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Real-time optimization (RTO) is the lowest level in the decision-making process for operating
chemical processes at which economics is directly taken into consideration. This work presents
a systematic methodology for incorporating decisions pertinent to the structure and functionality
of the regulatory control system (RCS) at the real-time optimization level. The proposed
formulation consists of a set of linear constraints that determines the set of manipulated and
controlled variables and the steady-state operating policy that minimizes the effects of
disturbances on process economics. The methodology is applied to two case studies, including
an evaporator process and a fluid catalytic cracking process. The results demonstrate that the
methodology can be used to decrease the sensitivity of process economics to disturbances and to
operate processes in a near optimal way with less frequent RTO executions.

1. Introduction

The decisions related to the operation of modern
manufacturing facilities are currently made at three
different levels.12 At the lowest level, advanced process
control (APC) achieves operating targets such as product
quality, production level, and safety with an execution
frequency of seconds or minutes. At the highest level,
planning and scheduling provide coordination of activi-
ties over significant time periods (weeks or years). Real-
time optimization (RTO) connects these two levels, and
its role is crucial, since it is the lowest level in the
decision-making process at which economics is taken
into consideration explicitly.}34 APC and RTO advanced
significantly through the last 50 years and, to a certain
extent, did so independently, since they were conceived
as having different functionalities. However, in the past
decade, mainly due to the introduction of nonlinear
model predictive control (MPC) and the advances in the
optimization algorithms, the distinction between APC
and RTO has become less clear.?® Arguably, their main
distinction is that RTO is mainly concerned with steady-
state economics and uses nonlinear models while, at the
APC level, the objective functions used are not directly
related to economics and the models employed are
linear.

Current RTO systems adopt a steady-state view of
plant operations, and execution is triggered when
disturbances with a significant effect on economics are
taking place. The aim is to determine the corrective
action needed to optimize the steady-state economics of
the plant. Installation and maintenance of RTO systems
can only be justified for the cases where disturbances
with significant economic effect (major disturbances) are
frequent and degrees of freedom are available for
optimization purposes, i.e., not all of them have been
effectively removed by the two other levels.l:3 On the
other hand, there is little discussion in the literature
on how disturbances that are more frequent and have
less significant implications for the process economics
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(minor disturbances) can be handled in an RTO system.
Although the occurrence of a major disturbance nor-
mally triggers the execution of the RTO and corrective
action is taken to alleviate the disturbance’s effect on
economics, minor disturbances are handled by the APC
system in a way that is not always related to process
economics.

Marlin and Hrymak,! when discussing the challenges
involved in transmitting the results of the RTO system
to the APC system, state that “RTO results should
include not only the optimum operating point, but also
the manner for responding to disturbances,” and they
also stress the importance of modeling, at the RTO level,
the process control system implemented in the plant.
They implicitly propose that all disturbances must be
handled by the APC system in a way dictated by the
results of the RTO. An important consequence of their
proposition is that the structure of the regulatory control
system (RCS) should be determined at the RTO level
as well. This might be less important when the regula-
tory controller is of an MPC type but can be critical
when other controller types, such as decentralized
proportional—integral—derivative (PID) controllers, are
used at the regulatory level.

The aim of this work is to address the last issue. It is
proposed that the RCS, i.e., the selection of sets of
controlled and manipulated variables and possibly the
structure of their interconnection, should be determined
at the RTO level, and a systematic methodology is
proposed for achieving that. Since RTO is the lowest
level at which economics, the key driving force, is
explicitly taken into consideration, it is beneficial to
make as many decisions as possible at this level and
then transmit the results to the lower levels for imple-
mentation. One might argue that such an approach
might significantly increase the computational load at
the RTO level and the complexity of the APC system.
However, the size of the optimization problems solved
currently at the RTO level is already impressive. As
computational power is becoming less expensive and
numerical algorithms are becoming more robust, high
fidelity models and complicated methodologies will
inevitably find their way into the RTO systems and
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technology. In addition, as is discussed in the section
that follows, the proposed methodology offers the op-
portunity of significantly reducing the frequency of RTO
execution and, thus, increasing the time available for
additional computations. An important advantage is
that the RCS does not need to be fixed but can be
variable, as determined by the execution of the RTO
system. Since the occurrence of disturbances causes the
process to operate at points with different characteris-
tics, we cannot assume that the same RCS is the best
structure at all possible operating points. A control
strategy that is based on a variable (optimally adapted)
RCS is clearly more appropriate in the long term,
especially when the determination of this structure is
based explicitly on economics. Increasing the complexity
of the APC system is a drawback of the proposed
methodology but can be justified if the economic poten-
tial is significant.

2. Proposed Methodology for RCS Selection at
the RTO Level

As has been extensively discussed in the literature,
the optimization problem solved at the RTO level is of
the following general form®7

min E,_g [J/(x,u,0)] (D

s.t.
f(x,u,0) =0
gxud) <0

where E denotes the expected value, x € X C R is the
n, vector of differential and algebraic variables (depend-
ent variables) of the process model, u € U C P is the
n, vector of manipulated variables (independent vari-
ables), 8 € ® C P is the ny vector of disturbances, and
f:R™ %t — R and g:R™ 1" — R"% are the equality
and inequality constraints, respectively, of the process
model. By selecting discrete realizations for the varying
process parameters 6 € ©, where p € P and P is the
index set, the optimization problem (eq 1) can be written
in the following multiperiod form

min ) w” J&"uP,07) (2)
xP,uP p;
s.t.
£’ ,uP,0°) =0
b b D P
[gw,up,o% < o] ©

i.e., the expected value of the objective function is
approximated, using, for instance, a quadrature scheme
over O, to determine the optimum value of the available
degrees of freedom u. w? are weights that reflect the
frequency of occurrence of the disturbance realization
6P, which can be calculated on-line based on historical
data. An implicit assumption in the above formulation
(eq 2) is that all disturbances are measurable since all
manipulated variables are adapted perfectly to optimize
plant performance at all periods. Furthermore, it is
interesting to note that this optimal adaptation of the
operating point to the changing disturbances is done in
a complete open-loop, model-based fashion. However,

this can only be the case if the frequency of the RTO
execution matches that of the disturbances, all distur-
bances are measurable, and the available model perfect.
As a result, the multiperiod optimization problem given
by eq 2 can be extremely optimistic and a more realistic
formulation is needed (see also discussion by Rooney
and Biegler®? and Pistikopoulos!?). Such a formulation
should at least contain some elements of the feedback
and/or feedforward strategy adopted at the regulatory
level to limit the arbitrary adaptation of the available
degrees of freedom.

To this end, we first define the vector y € Y € R of
the available measured variables to be an arbitrary
function of the independent and dependent variables

m(x,uy) =0 (3)

Normally the measured variables have upper and lower
bounds which must be enforced at all periods

yi <yl <y, 0j,p (4)

where the superscript L (U) denotes the lower (upper)
bound. We also define a binary variable 0; for each
measured variable as follows

1, if the measured variable y; is selected

(3j = as the controlled variable (5)
0, otherwise

Furthermore, if a measured variable is selected at the
regulatory level as a controlled variable then, at the
RTO level, this variable will always be equal to its set
point value since, as seen from the RTO level, the
process is always at steady state, i.e.,

o, =1—y =y Op (6)

Combining eqs 4—6, we obtain the following equivalent
set of linear constraints

WA=y =y =y A= 0y

L 5 U Dj P (7)

Oy =" = 0p;
In this formulation, the value of the set points is
constant for all periods and independent from the values
of the measurable disturbances. However, significant
benefits might be achieved by using a feedforward
scheme in which the set points are time-varying and
are related in a linear or nonlinear way to the value of
the measurable disturbances. A way of expressing this
mathematically is the following:

N T W
ysp,p =Y. + . —+ + e =
j 1/)] . w]k Aek wjk Aek

_ pN\q
O

0 < q & 8
lpj+k;mzltpjk A6, (8)

i.e., each set point is determined as a sum of a constant
term and a polynomial function (of the order n,) of the
measurable disturbances. It should be noted that index
%k belongs to the index set K, of the measurable
disturbances. When the index set K, is empty, then all
set points are constant. Superscript N in eq 8 denotes



the nominal value, while A6 is the maximum absolute
deviation of 6 from its nominal value (6N). Although
other functional forms are also possible, an interesting
feature of eq 8 is that the polynomial coefficients appear
linearly in the optimization, preserving the linearity of
the proposed formulation. Finally, combining eq 7 and
eq 8 we obtain

I
PP (L= o) <07 <y A= o)y
% <y = %
_ gN q

o3 3l

Ia;p} <yl <o¥, Og, ke Km

O,p (9

Following similar arguments, we define the binary
variable A; associated with the manipulated variables
u; as follows

1, if the manipulated variable u; is used
A;=| at the regulatory controller (10)
0, otherwise

to finally obtain

ulPP + liullf <uf < uP + liuiU

(1= Auy < u®? <1 - u?
g Gp QN DZ, p

ulPP = + Z 2 ¢ —
L
keK,,

1 - U <5, s(l—/l)UU Og, kK,

(11

It should be noted that if 4; = 1 (i.e., manipulated
variable u; is used at the regulatory controller) then it
follows from the second constraint that u{**” = 0, from
the fourth constraint that v%, = 0, Ok, p, and also from
the first constraint

LI»“ <u = ulU, Op (12)

u i

i.e., when a manipulated variable is selected at the
regulatory control structure, then it can obtain any
feasible value. When A; = 0 (i.e. manipulated variable
u; is not used at the regulatory controller and, thus, it
is available for steady-state optimization), then

u? =u®? [Op (13)

12

up < u? < u’, Op (14)

Again, the optimal steady-state values of the manipu-
lated variables can be either constant or polynomial
functions of the measured disturbances.

Finally, it is important to note that the available
degrees of freedom for optimizing purposes are equal
to the dimension of the vector u. Clearly, the number
of additional specifications introduced by eqs 9 and 11
must be equal to this number, and this can be included
in the mathematical formulation in the form of the
following constraint

Zaj +5a-4)=n, (15)
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The complete formulation is obtained by augmenting
eq 2 with eqs 9, 11, and 15

mln wap J&P P ,0P) (16)
09 U?k A
1/) V%05
s.t.
fix* u?,0°) =0
g’ u”,6°) < 0 |Up
m(x” uf yP) =

I
DL Ok =t P+ (1= 0
Opj =¥ = 0p;

ng 01’ 9

alpL<¢JksalpU Elq,keKm

JoJ T J I

0y, p

ulPP + Jul < uP < w4+ )Y
A= Auy < uP®? < (1 - uy
nq 9p 9 Dl,p

Optp—v + Z Zvlk
keK,,

A-Up <0l <1 - Ai)U}?, Dq, kekK,
| I

ny

Zaj +5A-1)=n,
J= =

xeX, uelU, ye¥Y
0,€{0,1}, 4,€{0,1}

3. Discussion of the Proposed Formulation

The proposed methodology has a number of interest-
ing characteristics that are worth discussing further.
Formulation 16 (eq 16) can be used to determine not
only the optimum operating point for a range of distur-
bances but also the optimal operating policy and regula-
tory control structure. An implicit assumption is that,
for the range of disturbance variation considered, a
feasible solution always exists, i.e., the flexibility prob-
lem has been solved at the design stage and enough
overdesign has been implemented to guarantee that.

It is interesting to note that eqs 9, 11, and 15 for
describing and optimizing the RCS structure are linear
equations. If the initial problem solved at the RTO level
(eq 2) is a linear problem, then the overall formulation
will be a mixed integer linear programming problem
(MILP). However, since the models employed at the
RTO level are nonlinear, in most cases the overall
formulation will correspond to mixed integer, nonlinear
programming problem (MINLP). In both cases, since the
additional equations are linear in nature, the robustness
of optimizing the process model will not be affected. The
size and complexity, however, will increase due to the
presence of the binary variables.!!

The proposed formulation can be seen as a math-
ematical generalization of ideas that have been pre-
sented independently in the past by many research
groups from both industry and academia. If, for in-
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stance, we consider the economics to be dominated by
the nominal steady state and only enforce feasibility for
all other periods, then we obtain an extension of the
previous work by Kookos and Perkins!? on the “back-
off” idea as applied to the simultaneous design and
control problem. If we assign equal weights to all periods
and restrict the set points to be constant for all periods
considered, then we obtain the mathematical description
of the “concept of eigenstructure” as was proposed by
Luyben.!314 Luyben!* states that the purpose of his
paper was “to put forward the notion that each process
has an intrinsically self-regulating control structure
which makes the system as insensitive as possible to
load disturbances and is self-optimizing”. In most of the
examples considered by Luyben (see ref 14 and the
references therein), economics was the key performance
indicator for comparing alternative constant set point
strategies and control structures using rating programs.
The reader is also encouraged to read the discussion in
ref 14 about the connections between Luyben’s conjec-
ture of the existence of “self-regulating” or “self-optimiz-
ing” control and other relevant control methodologies.
Recently, Skogestad!® has defined control as “self-
optimizing” when “an acceptable loss can be achieved
using constant setpoints for the controlled variables”,
where “loss” is the difference between the value of the
objective using a constant set point policy and the true
optimal value. His methodology can also be obtained as
a special case of formulation 16 (eq 16).

In developing the proposed methodology, we have
assumed that the exact value of the set points is
required by the regulatory level, which then achieves
zero steady-state offset at all periods. This necessitates
integral action at all regulatory loops, which might not
be the case. Alternatively, eq 9 can be replaced by the
following

y;jp,L +(1 - 6j)yJI~‘ =y = y;?EU +1 - 6j)yJU 0 p
O LgyS.P’LSy?P’Uga. U ’

Jy J J J Jy J (1 7)
where the new variables y;p’L and y;p’U, that also
appear linearly, are new tighter lower and upper
bounds, respectively, on the steady-state value of the
corresponding controlled variable. If §; = 0, then eq 4 is
obtained, while when J; = 1, then it follows that

yJI-“ <yPl < = y;p’U < yJUDj,p (18)
i.e., the controlled variable y; is restricted to lie between
the tighter lower and upper bounds.

The values of the integer variables at the solution of
eq 16 unambiguously define the set of controlled vari-
ables and the set of manipulated variables. In addition,
the (possibly time-varying) set points for the controlled
variables and the unused manipulated variables are
obtained from the same solution. This information can
be used to design a centralized controller. However, if
a fully decentralized (such as decentralized PID) con-
troller is used at the regulatory level, the pairing
problem needs to be solved. There is a vast amount of
literature available on the issue, and the interested
reader is referred to the book by Skogestad and Postleth-
waite!6 for a review of the controllability tools available
for solving the pairing problem. Automated methods
that are based on mathematical programming tech-
niques are also available and might be more appropriate

from the implementation point of view (see ref 17 and
the references therein).

Finally, as has already been mentioned, an implicit
assumption of this work is that, for the range of
disturbance variation considered, a feasible solution
always exists. However, since the selection of the RCS
in the proposed formulation does not take feasibility
directly into account, a validation step is necessary to
guarantee that the selected structure is feasible for the
whole range of disturbances considered. To achieve that,
we consider the initial description of the process aug-
mented by the specifications imposed by the control
system as obtained by the solution of the proposed
formulation (such as eq 8, for instance). The augmented
description can be written as

f(x,u,0) =0
m(x,uy) =0 (19)
c(x,uy,0) =0

gx,u,0) < 0

where e:R% . — R™ is the steady-state specifica-
tion imposed by the RCS. We then define the following

f(x,u,0)
h(x,u,y,0) = |mx,uwy) [=0 (20)
c(X,uaYag)

where h:R% mtnytng — Rrtnytn, e, if the disturbances
are specified (6), then solving the set of equations given
by h(x,u,y,0) = 0 completely determines all the remain-
ing variables (x, u, and y). To determine the maximum
disturbance set for which feasibility is guaranteed, we
can solve the following flexibility index determination
problem!8

min 7 (21)

17,0,%,U.y,0

s.t.
h(x,u,y,0) =0
gxu0) +0,=0, 0

0=<0;,=<By(l—yp, 0l

ZVZZI

N — pAb < 0 < 6N + A0
7, €{0,1}, 01

where 7 is the scalar flexibility index which is used to
scale (relative to A0) the disturbance set considered in
our analysis, By is a large positive number, and o, are
the positive variables. If = 1, then feasibility can only
be guaranteed for disturbances in [ON + A0, ON — A6],
while if < 1, then there is at least one combination in
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Figure 1. Evaporator system.

Table 1. Major Variables of the Evaporation Process
Model and Their Values at Optimal Nominal Operating
Point

notation variable value units

F; feed flow rate 10.000  kg/min
Fy product flow rate 1.429 kg/min
Fy vapor flow rate 8.571 kg/min
Fs condensate flow rate 8.571 kg/min
F100 steam flow rate 9.884 kg/min
Faoo cooling water flow rate 213.952 kg/min
T feed temperature 40.000 °C

T product temperature 91.785 °C

Ty vapor temperature 84.263 °C

T100 steam temperature 129.466 °C

Ta00 cooling water inlet temperature 25.000 °C

Ta01 cooling water outlet temperature 47.034  °C

C1 feed composition 5.000 %

Csa product composition 35.000 %

Py operating pressure 57.717 kPa
P1oo steam pressure 256.606 KkPa

[N + AO, 6N — AQ] that will result in infeasible
operation. Clearly, in the latter case, the RCS selected
should be rejected and the proposed methodology should
be applied again by using an integer cut to exclude the
previous structure from any further consideration.

4. Case Studies

In all case studies the NLP or MINLP problems were
solved using the GAMS interface to the MINOS and
DICOPT (MINOS/CPLEX) solvers.!?

4.1. Evaporator Process. The evaporation process
examined in this case study is shown in Figure 1.12:20
This is a process that removes a volatile liquid from a
nonvolatile solute, thus concentrating the solution, and
it mainly consists of a heat exchange vessel with a
recirculating pump. The vapor is condensed by the use
of a process heat exchanger. The major variables of
interest are summarized in Table 1, while the dynamic
model of the evaporator is given by!2

Equality Constraints
F.C,—F,Cy,=0 (22)
F,-F,=0 (23)
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F,—F,-F,=0 (24)

F\C,T, — F,(+ C,T) — FoC,Ty + Q1o =0  (25)
0.5616P, + 0.3126C, + 48.43 — T, =0 (26)

0.5070P, + 55 — T, = 0 27)
0.1538P g + 90 — Ty = 0 28)
Q100 — UA(Ty90 — T5) =0 (29)

Q100 — Fro0ts =0 (30)
Q200 — F00Cp(Top1 — Tg0) = 0 (31)

Q200 = UAYT, — (Topy + Toy9)/2) =0 (32)

Fyd — Qg0 =0 (33)
Inequality Constraints

35-C,=<0 (34)

40—-P, <0 (35)

P,—80=<0 (36)

Py —400=0 (37

Fopo —400 <0 (38)

Toy —T,+5=<0 (39)

Objective Function (Operating Cost in $/yr)
J = 8000(F, o, + 10 °Fy,) (40)

where C, = 0.07 kW/kg, 1 = 38.5 kW/kg, 1s = 36.6 kW/
kg, UA1 = 9.6 kW/°C and UAs = 6.84 kW/°C. We further
define the following vectors

To find the optimum point of steady-state operation, the
following nominal input conditions are selected: F; =
10 kg/min and C; = 5%. Table 1 summarizes the results
of the optimization for this nominal case, and the
corresponding objective function is 80 780 $/yr. The
product purity constraint is the only constraint that is
active at the optimal point. It is assumed that F'; € [8,12]
and C; € [4,6] and that their distribution is uniform (i.e.,
wP = 1/np). Equation 2 was then solved using 441
periods uniformly distributed on [8,12] x [4,6] to obtain
g slightly increased average operating cost of 80 890
/yr.

The proposed formulation was then applied to obtain
the RCS and the (possibly time-varying) set points that
will keep the process as close as possible to optimality.
Of the two disturbances (¥; and C1), only F; is consid-
ered to be measurable. The five potential controlled
variables and the two potential manipulated variables
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Figure 2. Fluid catalytic cracking process.

are given in eq 41. In the solution obtained, both
manipulated variables are used in the regulatory level
while the product composition (C3) and operating pres-
sure (Ps) are the selected controlled variables. The
product composition has a constant set point = 35%,
while the set point for the pressure is given by

F, — 10
Py = 58.35 + 18.35(——5— (42)

The corresponding objective function is 80 907 $/yr.
When the set points are restricted to be time-invariant,
then we obtain the same set of manipulated and
controlled variables, the same set point for Cy but a
different set point for pressure of Py, = 73.24. The
average operating cost, however, increases and becomes
81 460 $/yr.

Formulation 21 (eq 21) was then solved to determine
whether the optimal RCS ensures feasibility for all F;
€ [8,12] and C; € [4,6]. The solution corresponds to n =
1, and thus, feasibility can be guaranteed for all
disturbances considered. The worst case disturbance
corresponds to F'; = 8, and it is independent of the value
of C;. For this value of F';, the pressure set point becomes
40 kPa and the pressure constraint becomes active. Any
further decrease in F results in infeasible operation.
The constant set point strategy also corresponds to 7 =
1, but the worst case disturbance combination is differ-
ent and corresponds to F; = 12 and C; = 4, which causes
the cooling water flowrate to hit its upper bound of 400
kg/min.

At this point, it is interesting to compare the proposed
control structure with variable set point with the control
structure that keeps the set points of Ce and P2 constant
and equal to the values at the nominal optimal operat-
ing point (see Table 1). By solving formulation 21 (eq
21) for the latter, it was found that the system under
this control strategy is significantly less flexible, since
7 = 0.4 (the worst case disturbance combination corre-
sponds to F; = 10.8 and C; = 4.6, which causes the
cooling water flowrate to hit its upper bound of 400 kg/
min). Thus, the structure obtained using the proposed
formulation achieves not only near optimal operation
but also ensures feasibility for the whole range of
disturbances considered, while “classical” structures fail
to achieve either.

4.2, Fluid Catalytic Cracking Process. In this
section, a fluid catalytic cracking (FCC) process case

Table 2. Parameters of the FCC Model

notation variable value units
C,,  heat capacity of air 1.074  kJ/(kg K)
Cp, heat capacity of dispersing stream 1.9 kd/(kg K)
C,,, heat capacity of oil 3.1335 kdJ/(kg K)
Cp, heat capacity of catalyst 1.005 kdJ/(kg K)

Ey activation energy for coke burning 158 600 kdJ/kmol
E activation energy for coke formation 41790 kd/kmol
E¢ activation energy for gasoil cracking 101 500 kd/kmol

h1 parameter 521 150 kd/kmol
ho parameter 245 kdJ/(kmol K)
keom  rate constant for coke burning 0.488 96 1/s
0 rate constant for gasoil cracking 962 000 1/s
m empirical deactivation parameter 80
n hydrogen content in coke 2
Oin oxygen mole fraction in air 0.2136
Ta air input temperature 320 K
w catalyst holdup in regenerator 175738 kg
W, air holdup in regenerator 20 kmol
Wi catalyst holdup in riser 2724 kg
y#(0)  weight fraction of gasoil in feed 1
2r dimensionless position
o catalyst decay rate constant 0.12 1/s
AH; heat of reaction of gasoil cracking 506 kd/kg
A weight fraction of steam in riser feed 0.035

study is considered (see Figure 2). The FCC process
converts heavy oils into lighter and more valuable
products. The dynamics of the FCC process are de-
scribed by a low order but highly nonlinear set of
differential algebraic equations (DAEs). The actual
operation of the process is dominated by economics,
which is sensitive to a number of disturbances. Fur-
thermore, the most appropriate control structure for this
process is a matter of some controversy, with the
conventional structure being criticized in a number of
recent publications.

The model used in this study is based on a model first
presented by Lee and Groves?! as modified by Balchen
et al.?22 and Loeblein and Perkins.?? On the basis of a
simplified, three-lump kinetic model, Lee and Groves?!
proposed that the following equations can be used to
describe the riser (The nomenclature used can be found
in Balchen et al.,22 while the values of the parameters
of the model are given in Table 2.)

1d

o 9 = ~Kyiod (43)
1d _ 2
T_c & ) = (Kyys — Kyy)pd (44)

d
(FoCy,, + FuiCpp, + 2F5iC,) - (Tul2) = T0)) =

AHF 500 (45)

where p is the catalyst-to-oil ratio (COR). Balchen et
al.22 presented a simplified solution of the above simul-
taneous differential equations

a
a+ K¢, [1 — exp(—art,p)

¥y = ]yf(O) (46)

yg(1) = 10[y (1) — y(1)] (47)



vK.[1 — exp(—az.p)]
T.1)=41— T.
r1( ) [ a+ Kr¢0[1 _ exp(_arcp)])/f(o) 1‘1(0)
(48)
where
C, Fy+AC, F.)T,+C, F.T.
IO =" i Fo T o 49
Poi oil+ P oil+ pg TC
AHF .
y = mel (50)
T,.(0) (CpOﬂFOil + ledFoil + Cp;FrC)
K, =k, exp[—E/RT_(0)] (51)
Kqpol1 — (—at.pz,)]
T, :[ N Z—;{d)(:;b [1 e}:epp(a fz )]] '(0)
a — exp(—arpz,
0®o 0 (52)
K. =Fk,exp[—E/RT\] (53)
¢o=1—mC,, (54)

The model of the regenerator consists of the coke
balance, the oxygen balance, and the enthalpy balance

F(C, - C,) — RO, W =0 (55)
B nt2+@n+4o, _
R,(0,, — 0y DI+ 0 RO4C, W =0
(56)
TV F.C, +F,C,T,— T, (F.C, +F,C,)~
ROLW _
T, 007

c

The amount of coke produced and the amount of coke
on the catalyst leaving the riser are determined by

Co=hl |2 B (58)
cat — V¢ CII'\IC eXp RTH(]_)
Csc = Crc + Ccat (59)
The remaining variables are calculated as follows
_ 1 _ 1)\Ea
k - kCOm exp[(960 Trg) R ] (60)

AH = —hy — hy(T,, — 960) + 0.6(T,, — 960)*
(61

0= 11+ 0y(T,, — 873) (62)
Tcy = Trg + CtOd (63)

The economic objective function of the FCC process has
the form??

J = 1440{ P,y (1) F, + P, {[1 — y(1) — y,(DIF; —
FscCcat} + Pugo[yf(l) - 1]F0i1 - PhFoil(Toil - 400)}
(64)

where Py = 0.14 $/kg, Py = 0.132 $/kg, Pugo = 0.088
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$/kg, P, = 0.000 017 8 $/(kg K) (/ is the profit in $/day).
The following constraints define the feasible space of
operation

g, = T,(0) — 1000 < 0 (65)
g, =T,(1) — 1000 < 0 (66)
g3="760—-T40) <0 (67)
g,="760—-T41) =<0 (68)
gs=T,, — 1000 < 0 (69)
g5=895—T,, <0 (70)
g, =400 T, <0 (71)
gs=T., —640 <0 (72)
go=F,— 3600 <0 (73)
g10=F.. — 24000 < 0 (74)

The vectors of state, disturbance, manipulated, and
measured variables are defined as

Tri(l) Fsc F .
y=|T |, u=|F |, 0=[kf‘l] (75)
Tcy Toil ¢

The disturbance k. (the rate constant for coke forma-
tion) is selected to represent changes in the feed oil
composition. This is, together with changes in the feed
flowrate, probably the most significant disturbance to
the FCC process. Only the feed flowrate is assumed to
be a measured disturbance in this case study.

The nominal values of the disturbances are assumed
to be Foy = 2438 kg/min and k. = 0.018 97. The
optimum operating point is defined by the upper bounds
on the cyclone and feed temperatures (the corresponding
Lagrange multipliers are 15 = 368.6 $/K and 1s = 55.3
$/K). The value of the objective function is 73 623 $/day.

Formulation 2 (eq 2) was then solved using 49 periods
distributed uniformly in the space defined as Fo; € [
2194.2, 2 681.8] and k&, € [ 0.017 073, 0.020 867]. The
optimal solution has an objective function of 73 561
$/day, and the upper bounds on the cyclone and feed
temperatures are active constraints in all periods. Then
the proposed formulation is solved and the regulatory
control structure (Fy,F'a) — (Tyg,Tcy) is obtained. The
optimal value of the third manipulated variable is found
to be equal to its upper bound value, while the set point
of the cyclone temperature is also equal to its upper
bound value. A time varying set point was found for 7'

T = 898.68 — 1 012(F—°il _ 2438) 76
rg — BYS : 243.8 (76)

The corresponding objective function is 73 528 $/day.
When a constant set point is considered, then the
objective function is 73 479 $/day, i.e., the benefit from
using the time-varying set point is ~17 885 $/yr. The
feasibility formulation (eq 21) was then applied, and it
was found that the flexibility index is 3.19 (i.e., the
closed loop system will be steady-state feasible for a
significantly larger parameter set than the one for which
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it was designed). The worst case disturbance corre-
sponds to a significant decrease in feed flowrate that
causes the lower bound constraint on the initial riser
temperature to become active.

5. Conclusions

A systematic methodology for integrating decisions
related to the structure and functionality of the regula-
tory control system into the RTO level has been pre-
sented. A set of linear constraints involving integer
variables has been proposed to achieve the goal of this
work, and possible connections with other methodologies
have been discussed. In addition, a feasibility index test
is proposed to evaluate the maximum range of distur-
bances for which feasibility is guaranteed for any
selected control structure. The proposed methodology
was applied in two realistic case studies, namely, an
evaporator process and a fluid catalytic cracking pro-
cess. In both cases, the proposed methodology was
successful in identifying the structure and functionality
of a steady-state regulatory control system that signifi-
cantly reduces the effects of disturbances on the eco-
nomics.

Nomenclature

¢ = vector function of constraints imposed by the regulatory
controller

E = expected value

f = vector function of the process equality constraints

g = vector function of the inequality constraints that define
the feasible operation

J = cost function

m = vector function defined in eq 3

p = index of periods

u = vector of control variables (variables that can change
during operation)

x = vector of dependent variables

w = weights used in the multiperiod formulation

y = vector of potential measured variables

Greek Letters

y = integer variables used in eq 21

A = deviation from the nominal value
0 = integer variables defined in eq 5
n = flexibility index

0 = vector of disturbances

A = integer variables defined in eq 10
o = slack variables used in eq 21

Superscripts

L = lower bound

N = nominal case
opt = optimum value
sp = set point

U = upper bound
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