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Abstract

A commonly encountered issue in process industry is concerned with the detection of plant-wide oscillations. In this paper, a new
visualization tool termed as the power spectral correlation map (PSCMAP) is proposed for this purpose. The proposed colour map
is based on a new measure defined as the power spectral correlation index (PSCI). A simple clustering algorithm is developed to
group blocks of variables with similar spectral shapes. The combined visualization tool is shown to be simple, effective and powerful
in collecting variables with common frequency-domain behaviour in a multivariate process. The potential of the combined technique
is illustrated by an application to two industrial processes, (i) a simulated pulp and paper process and (ii) a SE Asia refinery.

© 2005 Elsevier Ltd. All rights reserved.
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1. Motivation

The detection of plant-wide oscillations is concerned
with the identification of a set of signals (or measure-
ments) oscillating at similar frequencies, but not neces-
sarily in phase with each other. Such a problem is of
great practical significance since it involves the identifi-
cation of common cause disturbances whose effects
propagate to many units and thus may impact overall
process performance. The causes of oscillations, their
influence on poor performance, and their benefits to
the economy and safety of the plant are well outlined
in the literatures [1-6].

Time-domain methods, i.e., methods that capture
and explore the temporal aspects of the measurements,
are limited in their applicability to the oscillation detec-
tion problem by the lack of knowledge of process order
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and time delays (phase lags among measurements). On
the other hand, frequency-domain methods such as
spectrum-based methods, which extract the frequency-
domain information from the raw measurements, are
intuitively natural choices for the oscillation detection
problem. An important advantage of spectral techniques
over time-domain-based methods is that they do not re-
quire the knowledge of process order and time delays for
dynamic systems. The significance of spectral analysis
lies in the fact that oscillations are commonly indicative
of the presence of valve non-linearities, poor controller
tuning and oscillatory disturbances. Of course, lack of
oscillations does not necessarily mean good perfor-
mance index of that loop, and the converse is also true,
i.e., bad performance index need not necessarily be asso-
ciated with oscillations.

Motivated with these ideas, tools such as high density
plots (HDP) and spectral principal component analysis
(SPCA) have been proposed by Thornhill et al. [7,8]
and successfully applied to various multivariate indus-
trial processes for the purpose of plant-wide oscillation
detection.
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In this article, we propose a new visualization and
analysis tool, namely the power spectral correlation map
(PSCMAP), for analyzing variables with similar power
spectral shapes. The proposed tool is based on a new mea-
sure defined as the power spectral correlation index
(PSCI). The PSCI is the correlation between the power
spectra of two signals, and is a measure of the similarity
of the spectral shapes of the signals. This measure is de-
fined in such a way that it lies between the values 0 and
1. If two measurements have similar dominant frequen-
cies, then their PSCI takes a high value (close to unity).

The primary application of PSCMAP is to gather
measurements with similar dominant oscillations in a
plant with several oscillatory variables in a simple and
effective way. The main advantage of PSCMAP is the
fact that it completely eliminates the need for inclusion
of lags or phase differences among process measure-
ments as would be required in a temporal analysis.
The utility of PSCMAP is further enhanced by a re-
grouping of the variables with similar correlation indi-
ces. For this purpose, we propose a simple clustering
algorithm. The shapes associated with each group can
be obtained by looking at the shape of what is known
as a pivot variable for each group (defined in Section
3). This pivot variable is in some sense representative
of the basic spectral shapes for each group. In this sense,
PSCMAP offers advantage over the classical SPCA
method, wherein it is difficult to attach any physical
meaning to the basis vectors.

The utility of the proposed method is illustrated on
two industrial applications—a simulated pulp and paper
process and a SE Asian refinery.

This paper is aimed at process engineers who can de-
ploy these tools to obtain valuable insights into the plant
operation with minimal computational efforts while
using historic data.

The presentation is organized as follows. Section 2
introduces the notion of PSCI. In Section 3 the concept
of PSCMAP is introduced with a presentation of the
proposed clustering algorithm. Section 4 contains the
application of the proposed technique to three industrial
case studies. The paper ends with concluding remarks in
Section 5.

2. Power spectral correlation index

The power spectral correlation index (PSCI) is de-
fined as the correlation between the power spectra of
two different measurements. It is a measure of the simi-
larity of spectral shapes, i.e., measure of the common-
ness of frequencies of oscillations. The procedure to
calculate the correlation is illustrated in the block dia-
gram shown in Fig. 1.

The DFTs that are used to calculate the spectrum are
calculated after removal of means from the time-series

% DFT 1 IX o] ——

Correlation

[X{w]|? | !

PSCI

h 4

v

x, —{ DFT

Fig. 1. Illustration of the procedure for calculating power spectral
correlation index between two variables x; and x,.

data. However, the correlation used in the calculation
of PSCI is calculated without the removal of mean of
the spectra (reasons for which are explained in Section
3.3). The PSCI for any two spectra |X{(o)|> and | X{(w)|?
is calculated as:
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As a result, PSCI always lies between 0 and 1.

As shown in the schematic, the phase information is
excluded due to taking the magnitude of the DFT of
the measurements. In the detection of plant-wide oscilla-
tions, the objective is to collect variables with similar
oscillatory behaviour. A time-domain correlation of
the measurements will reveal similarities such as com-
mon similarities among different measurements only if
they are aligned properly. A proper alignment of data
requires prior knowledge of process delays, orders and
measurement lags. Obtaining and implementing this
information is not a trivial task in most applications. Be-
sides, calculation of phase differences is sensitive to the
presence of noise and the frequency resolution [9]. On
the other hand, the power spectral correlation method
meets the same objective without any need for comput-
ing the phase differences or measurement lags. In
other words, the PSCMAP is a tool that is blind to
phase differences. This is illustrated by an example in
Appendix A.

Remark. The power spectral correlation index is differ-
ent from the well-known coherency (see [10]). Coher-
ency is a function of frequency and is defined as the
normalized cross-covariance function between the Fou-
rier transforms of two signals. As a result it is complex-
valued. In contrast, the PSCI is real-valued and is the
normalized covariance between the power spectra of two
signals as defined in Eq. (1). Therefore, the PSCI is not a
function of the frequency. One of the main differences is
that coherency is dependent on the phase difference
between two signals, whereas PSCI is invariant with
respect to phase difference. This property makes PSCI
the preferred metric for data analysis as it does not



A.K. Tangirala et al. | Journal of Process Control 15 (2005) 931-941 933

require the phase or time-lag information between
different signals.

3. Power spectral correlation map

For multivariate processes, the PSCI is a matrix of
size m X m, where m is the number of measured vari-
ables. In order to provide an effective interpretation of
the PSCI, the matrix is plotted as a colour map, which
is termed as the power spectral correlation map. The
intensity as well as the type of colour in the map is
assigned in proportion to the value of the correlation
index. This mapping is performed according to the
choice of colour and the number of shades in that
colour.

An important aspect of this colour map is to be able
to automatically re-arrange and group variables to-
gether with similar shapes, i.e., variables, which oscillate
at a common frequency and have therefore similar val-
ues of PSCI. For this purpose, a simple clustering algo-
rithm is proposed, that allows the user to cluster
variables with similar shapes based on a threshold value,
y. A brief discussion on the choice of threshold is pre-
sented below in Section 3.2. The PSCMAP is essentially
characterized by the (i) colour code and (ii) the cluster-
ing algorithm to group variables with similar spectral
shapes. These features are explained below.

3.1. Colour code

The colour code is an important factor in the visual-
ization ability of the PSCMAP. It also determines the
sensitivity of the colour map to variations in the correla-
tion index. As the number of colour shades increases,
the PSCMAP is able to display more variations in the
correlation index, but at the cost of losing the ability
to interpret the colour map. Thus, there is a trade-off
between the sensitivity and the interpretability of the
map. The choice of colour code depends on the user
as well as the application in context. A general recom-
mendation is to choose colour code belonging to one
colour rather than choosing from a range of different
colours. Then, one can vary the number of shades in
that colour to suit the needs of the application.

In the published version of this work four colour
shades of grey are chosen.' It is observed that this choice
was sufficient for the applications in context. Since the
PSCI values lie between 0 and 1, each colour shade rep-
resented the band of values (0-0.25), (0.25-0.5), (0.5-
0.75) and (0.75-1) respectively. More divisions could
be obtained by increasing the number of colour shades.

! The electronic version of this article uses shades of red—white,
yellow, orange and red.

In a colour map with these shades, we would be gener-
ally interested in spotting the cells with the darkest col-
our since they represent high values of correlation.

The next step is to clearly group those cells with
common colour so that variables with similar oscilla-
tions can be clustered together. When the dimension
of the data set is small and/or when the number of
oscillations are regular and limited to two or three fre-
quencies, it is possible to perform a visual re-arrange-
ment of the colour map. However, when the data set
is large and/or when there are multiple oscillations, it
is important to automate this process. In the next sec-
tion, a simple clustering algorithm is presented for this
purpose.

3.2. Clustering algorithm

The proposed clustering algorithm sequentially ex-
tracts blocks of maximum number of correlated vari-
ables from the PSCI matrix until a single variable is
left. The algorithm is based on two steps: (i) identifying
a pivot variable at each stage and (ii) extracting the block
of variables that are correlated with this pivot variable.
The pivot variable (at each stage) is defined as that var-
iable which is strongly correlated with the maximum
number of variables (remaining at each stage). The max-
imum number of iterations in this algorithm is at worst
equal to the number of variables, which occurs when all
the loops have no commonality in their spectral shapes.
In a general case, when there are common oscillations in
loops, this number can be much less than the number of
variables.

A key aspect of this algorithm is that the user need
not specify the number of clusters. The only specifica-
tion is on the threshold y, which is the value the user at-
taches to denote the minimum significant value of the
correlation index. The value of this threshold can also
be linked with the colour code. For instance, if four col-
our shades are chosen to display the colour map, then
the threshold value can be set to 0.75, which means all
those pairs of variables with PSCI values in the fourth
colour shade would be considered significant.

The steps for implementing this algorithm are given
as follows (denote the PSCI matrix by 2,,):

(1) Determine the number of entries in each column of
2., that are greater than the threshold y. The col-
umn with the maximum number is the pivot
variable.

(2) Extract the subset of X, corresponding to vari-
ables which are strongly correlated with the pivot
variables based on the threshold y.

(3) Update the PSCI matrix with the correlation indi-
ces of the remaining variables.

(4) Repeat the above steps until a single variable is
left.
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Thus, at every stage the algorithm extracts that
block with the largest number of strongly correlated
variables. In addition, the spectra of the pivot variables
are representative of the basis spectral shapes present in
the data set. This is similar to the spectral PCA meth-
odology where the basis shapes and the clusters are
extracted using an orthogonal decomposition of the
spectra [7].

3.3. Remarks on the properties of PSCMAP

e The PSCMAP essentially relies on PSCI, which is a
measure of similarity of spectral shapes. From the
definition of PSCI in Eq. (1), it is observed that for
two variables to have a high PSCI, it is necessary that
they possess spectral peaks in identical frequency bins
(since we are dealing with a discrete set of frequen-
cies). This property makes PSCI a strong candidate
for plant-wide oscillation detection. On the other
hand, it also means that if the spectra of two signals
are such that their frequencies are apart by one bin,
then PSCI will render them uncorrelated. Theoreti-
cally, this is an agreeable result, since these two sig-
nals indeed differ in their frequency behaviour and
therefore they cannot be considered similar. How-
ever, if this disparity in the spectral shapes is due to
computation issues (such as resolution of frequency
channels) or if for practical reasons this difference

white water header

cascade

in frequencies is negligible, then the analyst can
choose to compute both spectra at a lower resolution
(for example, by reducing the number of samples) so
that the frequency bins either overlap or match
exactly. In some cases, the user can even choose to
perform smoothing of the spectra using a window
function of appropriate length. In essence, the PSC-
MAP works at the level of frequency resolution that
is chosen to compute the spectra.

The power spectral correlation definition in Eq. (1)
differs from the usual definition of correlation in sta-
tistics, which is computed by subtracting the mean
from the spectra. Therefore, this is a non-centered
(or uncentered) correlation. This metric is used so
as to ensure that two non-overlapping spectra have
zero correlation. If the mean was subtracted, then
the correlation between non-overlapping spectra
would be a negative quantity, making it difficult to
interpret such values. Non-centered correlation is
equivalent to the cosine of the angle between two vec-
tors.

Besides, if the power spectra are normalized to
unity power (which is the case in this work), then
the mean of the spectra are identical and equal to 1/
(N/2) where N is the number of time-series data. As
N becomes large, the mean value of each spectrum
goes to zero. Therefore, the effect of not subtracting
the mean in this case is negligible.
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Fig. 2. Schematic of the simulated process of Entech Control Inc.
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The power spectrum calculation should be done after
subtracting the mean of the time-series data. This is
important to remove the effect of the DC component
or any steady-state offsets. Thus, the power spectral
correlation between two signals x(¢) and p(z) =
ax(t) + b is always unity irrespective of the values
of a and b.
The dominant oscillation in each member of a group
that is identified by the PSCMAP is identical to the
dominant oscillation of the pivot variable. This is
the basis for identifying the members of each group.
Therefore, the PSCMAP is very useful when there is
a dominant frequency that influences the loops that
are being examined.

If the members of each group have multiple oscilla-
tions, the correlation among the members of a group
depends on whether the variables have these multiple
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oscillations in common and whether there is signifi-
cant power in those multiple oscillations. A discus-
sion of this point is illustrated in the refinery case
study in Section 4.2.1.

Industrial case studies

4.1. Case study 1: Entech data

We first consider the data set from a simulated indus-

trial process, courtesy of Entech Control Inc.

The simulated process shown in Fig. 2 consists of a

pulp manufacturing process, where the hardwood and
softwood pulps are mixed to give a stream of desired
composition. The data set comprised 1934 samples from

Normalized Power Spectra of Pivot Variables
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Fig. 4. Re-arranged PSCMAP and the corresponding spectral shapes

of

the pivot variables. (a) Spectral shapes of the pivot variables from

the Entech data analysis and (b) PSCMAP (clustered) of the Entech
data.
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12 process measurements (tags), each of which was asso-
ciated with 12 control loops. The objective of this anal-
ysis is to detect oscillations in the loops and isolate those
loops with common oscillations. A simultaneous display
of the time trends and the corresponding spectra of the
12 controller errors (SP-PV) is shown in Fig. 3(a), which
is also known as the high density plot [7,8]. The spectra
on the HDP are normalized such that the total power in
each variable is unity.

It can be noticed that tags 3-10 and 12 contain a
major peak at a common frequency, while tags 1 and 11
appear to share another common frequency of oscilla-
tion. The spectrum of tag 2 resembles that of a “white
noise” spectrum, indicative that the associated controller
may be doing well. Thus, we are seeking two basic spec-
tral shapes that contain peaks associated with the two
groups of measurements.

The role of PSCMAP is to identify loops with com-
mon oscillations, and extract the basic shapes for each
of these groups.

The raw PSCMAP, i.e., without the re-arrangement,
is shown in Fig. 3(b). From a visual observation one can
notice a strong correlation between tags 3-10 and 12,
and a strong correlation between tags 1 and 11. Tag 2
has an independent spectral shape. These observations
are much clearer in Fig. 4(b), which is a re-arrangement
of the raw colour map based on the clustering algorithm
described in Section 3.2. The resulting PSCMAP con-

tains group of variables that are strongly correlated with
each other arranged in the sequence of decreasing mem-
ber strength. For this case study, ¢ can be seen that the
variables of each group do not have any correlation with
members of other groups, which implies that they have
independent shapes. The plot of the spectra of the pivot
variables in Fig. 4(a) confirms this observation. The
pivot variables for each group have been identified as
tags 3, 1 and 2 respectively. In other words, these tags
are representative of the spectral behaviour of the other
members of the respective groups. For variables with
independent spectral shapes, the pivot variables are the
variables themselves.

In order to further illustrate the effectiveness of PSC-
MAP, the data is filtered so that groups of variables with
frequencies higher than 0.002 cycles/sample can be iden-
tified. In the original data, this low frequency appears to
overshadow the power at higher frequencies for example
in tags 6, 8 and 9. The filtered time trends and spectra
are shown in Fig. 5(a). An approximated Weiner filter
employed in [7] on the same data set has been used for
this purpose. The implementation details and the algo-
rithm are provided in [8].

The colour map for the filtered data is shown in Fig.
6(b). The second group of variables has remained un-
changed. The first group of variables exhibits a common
oscillation now at 0.004 cycles/sample, which happens
to be a second harmonic of the 0.002 cycles/sample
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Fig. 5. HDP of the entire and selected filtered Entech data. (a) HDP of filtered Entech data and (b) spectral shapes of tags 2, 3 and 5.
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Fig. 6. Re-arranged PSCMAP and the spectral shapes of the pivot
variables for the filtered Entech data set. (a) Spectral shapes of the
pivot variables from the filtered Entech data analysis and (b) PSCMAP
(clustered) of the filtered Entech data.

oscillation. The difference now in the post-filtering sce-
nario is that tag 5 is no longer a member of the first
group. Instead, tag 5 exhibits a strong spectral correla-
tion with tag 2, which has a “flat” spectrum as shown
in Fig. 6(a), tag 5 should also be expected to contain a
similar shape, implying that it does not contain any
other significant frequency besides the 0.002 cycles/sam-
ple oscillation. Observe that tag 5 is weakly correlated
with the members of the first group, which is explained
by the spectral shapes of tags 2, 3 and 5 shown sepa-
rately in Fig. 5(b). A careful look at the spectral shape
of tag 5 shows the presence of a very mild peak at the
peak frequency of tag 3 (the pivot variable for the first
group), but otherwise mostly flat.

From the foregoing discussion it is clear that what re-
quires a deeper and careful visual observation of the
multivariate spectra is easily highlighted by the PSC-

MAP. The results obtained in the paper are comparable
with those obtained using spectral PCA [7], however,
with simpler computation and improved interpretabil-
ity. The interpretation with PSCMAP is simpler because
the basis vectors obtained in SPCA do not generally carry
any resemblance with the original spectra.

One could perform a band-pass filtering on these
measurements so that the tag 5 is free of noise at higher
frequencies and the 0.004 cycles/sample oscillation is
highlighted. This is not addressed in this paper as the
focus is on the efficiency of the PSCMAP.

In the second case study, a process with increased
complexity and a higher dimensionality is considered.

4.2. Case study II: Refinery process

A simplified schematic of the refinery process is
shown in Fig. 7. The data set consisting of 512 samples
of 37 measurements sampled at 1 min interval, com-
prises measurements of temperature, flow, pressure
and level loop measurements along with some composi-
tion measurements from the gas analyzers. The process
contains a recycle loop from the PSA unit to the refor-
mer unit. As in the earlier case study, controller errors
(SP-PV) are analyzed for control loop measurements.

The spectral correlation colour maps for this process
before and after re-arrangement are shown in Figs. 8
and 9. The effectiveness of the clustering algorithm is
clearly demonstrated in these figures.

4.2.1. Analysis

The spectra of the pivot variables obtained for this
process are displayed in Fig. 10. Among the pivot vari-
ables, only tags 2, 35, 14 and 32 have distinct peaks at
different frequencies. The spectral power of tag 5 can be
seen to be spread mainly in the lower frequencies. Addi-
tionally, tag 17 has among other peaks, some mild
peaks common to those of tag 2, which is clearly indi-
cated in the re-arranged PSCMAP (Fig. 9) as mild cor-
relation between the group of tags 17, 18 and the
members of the first group. The PSCMAP also indicates
weak/mild correlation between the spectrum of tag 30
(one of the pivot variables) and the members of the first
group, indicating that the tag 30 has a weak/mild oscil-
lation at the frequency corresponding to the first group.
This can be noticed in the tiny peak in the spectrum
of tag 30, which could have gone otherwise unnoticed.
A similar phenomenon can be noticed in the case
of tag 1. The results of this analysis are summarized
in Table 1.

An additional point to note is that the first group
contains some variables that are strongly correlated with
the pivot variable, but mildly correlated with each other.
These variables are the sets of tags 8, 15, 16 and 28, 33
respectively. This phenomenon is related to the last
point noted in Section 3.3. Fig. 11 shows the spectra
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Fig. 7. Schematic of the refinery process.
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Fig. 8. PSCMAP of the refinery process shown in Fig. 7.

of these set of tags along with the spectral shape of the
pivot variable. The dominant oscillations in each of
these variables are similar to the dominant oscillation
in the pivot variable, i.e., tag 2 in this case. The correla-
tion indices of tags 8, 15 and 16 with tags 28 and 33 are
[0.73, 0.6921, 0.6713] and [0.7809 0.7221 0.7270] respec-
tively. The stronger correlation of tag 8 with tag 33 than
with tag 28 is because tag 28 contains some additional
frequencies around 0.04 cycles/sample which are not
present in tags 8 and 33. Similarly, the correlation be-
tween tags 15, 16 and tags 28, 33 is mild because of
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Fig. 9. Re-arranged PSCMAP of the refinery process.

the presence of other significantly differing peaks in both
these pairs.

Therefore, the proposed method is able to identify
those set of variables which share a common dominant
frequency. Using the filtering techniques employed in
[7], further analysis can be performed to extract the cor-
relation structure in other frequency regions. However,
the purpose of this analysis is to only demonstrate the
potential of PSCMAP. For a detailed analysis of this
data, the reader is referred to [7], where the authors
use SPCA and HDP as the key tools.
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Normalized Power Spectra of Pivot Variables
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Fig. 11. Spectra of selected variables from the refinery process.

Table 1

Groups of variables with common dominant oscillations for the refinery process

Pivot Group members Comments

variable

2 2,3,4,8,9,10, 11, 13, 15, 16, 17, 19, 20, 24, 25, 28, 33, 34 Oscillating at 0.06 cycles/sample

35 7, 12, 35, 36, 37 Oscillating with frequencies around 0.01 (not pure sinusoids)

5 5,21, 22, 31 Low frequencies

17 17, 18 Mixed frequencies with dominant peaks around 0.025 and
0.06 cycles/sample

23 23,29 Mixed frequencies; no isolated peak(s)

1 Mild correlation with the first group Mixed frequencies

6 Independent shape Uniform power at all frequencies

14 Independent shape Oscillation close to 0.02 cycles/sample

26 Independent shape Uniform power at all frequencies

27 Independent shape Uniform power at all frequencies

30 Mild correlation with the first group Tiny peak at 0.06 cycles/sample

32 Independent shape High frequency peak close to 0.3 cycles/sample

As in the earlier case study, the PSCMAP is able to
effectively cluster the variables with common spectral
shapes, i.e., common frequencies.

5. Conclusions

A new visualization tool, namely, the PSCMAP
has been proposed to identify and extract the measure-
ments from a large plant with several variables oscillat-
ing at similar frequencies. The visualization tool is
based on a new measure, PSCI, which is a non-centered
correlation between the spectra of measurements. The
proposed method requires minimal computational com-
plexity and effort. A simple clustering algorithm has
been introduced to automate the re-arrangement of vari-
ables with similar correlation indices. The combined
method has been shown to be able to extract a set of
basis spectral shapes from a given data set and is most
effective when there is one dominant frequency that

influences one set of loops. The effectiveness of the
method has been demonstrated on two industrial data sets.
Given the large interaction and complexity in a multi-
variate process, added with the presence of noise, PSC-
MAP holds a lot of potential in its applications to plant-
wide oscillation detection. Furthermore, PSCMAP is an
analytical tool and therefore is better suited to assess the
similarities in the spectra when compared to a visual-
based assessment of the same. The industrial case studies
have demonstrated this ability where the colour map is
able to highlight the similarities that would have been
easily missed by a visual inspection. When compared
to the existing SPCA methodology, the proposed method
gives basis shapes that are non-orthogonal, but provides
easy interpretability of the similarities in the frequency-
domain behaviour of measurements.

Finally it is re-iterated that spectral techniques are
well-suited to the plant-wide oscillation detection prob-
lem, and do not require the knowledge of the process
time delays or lags between different measurements.
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Their simplicity and ease-of-use make them amenable to
a practicing engineer who is concerned with the analysis
of routine operating data in detecting the presence of
oscillations and obtaining valuable insights into control
loop performance.
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Appendix A. Proof that PSC is independent of phase
difference

Consider two sinusoidal signals x; and x; oscillating
with identical frequency w, but with a phase difference
¢. Now, consider a third signal x;, which is a linear
combination of x; and x, such that x;3 = a;x; + asx,,
where ay,a, € #. From a plant-wide oscillation detec-
tion point of view, the objective is to find the basic spec-
tral shape(s) that can explain the spectral behaviour of
these three measurements. Since x; and x, have the
same frequency, x3 has the same frequency, which im-
plies that all three measurements have similar spectral
shapes (but with different power). Therefore, there is
only one basic spectral shape that can explain the spec-
tral behaviour of all three measurements. On the other
hand, consider the relationship between these variables
in the frequency domain. It can be shown that these
variables are related as:

2 2
[Xa(0)]” = [X1(0)]
Xs(@) = alX1 () + a3 |Xs ()
+ 2a1a5|X || X | cos ¢ = a|X ()|

where o is a constant, i.e., independent of frequency.
Therefore, it follows that the correlations between the
pairs of |Xy(w)|*, |X2(w)|* and |X3(w)|? is unity, which
implies that PSC gives the correct number of basis
shapes. More importantly, the phase difference ¢ has
no effect on the number of basis shapes in the spectra
of the above three variables.

Appendix B. Remarks on use of DFT for process
measurements

Practical signals are a mixture of both the determin-
istic and stochastic components. The deterministic com-

ponent is due to contributions from process phenomena,
while the stochastic component contains contributions
from measurement noise, process noise, etc. Oscillation
detection problem is concerned with (i) estimation of
spectrum and (ii) estimating the frequencies at which
the peaks occur in the spectra. A few important ques-
tions that arise in this context are: (i) Is the squared mag-
nitude of DFT still a good estimate of the power
spectrum? (ii) if yes, what is a good choice of window?
and (iil) how good are the estimates of the frequencies
corresponding to the spectral peaks?

Estimation of spectrum as well as frequencies of oscil-
latory signals corrupted with noise have been widely
studied in literature (see [9,10] for a good treatment).
The answer to whether squared magnitude of DFT is
a reliable estimate of the spectrum greatly depends on
the signal-to-noise ratio (SNR) of the measurement.
Process measurements such as those dealt in this paper
usually contain a strong oscillation and therefore the
SNR is usually high enough to warrant the use the
squared magnitude of DFT to estimate the power
spectrum.

A condition that is used to determine the safe usage
of squared magnitude of DFT to estimate the peak fre-
quencies of sinusoids corrupted with noise [9] is given
as,

2
NAPG - 100 (B.1)

2
O¢

where N is the number of data samples, A4 is the ampli-
tude of the sinusoid and therefore, with variance A42/2,
PG is known as the processing gain of the window
and o7 is the variance of the discrete-time noise corrupt-
ing the signal. The processing gain of the window is the
ratio of the SNR of the measurement after windowing to
the SNR of the actual measurement. For rectangular
windows (regular Fourier transform of finite signals),
the PG corresponding to DFT with frequency resolution
2n/N is 0.4. If N =2048, then the above equation im-
plies that 4°/c> > 100/(2048 x 0.4) = 0.12 = SNR =
A?/26% = 0.06, which is a small threshold value that
holds for most process measurements.

A different approach with a similar perspective that
warrants the issue of the use of DFT for process data
analysis is given below.

Deterministic signal: A deterministic oscillating wave-
form x(#) with a period of oscillation 7}, amplitude of
2m and N samples has a unique value for its DFT.
The DFT will be arranged over N frequency channels
of which N/2 are meaningful, up to the Nyquist fre-
quency. The value of |X(f)| will be mN for the channel
whose frequency is f, = 1/T}, and also for its alias, and
zero in the other channels. The power in that channel
is LIX(f)]" =m’N assuming one uses the following
definition of power (there are others):
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Total signal energy =

spectral power in each channel

frequency channels

The point about the deterministic waveform is that the
DFT is also deterministic, there are no statistical confi-
dence limits, the answer is correct and exact.

Stochastic signal: A random signal such as uncorre-
lated random noise has spectral power in all frequency
channels and should in theory have a flat spectrum. Sup-
pose its r.m.s. value is m, then | X(f)| = mN for every fre-
quency channel. However, its DFT usually shows a lot
of variability because of the stochastic nature of the sig-
nal. | X(f)| has an expected value of mv/N and standard
deviation of mv/N [11].

Mixed signal: If a signal has both deterministic and
random components then the extent to which the DFT
is uncertain depends on the balance of the two compo-
nents. Consider a sine wave of amplitude 2m with added
random noise of r.m.s. value m. That oscillating signal
would be hard to see by eye from the time trend and
any analyst would say the signal was stochastic. The
|X(f)| for the mixed signal has magnitude m+/N in all
channels except for the f,=1/T, channel where the
magnitude is mN +my/N. The deterministic signal
therefore stands out really well above the noise. The
DFT of the noise has stochastic variability but the stan-
dard deviation in the frequency channel where the signal
resides is negligible for any practical value of N (typi-
cally +my/N on a quantity whose magnitude is
mN + mvV/N ).

Use of the Welch transform: The Welch transform
smooths the spectrum at the expense of worse frequency
resolution. The effect of a Welch transform on a pure
sine wave is to spread the spectral power across a broader
frequency channel. For instance, if the spectrum has
been smoothed from 2048 channels to 64, then the reso-
lution ratio is L =2048/64 =32 and the frequency
channels are all 32 times as broad. Therefore it is more
difficult to be sure of the true frequency of the determin-
istic signal. Also, for the deterministic signal (sine wave
of amplitude 2m), the magnitude of | X(f)| reduces from

mN to mN/L because it is now spread over a wider fre-
quency channel. The Welch transform reduces the
uncertainty in the | X{(f)| of a stochastic signal but does
not help reduce uncertainty in a mixed signal. For a ran-
dom signal of r.m.s. value m the value of | X(f)| remains
as my/N but the standard deviation in |X(f)| is reduced
from +m+/N to +m+/N /L. Therefore the magnitude of
|X(f)| for the mixed signal in the f, = 1/T, channel is
mN /L +m+\/N so the stochastic contribution is bigger
than with the DFT, and the standard deviation is
+m+\/N/L which is a worse percentage result than for
the DFT. Therefore for a mixed signal with a determin-
istic component, the DFT is more reliable than the
Welch transform.
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