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Abstract

A decentralized controller that maintains closed loop stability, when the individual controllers fail or are taken out of service, provides
fault tolerance and flexibility in operation. Recently, necessary and sufficient conditions [Glindes, Kabuli, 2001. IEEE Transactions on
Automatic Control, 46(2), 296—-301] for the existence of a block decentralized controller with integral action for a system to possess
integrity against controller failures were proposed. In this paper, these conditions are equivalently expressed using the well-known notions
of Niederlinski index (NI) and block relative gain (BRG). The alternate representation implies that under minor assumptions, the available
necessary conditions based on NI and BRG are actually both necessary and sufficient. We also show that confirming the existence of a
block decentralized controller with integral action such that the system has integrity is NP-hard.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction is on deriving controller-independent conditions which can
establish the existence or non-existence of a controller such
This paper deals with reliable stabilization of linear ra- that the system possesses integrity.
tional stable systems using a block decentralized controller Because of its practical implications, the integrity prob-
with integral action. A system is said to possess integrity, if lem has been studied widely by researchers, particularly in
there exists a block diagonal controller with integral action the area of process control. For fully decentralized control, a
in every output channel such that the closed loop stability well-known result that relates reliable stability with relative
is maintained when any combination of the individual con- gain array (RGA) Bristol, 196§ is provided byGrosdidier,
trollers fails Campo & Morari, 1994 It is assumed that a  Morari, and Holt (1985) It is shown that a system has
controller that fails is immediately taken out of service, i.e. integrity only if all the corresponding relative gains of the
the corresponding entries in the block diagonal controller steady state gain matrix are positive. Similar to fully de-
matrix are replaced by zero. Some researchers have consideentralized control, a system with specified block pairings
ered the problem of checking whether the closed loop systemhas integrity only if the determinant of all the correspond-
is reliably stable for a given controller; s&aatz, Morari, ing block relative gains (BRG)Manousiouthakis, Savage,
and Skogestad (19949r a review. The focus of this work & Arkun, 1986 of the steady state gain matrix are posi-
tive (Grosdidier & Morari (1987) Grosdidier and Morari
(1986) generalized the concept of Niederlinski index (NI)
* This paper was not presented at any IFAC meeting. This paper was to block pairings to derive similar necessary conditions.
recommended for publication in revised form by Associate Editor Richard  Chiu and Arkun (1990have further suggested that the nec-
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whether the system with the pairings chosen based on theséntegral action, which stabilizeG(s) for all E € &, where
necessary conditions, will have integrity. (Campo & Morari, 1993

Recently,Gundes and Kabuli (200resented necessary . )
and sufficient conditions for integrity of the system parti- ¢ ={E=diage - lm)le; ={0.1},i=1,.... M}. )
tioned into 4 or fewer blocks. In this note, we show that these |, the literature, a system possessing integrity has also
conditions can be equivalently expressed using Nl and, whenpeen referred aseliably stable with integral actionsee
the individual blocks are square, also using BRG. In general, e.g. Gindes and Kabuli (2001 he existence of a block
satisfying the conditions dBtndes and Kabuli (200Hoes  giagonal controller such th&(s) hasintegrity depends on
not guarantee that the decentralized controller will have no the chosen input—output pairings. In the remaining discus-
unstable poles other than at the origin of the complex plane, sjon, we assume th&(s) has been permuted such that the

as is assumed in the derivation of available necessary condiypsystems corresponding to the chosen pairings lie along
tions based on Nl and BRG i@rosdidier and Morari (1986,  {he diagonal blocks 0 (s).

1987) When the controller is allowed to have any num-
ber of unstable poles, the alternative representation implies 1o present the conditions ofcindes and Kabuli

Iith_ad_ to be only necessary, are actually"both necessaryand; — 2" . u, i=1,...,j — 1, define
sufficient. The expressions presented®yndes and Kab- ‘
uli (2001) become increasingly complex with the number Xij =Gj; —G;iG;;G;;. )

of blocks. Then, an additional advantage of the alternative

representation in terms of NI and BRG is that the extension WhenM >3, fork=1,.... M—-2andt, m=k+1,.... M,

to the general case, where the system is partitioned into anyﬁ 7 m,
number of blocks, i; simple. Yt =G — szszka (3)
For fully decentralized control, we also show that the nec-
essary and sufficient conditions dueGaindes and Kabuli ~ andforv=3,.... M,g=1,...,v—-2andr=¢+1,...,
(2001)are satisfied if and only if (iff) NI calculated based v —1,
on steady state gain matrix is 4-matrix (Rump, 200 _
y state g ®Rump, 2003z _x, —v4,.Gl (X,Gl) 1YY, @)

This observation suggests that verifying the existence of a "¢
block decentralized controller with integral action such that When M = 4, define
the system has integrity is NP-hard unless-RIP (Garey 1 1 1 At b 1ol ot
& Johnson, 197p W =234 = (Ya3 = Y12525(X12G2,) " "Y33)G33
X (Z55GL) (Y34 — Y3,85,(X12GL) Y30 (5)

Theorem 2 (Giindes & Kabuli, 200 Letrank(G;;) = m;
foralli=1,..., M. There exists a block diagonal controller

) ) . with integral action such thaG(s) has integrity if
In this note, we denote the linear rational stable system

2. Necessary and sufficient conditions

asG(s) and the gain matrix a&. We consider thaG(s) det(X,-jGL) >0, (6)
is partitioned intaM non-overlapping subsystems such that,
Gy € R™>™i:m;<mj,i=1,2, ..., M. The matrix con-  detZ},G!)>0, (7)

taining diagonal blocks df is represented &3. The block "
diagonal controlleK (s) with integral action is expressed as detWG ) >0, (8)

K(s)=(1/s)-C(s), whereC(s) =diag(C;; (s)) andC;; (s) is wherej=2,.... M, i=1,...,j—landv=3,..., M,q=

am ; x m; dimensional transfer matrix (séég. 1). Here, we 1,...,v—2,r=q+1,...,v— 1. Further, ifany M — 1
allow C(s) to be improper, provide& (s) is proper. When controllers are strictly properor whenG;; or Gj;, j =
rank(G;;) = m;, the right inverse of5;; is denoted as ;. 2,...,M,i=1,...,j— 1are strictly proper or when any
Note that the existence @32} is necessary for thih loop of these transfer matrices have real blocking ze(63—(8)

to have integral action. We call a square real makixa are also necessary

positive definite matrix (denoted #&s > 0) if all the eigen-

values of its symmetric pariA + AT) are positive Klorn & The proof of Theorem 2 can be found Gindes and
Johnson, 1985 Kabuli (2001) Some remarks that are relevant to the rest of

Next, we define integrity formally and present the neces- the discussion in this note are in order.
sary and sufficient conditions @indes and Kabuli (2001)

for integrity of G(s). e Even though the off-diagonal blocks @(s) may not
be strictly proper or may not have real blocking ze-
Definition 1. The systenG(s) is said to have integrity, if ros, the controllers can always be designed to be strictly

there exists a block diagonal controliKs) = EK (s) with proper. When all controllers are strictly proper, (6)—(8)
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Fig. 1. Closed loop system with integral action controller.

are both necessary and sufficient for existence of a block Niedrelinski Index (NI) ofG is defined as

diagonal controller with integral action such th@ats) ~ 1

has integrity. We note that a similar assumption is made NI(G) = de(GG). 9)
during the derivation of the necessary conditions based
on BRG inGrosdidier and Morari (1987)

e When (6)—(8) are satisfied, existence of a controller with
integral action is guaranteed such that the system has
integrity. This controller, however, may have additional
unstable poles other than at the origin of the complex
plane. The existence of pure integral action controllers is
implied by the more restrictive conditionx:,-jGL > 0,
zy,G}, ~ 0 andwG}, > 0. NI(Gyy)>0 VY e V. (10)

e When the individual blocks are multi-input single-output
(MISO), XijG;f] ~ 0, quGIu ~ 0 andWGL ~ 0 are Proof. By repeated use of S_chur complement lemma (see
equivalent to (6)—(8). In this case, when (6)(8) hold, ©-9- {orn & Johnson, 1983, it can be shown that

Definition 3 is a generalization of NI defined IBrosdidier
and Morari (1986)for systems partitioned into square
blocks. The next proposition relates NI with the existence
of a controller such that the system has integrity.

Proposition 4. Let rank(G;;) =m; forall i =1,..., M.
Then the conclusions of Theordg) hold iff

existence of a pure integral action controller is guaranteed At At
such thaiG(s) has integrity. det(X;;Gj;) = det(GG 1yi jy.(i.), 11)
el
Gundes and Kabuli (200H)so presented a method for con- detz® G )= det([GG ]{qmv},{q,r,v})’ (12)
troller design such thaG(s) has integrity, Wherb(ijGL., v det(Xq,G;r,
z,Gl, andWG}, are positive definite. . detGGT)
detWG,,) = — = (13)
det(Z55G55) det(X12G,,)
3. Simplified representation wherej=2,....,.M,i=1,...,j—1andv=3,..., M,

) ) N ) g=1...,v—-2,r=qg+1...,v—1.
In this section, we show that the conditions in Theorem — ysing (11) de([X,-jGT..) < 0 iff
! JJ

2 can be equivalently represented in terms of BRG and NI.

For th?s purpose, we requirg evaluation of BRG and NI on det([GéT]{i,j},{i,j}) -0 (14)
the principal block sub-matrices &. We definey as the
ordered subset of the firdf positive integers, consisting forall j=2,...,M,i=1,..., j—1. Next, assume that (14)

of at least 2 elements, an#l as the ensemble of all such holds. WhenV > 3, the ordered sét;, ¢} is a subset ofi, j}.
setsy. For example, whet =2, ¥ = {(1, 2)} and when Then, de(Xq,GIr) > 0 and using (12), deZ;’qGIv) > 0, iff
M=3,¥Y={(1,2), (3,23, (1,2, 3)}. With this repre- ~

sentationG,,, represents a principal submatrix @fmade det (GG ). (g.r0) > 0 (15)
up of blocks of G indexed byy, for any yy € ¥. Simi-
larly, [GH]y,, represents a principal submatrix of the prod-
uct of the matrice$s andH indexed byy. Note that when

v =(1,2,..., M), Gyy represents the matrig.

forallv=3,...,M,q=1,...,v—2,r=q+1,...,v—1.
Similarly, whenM = 4, de'(WGZ4)>O, iff

detGG™) > 0. (16)

Definition 3. Let G = diag(G;;), where G;; € R <™, Now, the necessity and sufficiency of (10) follows by com-
m;<mj; and rankKG;;) = m; for all i =1,..., M. The bining (14)—(16) and noting tha¥ = {i, j} U {¢,r,v}. O
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As M increases, the expressions presente@iigdes and  that the necessary conditions based on NI and BRG, tradi-
Kabuli (2001) become increasingly complex (cf. (6)—(8)). tionally believed to be only necessary, are both necessary
On the other hand, the extension to the general case is simpleand sufficient.

(by induction), when the conditions are compactly expressed For a system partitioned into MISO blocks, satisfying
in terms of NI. (6)—(8) is equivalent to :satlsfymg,jdr ~0,2v,Gl, >0

When all the blocks of the partitioned system are square, ndWGT4 ~ 0. In this case, when (10) or (18) hold, the

the conditions of Theorem 2 can also be equivalently ex- existence of a stabl€(s) is guaranteed such thak(s) has

pressed in terms of BRG, as shown below. integrity. In general, there may not exist a staBig) such

that G(s) has integrity, even when (10) or (18) hold. It is

worth pointing out that the requirement Gf(s) being un-

stable is restrictive, as noted IBampo and Morari (1994)

but is practically relevant. Derivation of necessary and suffi-

cient conditions foiG(s) to possess integrity such th@ats)

4 -1 is stable, remains an open problem.

[AB(G)];i =Gi; (Gii = GijGy; Gﬁ) . a7 To verify whether (10) holds, NI needs to be evaluated
exactly 27 — (M + 1) times, whereas verification of (18)

Proposition 6. Let G(s) be partitioned into square blocks  requires that BRG be evaluated many more times. This am-

Definition 5. For G(s) partitioned into square blocks, let
G;; € R™>™ be non-singular for ali =1,..., M and
let j ={1,..., M}/i. The BRG ofG;; in G is defined as
(Manousiouthakis et al., 1986

such thaG;; € R™*" is non-singular forali=1,..., M. biguity is explained by noting that evaluation of BRG for
Then the conclusions of Theoredwr (10) hold iff, all principal block sub-matrices db is not necessary. For
example, when =3
det[Ap(Gyy)lw) >0 Ve W.k=1...yl,  (18) P
where|y/| denotes the cardinality of the sgt det[A5(Gyi jy. 1. j)ii)
_ det[Ap(G)];;) det([Ap(Gyix,fik)lii) (22)
Proof. For equivalence, we show that (¥8]10), which N det([Ap(G)lxx) '
in turn implies that the conclusions of Theorem 2 hold, iff _ _ N
(18) holds. Since NGy, jy.1i.j1) = det[Ag(Gyi.jy.ii)lii), If all the terms on the right-hand side of (22) are positive,
NI(Gyi,jy.i.j)) > O, iff det([Az(Gyjy.ij))i) is always positive. The task of find-
ing the set of 2 — (M + 1) non-redundant BRGs requires
det([Ap(Gyjy1i.jP])ii) >0 (19) some book-keeping. In this sense, the use of (10) is advan-

tageous over the use of (18). The usefulness of the results

foralli, <M, i # j. Next, assume that (19) holds. When, presented in this section is demonstrated next by a numeri-

M >3 (Chiu & Arkun, 1990

cal example.

NEGe ot o i) = NI(Gyi, jy. 00,71 . .

(Givjik), (k1) = det[As G140 Tke) Example 7. Consider the following system adapted from

Hovd and Skogestad (1992)

foralli, j,k<M, i # j # k. Since N(Gy; ;) 1i.j;) > O for

alli, j<M,i # j, NI(G{i,j,k},{i,j,k}) >0, iff (1—s) 1 —-419 -2596
Gs)=———>5|619 1 —2596

det([Ag(Gyi j k(i ki) > 0 (20) 1+59)°| 1 1 1

foralli, j,k<M,i # j # k. When,M =4, using (13) and

- . The objective is to ascertain the integrity of system with
similar arguments as above, (@) > O iff ) gry y

pairings selected on the diagonal elements. Theg&Nand
det[Ag(G)ly) >0 (21) NI(Gyy) are 269 for y = (1, 2), (1, 3) and (2,3). Then,
Proposition 4 guarantees that the system has integrity.
foralli, j,k<M,i # j #k,0={1,..., M}/{i, J, k}. Now, This result is also confirmed using Proposition 6, where
the necessity and sufficiency of (18) follows by combining [Ag(G)];; =1fori=1,2,3 and[Ag(Gyy)1;; = 0.037 for
(19)-(21). O v =(,2),(,3 and(2,3) forall j =1, 2.
For fully decentralized control, satisfying (10) or (18)
To check whether (10) or (18) hold, NI or BRG need to be guarantees the existence of a pure integral action controller
calculated for all principal sub-matrices @f which can be  such thatG(s) has integrity. We design a controller of the
formed by combining elements of the diagonal blocks and form diagk;/s) using the algorithm of Gundes and Kabuli
the corresponding off-diagonal blocks. A similar method was (2001), wherek; = 0.01, 0.002 and 10° for i = 1, 2, 3,
earlier proposed bghiu and Arkun (199Q)where (10) and  respectively. This controller maintains closed loop stability,
(18) were shown to be necessaBhiu and Arkun (1990)  when any combination of loops fail. Alternatively, we find
assumed thab (s)C(s) is strictly proper andC(s) is stable. using trial and error that the same objective is achieved by
If C(s) is allowed to be unstable, Propositions 4 and 6 imply the controllerk - I, k = 0.001.
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4. Computational complexity

In this section, we present some results on computational
complexity for establishing the existence of a block diago-
nal controller such thaB(s) has integrity. It is shown that
this problem is NP-hard, unless=PNP (Garey & Johnson,
1979. We introduce the useful notion gf-matrices, which
form the basis of the proof for NP-hardness.

Definition 8. A matrix A € R™*" is called aZ-matrix, if
all the principal minors ofA are positive Rump, 2003.

In the subsequent discussion, we refer to the problem of
establishing the existence of a block diagonal controller such
thatG(s) has integrity, simply as thiategrity problem Note
that the integrity problem involves search over all possible
partitions ofG(s) and the controller structure is not specified
a priori.

Propgsition 9. Letrank(G;;) =m; forall i =1,..., M
and G = diag(G;;). If the controller K (s) is restricted to
be strictly proper the integrity problem isNP-hard, unless
P=NP.

Proof. For the NP-hardness of the integrity problem, it suf-
fices to show that the integrity problem is NP-hard, when the
individual blocks of controller are single-input multi-output
(SIMO). Let the class ot x n real matrices be classified as

e Matrices with at least one negative or zero diagonal ele-
ments,.o/1;
e Matrices with all positive diagonal elements/s.

It readily follows that for anyA € .27, the -matrix prob-
lem can be solved in polynomial time througlevaluations.
Coxson (1994has shown that verifying whether a given
matrix is #-matrix is co-NP-complete. Then, th¥-matrix
problem must be co-NP-complete for the s£1, otherwise
the results ofCoxson (1994)re contradicted. For ank,
since

dettAA™1) = det(A) det(A~1) (23)
anyA € .7, is aZ?-matrix, iff AA~1 is a 2-matrix.

By reversing the proof of Proposition 4, it follows that
AA~1is a2-matrix, iff for every transfer matrixG(s) sat-
isfying AA~1=GGT, there exists a decentralized controller
having SIMO blocks and integral action such t&t) has
integrity. Clearly, the transformationsA~1 and GG re-
quire finite number of operations and can be completed
in polynomial time. Thus, the integrity problem is at least
as hard as the?-matrix problem and is NP-hard, unless
P=NP. O

Based on Proposition 9, it is possible to establish the
computational complexity of some more general or special

1579
cases of integrity problem, as discussed below:

(1) When the system is partitioned into MISO blocks, sat-
isfying (6)—(8) guarantees the existence of a pure in-
tegral action controller such th&(s) has integrity. In
this case, when the controllers are further restricted to
have poles at origin only, the integrity problem is also
NP-hard.

When the controller is block decentralized, one only
needs to check the positiveness of the minors of the
sub-matrices ofGG' that can be formed by com-
bining elements of different blocks and the corre-
sponding off-block diagonal elements. In this case, if
det(GG"]y,) >0forally e ¥, we caIIGGZd a block
Z-matrix in the spirit of Z-matrices. The worst-case
time complexity of an algorithm for the block?-
matrix problem is approximately(n32"). Then, for

the special case, where the controller structure is spec-
ified a priori with M being independent of the system
dimensions, the integrity problem lies in class P.

)

Though the integrity problem is NP-hard it may still be
possible to solve the integrity problem in polynomial time
for particular instances of the problem. The time complex-
ity of an algorithm evaluating all the principal minors of the
given real matrix is approximately(n32"). Tsatsomeros
and Li (2000) presented a recursive algorithm that reduces
the time complexity to®(2"). This algorithm is based on
Schur complement lemma and is easily extended for verify-
ing block #-matrices.

Recently, Rump (2003)presented an algorithm, whose
time complexity is not necessarily exponential, but can be
exponential in the worst casBump (2003has applied this
algorithm to a test set of parameterized matrices, whose
membership in the class ¢f-matrices is known beforehand
for the given value of the parameter. It is shown that the algo-
rithm can successfully verify whether these matrices having
dimensions up to 10& 100 areZ-matrices in polynomial
time. Future work will focus on generalizing Rump’s algo-
rithm (Rump, 2003 for verification of blockZ-matrices.
We next present a sufficient condition for verifying whether
GG is a#- or block Z-matrix.

Proposition 10. Letrank(G;;)=m; forall i=1, ..., M and
G =diag(G;;). DefineE = (G — G)G'. Then GG is block
Z-matrix with respect to the structure &, if det(l + 0.5E)
# 0 and

A (1 +0.5E)71E) < 2, (24)

where i is the structured singular valu@oyle, Wall, &
Stein, 1982 and

A:{diag(éi . |ml.),(5,' eC, |5,‘|<1,i =1...,M}. (25)
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Proof. Define, Ai={diag(s; -l ,»;), &i={0,1},i=1,..., M}.
Then,GG' =1 + E, is a block?-matrix iff

detl + EA1) >0 VAj € A1, (26)

Further, definingA, = {diag(e; - 1), & € C, |g| <1 i =
1,..., M} and noting thatA1 C A2, (26) holds if detl +
E&z) > 0 for all &2 € A». Since the determinant is a con-
tinuous function over convex sets, if det- EA») changes
sign over the sel\,, there exists somég € Ay such that
det(l + EA») = 0. Since, A1 C Ay, (26) holds if

detl +EAp) #0 YAz e Ay & py,(E) <1 (27)

The condition (27) is conservative bs—I| € A. To reduce
conservati§m Rraatz et ~aI., 199 for everyA € A, Az €
Ao, defineA, = 0.5(1 + A). Then

det(l + EAp)
= det(l + 0.5E + 0.5EA)
= det(l 4+ 0.5E) det(l + 0.5(I + 0.5E) 1EA).

When (24) holds, det + 0.5(1 + 0.5E)"*EA) does not
change sign over the sAtgdeGT is block Z-matrix with
respect to the structure &. [

The principal sub-matrices of a positive-definite matrix
are also positive-definiteHorn & Johnson, 1985 Thus,
whenGG' >~ 0, GG' is a2- and thus a block?-matrix.
Proposition 10 is less conservative than this sufficient con-
dition, as the controller structure is taken into account; how-
ever, Proposition 10 is still conservative, As is a strict
subset ofA. Further, it is well known that exact calculation
of the structured singular value is difficult. There are some

upper bounds available which can be calculated tractably

using convex optimization and can handle many practical
problems of interest; see, e.Doyle et al. (1982)and Fu
and Barabanov (1997A practical approach is to check if
the upper bound op, ((I + 0.5E)1E) < 2 and if not, use
the algorithms offsatsomeros and Li (200@r block de-
centralized control oRump (2003)for fully decentralized
control.

Example 11. To show the advantage of Proposition 10 over
the sufficient conditior6G' > 0, we consideG(s) with
Y

1__

G= o ;

,7>0.
a1 o,y >
For fully decentralized control with pairing on diagonal el-
ements, NIG) = 1 + y and the system has integrity for all
allowable values of andy. For 2x 2 systems, we note that

the upper bound on the structured singular value obtained

using theD-scaling method is exacDpyle et al., 1982
Using this method and some lengthy but straightforward

V. Kariwala et al. / Automatica 41 (2005) 1575-1581

algebraic manipulations, it can be shown that

| +05E)1E)=2 |
JIN(USS ) E) 1+

which satisfies (24) for all allowable finite values ofand

7. This example demonstrates that Proposition 10 is not al-
ways conservative. On the other hand, the eigenvalues of
(GGT+(GGNT) are 2+ (2 — 1) and the sufficient condition
GG' > 0/is satisfied only whef(o — )| < 2. For example,

wheny =1, GGT > 0 only for 0416< 0 <2.416. Clearly,
this is highly conservative, as the integrity of the system is
independent of:.

5. Conclusions

When the controller is allowed to have unstable poles
other than at origin, it is shown that the conditions for the
integrity problem based on NI and BRG, generally believed
to be necessary, are both necessary and sufficient. It is also
shown that solving the integrity problem, i.e. establishing
the existence of a block diagonal controller with integral
action such that the system has integrity, is NP-hard. This
result implies that no computationally easy algorithm exists
for solving the integrity problem and the engineer needs to
be content with conditions that are easily computable but
are either necessary or sufficient, but not both.
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