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Abstract

A decentralized controller that maintains closed loop stability, when the individual controllers fail or are taken out of service, provides
fault tolerance and flexibility in operation. Recently, necessary and sufficient conditions [Gündes, Kabuli, 2001. IEEE Transactions on
Automatic Control, 46(2), 296–301] for the existence of a block decentralized controller with integral action for a system to possess
integrity against controller failures were proposed. In this paper, these conditions are equivalently expressed using the well-known notions
of Niederlinski index (NI) and block relative gain (BRG). The alternate representation implies that under minor assumptions, the available
necessary conditions based on NI and BRG are actually both necessary and sufficient. We also show that confirming the existence of a
block decentralized controller with integral action such that the system has integrity is NP-hard.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper deals with reliable stabilization of linear ra-
tional stable systems using a block decentralized controller
with integral action. A system is said to possess integrity, if
there exists a block diagonal controller with integral action
in every output channel such that the closed loop stability
is maintained when any combination of the individual con-
trollers fails (Campo & Morari, 1994). It is assumed that a
controller that fails is immediately taken out of service, i.e.
the corresponding entries in the block diagonal controller
matrix are replaced by zero. Some researchers have consid-
ered the problem of checking whether the closed loop system
is reliably stable for a given controller; seeBraatz, Morari,
and Skogestad (1994)for a review. The focus of this work
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is on deriving controller-independent conditions which can
establish the existence or non-existence of a controller such
that the system possesses integrity.
Because of its practical implications, the integrity prob-

lem has been studied widely by researchers, particularly in
the area of process control. For fully decentralized control, a
well-known result that relates reliable stability with relative
gain array (RGA) (Bristol, 1966) is provided byGrosdidier,
Morari, and Holt (1985). It is shown that a system has
integrity only if all the corresponding relative gains of the
steady state gain matrix are positive. Similar to fully de-
centralized control, a system with specified block pairings
has integrity only if the determinant of all the correspond-
ing block relative gains (BRG) (Manousiouthakis, Savage,
& Arkun, 1986) of the steady state gain matrix are posi-
tive (Grosdidier & Morari (1987)). Grosdidier and Morari
(1986) generalized the concept of Niederlinski index (NI)
to block pairings to derive similar necessary conditions.
Chiu and Arkun (1990)have further suggested that the nec-
essary conditions based on BRG and NI be evaluated for all
principal block sub-matrices of the system. These necessary
conditions based on BRG and NI are useful for eliminat-
ing alternatives for input–output pairings. It is not apparent
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whether the system with the pairings chosen based on these
necessary conditions, will have integrity.
Recently,Gündes and Kabuli (2001)presented necessary

and sufficient conditions for integrity of the system parti-
tioned into 4 or fewer blocks. In this note, we show that these
conditions can be equivalently expressed using NI and, when
the individual blocks are square, also using BRG. In general,
satisfying the conditions ofGündes and Kabuli (2001)does
not guarantee that the decentralized controller will have no
unstable poles other than at the origin of the complex plane,
as is assumed in the derivation of available necessary condi-
tions based on NI and BRG inGrosdidier and Morari (1986,
1987). When the controller is allowed to have any num-
ber of unstable poles, the alternative representation implies
that the conditions based on BRG and NI, traditionally be-
lieved to be only necessary, are actually both necessary and
sufficient. The expressions presented byGündes and Kab-
uli (2001) become increasingly complex with the number
of blocks. Then, an additional advantage of the alternative
representation in terms of NI and BRG is that the extension
to the general case, where the system is partitioned into any
number of blocks, is simple.
For fully decentralized control, we also show that the nec-

essary and sufficient conditions due toGündes and Kabuli
(2001)are satisfied if and only if (iff) NI calculated based
on steady state gain matrix is aP-matrix (Rump, 2003).
This observation suggests that verifying the existence of a
block decentralized controller with integral action such that
the system has integrity is NP-hard unless P= NP (Garey
& Johnson, 1979).

2. Necessary and sufficient conditions

In this note, we denote the linear rational stable system
asG(s) and the gain matrix asG. We consider thatG(s)

is partitioned intoM non-overlapping subsystems such that,
Gii ∈ Rmi×mj ; mi �mj , i = 1,2, . . . , M. The matrix con-
taining diagonal blocks ofG is represented as̃G. The block
diagonal controllerK (s) with integral action is expressed as
K (s)=(1/s) ·C(s), whereC(s)=diag(Cii (s)) andCii (s) is
amj ×mi dimensional transfer matrix (seeFig. 1). Here, we
allow C(s) to be improper, providedK (s) is proper. When
rank(Gii ) = mi , the right inverse ofGii is denoted asG†

ii .

Note that the existence ofG†
ii is necessary for theith loop

to have integral action. We call a square real matrixA a
positive definite matrix (denoted asA � 0) if all the eigen-
values of its symmetric part(A +AT) are positive (Horn &
Johnson, 1985).
Next, we define integrity formally and present the neces-

sary and sufficient conditions ofGündes and Kabuli (2001)
for integrity ofG(s).

Definition 1. The systemG(s) is said to have integrity, if
there exists a block diagonal controllerK̂ (s) = EK (s) with

integral action, which stabilizesG(s) for all E ∈ E, where
(Campo & Morari, 1994)

E = {E = diag(�i · Imi
)|�i = {0,1}, i = 1, . . . , M}. (1)

In the literature, a system possessing integrity has also
been referred asreliably stable with integral action; see
e.g. Gündes and Kabuli (2001). The existence of a block
diagonal controller such thatG(s) hasintegrity depends on
the chosen input–output pairings. In the remaining discus-
sion, we assume thatG(s) has been permuted such that the
subsystems corresponding to the chosen pairings lie along
the diagonal blocks ofG(s).

To present the conditions ofGündes and Kabuli
(2001), we need the following additional notation. For
j = 2, . . . , M, i = 1, . . . , j − 1, define

Xij =Gjj −GjiG
†
iiGij . (2)

WhenM �3, for k=1, . . . , M −2 and�, m=k+1, . . . , M,
� �= m,

Yk
�m =G�m −G�kG

†
kkGkm (3)

and forv = 3, . . . , M, q = 1, . . . , v − 2 andr = q + 1, . . . ,
v − 1,

Zv
rq = Xqv − Yq

vrG†
rr (XqrG†

rr )
−1Yq

rv. (4)

WhenM = 4, define

W = Z124− (Y1
43− Y1

42G
†
22(X12G

†
22)

−1Y1
23)G

†
33

× (Z123G
†
33)

−1(Y1
34− Y1

32G
†
22(X12G

†
22)

−1Y1
24). (5)

Theorem 2 (Gündes & Kabuli, 2001). Let rank(Gii ) = mi

for all i=1, . . . , M.There exists a block diagonal controller
with integral action such thatG(s) has integrity, if

det(XijG
†
jj ) >0, (6)

det(Zv
rqG

†
vv) >0, (7)

det(WG†
44) >0, (8)

wherej =2, . . . , M, i=1, . . . , j −1 andv=3, . . . , M, q=
1, . . . , v − 2, r = q + 1, . . . , v − 1. Further, if anyM − 1
controllers are strictly proper, or whenGij or Gji , j =
2, . . . , M, i = 1, . . . , j − 1 are strictly proper or when any
of these transfer matrices have real blocking zeros, (6)–(8)
are also necessary.

The proof of Theorem 2 can be found inGündes and
Kabuli (2001). Some remarks that are relevant to the rest of
the discussion in this note are in order.

• Even though the off-diagonal blocks ofG(s) may not
be strictly proper or may not have real blocking ze-
ros, the controllers can always be designed to be strictly
proper. When all controllers are strictly proper, (6)–(8)
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Fig. 1. Closed loop system with integral action controller.

are both necessary and sufficient for existence of a block
diagonal controller with integral action such thatG(s)

has integrity. We note that a similar assumption is made
during the derivation of the necessary conditions based
on BRG inGrosdidier and Morari (1987).

• When (6)–(8) are satisfied, existence of a controller with
integral action is guaranteed such that the system has
integrity. This controller, however, may have additional
unstable poles other than at the origin of the complex
plane. The existence of pure integral action controllers is
implied by the more restrictive conditions:XijG

†
jj � 0,

Zv
rqG

†
vv � 0 andWG†

44 � 0.
• When the individual blocks are multi-input single-output
(MISO), XijG

†
jj � 0, Zv

rqG
†
vv � 0 andWG†

44 � 0 are
equivalent to (6)–(8). In this case, when (6)–(8) hold,
existence of a pure integral action controller is guaranteed
such thatG(s) has integrity.

Gündes and Kabuli (2001)also presented a method for con-
troller design such thatG(s) has integrity, whenXijG

†
jj ,

Zv
rqG

†
vv andWG†

44 are positive definite.

3. Simplified representation

In this section, we show that the conditions in Theorem
2 can be equivalently represented in terms of BRG and NI.
For this purpose, we require evaluation of BRG and NI on
the principal block sub-matrices ofG. We define� as the
ordered subset of the firstM positive integers, consisting
of at least 2 elements, and� as the ensemble of all such
sets�. For example, whenM = 2, � = {(1,2)} and when
M =3,�={(1,2), (1,3), (2,3), (1,2,3)}. With this repre-
sentation,G�� represents a principal submatrix ofG made
up of blocks ofG indexed by�, for any � ∈ �. Simi-
larly, [GH]�� represents a principal submatrix of the prod-
uct of the matricesG andH indexed by�. Note that when
� = (1,2, . . . , M), G�� represents the matrixG.

Definition 3. Let G̃ = diag(Gii ), whereGii ∈ Rmi×mj ,
mi �mj and rank(Gii ) = mi for all i = 1, . . . , M. The

Niedrelinski Index (NI) ofG is defined as

NI(G) = det(GG̃†). (9)

Definition 3 is a generalization of NI defined byGrosdidier
and Morari (1986)for systems partitioned into square
blocks. The next proposition relates NI with the existence
of a controller such that the system has integrity.

Proposition 4. Let rank(Gii ) = mi for all i = 1, . . . , M.
Then the conclusions of Theorem(2) hold iff

NI(G��) >0 ∀� ∈ �. (10)

Proof. By repeated use of Schur complement lemma (see
e.g. (Horn & Johnson, 1985)), it can be shown that

det(XijG
†
jj ) = det([GG̃†]{i,j},{i,j}), (11)

det(Zv
rqG

†
vv) = det([GG̃†]{q,r,v},{q,r,v})

det(XqrG
†
rr )

, (12)

det(WG†
44) = det(GG̃†)

det(Z123G
†
33)det(X12G

†
22)

, (13)

wherej = 2, . . . , M, i = 1, . . . , j − 1 andv = 3, . . . , M,

q = 1, . . . , v − 2, r = q + 1, . . . , v − 1.
Using (11), det(XijG

†
jj ) >0 iff

det([GG̃†]{i,j},{i,j}) >0 (14)

for all j =2, . . . , M, i=1, . . . , j −1. Next, assume that (14)
holds.WhenM �3, the ordered set{r, q} is a subset of{i, j}.
Then, det(XqrG

†
rr ) >0 and using (12), det(Zv

rqG
†
vv) >0, iff

det([GG̃†]{q,r,v},{q,r,v}) >0 (15)

for all v =3, . . . , M, q =1, . . . , v −2, r =q +1, . . . , v −1.
Similarly, whenM = 4, det(WG†

44) >0, iff

det(GG̃†) >0. (16)

Now, the necessity and sufficiency of (10) follows by com-
bining (14)–(16) and noting that� = {i, j} ∪ {q, r, v}. �
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AsM increases, the expressions presented byGündes and
Kabuli (2001)become increasingly complex (cf. (6)–(8)).
On the other hand, the extension to the general case is simple
(by induction), when the conditions are compactly expressed
in terms of NI.
When all the blocks of the partitioned system are square,

the conditions of Theorem 2 can also be equivalently ex-
pressed in terms of BRG, as shown below.

Definition 5. For G(s) partitioned into square blocks, let
Gii ∈ Rmi×mi be non-singular for alli = 1, . . . , M and
let j = {1, . . . , M}/i. The BRG ofGii in G is defined as
(Manousiouthakis et al., 1986)

[�B(G)]ii =Gii

(
Gii −GijG

−1
jj Gji

)−1
. (17)

Proposition 6. LetG(s) be partitioned into square blocks
such thatGii ∈ Rmi×mi is non-singular for alli=1, . . . , M.
Then the conclusions of Theorem2 or (10) hold iff,

det([�B(G��)]kk) >0 ∀� ∈ �, k = 1, . . . , |�|, (18)

where|�| denotes the cardinality of the set�.

Proof. For equivalence, we show that (18)⇔(10), which
in turn implies that the conclusions of Theorem 2 hold, iff
(18) holds. Since NI(G{i,j},{i,j}) = det([�B(G{i,j},{i,j})]ii ),
NI(G{i,j},{i,j}) >0, iff

det([�B(G{i,j},{i,j})]ii ) >0 (19)

for all i, j �M, i �= j . Next, assume that (19) holds. When,
M �3 (Chiu & Arkun, 1990)

NI(G{i,j,k},{i,j,k}) = NI(G{i,j},{i,j})
det([�B(G{i,j,k},{i,j,k})]kk)

for all i, j, k�M, i �= j �= k. Since NI(G{i,j},{i,j}) >0 for
all i, j �M, i �= j , NI(G{i,j,k},{i,j,k}) >0, iff

det([�B(G{i,j,k},{i,j,k})]ii ) >0 (20)

for all i, j, k�M, i �= j �= k. When,M = 4, using (13) and
similar arguments as above, NI(G) >0 iff

det([�B(G)]��) >0 (21)

for all i, j, k�M, i �= j �= k, �={1, . . . , M}/{i, j, k}. Now,
the necessity and sufficiency of (18) follows by combining
(19)–(21). �

To check whether (10) or (18) hold, NI or BRG need to be
calculated for all principal sub-matrices ofG, which can be
formed by combining elements of the diagonal blocks and
the corresponding off-diagonal blocks.A similar methodwas
earlier proposed byChiu and Arkun (1990), where (10) and
(18) were shown to be necessary.Chiu and Arkun (1990)
assumed thatG(s)C(s) is strictly proper andC(s) is stable.
If C(s) is allowed to be unstable, Propositions 4 and 6 imply

that the necessary conditions based on NI and BRG, tradi-
tionally believed to be only necessary, are both necessary
and sufficient.
For a system partitioned into MISO blocks, satisfying

(6)–(8) is equivalent to satisfyingXijG
†
jj � 0, Zv

rqG
†
vv � 0

andWG†
44 � 0. In this case, when (10) or (18) hold, the

existence of a stableC(s) is guaranteed such thatG(s) has
integrity. In general, there may not exist a stableC(s) such
thatG(s) has integrity, even when (10) or (18) hold. It is
worth pointing out that the requirement ofC(s) being un-
stable is restrictive, as noted byCampo and Morari (1994),
but is practically relevant. Derivation of necessary and suffi-
cient conditions forG(s) to possess integrity such thatC(s)

is stable, remains an open problem.
To verify whether (10) holds, NI needs to be evaluated

exactly 2M − (M + 1) times, whereas verification of (18)
requires that BRG be evaluated many more times. This am-
biguity is explained by noting that evaluation of BRG for
all principal block sub-matrices ofG is not necessary. For
example, whenM = 3

det([�B(G{i,j},{i,j})]ii )
= det([�B(G)]jj )det([�B(G{i,k},{i,k})]ii )

det([�B(G)]kk)
. (22)

If all the terms on the right-hand side of (22) are positive,
det([�B(G{i,j},{i,j})]ii ) is always positive. The task of find-
ing the set of 2M − (M + 1) non-redundant BRGs requires
some book-keeping. In this sense, the use of (10) is advan-
tageous over the use of (18). The usefulness of the results
presented in this section is demonstrated next by a numeri-
cal example.

Example 7. Consider the following system adapted from
Hovd and Skogestad (1992):

G(s) = (1− s)

(1+ 5s)2

[ 1 −4.19 −25.96
6.19 1 −25.96
1 1 1

]
.

The objective is to ascertain the integrity of system with
pairings selected on the diagonal elements. The NI(G) and
NI(G��) are 26.9 for � = (1,2), (1,3) and (2,3). Then,
Proposition 4 guarantees that the system has integrity.
This result is also confirmed using Proposition 6, where
[�B(G)]ii = 1 for i = 1,2,3 and[�B(G��)]jj = 0.037 for
� = (1,2), (1,3) and(2,3) for all j = 1,2.
For fully decentralized control, satisfying (10) or (18)

guarantees the existence of a pure integral action controller
such thatG(s) has integrity. We design a controller of the
form diag(ki/s) using the algorithm of Gündes and Kabuli
(2001), whereki = 0.01,0.002 and 10−5 for i = 1,2,3,
respectively. This controller maintains closed loop stability,
when any combination of loops fail. Alternatively, we find
using trial and error that the same objective is achieved by
the controllerk · I , k = 0.001.
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4. Computational complexity

In this section, we present some results on computational
complexity for establishing the existence of a block diago-
nal controller such thatG(s) has integrity. It is shown that
this problem is NP-hard, unless P=NP (Garey & Johnson,
1979). We introduce the useful notion ofP-matrices, which
form the basis of the proof for NP-hardness.

Definition 8. A matrix A ∈ Rn×n is called aP-matrix, if
all the principal minors ofA are positive (Rump, 2003).

In the subsequent discussion, we refer to the problem of
establishing the existence of a block diagonal controller such
thatG(s) has integrity, simply as theintegrity problem. Note
that the integrity problem involves search over all possible
partitions ofG(s) and the controller structure is not specified
a priori.

Proposition 9. Let rank(Gii ) = mi for all i = 1, . . . , M
and G̃ = diag(Gii ). If the controllerK (s) is restricted to
be strictly proper, the integrity problem isNP-hard, unless
P=NP.

Proof. For the NP-hardness of the integrity problem, it suf-
fices to show that the integrity problem is NP-hard, when the
individual blocks of controller are single-input multi-output
(SIMO). Let the class ofn×n real matrices be classified as

• Matrices with at least one negative or zero diagonal ele-
ments,A1;

• Matrices with all positive diagonal elements,A2.

It readily follows that for anyA ∈ A1, theP-matrix prob-
lem can be solved in polynomial time throughn evaluations.
Coxson (1994)has shown that verifying whether a given
matrix isP-matrix is co-NP-complete. Then, theP-matrix
problem must be co-NP-complete for the setA2, otherwise
the results ofCoxson (1994)are contradicted. For anyA,
since

det(AÃ−1) = det(A)det(Ã−1) (23)

anyA ∈ A2 is aP-matrix, iff AÃ−1 is aP-matrix.
By reversing the proof of Proposition 4, it follows that

AÃ−1 is aP-matrix, iff for every transfer matrixG(s) sat-
isfyingAÃ−1=GG̃†, there exists a decentralized controller
having SIMO blocks and integral action such thatG(s) has
integrity. Clearly, the transformationsAÃ−1 andGG̃† re-
quire finite number of operations and can be completed
in polynomial time. Thus, the integrity problem is at least
as hard as theP-matrix problem and is NP-hard, unless
P=NP. �

Based on Proposition 9, it is possible to establish the
computational complexity of some more general or special

cases of integrity problem, as discussed below:

(1) When the system is partitioned into MISO blocks, sat-
isfying (6)–(8) guarantees the existence of a pure in-
tegral action controller such thatG(s) has integrity. In
this case, when the controllers are further restricted to
have poles at origin only, the integrity problem is also
NP-hard.

(2) When the controller is block decentralized, one only
needs to check the positiveness of the minors of the
sub-matrices ofGG̃† that can be formed by com-
bining elements of different blocks and the corre-
sponding off-block diagonal elements. In this case, if
det([GG̃†]��) >0 for all� ∈ �, we callGG†

bd a block
P-matrix in the spirit ofP-matrices. The worst-case
time complexity of an algorithm for the blockP-
matrix problem is approximatelyO(n32M). Then, for
the special case, where the controller structure is spec-
ified a priori withM being independent of the system
dimensions, the integrity problem lies in class P.

Though the integrity problem is NP-hard it may still be
possible to solve the integrity problem in polynomial time
for particular instances of the problem. The time complex-
ity of an algorithm evaluating all the principal minors of the
given real matrix is approximatelyO(n32n). Tsatsomeros
and Li (2000) presented a recursive algorithm that reduces
the time complexity toO(2n). This algorithm is based on
Schur complement lemma and is easily extended for verify-
ing blockP-matrices.
Recently,Rump (2003)presented an algorithm, whose

time complexity is not necessarily exponential, but can be
exponential in the worst case.Rump (2003)has applied this
algorithm to a test set of parameterized matrices, whose
membership in the class ofP-matrices is known beforehand
for the given value of the parameter. It is shown that the algo-
rithm can successfully verify whether these matrices having
dimensions up to 100× 100 areP-matrices in polynomial
time. Future work will focus on generalizing Rump’s algo-
rithm (Rump, 2003) for verification of blockP-matrices.
We next present a sufficient condition for verifying whether
GG̃† is aP- or blockP-matrix.

Proposition 10. Let rank(Gii )=mi for all i=1, . . . , M and
G̃= diag(Gii ). DefineE= (G− G̃)G̃†. Then, GG̃† is block
P-matrix with respect to the structure ofG̃, if det(I +0.5E)

�= 0 and

��((I + 0.5E)−1E) <2, (24)

where� is the structured singular value(Doyle, Wall, &
Stein, 1982) and

� = {diag(�i · Imi
), �i ∈ C, |�i |�1, i = 1, . . . , M}. (25)
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Proof. Define,�1={diag(�i ·Imi
), �i ={0,1}, i=1, . . . , M}.

Then,GG̃† = I + E, is a blockP-matrix iff

det(I + E�̃1) >0 ∀�̃1 ∈ �1. (26)

Further, defining�2 = {diag(�i · Imi
), �i ∈ C, |�i |�1, i =

1, . . . , M} and noting that�1 ⊂ �2, (26) holds if det(I +
E�̃2) >0 for all �̃2 ∈ �2. Since the determinant is a con-
tinuous function over convex sets, if det(I + E�̃2) changes
sign over the set�2, there exists somẽ�2 ∈ �2 such that
det(I + E�̃2) = 0. Since,�1 ⊂ �2, (26) holds if

det(I + E�̃2) �= 0 ∀�̃2 ∈ �2 ⇔ ��2
(E) <1. (27)

The condition (27) is conservative asI , −I ∈ �2. To reduce
conservatism (Braatz et al., 1994), for every�̃ ∈ �, �̃2 ∈
�2, define�̃2 = 0.5(I + �̃). Then

det(I + E�̃2)

= det(I + 0.5E + 0.5E�̃)

= det(I + 0.5E)det(I + 0.5(I + 0.5E)−1E�̃).

When (24) holds, det(I + 0.5(I + 0.5E)−1E�̃) does not
change sign over the set� andGG̃† is blockP-matrix with
respect to the structure of̃G. �

The principal sub-matrices of a positive-definite matrix
are also positive-definite (Horn & Johnson, 1985). Thus,
whenGG̃† � 0, GG̃† is aP- and thus a blockP-matrix.
Proposition 10 is less conservative than this sufficient con-
dition, as the controller structure is taken into account; how-
ever, Proposition 10 is still conservative, as�̃1 is a strict
subset of�̃. Further, it is well known that exact calculation
of the structured singular value is difficult. There are some
upper bounds available which can be calculated tractably
using convex optimization and can handle many practical
problems of interest; see, e.g.Doyle et al. (1982)andFu
and Barabanov (1997). A practical approach is to check if
the upper bound on��((I + 0.5E)−1E) <2 and if not, use
the algorithms ofTsatsomeros and Li (2000)for block de-
centralized control orRump (2003)for fully decentralized
control.

Example 11. To show the advantage of Proposition 10 over
the sufficient conditionGG̃† � 0, we considerG(s) with

G =

1

�

− �
�
1


 ; �, �>0.

For fully decentralized control with pairing on diagonal el-
ements, NI(G) = 1+ � and the system has integrity for all
allowable values of� and�. For 2×2 systems, we note that
the upper bound on the structured singular value obtained
using theD-scaling method is exact (Doyle et al., 1982).
Using this method and some lengthy but straightforward

algebraic manipulations, it can be shown that

��((I + 0.5E)−1E) = 2
√

�
4+ �

which satisfies (24) for all allowable finite values of� and
�. This example demonstrates that Proposition 10 is not al-
ways conservative. On the other hand, the eigenvalues of
(GG̃†+(GG̃†)T) are 2±(�− �

� ) and the sufficient condition

GG̃† � 0 is satisfied only when|(�− �
� )| <2. For example,

when� = 1, GG̃† � 0 only for 0.416���2.416. Clearly,
this is highly conservative, as the integrity of the system is
independent of�.

5. Conclusions

When the controller is allowed to have unstable poles
other than at origin, it is shown that the conditions for the
integrity problem based on NI and BRG, generally believed
to be necessary, are both necessary and sufficient. It is also
shown that solving the integrity problem, i.e. establishing
the existence of a block diagonal controller with integral
action such that the system has integrity, is NP-hard. This
result implies that no computationally easy algorithm exists
for solving the integrity problem and the engineer needs to
be content with conditions that are easily computable but
are either necessary or sufficient, but not both.
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