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This paper presents a novel approach for evaluating the decentralized closed-loop integrity (DCLI)
of multivariable control systems. Through application of the left-right factorization to the
decomposed relative interaction array, the relative interaction to a particular loop from other
loops is represented by element summation of the decomposed relative interaction sequence.
The maximum interactions from other loops under different combinations and sequences are
determined by the maximum values of the decomposed relative interaction sequence according
to the failure index. Consequently, the necessary and sufficient conditions for the DCLI of an
individual loop under both single- and multiple-loop failure are provided. Also, a simple and
effective algorithm for verifying the DCLI for multivariable processes is developed. The usefulness
of the proposed approach is illustrated by two classical examples.

1. Introduction

Despite the availability of sophisticated methods for
designing centralized control systems, decentralized
control remains popular in many industrial applications
for the following reasons:1,2

1. Hardware simplicity: The cost of implementation
of a decentralized control system is significantly lower
than that of a centralized controller. A centralized
control system for an n × n plant consists of n!
individual single-input single-output transfer functions,
which significantly increases the complexity of the
controller hardware. Furthermore, if the controlled and/
or manipulated variables are physically far apart, a full
controller could require numerous expensive communi-
cation links.

2. Design and tuning simplicity: Decentralized con-
trollers involve far fewer parameters, resulting in a
significant reduction in the time and cost of tuning.

3. Flexibility in operation: A decentralized structure
allows operating personnel to restructure the control
system by bringing subsystems in and out of service
individually, which allows the system to handle chang-
ing control objectives during different operating condi-
tions.

The flexibility to bring subsystems in and out of
service is very important also for the situations when
actuators or sensors in some subsystems fail. The
characteristic of failure tolerance is that, without read-
justment to the other parts of the control system,
stability can be preserved in the case of any sensor
failure and/or actuator failure.3 The relative gain array
(RGA),4,5 Niederlinski index (NI),6 and block relative
gain7 are widely used for eliminating pairing that
produces unstable closed-loop systems under failure
conditions.8-11 Chiu and Arkun12 introduced the concept

of decentralized closed-loop integrity (DCLI), which
requires that the decentralized control structure should
be stabilized by a controller having integral action and
should maintain its nominal stability in the face of
failures in its sensors and/or actuators. A number of
necessary or sufficient conditions for DCLI were also
developed.12,13 However, the necessary and sufficient
conditions for DCLI are still not available. Morari and
co-workers10,14 defined decentralized integral control-
lability (DIC) to address the operational issues, which
consider the failure tolerance as a subproblem. Physi-
cally, a decentralized integral controllable system allows
the operator to reduce the controller gains indepen-
dently to zero without introducing instability (as a result
of positive feedback). Some necessary and/or sufficient
conditions for DIC were developed.10,11,15,16 Even using
only the steady-state gain information, however, the
calculation17 to verify the DIC is very complicated
especially for a high dimension system, which still is
an open problem.

In this paper, through application of the left-right
(LR) factorization to the decomposed relative interaction
array (DRIA), the relative interaction (RI) is converted
to the summation of a series of values as presented by
the decomposed relative interaction sequence (DRIS).
The DRIS provides important insights into the cause-
effect results of loop interaction due to the fact that the
interactions are transferable through interactive loops.
Subsequently, the maximum decomposed relative in-
teraction factor (DRIF) of the loop providing the maxi-
mum interaction among the remaining loops is deter-
mined and used to analyze the RI of an individual loop
in the face of single- or multiple-loop failure. Conse-
quently, the necessary and sufficient conditions for the
DCLI of an individual loop under both single- and
multiple-loop failure are provided. Also, a simple and
effective algorithm for verifying the DCLI for multi-
variable processes is developed.
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The structure of this paper is as follows. In section 2,
we revisit the DCLI as well as the necessary conditions
provided by RGA and NI. In section 3, through applica-
tion of the LR factorization to DRIA, the RI is trans-
formed to the DRIS. The necessary and sufficient
conditions for an individual loop possessing single- and
multiple-loop failure tolerance are derived based on the
DRIS and are given in section 4. An effective algorithm
for verifying the DCLI of multivariable processes is
developed in section 5. The usefulness of the novel
approach is illustrated by two classical examples in
section 6. The paper closes with our conclusions and
future works in section 7.

2. Preliminaries

Throughout this paper, it is assumed that the system
is square (n × n), open-loop-stable, strictly proper,
nonsingular at steady state, and under a decentralized
control configuration, as shown in Figure 1. Here, G(s)
is the transfer function matrix of the plant, and its
steady-state gain matrix and individual elements are
represented by G(0) (or simply G) and gij, respectively.
The decentralized controller C(s) can be decomposed
into C(s) ) N(s) K/s, where N(s) is the transfer function
matrix of the dynamic compensator, which is diagonal
and stable and does not contain integral action, and
K ) diag{ki}, where i ) 1, 2, ..., n.

When loop failures of an arbitrary loop in system G(s)
are investigated, all possible scenarios of the other n -
1 loops in any failure order have to be considered, which
are as many as (n - 1)!. To effectively reflect these failed
possibilities, we define a failure index M, which consists
of n - 1 different integers: M ) {i1, ..., im, ..., in-1},
where m, im ∈ [1, n - 1].

The following definitions and theorems for loop pair-
ing and DCLI for multivariable control systems are
needed in our development.

Definition 2.1.4 The relative gain for variable pairing
yi-uj is defined as the ratio of two gains representing,
first, the process gain in an isolated loop and, second,
the apparent process gain in the same loop when all
other loops are closed

and RGA, Λ(G), in matrix form is defined as

where X is the Hadamard product and G-T is the
transpose of the inverse of G.

Definition 2.2.6 Given a multivariable process G(s),
NI is defined as

The pairing rules based on RGA and NI are that
manipulated and controlled variables in a decentralized
control system should be paired in such a way that (i)
the paired RGA elements are closest to 1.0, (ii) NI is
positive, (iii) all paired RGA elements are positive, and
(iv) large RGA elements should be avoided.

Definition 2.3.18 The RI for loop pairing yi-uj is
defined as the ratio of two elements: the increment of
the process gain after all other control loops are closed
and the apparent gain in the same loop when all other
control loops are open

where the subscript ij,n-1 indicates that the RI is from
the other n - 1 loops to individual loop yi-uj.

Even though the interpretations of RI and RGA are
different, they are, nevertheless, equivalent because one
can be derived from another through simple transfor-
mation of coordinates. Therefore, the properties of the
RI can be easily derived from the RGA.18-21 Similarly
to the RGA-based loop pairing rule,4 one can obtain the
following loop pairing rule in terms of the RI as

However, both RI- and RGA-based pairing rules do not
offer any suggestions on the reverse effect of individual
loop and loop-by-loop interactions, which may lead to
undesirable loop pairing. To solve this problem, He and
Cai decomposed the RI as DRIA to give important
insights into the cause-effect results of loop interac-
tions.22

Definition 2.4.22 The DRIA of an n × n system is
given as

with its klth element

where Gij is the transfer function matrix G with its ith
row and jth column removed.

is the incremental process gain matrix of subsystem Gij

when loop yi-uj is closed, φij,kl is the RI between loop
yi-uj and loop yk-ul, λkl

ij is the relative gain of loop
yk-ul in subsystem Gij, and vectors gi•

ij and g•j
ij are the

ith row and the jth column of G with the ijth element,
gij, removed.

Using DRIA, the RI, φij,n-1, can be decomposed ac-
cording to the following theorem:

Theorem 2.1.22 For an arbitrary nonzero element gij
of G, the corresponding φij,n-1 is the sum of all elements
of Ψij,n-1

Figure 1. Decentralized integral control of multivariable systems.

φij,n-1 )
(∂yi/∂uj)yk*iconstant - (∂yi/∂uj)ul*jconstant

(∂yi/∂uj)ul*jconstant
)

1
λij

- 1 (1)

φij,n-1 f 0 and φij,n-1 > -1 (2)

Ψij,n-1 ) ∆Gij,n-1 X [Gij]-T (3)

ψij,kl ) φij,klλkl
ij (4)

∆Gij,n-1 ) - 1
gij

g•j
ij gi•

ij (5)

φij,n-1 ) ||Ψij,n-1||Σ ) ∑
k)1,k*i

n

∑
l)1,l*j

n

ψij,kl

λij )
(∂yi/∂uj)ul*jconstant

(∂yi/∂uj)yk*iconstant
) gij[G

-1]ji

Λ(G) ) [λij] ) G X G-T

NI(G) ) det[G]/∏
i)1

n

gii
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where ||A||Σ is the summation of all elements in a matrix
A.

In the design of a decentralized control system, it is
desirable to choose input/output pairings such that the
system possesses the property of DCLI, which is defined
as follows.

Definition 2.5.12 A stable plant is said to be DCLI if
it can be stabilized by a stable decentralized controller,
which contains integral action as shown in Figure 1,
and if it remains stable after failure occurs in one or
more of the feedback loops.

The necessary conditions for a system to be DCLI is
given as follows:

Theorem 2.2 (Necessary Conditions for DCLI12,13).
Given an n × n stable process G(s), the closed-loop
system of decentralized feedback structure possesses
DCLI only if

or

where Am is an arbitrary m × m principal submatrix of
A.

In theorem 2.2, either RGA or NI can be used as a
necessary condition to examine the DCLI of decentralize
control systems. However, the necessary and sufficient
conditions for DCLI with respect to single- and multiple-
loop failure are still unknown.

3. DRIS

We first reveal the relationship between DRIA and
RGA, which is fundamental for the remaining develop-
ments.

Lemma 3.1. For an arbitrary loop yi-ui in system
G, the relationship between elements of Ψii,n-1 and
elements of Λ satisfies

and

Because the relationship provided by eq 9 is similar to
that provided by eq 8, only the relationship given by eq
8 is proved here.

Proof. Because

where(Gii)kl is the transfer function matrix G with its
ith and kth rows and ith and lth columns removed,
using eq 4, we obtain

Remark 1. Lemma 3.1 presents an important rela-
tionship between the elements of DRIA and those of
RGA. By definition of the RGA number23

It is obvious that both λii f 1 and |λil/λii| f 0 are desired.
As indicated by theorem 2.1 and lemma 3.1, this is
consistent with the expectation that RI, φii, and all
elements of DRIA have smaller values. Furthermore, a
smaller element ψii,kl means less interaction either
between loop yi-ui and loop yk-ul or between loop
yk-ul and all of the other loops in subsystem Gii.
Therefore, the DRIA provides more information than
RGA, and selecting loop pairings that have smaller
elements of DRIA is more effective than using the RGA-
based loop pairing rules.

Using the LR matrix factorization method24 to DRIA,
Ψii,n-1 can be factorized as

where Lii,n-1 is a n - 1 × n - 1 lower triangular matrix
with its diagonal elements equal to unity and Rii,n-1 is
a n - 1 × n - 1 upper triangular matrix. Then, we have
the following lemma:

Lemma 3.2. Given a subsystem Gii of G, if its first
n - m - 1 loops are removed, then the RI to loop yi-ui
from the remaining m loops is the sum of all elements
of the matrix that is produced by the submatrices Lii,m
and Rii,m

Proof. According to the LR factorization algorithm,
the DRIA Ψii,n-1 can be factorized step-by-step. The first
step is given as

[Λ(Gm)]ii > 0, ∀ m ) 1, ..., n; i ) 1, ..., m (6)

NI[Gm] > 0, ∀ m ) 1, ..., n (7)

λil

λii

) ∑
k)1,k*i

n

ψii,kl, ∀ i, l ) 1, ..., n; l * i (8)

λki

λii

) ∑
l)1,l*i

n

ψii,kl, ∀ i, k ) 1, ..., n; k * i (9)

λil

λii
)

(-1)i+lgil det[Gil]/det[G]

(-1)i+igii det[Gii]/det[G]
)

(-1)i+lgil det[Gil]

(-1)i+igii det[Gii]

) (-1)l-i
gil

gii

∑
k)1,k*i

n

[(-1)k+i-1gki det[(Gii)kl]]

det[Gii]

) ∑
k)1,k*i

n [-
gilgki

gii

(-1)k+l det[(Gii)kl]

det[Gii] ]

λil

λii

) ∑
k)1,k*i

n

(φii,klλkl
ii ) ) ∑

k)1,k*i

n

ψii,kl

RGA number ) ||Λ - I||sum )

∑
i)1

n

[λii|1 - 1/λii| + ∑
l)1,l*i

n

|λil/λii|]

Ψii,n-1 ) Lii,n-1 × Rii,n-1 (10)

φii,m ) ||Ψii,m||Σ ) ||Lii,m × Rii,m||Σ (11)

Ψii,n-1 ) (ψii,11 ψii,12 · · · ψii,1n
ψii,21 ψii,22 · · · ψii,2n
···

···
··· ···

ψii,n1 ψii,n2 · · · ψii,nn
)

n*i

) (1 0 · · · 0
ψii,21/ψii,11 1 0
···

···
ψii,n1/ψii,11 0 1

)
n*i

×

(ψii,11 ψii,12 · · · ψii,1n

0
··· Ψ̃ii,n-2

0
)

n*i

(12)
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where

In eq 12, the vectors [1, ψii,21/ψii,11, ..., ψii,n1/ψii,11]T and
[ψii,11, ψii,12, ..., ψii,1n] are the first column and the first
row of triangular matrices Lii,n-1 and Rii,n-1, respec-
tively. On the basis of eq 4, the klth element ψ̃ii,kl of
Ψ̃ii,n-2 can be simplified as

where the superscript 11 means that loop y1-u1 is
removed. Obviously,

is the DRIA of loop yi-ui in subsystem G11. Therefore,
on the basis of theorem 2.1,

The above relationship can be applied straightforward
to all loops of subsystem Gii. Consequently, the result
given by eq 10 is obtained. If the top-left corner element
of the matrix is not equal to zero, the similar factoriza-
tion step can be continued loop-by-loop up to m to result
in eq 11.

Remark 2. According to eq 12, because the top-left
corner elements of DRIA such as ψii,11 are applied in
the denominator in every step of factorization, they
must not be equal to zero, which requires that all
elements of G not be equal to zero. In practice, this
problem can be easily solved by setting those zero
elements to a very small value, say 1 × 10-9. Our

simulation results show that using very small values
to replace those zero elements does not avert the
outcomes of the failure tolerance property.

Theorem 3.1. Supposing that the control configura-
tion of system G has been selected, for an arbitrary
failure index M, the RI to loop yi-ui from the other n -
1 loops can be represented by the summation of n - 1
elements

and

where •p and p• indicate the pth column and the pth
row of the matrix, respectively.

Proof. Equation 14 can be derived straightforward
from eq 11 because of Chart 1.

Definition 3.1. For individual loop yi-ui in
system G

and its individual element sii,p
M are defined as DRIS and

DRIF to failure index M, respectively. To explain the
physical meaning of DRIF, we analyze an arbitrary
element in DRIS, say s11,1

M , as an example. If all control
loops of subsystem (G11)22 are closed, the subsystem
including loop y1-u1 and loop y2-u2 is given as

where ∼ indicates that subsystem (G11)22 is closed and

Chart 1

Ψ̃ii,n-2 )

(ψii,22 - ψii,12ψii,21/ψii,11 · · · ψii,2n - ψii,1nψii,21/ψii,11
···

··· ···
ψii,n2 - ψii,12ψii,n1/ψii,11 · · · ψii,nn - ψii,1nψii,n1/ψii,11

)
n*i

ψ̃ii,kl ) ψii,kl - ψii,1lψii,k1/ψii,11

) -
gilgki

gii
×

det[(Gii)11] det[(Gii)kl] - det[(Gii)1l] det[(Gii)i1]

det[Gii]

) -
gilgki

gii

det[((Gii)11)kl]

det[Gii]
) φii,klλkl

ii(11) ) ψii,kl
11

Ψ̃ii,n-2 ) [Ψii,n-1 - [Ψii,n-1]•1 × [Ψii,n-1]1•/[Ψii,n-1]11]
11

) Ψii,n-2
11 (13)

φii,n-2 ) ||Ψii,n-2||Σ ) ||Lii,n-2 × Rii,n-2||Σ

φii,n-1
M ) ∑

p)1

n-1

sii,p
M (14)

sii,p
M ) ∑[Lii,n-1

M ]•p × ∑[Rii,n-1
M ]p• (15)

Sii
M ) {sii,1

M , ..., sii,p
M , ..., sii,n-1

M } (16)

G̃11-22 ) (g̃11 g̃12
g̃21 g̃22

)

g̃11 ) g11/λ11
22 ) g11/[g11 det[(G22)11]/det[G22]] )

det[G22]/det[(G22)11]

g̃12 ) g12/λ12
21 ) g12/[g12 det[(G21)12]/det[G21]] )

det[G21]/det[(G22)11]

g̃21 ) g21/λ21
12 ) g21/[g21 det[(G12)21]/det[G12]] )

det[G12]/det[(G22)11]
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Now, if loop y2-u2 is also closed, the incremental RI to
loop y1-u1 can be obtained as

Then, from lemma 3.1

which suggests the following:
1. If subsystem (G11)22 is closed, closing loop y2-u2

will make the RI to loop y1-u1 increase by a value of
s11,1

M .
2. Reversely, if loop y2-u2 is taken out of service, the

RI to loop y1-u1 will decrease by a value of s11,1
M .

To generalize the above explanation, we conclude
that, for an arbitrary loop yi-ui, if the first p - 1 loops
of subsystem Gii have already been taken out of service,
the removal of the pth loop will decrease φii,n-p

M by a
value of sii,p

M .
The significances of the development in this section

are as follows:
1. The RI, φii,n-1

M , to individual control loop yi-ui
from all other n - 1 control loops is decomposed as the
DRIS, Sii

M, according to the failure index M, such that
the interaction from an arbitrary loop of the remaining
closed loops is represented by the DRIF.

2. The DRIF, sii,p
M , indicates the interaction to indi-

vidual control loop yi-ui from the pth control loop of
the remaining n - p closed loops, which means that
when the pth control loop is put in or taken out of
service, the corresponding DRIF should be added to or
subtracted from the overall interaction RI.

3. In terms of DRIS, not only the interactions between
the individual loop and the remaining loops but also the
interactions to this individual loop from any combina-
tion of loops taken out of service can be reflected
precisely.

4. Tolerance to Loop Failures

From eqs 1 and 2, both large values and values close
to -1 of RI imply significant interaction among indi-

vidual loops. Because we are investigating the property
of loop failure tolerance, only the lower boundary (-1)
is considered. By selecting the maximum DRIF from all
possible values, we can determine a failure index Mh
corresponding DRIS Sii

Mh of individual loop yi-ui as

Therefore, taking the pth loop out of service according
to failure index Mh will result in

The value of RI is closest to -1, implying that the
particular combination of loop failures has the most
significant effect on the DCLI. On the basis of eqs 2 and
18 and theorem 2 of ref 3, we now provide the necessary
and sufficient conditions if individual loop yi-ui is DCLI
to single-loop failure.

Theorem 4.1. For decentralized control multivariable
process G, individual loop yi-ui is DCLI to single-loop
failure if and only if

or

Proof. Sufficient: In the case of an arbitrary loop
failure, eqs 14 and 17 give the RI to individual loop yi-
ui as

Obviously, when eq 19 holds, inequality φii,n-2
M > -1

holds. Therefore, the sign of the steady-state gain for
individual loop yi-ui does not change in the face of
single-loop failure.

Necessary: Because individual loop yi-ui possesses
single-loop failure tolerance, the sign of its steady-state
loop gain does not change in the face of any single-loop
failure.

Then, according to eqs 1 and 14, inequality 20 can be
obtained.

Similar to single-loop failure, on the basis of eqs 2
and 18 and theorem 2 of ref 3, the necessary and
sufficient conditions if individual loop yi-ui is DCLI for
multiple-loop failure are given as follows.

Theorem 4.2. For decentralized control multivariable
process G, individual loop yi-ui is DCLI to multiple-
loop failure if and only if

where

Proof. Sufficient: In the case of n - m - 1 loop
failure, eqs 14 and 17 show that the RI to individual

g̃22 ) g22/λ22
11 ) g22/[g22 det[(G11)22]/det[G11]] )

det[G11]/det[(G22)11]

φ̃11,22 ) -
g̃12g̃21

g11g̃22

) - 1
g11

det[G12] det[G21]/(det[(G22)11])2

det[G11]/det[(G22)11]

) - 1
g11

det[G12] det[G21]

det[G11] det[(G22)11]

) [g12 det[G12]/det[G] g21 det[G21]/det[G]]/

[-g12g21/(g11g22)g22 det[(G22)11]/

det[G11](g11 det[G11]/det[G])2]

) 1
ψ22

11

λ12

λ11

λ21

λ11

φ̃11,22 )
(ψ11,22 + ψ11,23 + ... + ψ11,2n)(ψ11,22 + ψ11,32 + ... + ψ11,n2)

ψ11,22

) s11,1
M

Sii
Mh ) {sii,p

Mh |sii,p
Mh ) max{sii,p

M }, p ) 1, 2, ..., n - 1} (17)

φii,n-p-1
Mh ) min{φii,n-p-1

M } (18)

φii,n-2
Mh > -1 (19)

sii,1
Mh < 1/λii (20)

φii,n-2
M ) ∑

p)2

n-1

sii,p
M ) φii,n-1

M - sii,1
M g φii,n-1

Mh - sii,1
Mh ) φii,n-2

Mh

φii,n-2
M > -1, ∀ M w φii,n-2

Mh > -1

φii,mmin

M > -1 (21)

φii,mmin

M ) min{ ∑
p)n-mmin

n-1

sii,p
Mh |mmin ) 1, ..., n - 1} (22)
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loop yi-ui from the remaining m loops is

Obviously, when eq 21 holds, inequality φii,m
M > -1

always holds. Therefore, the sign of the steady-state
gain for individual loop yi-ui does not change in the
face of multiple-loop failure.

Necessary: Because individual loop yi-ui possesses
multiple-loop failure tolerance, the sign of its steady-
state loop gain does not change in the face of any single-
loop failure.

Remark 3. The significances of theorems 4.1 and 4.2
are as follows:

1. The necessary and sufficient conditions for both
single- and multiple-loop failure tolerance are provided.

2. In the case where two or more control structures
are DCLI, the one with φii,mmin

M f 0 should be preferred.
3. Single-loop failure is a special case of multiple-loop

failure.

5. Pairings Algorithm for DCLI

In subsystem Gii, the DRIF sii,p
M may have as many

as n - p possible values according to different failure
sequences of the remaining n - p loops. Therefore, to
find either φii,mmin

Mh or φii,n-2
Mh , one is required first to

determine the index Mh and then to calculate the DRIS
Sii

Mh , where sii,p
M can be determined by the first row and

column of Ψii,n-p
M (eqs 12 and 15).

However, there is no need to arrange elements of DRIA
Ψii,n-p

M n - p times to calculate sii,p
Mh because the ele-

ments of DRIA are permutation-independent (eqs 3 and
5). In fact, once the DRIA Ψii,n-p for p ) 1 has been
obtained (eq 3), the DRIF sii,p

Mh can be directly calculated
from

where function max[A] finds the maximum diagonal
element of matrix A and provides its row number l in
matrix Ψii,n-p and diag[A] is a diagonal matrix contain-
ing the diagonal elements of matrix A. . indicates
element-by-element division.

For checking the DCLI of individual loop yi-ui
against the failure of p + 1 loops, the DRIA Ψii,n-p-1
can be recursively calculated as (eqs 12 and 13)

and the DRIF sii,p+1
Mh can be calculated by applying

DRIA Ψii,n-p-1 to eq 23.
Therefore, for individual loop yi-ui of n × n system

G, after Ψii,n-1 is obtained, its DRIS Sii
Mh can be calcu-

lated by using iterative eqs 23 and 24 n - 2 times, which
requires only one matrix inverse of n - 1 order to
calculate the DRIA; as shown by eq 3, the computational
load is much reduced compared with that of permuta-
tion methods.

For a given multivariable process G(s), its control
configuration can be obtained based on its steady-state
transfer function matrix G(0) by using a loop-pairing
criterion such as the one developed in ref 22. After all
elements in matrix G(0) have been rearranged to place
the gains of control loops in the diagonal position, the
proposed method can be used to verify DCLI of the
selected control configuration, and an algorithm is given
as follows.

Algorithm 1.
Step 1. Calculate Ψii,n-1 of loop yi-ui by eqs 3 and 5.
Step 2. Obtain sii,p

Mh and Sii
Mh of loop yi-ui by eqs 23

and 24.
Step 3. Verify single-loop failure tolerance by eq 19.
Step 4. Obtain φii,mmin

M to loop yi-ui from the other
loops by eq 22.

Step 5. Verify multiple-loop failure tolerance by
referring to eq 21.

Step 6. Repeat the previous five steps loop-by-loop
until any one loop fails or all loops pass.

Step 7. End.
The procedure for the determination of DCLI for a

decentralized control system is illustrated by the flow-
chart shown in Figure 2.

6. Case Study

6.1. Example 1. Consider the following 4 × 4 pro-
cess14 with the process steady-state transfer function
matrix given by

To verify DCLI to single-loop failure of the first loop
y1-u1 by using a RGA-based criterion, three alterna-
tives have to be tested, namely, calculation of RGAs of
subsystems G22, G33, and G44 for single-loop failure of
y2-u2, y3-u3, and y4-u4, respectively. Furthermore, to
verify DCLI to multiple-loop failure, an additional three
RGAs need to be calculated. Consequently, six inverse
matrices have to be performed.

From application of algorithm 1 and with one matrix
inverse, the DRIA of control loop y1-u1 is obtained, and
DRIS is calculated through a series of vector operations.
The results for DCLI to single- and multiple-loop
failures are listed in Table 1.

Initially, when all control loops in subsystem G11 are
closed, the RI φ11,3

Mh ) 1.4142 > -1, implying that there
is no sign change before and after subsystem G11 has
been closed. Following Table 1, DCLI information of loop
y1-u1 can be obtained as follows:

1. Loop y4-u4 provides the maximum interaction, and
if it fails, the RI of loop y1-u1 will decrease in a value
of s11,1

Mh ) 2.4095 and is φ11,2
Mh ) -0.9953 > -1, and for

φii,m
M ) ∑

p)n-m

n-1

sii,p
M ) φii,n-1

M - ∑
p)1

n-m-1

sii,p
M g φii,n-1

Mh -

∑
p)1

n-mmin-1

sii,p
Mh ) φii,mmin

M

φii,m
M > -1, ∀ M w φii,mmin

M > -1

sii,p
M ) ∑

k)1

n-p

[Ψii,n-p
M ]1k∑

k)1

n-p

[Ψii,n-p
M ]k1/[Ψii,n-p

M ]11

[sii,p
Mh , l] )

max{diag[(∑
k)1

n-p

[Ψii,n-p]•k∑
k)1

n-p

[Ψii,n-p]k•) . Ψii,n-p]} (23)

Ψii,n-p-1 ) [Ψii,n-p - [Ψii,n-p]•l × [Ψii,n-p]l•/[Ψii,n-p]ll]
ll

(24)

G(0) ) (8.72 -15.80 2.98 2.81
6.54 -20.79 2.50 -2.92
-5.82 -7.51 -1.48 0.99
-7.23 7.86 3.11 2.92

)
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loop y1-u1, the sign of its loop gain does not change for
any single-loop failure. Therefore, loop y1-u1 is DCLI
for single-loop failure.

2. Loop y2-u2 provides the maximum interaction
among the two remaining loops after loop y4-u4 has
already been taken out of service. If loop y2-u2 fails,
the RI of loop y1-u1 will decrease in a value of s11,2

Mh )
0.3486 and is φ11,1

Mh ) -1.3439 < -1. Hence, the process
gain of loop y1-u1 will change its sign, and it is not
DCLI when both y4-u4 and y2-u2 fail (implying that
G is not DCLI for multiple-loop failure).

To show how DCLI is pairing-dependent, reconfigure
the control structure using the loop pairing criterion
proposed in ref 22 as follows:

The DCLI results of y1-u1 are listed in Table 2.
From Table 2, we observe the following:
1. When all control loops in subsystem G11 are closed,

the RI φ11,3
Mh ) 1.1237 > -1, implying that there is no

sign change before and after subsystem G11 has been
closed.

2. Loop y1-u1 can tolerate any single-loop failure
because the minimal φ11,2

Mh ) 0.4352 > -1.
3. Loop y1-u1 can tolerate any double-loop failure

because the minimal φ11,1
Mh ) -0.9957 > -1.

4. Because φ11,3
Mh > φ11,2

Mh > 0, if loop y2-u2 fails,
interaction between loop y1-u1 and the remaining loops
will be smaller.

5. If loop y3-u3 also fails, interaction between loop
y1-u1 and loop y4-u4 becomes significant for φ11,1

Mh )
-0.9957 f -1, implying that the equivalent process
gain of loop y1-u1 will undergo a big change in the case
of where either loop y4-u4 is closed first in system G
or loop y2-u2 and loop y3-u3 fail first in closed
subsystem G.11

Using algorithm 1, DRIS of the other three control
loops can be obtained and are listed in Table 3; all
control loops are DCLI to both single- and multiple-loop
failure.

6.2. Example 2. Consider the 4 × 4 distillation
column studied by Chiang and Luyben (CL column).25

Figure 2. Flowchart for determining DCLI.

Table 1. DCLI Verification of Control Loop y1-u1
a

DCLI

loop RI DRIS
failed
loop SLF MLF

y1-u1 φ11,3
Mh ) 1.4142 yes no

V s11,1
Mh ) 2.4095 y4-u4

φ11,2
Mh ) -0.9953

V s11,2
Mh ) 0.3486 y2-u2

φ11,1
Mh ) -1.3439

V s11,3
Mh ) -1.3439 y3-u3

0
a SLF ) single-loop failure. MLF ) multiple-loop failure.

Table 2. DCLI Verification of Control Loop y1-u1
a

DCLI

loop RI DRIS
failed
loop SLF MLF

y1-u1 φ11,3
Mh ) 1.1237 yes yes

V s11,1
Mh ) 0.6885 y2-u2

φ11,2
Mh ) 0.4352

V s11,2
Mh ) 1.4309 y3-u3

φ11,1
Mh ) -0.9957

V s11,3
Mh ) -0.9957 y4-u4

0
a SLF ) single-loop failure. MLF ) multiple-loop failure.

Table 3. DCLI Verification of the Other Three Control
Loopsa

DCLI

loop RI DRIS
failed
loop SLF MLF

y2-u2 φ11,3
Mh ) 1.2873 s22,1

Mh ) 0.7416 y1-u1 yes yes

φ11,2
Mh ) 0.5458 s22,2

Mh ) 0.2418 y3-u3

φ11,1
Mh ) 0.3039 s22,3

Mh ) 0.3039 y4-u4

y3-u3 φ11,3
Mh ) 1.4765 s33,1

Mh ) 0.8086 y4-u4 yes yes

φ11,2
Mh ) 0.6679 s33,2

Mh ) 0.2620 y1-u1

φ11,1
Mh ) 0.4059 s33,3

Mh ) 0.4059 y2-u2

y4-u4 φ11,3
Mh ) 0.7498 s44,1

Mh ) 0.5713 y3-u3 yes yes

φ11,2
Mh ) 0.1785 s44,2

Mh ) 1.1742 y2-u2

φ11,1
Mh ) -0.9957 s44,3

Mh ) -0.9957 y1-u1

a SLF ) single-loop failure. MLF ) multiple-loop failure.

G(0) ) (2.81 -15.80 8.72 2.98
-2.92 -20.79 6.54 2.50
0.99 -7.51 -5.82 -1.48
2.92 7.86 -7.23 3.11

)
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The steady-state transfer function matrix is given as
follows:

When the zero elements in G(0) are set to 1 × 10-9 to
make the zero interaction a microinteraction, the maxi-
mum DRIF and DRIS of all control loops are obtained
as listed in Table 4.

Obviously, as Table 4 indicates, all four control loops
are DCLI to multiple-loop failure.

7. Conclusion

In this paper, a novel approach for evaluating DCLI
for multivariable control systems was proposed. The
DRIS was introduced to represent the RI to a particular
loop from other loops. The maximum DRIF was used to
find the maximum interaction from the remaining loops
among all possible failure indexes. Consequently, the
necessary and sufficient conditions for DCLI of an
individual loop under both single- and multiple-loop
failure were provided. A simple and effective algorithm
for verifying DCLI for multivariable control systems was
developed. Two classical examples were used to il-
lustrate the effectiveness of the proposed approach.
Because DRIS provides more detailed information of
interactions among loops, it can be used to design robust
multiloop controllers for multivariable processes. This
topic is currently under investigation, and the results
will be reported later.
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Table 4. DCLI Verification of the CL Columna

DCLI

loop RI DRIS
failed
loop SLF MLF

y1-u1 φ11,3
Mh ) -0.5233 s11,1

Mh ) 0.1783 y4-u4 yes yes

φ11,2
Mh ) -0.7017 s11,2

Mh ) 0.0000 y3-u3

φ11,1
Mh ) -0.7017 s11,3

Mh ) -0.7017 y2-u2

y2-u2 φ11,3
Mh ) -0.2490 s22,1

Mh ) 0.4527 y4-u4 yes yes

φ11,2
Mh ) -0.7017 s22,2

Mh ) 0.0000 y3-u3

φ11,1
Mh ) -0.7017 s22,3

Mh ) -0.7017 y1-u1

y3-u3 φ11,3
Mh ) -0.3394 s33,1

Mh ) -0.1074 y1-u1 yes yes

φ11,2
Mh ) -0.2320 s33,2

Mh ) -0.2320 y4-u4

φ11,1
Mh ) 0.0000 s33,3

Mh ) 0.0000 y2-u2

φ11,3
Mh ) 1.6000 s44,1

Mh ) 1.5672 y2-u2

y4-u4 φ11,2
Mh ) 0.0328 s44,2

Mh ) 0.0122 y1-u1 yes yes

φ11,1
Mh ) 0.0206 s44,3

Mh ) 0.0206 y3-u3

a SLF ) single-loop failure. MLF ) multiple-loop failure.

G(0) ) (4.45 -7.4 0 0.35
17.3 -41 0 9.2
0.22 -4.6 3.6 0.042
1.82 -34.5 12.2 -6.92

)
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