec product

loss profit (US$)

24,897b 379,777

aDenotes the annual generalization based on 3-month data.
bThe total incremental benefit for reduction of off-specs product is

379,777–24,897 ¼ US$354,880.
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controllers were turned ON and OFF alternately every
shift. The product and feed prices were obtained from
the planning department to reflect the true economics of
operating the refinery. A total benefit of over
US$1,131,000 is obtained by running the advanced
control system on-line annually. It is worth mentioning
that this figure is larger than the originally predicted
benefit of about US$685,000 (initial study). The detailed
post-audit analysis results (where the new controllers
were alternating between ON and OFF at randomly
predetermined intervals) are presented for each con-
troller in Figs. 1–3, respectively. In addition, a
significant improvement in product quality by means
of reduced variation was also observed and is shown in
Table 8. The significant reduction in product property
standard deviations is an indication of improved
operation. Reduction in product quality variation
allows us to operate closer to product quality limits,
resulting in more valuable products.

The above benefits are achieved as a result of moving
the manipulated variables in the controller while
observing the process safety constraints and product
quality specifications. Typical movements from key
manipulated variables in the controllers are tabulated
in Table 6. Contributions from the movements can be
inferred with reference to the estimated benefits as
shown in Table 7. In that study (prior to this project),
the benefit of implementing this control and optimiza-
tion strategy was estimated to be about US$685,000.
Note the manipulated variable (MV) movements shown
in Table 6 are similar to those shown in Table 7. While it
is difficult to separate the contribution from individual
manipulated variable to the overall benefit, the similar-
ity is a clear verification of the understanding in the
benefit study. The MV movements in Table 6 indicated
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POST AUDIT RESULTS FOR CDU CONTROLLER
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Fig. 1. CDU controller performance.
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almost the same understanding as in the benefit study
report. The only exception, as denoted by (**), was that
the AGO pumparound was expected to increase rather
than to decrease. This difference occurred because the
controller had to cut AGO pumparound to maintain
Diesel and Kerosene qualities. Note the LP cost tuning
was changed to make the controller more robust when
the crude slate varies significantly. Since the AGO



ARTICLE IN PRESS

Table 6

Benefit contributors.

Manipulated variable Tag name DMC ON DMC OFF Direction

TPA pumparound 11FC006 753.14 782.16 DOWN

HN pumparound 11FC037 601.93 613.96 DOWN

Diesel pumparound 11FC038 82.48 82.45 UP

AGO pumparound 11FC035 195.8 201.95 DOWN**

CDU bottom stripping steam 11FC033 N/A

Kerosene stripping steam 11FC043 0.705 0.955 DOWN

Diesel stripping steam 11FC041 2 2.08 DOWN

AGO stripping steam 11FC040 2.00 2.08 DOWN

Throughput Max., COT 11TC089 328.4 327.9 UP

Kerosene cupoint 11SRK95B 236.16 236.04 UP

Diesel cutpoint 11SRD95B 346.38 347.36 DOWN

Table 7

Benefits estimated from benefit study report

Manipulated variable Change by Benefit in US$ Direction

TPA pumparound 10% DOWN

HN pumparound 10% DOWN

Diesel pumparound 10% UP

AGO pumparound 5% UP

Total pumparound benefit $105,200

CDU bottom stripping steam 5% DOWN

Kerosene stripping steam 10% DOWN

Diesel stripping steam 10% DOWN

AGO stripping steam 0 DOWN

Total stripping steam benefit $149,850

Throughput maximization, COT 2 1C $175,000 UP

Kerosene cutpoint 3 1C UP

Diesel cutpoint 1 1C DOWN

Total product cutpoint benefit $255,000

Total estimated benefit $685,050
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pumparound was constrained, it was important to allow
the controller to search for optimum solutions that
release these physical constraints.

5.1.1. Reduction of off-specs products to slop

Data were collected during a six month period
when PSR1-CDU implemented advanced control sys-
tems. The information collected was used to cal-
culate the amount of off-specs product to slop for re-
run. Since the implementation of the controllers,
there was only one observed incident where the products
were sent to slop for a period of 4 h. This incident
occurred as the result of lack of training by the operator
to properly maintain the inferential calculation in the
controller. Additional training on the use of inferential
to lab bias update program was performed. The results
have been extremely favorable since the additional
training.

It is important to emphasize that the inferential needs
to work well to ensure that the product quality
specifications are met. The controllers will manipulate
all independent variable to its optimum conditions while
maintaining the product specifications and process
safety constraints.

5.2. Intangible benefits

In addition to the tangible benefits discussed in the
above section, significant additional benefits were
obtained upon implementing the advanced control
system at the Petronas Melaka refinery as discussed
below.

5.2.1. Ease of operation

The operation of the crude unit complex is much
smoother, with fewer alarms as recently reported by the
operators. The capability of the controller to continu-
ously monitor important process constraints while
pushing the units to optimize the economics of opera-
tion has been confirmed by a significant reduction in the
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number of nuisance alarms. Mode switch has been
implemented in the controller and provides easy options
that allow operator to swing the operation in a quick
and efficient manner.

5.2.2. Reduction in sample analysis

All important product properties are predicted on-line
from the rigorous inferential calculations. The accuracy
of the inferential has helped to increase the performance
of the controller and had a major impact in the
reduction of non-routine laboratory samples. A custom
program was written in the TDC3000 system to allow
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the bias update from the routine laboratory analysis
and thus improve the prediction of the inferential
calculations. Since the proper implementation of
this program, the inferential calculations have been
reported to perform well and the non-routine
samples have been drastically reduced. Figs. 4–8
show that the inferential calculations have performed
well and met all the requirements for acceptance as
stated in the benefit study. These figures show the
laboratory analysis results, the inferential predictions
and the upper and lower inferential acceptance limits
(Fig. 9).
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Kerosene Freezing Point Lab Results vs Inferred Calculations
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5.2.3. Reduction in product qualities standard deviation

Data were collected for the period from January
to March after the controllers were implemented
in PSR1-CDU. Standard deviations of all key
product properties were calculated and tabulated
in Table 8 (product quality standard deviation).
The standard deviations of all key properties as
given from the benefit study report were used for
the reference to the standard deviation before imple-
menting the advanced control strategy as described
above.

As shown in the table, there are significant reductions
in the product quality variations when controllers were
running on-line. Most of the property standard devia-
tion was reduced by a significant amount of almost
40–50%.
6. Conclusions and recommendations

6.1. Conclusions

The results presented in this study have shown an
enormous amount of benefit attained by implementing a
multivariable constraint controller in the CDU complex.
This is because the controller has the capability to move
several manipulated variables simultaneously and in
cooperation in order to maximize profits in real time
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while continuously observing the process safety con-
straints. It continuously searches for the optimum
solution. In order, however, for this optimum to be
meaningful it should be based on the correct, first-
principles-based, auto-calibrated inferential calcula-
tions. Although a direct comparison between the
benefits of this approach and a ‘‘standard’’ DMC
controller application (where empirical data are used
for the steady-state inferential calculations) was not
performed, it should be noted that the discrepancies
observed between empirical gains and first-principles
gains can differ significantly in size and often in
direction (derivative sign). The above supports the
assertion that a controller based on partially incorrect
steady-state gains can have significantly lower economic
benefits.

Finally the accomplishments of this work can be
summarized as:
�
 The establishment and confirmation of the benefits
obtained from implementing the advanced control
strategy using first-principles-model derived gains.
From the results of the post-project audit outlined in
the previous section, it is clear that the benefits
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Table 8

Product quality standard deviation

Description Before DMCplus

(1C)

After DMCplus

(1C)

SRK freezing point S.D. 3.0 1.3

SRK flash point S.D. 1.4 1.4

SRK 95% point S.D. 3.1 2.2

Diesel pour point S.D. 3.0 2.6

Diesel 95% point S.D. 2.9 2.5

AGO pour point S.D. 3.0 2.3

AGO 95% point S.D. 6.1 4.9

LSWR pour point S.D. 3.0 1.7

HN 95% point S.D. 0.8 0.8
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achieved at the Petronas PSR1 refinery using the
controllers and the proposed methodology far out-
weigh the implementation costs. The project payback
time was less than 8 months.
�
 The establishment of the required business process
changes to help Petronas personnel maintain the
controllers on-line. It is very important to understand
that the benefits can only be sustained when the
controllers are well maintained. A summary of the
necessary procedures will be described in the recom-
mendations section.
6.2. Recommendations
As discussed in the previous section, it is recom-
mended that the following procedures and plans be
adhered to, in order to ensure a high on-line rate for the
controllers, thus ensuring that the achieved benefits are
sustained.
(i)
 Continuously provide training/support to the op-
erators to ensure that all MV/CV limits are
loosened. Opening the limits is critical for the linear
programming algorithm to find a feasible solution
and thus ensures optimum solutions that maximize
the profits of operating the unit.
(ii)
 Work with the operators to ensure that the routine
laboratory sample analysis is entered into the
system. This is critical to the success of the
inferential estimates and thus the controller perfor-
mance.
(iii)
 Continuously monitor the performance of the
inferential estimates to ensure that the results are
consistent with the laboratory analysis.
(iv)
 Ensure adequate support from the advanced
process control engineer to the operational staff.
This is to increase the confidence level of the
operators. The authors’ experience indicates that
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when operators have more confidence and knowl-
edge in the control strategy, they are more likely to
keep the controller running on-line.
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