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The development of model-based methods for tuning proportional-integral (PI) and proportional-
integral-derivative (PID) controllers is a topic of renewed research interest. A number of
techniques have appeared in the last five years aimed at improving upon the standard “λ-tuning”
or direct synthesis (DS) approaches. This paper compares the Skogestad internal model control
(SIMC), direct synthesis for disturbance rejection (DS-d), and Wang-Shao (WS) tuning
algorithms with the IMC improved PI technique as implemented on first-order-plus-deadtime
systems. The main objective was to assess the relative control effort and robustness of these
proportional-integral controllers when tuned for the same level of performance. Recommenda-
tions were provided for selecting the most appropriate tuning method for a given application
based upon the primary function of the feedback loop (servo versus regulatory, etc.) and the
plant deadtime-to-time constant ratio.

1. Introduction

It is a remarkable fact that the majority of processes
in the chemical industries can be satisfactorily con-
trolled using proportional or proportional-integral (PI)
feedback. Luyben1,2 has listed default settings for flow,
level, pressure, and temperature control loops which
represent good initial values of the controller settings.
In most instances, an experienced control engineer or
instrument mechanic can fine-tune these values by trial-
and-error and quickly obtain an acceptable, if not
optimal, closed-loop response.

However, there exist many control loops for which this
simple approach may not be sufficient, namely, those
characterized by significant time delays, process non-
linearities, time-varying dynamics, and/or interaction
with other regulators in a multivariate system. For
these difficult problems, it is often worthwhile to gener-
ate the initial settings with a model-based tuning
strategy. A comprehensive summary of model-based PI
and PID (proportional-integral-derivative) tuning tech-
niques was recently published by O’Dwyer.3 Undoubt-
edly, the most well-known is the method of Ziegler and
Nichols.4 Though a standard component of undergradu-
ate control courses in the electrical, mechanical and
chemical engineering disciplines, the Ziegler-Nichols
rules are rarely employed in the process industries. This
is because they were designed to produce an under-
damped (quarter-decay) response, which implies very
aggressive controller settings.

By contrast, the “λ-tuning” or direct synthesis (DS)
methods5 are becoming increasingly popular with plant
engineers. This may be attributed to the fact that they
possess a single tuning parameter (λ) which has a
predictable effect on closed-loop behavior. The user is
able to tailor the response to attain a suitable tradeoff
between high performance on one hand versus smooth

valve adjustments and minimal sensitivity to modeling
errors on the other. Furthermore, the λ-tuning method
is computationally straightforward (requires no numer-
ical iteration) and is based upon simple, low-order
approximations of the process dynamics such as the
first-order-plus-deadtime (FOPDT) model. It has long
been recognized that FOPDT approximations can ad-
equately explain the behavior of a wide range of
processes, and many industrially proven techniques are
now available for fitting these models to plant data.

The purpose of this paper is to present a practical
assessment of the following PI tuning methods when
applied to the control of FOPDT processes: (i) SIMC
(Skogestad internal model control, Skogestad6), (ii) DS-d
(direct synthesis for disturbance rejection, Chen and
Seborg7), (iii) WS (Wang and Shao8), and (iv) IMC
(internal model control) improved PI (Rivera et al.9).

Section 2 covers the mathematical preliminaries. The
tuning formulas associated with each strategy are
stated in Section 3 and analyzed by comparing their
integral-time expressions. Section 4 documents a series
of simulation experiments carried out to examine the
control effort and robustness of each algorithm assum-
ing that they have been tuned to provide equal perfor-
mance when implemented on a digital controller. These
results are summarized in Section 5, and guidelines are
developed to assist the user in selecting the most
appropriate tuning strategy for a particular application.

2. Definitions

Figure 1 is a schematic diagram of a feedback control
loop. The symbols r, Y, and e represent the setpoint,
controlled variable, and control error, respectively. The
load disturbance d enters at the process input; the
manipulated variable is denoted by U. It is assumed
that the combined dynamics of the process, final control
element, and sensor are well-approximated by the first-
order-plus-deadtime transfer function:
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The main task of the proportional-integral feedback
controller

is to reject the effect of the load disturbance and
maintain the controlled variable Y at setpoint, thereby
keeping the magnitude of the control error as small as
possible.

There are many accepted mathematical definitions of
performance, robustness, and control effort. In this
report, performance was quantified as the ratio of the
variance of the control error σe

2 to σe,MV
2, the minimum

error variance attainable with a PI structure:10

Accordingly, the performance of a PI controller is
bounded by 0 (unstable) and 100% (best achievable).
Closed-loop variances were computed using a contour
integration approach, analogous to that described by
Horton et al.11 for PI level controllers. When evaluating
regulatory performance, the setpoint was held constant
while the load disturbance varied as a random walk
process. For the servo case, the load variable was kept
at its initial steady-state value and the command input
was modeled as a random walk. As explained by
MacGregor et al.,12 σe

2 may be interpreted as the mean
square control error instead of the error variance if one
is interested in the response to deterministic step
changes in setpoint or load. The mean square control
error is closely related to the integral of the squared
error (ISE), a well-known performance metric for analog
control systems.

Control effort was measured by reference to the
variance of the valve adjustments exhibited by the
minimum variance PI controller, σ∆U,MV

2:

Notice that it is entirely possible for the control effort
of a given loop to exceed 100%. This would simply
indicate that the variance of its control moves is even
greater than that required by the PI controller, which
minimizes the variance of the error. A small control
effort is obviously desirable since it implies smooth
increments in the final control element (e.g., valve).
Larger values suggest increased wear-and-tear on the
valve as well as a greater likelihood of encountering
hard manipulated variable constraints.

The robust stability of each controller was assessed
by simultaneously increasing the steady-state gain (K),
time constant (τ), and deadtime (D) of the actual plant
until one or more poles of the discrete-time character-
istic equation were found to lie outside the unit circle.
Let KM, τM, and DM represent the nominal or estimated

values of K, τ, and D. Robustness was defined as the
largest deviation, δmax, for which closed-loop stability
was maintained, where

The idea of simulating modeling errors by perturbing
the FOPDT parameters in this manner was taken from
Marlin.13 The effect is analogous to decreasing through-
put in a continuous stirred-tank heater. For instance,
it is apparent from a dynamic energy balance that, if
the feed flowrate were to decrease by half, the gain, time
constant, and time delay of the process transfer function
would double, resulting in a correlated error δ ) 100%.

2.1. IMC Analysis of PI Control. The internal
model control (IMC) structure is illustrated in Figure
2. This block diagram was employed by Garcia and
Morari14 as a means of comparing several well-known
model-based control strategies. The symbol GM repre-
sents the model of the true process G, which is typically
obtained from the process reaction curve (see Section
7.2 of ref 5). A given model-based algorithm may be
analyzed according to how it constructs the IMC con-
troller Q. The feedback signal Y - YM is the sum of the
disturbance (Gd) and model mismatch ([G - GM]U)
effects. A satisfactory tradeoff must therefore be estab-
lished between performance and robustness in the
selection of Q.

When the plant model is perfect, we find by compari-
son of Figures 1 and 2 that

where

Tuning a PI controller then amounts to the specification
of τI and τF. An important decision in the design of any
feedback compensator is whether to cancel the dominant
pole(s) of the open-loop process with the controller
zero(s). The implications of doing so were discussed by
Åström and Hagglund15 and Middleton and Graebe.16

If the integral time τI is equated with τ as in conven-
tional direct synthesis, the IMC form of the PI controller
reduces to

Figure 1. Feedback control loop.

GC(s) ) KC(1 + 1
τIs) (2)

performance (%) )
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2
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2
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2
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Figure 2. IMC block diagram.
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when the delay term e-Ds is replaced with the first-order
Taylor series 1 - Ds. The numerator of Q(s) is an
“approximate inverse” of the plant transfer function
G(s). The form of the denominator suggests that τF ought
to be regarded in much the same way as the “IMC filter
constant”, at least for designs which cancel or nearly
cancel the plant pole. The relationship between the IMC
filter constant and the sensitivity of a model-based
controller to changes in the process dynamics is well-
established.9,17

3. Model-Based PI Tuning Methods

This section presents, in order of increasing compu-
tational complexity, the tuning formulas obtained when
the four methods are applied to first-order-plus-dead-
time plants. It was assumed that the process steady-
state gain K > 0, which would imply that the correct
controller action is increase-decrease or reverse. The
tuning rules are easily adapted for negative-gain plants
by replacing K with its absolute value and configuring
a direct-acting controller.

3.1. IMC Improved PI (Rivera et al.9). Rather than
approximating the time delay as a first-order Taylor
series, Rivera and co-workers omitted the factor e-Ds

from eq 1 and attempted to account for its effect on the
process dynamics by inflating the time constant to τ +
D/2. The controller settings

were then shown to produce a FOPDT closed-loop
response to step changes in setpoint. The user-specified
parameter ε can be interpreted as the desired closed-
loop time constant. Rivera et al. suggested that ε be
chosen greater than max(0.1τ, 1.7D). Notice that, for
this algorithm, the approximate IMC filter constant τF
) τI/(KCK) - D ) ε - D. Decreasing ε generally improves
performance at the cost of greater control effort and
reduced robustness.

3.2. SIMC (Skogestad6). In the SIMC approach, the
proportional gain is computed as

and the integral time as the lesser of τI
SIMC1 and τI

SIMC2,
where

λ is a positive constant selected by the user. When τI )
τI

SIMC1, SIMC coincides with the direct synthesis tech-
nique in which λ ) τF plays the role of the approximate
closed-loop time constant. A PI controller configured in
this way can be tuned for excellent servo behavior, but
its regulatory response may be unacceptably sluggish
for lag-dominant processes, i.e., when the deadtime-to-
time constant ratio D/τ , 1. When high-performance
regulatory control of such a process is required, SIMC
offers the flexibility of choosing τI ) τI

SIMC2 < τ in order
to avoid the pole-zero cancellation. The particular form

of eq 13 was designed to produce a critically damped
response for a pure integrator, an extreme example of
a lag-dominant process.

3.3. DS-d (Chen and Seborg7). The primary task
of most chemical process control loops is regulation, not
setpoint tracking. This motivated Chen and Seborg to
reformulate the direct synthesis equations to generate
a critically damped regulatory closed-loop transfer func-
tion with time constant τc. The DS-d (direct synthesis
for disturbance rejection) settings are

As is the case with ε and λ in the IMC and SIMC
methods, an increase in τc yields a slower closed-loop
response (lower performance). However, there is a limit
to the extent to which the DS-d controller can be
detuned. One must restrict

in order that KC and τI remain positive.
3.4. WS (Wang and Shao8). The Wang and Shao

(WS) approach was based upon a frequency-domain
model of the process dynamics. The mathematical
objective was to fix the maximum distance of the
Nyquist curve G(jω)GC(jω) from the imaginary axis to
a user-defined value, 1/R. This provides the designer
with a direct handle on robustness because it guaran-
tees that the gain margin GM > R and the phase margin
PM > cos-1(1/R); the authors recommended that R be
chosen in the range (1.5, 2.5). Huang18 employed this
controller as a performance benchmark for the assess-
ment of PI(D) control schemes.

The WS tuning rules can be written for a FOPDT
process as

The symbol ω90 denotes the frequency ω at which the
open-loop phase angle φ(ω) ) -π/2, where

ω90 must be determined using an iterative numerical
procedure (e.g., Newton’s method) or by means of a
commercially available root-finding routine such as the
“Goal Seek” and “Solver” functions in Microsoft Excel.
The initial guess is not of critical importance, since the
phase angle (eq 19) decreases monotonically with fre-
quency; π/(2(τ + D)) is a suitable starting value.

3.5. Discussion. It is interesting to note from eqs 10,
12, and 18 that the integral times associated with the
IMC, SIMC1, and WS techniques are unaffected by their
respective tuning parameters. (The acronym “SIMC1”
will be used to refer to the SIMC method when τI is

KC )
τ + (D/2)

Kε
(9)

τI ) τ + (D/2) (10)

KC ) τ
K(λ + D)

(11)

τI
SIMC1 ) τ (12)

τI
SIMC2 ) 4(λ + D) (13)

KC )
τ2 + τD - (τc - τ)2

K(τc + D)2
(14)

τI )
τ2 + τD - (τc - τ)2

τ + D
(15)

τc < τ + xτ2 + τD (16)

KC )
(1 + 2τ2ω90

2)x1 + τ2ω90
2

RKω90[τ + D(1 + τ2ω90
2)]

(17)

τI )
1 + 2τ2ω90

2

ω90
2[τ + D(1 + τ2ω90

2)]
(18)

φ(ω) ) -tan-1(τω) - Dω (19)

C



obtained from eq 12, and “SIMC2” will be used when τI
is set via eq 13.) It is demonstrated in the Appendix
that the WS integral time (eq 18) lies in the interval (τ,
τ + (4/π2)D). The DS-d integral time depends on the
choice of τc, but it is clearly eτ. Hence,

The SIMC2 algorithm is intended for high-performance
control of lag-dominant processes, i.e., when 4(λ + D)
< τ. Thus τI

SIMC2 is also bounded above by the open-loop
time constant τ.

When the controllers are tuned for the same level of
performance, it is expected that the controller with the
largest reset time τI would compensate by employing
the strongest proportional action, i.e.,

One would further anticipate that an IMC improved PI
controller would prove more noise-sensitive than the
others because its high-frequency gain (KC) is largest.
In terms of the time-domain dynamics, a PI controller
tuned using this method will exhibit the strongest initial
response or “proportional kick” to step changes in
setpoint or load. The remaining error will be integrated
to zero most slowly, because this strategy generally
assigns least penalty to low-frequency deviations.

As pointed out by Wang and Cluett,19 the transient
response of a first-order-plus-deadtime system operating
under model-based PI control depends only on the ratio
D/τ and the user-specified tuning parameter. This can
be verified by replacing the Laplace transform variable
s with s/τ in eqs 1, 2, and 9-19, which has the effect of
normalizing the time scale with respect to τ. Zhuang
and Atherton20 developed tuning correlations for PI
controllers by minimizing various integral performance
criteria. For step setpoint changes, the ISE-optimal
integral time is

when 0.1 < D/τ < 1. For step changes in load,

Equation 22 implies that τI > τ for all D/τ ∈ (0.1, 1). On
the other hand, eq 23 yields τI > τ for D/τ > 0.344. These
results lead one to predict that the IMC improved PI
and WS schemes will be capable of delivering higher
performance than that of SIMC and DS-d in servo
applications and better regulatory control of delay-
dominant processes. (The correlations given by Zhuang
and Atherton for the range D/τ ∈ (1.1, 2) further support
these conclusions.) Chen and Seborg7 observed that the
servo performance of the SIMC and DS-d methods can
be significantly improved through the use of a two-
degrees-of-freedom control structure. However, this
functionality is rarely implemented in industrial control
systems (Section 3.8 of ref 15) and was not included in
the simulation experiments described below.

4. Simulation Results

The main purpose of this section is to compare the
DS-d, SIMC, WS, and IMC improved PI tuning methods

on the bases of control effort, robustness, and achievable
performance. The vast majority of chemical process
control loops are now implemented on digital hardware;
hence, the simulations were carried out in discrete-time
using the velocity form of the PI controller and a
modified z-transform representation of the plant dy-
namics.21 This approach also simplified the variance
calculations, because the Padé approximation of the
process deadtime was not required. To compensate for
the sampling delay when computing the controller
parameters, the deadtime was raised to D + T/2 in eqs
9-19 (Franklin et al.22). According to Marlin,13 the
closed-loop response of a digital PI controller will closely
resemble that of an identically tuned analog system
when the sampling/control interval T is chosen
<0.05(D + τ). In the simulation studies which follow, T
was specified as 0.03(D + τ). Trends obtained with faster
sampling rates were virtually indistinguishable from
those presented here.

4.1. Servo Control. Figure 3 illustrates the behavior
of the four algorithms when applied to servo control of
the FOPDT process.

The control effort (variance of changes in the manipu-
lated variable) generally increases (Figure 3a) and
robustness decreases (Figure 3b) as performance im-
proves. Note that, to facilitate the comparison, the
tuning guidelines reported in Section 3 for the IMC and
WS algorithms were not utilized. Instead, the adjustable
parameter associated with each strategy was reduced
until the best achievable performance was attained, i.e.,
such that further decreases would cause performance
to degrade. The diamond marker on the SIMC curve
divides the SIMC1 and SIMC2 algorithms; points to the
right were generated using the SIMC2 integral time (eq
13).

It is apparent from eqs 10, 12, and 20 that, for D/τ ,
1,

which explains why these curves almost coincide in
Figure 3. The WS and IMC improved PI controllers can
be configured for the highest levels of servo perfor-
mance: 99.0% for WS and 99.2% for IMC. Hence, if
required, the IMC scheme could be tuned to track
setpoint changes with an error variance of only 0.8%
greater than that which would be exhibited by an
optimal PI controller minimizing σe

2.
Differences between the four tuning methods are

more easily discerned as the deadtime-to-time constant
ratio increases. Figure 4 displays the results obtained
for the delay-dominant process.

An unexpected tradeoff evidently arises in the servo
control of FOPDT processes. The tuning method with
the greatest robustness, namely, IMC improved PI, also
exerts the greatest control effort. Conversely, the DS-d
controller would implement the smoothest valve adjust-
ments but prove most sensitive to changes in the plant
dynamics. This result is counterintuitive, because one

τI
DS-d e τI

SIMC1 < τI
WS < τI

IMC (20)

KC
DS-d e KC

SIMC1 < KC
WS < KC

IMC (21)

τI ) τ
0.690 - 0.155(D/τ)

(22)

τI ) 1.87τ(Dτ )0.586
(23)

G(s) ) e-s

10s + 1
(24)

τ ) τI
SIMC1 ≈ τI

WS ≈ τI
IMC

G(s) ) e-20s

10s + 1
(25)
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would naturally assume that, if a controller is moving
the manipulated variable in a more conservative man-
ner than it would in an alternate scheme tuned for the
same performance, it would place less stringent require-
ments on model accuracy. The Wang and Shao8 tuning
rules arguably yield the best compromise between these
competing objectives.

As previously noted by Chen and Seborg,7 the SIMC
and DS-d methods give similar responses when designed
for high-performance control of delay-dominant systems.
This can be explained by recalling from Zhuang and

Atherton20 that the ISE-optimal integral time is >τ
when D/τ > 0.344. The best performance attainable with
the DS-d algorithm occurs when τc ) τ, since then
τI

DS-d assumes its maximum value of τ ) τI
SIMC. The

DS-d curve truncates when the performance falls to
48.5% because further increases in τc would cause KC
and τI to become negative.

4.2. Regulatory Control. Figures 5 and 6 show that
minimizing control effort and maximizing robustness
are not conflicting goals in the regulatory case. Rather,
for low-to-medium performance control of lag-dominant

Figure 3. Servo control of lag-dominant process (D/τ ) 0.1).

Figure 4. Servo control of delay-dominant process (D/τ ) 2).
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processes (Figure 5), DS-d is an improvement on the
other algorithms in terms of both of these criteria. SIMC
is the appropriate choice when near-minimum-variance
regulation is necessary.

Middleton and Graebe16 concluded that the decision
to cancelsrather than shiftsslow, stable open-loop poles
involves a tradeoff between input disturbance rejection
and robustness. They proved that, for any shifting
design, there exists an “extreme frequency equivalent”
canceling design with a globally superior stability
robustness margin. No such tradeoff is evident in Figure
5, where the shifting designs (SIMC2 and DS-d) exhibit
better robustness than the canceling schemes (IMC and

WS). This may be attributed to the fact that the loops
have been tuned for equal control error variance instead
of extreme frequency equivalence. In the context of PI
control of a FOPDT plant, the latter concept applies to
controllers possessing equal proportional gain, which
was not the basis of this comparison.

From Figure 6, one arrives at a different recom-
mendation for regulation of delay-dominant systems.
The IMC improved PI approach clearly yields the best
robustness and achievable performance. Its control
effort is the least among the four methods when tuned
for high performance and is very nearly the least at
lower performance specifications.

Figure 5. Regulatory control of lag-dominant process (D/τ ) 0.1).

Figure 6. Regulatory control of delay-dominant process (D/τ ) 2).
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Parts a-d of Figure 7 trend four widely accepted
measures of controller robustness: gain margin, phase
margin, Ms, and relative delay margin (RDM). The
variable Ms refers to the maximum magnitude (or
infinity-norm) of the sensitivity function, i.e.,

The relative delay margin (Wang and Cluett19) is

given by

where ωcg is the gain crossover frequency and the phase
margin, PM, is expressed in degrees. Dmax represents
the maximum deadtime for which the feedback loop
remains stable, assuming that the other system param-
eters (e.g., K and τ) stay at their nominal values. For
the SIMC1 method, it can be shown that RDM )

Figure 7. Robustness measures for PI regulation of lag-dominant process.

Figure 8. Robustness measures for PI regulation of delay-dominant process.

Ms ) ||S(jω)||∞ ) sup
ω

1
|1 + GC(jω)G(jω)| (26)

RDM ≡ Dmax - DM

DM
) πPM

180DMωcg
(27)
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πτF/(2DM) + π/2 - 1, which again highlights the con-
nection between τF and controller robustness.

Figures 5b and 7d demonstrate that the relative delay
margin correlates remarkably well with stability ro-
bustness. On the other hand, Ms and control effort vary
with performance in virtually identical fashion (see
Figures 5a and 7c). This is not entirely surprising, since
for unit step disturbances we may derive the following
from Figure 1:

That is, the rate of change of the manipulated variable
is completely determined by the sensitivity function.
This observation is further justified by the fact that the
RDM contains gain and phase information, which are
both pertinent to the issue of robustness, whereas Ms
(and the variance of the control moves) depends only
on the magnitude of S(s). The exclusive use of Ms as a
robustness measure has been previously questioned by
Kristiansson and Lennartson.23

The gain margin is a reliable indication of the
robustness of a feedback system to low-frequency mod-
eling errors. However, this is not normally of primary
concern when fitting FOPDT models to step response

Figure 9. Servo-regulatory performance for lag-dominant process (D/τ ) 0.1).

Figure 10. Servo-regulatory performance for delay-dominant process (D/τ ) 2).

sU(s) ) -
GC(s)G(s)

1 + GC(s)G(s)
) S(s) - 1 (28)
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data collected from high-order chemical processes. The
shape of the gain margin curves in Figure 7a is similar
to the stability limits of Figure 5b, but gain margin does
not correlate particularly well with robustness for delay-
dominant systems (cf. Figures 8a and 6b). The phase
margin plot of Figure 7b also provides less accurate
predictions of comparative robustness than does the
relative delay margin; it would lead one to rank the
throughput robustness of the tuning methods in the
wrong order. Similar trends were obtained for the servo
case (results not shown), though the correspondence
between Ms and control effort became less obvious as
the process deadtime was increased.

4.3. Servo-Regulatory Performance. The follow-
ing recommendations are made by way of summarizing
the foregoing analysis: (i) servo control ) WS; (ii)
regulatory control (D/τ < 0.35) ) DS-d; and (iii) regula-
tory control (D/τ > 0.35) ) IMC improved PI. It remains
to consider situations where the controller is required
to simultaneously provide close setpoint tracking and
good disturbance rejection. Clearly, none of the four
tuning procedures provides superior results for every
application. Figures 9 and 10 were constructed in an
effort to identify the strategy which best facilitates
the compromise between servo and regulatory perfor-
mance.

Figure 9 implies that, for lag-dominant plants, this
design objective is most closely realized using the SIMC
tuning rules. The upper-right portion of the plot reveals
that the SIMC controller can be tuned to provide good
servo and regulatory response with the same settings.
Since the time delay in secondary control loops is
normally small, it is suggested that slave loops be tuned
using the SIMC technique when the trial-and-error
approach fails. From Figure 10, it was concluded that
IMC improved PI is the better method for servo-
regulatory control of delay-dominant processes. Notice
that the performance curves have shifted toward the
line y ) x, indicating greater consistency between servo
and regulatory responses for plants with a large dead-
time-to-time constant ratio.

5. Conclusions

This paper has outlined a new methodology for the
analysis of model-based PI tuning strategies. The IMC
improved PI (Rivera et al.9), WS (Wang and Shao8),
SIMC (Skogestad6), and DS-d (Chen and Seborg7) tun-
ing rules were presented for first-order-plus-deadtime
processes and compared with respect to robustness,
control effort, and achievable performance. Each of these
algorithms is reliable and easy to implement. The
computational requirements of the WS technique are a
little greater, since iteration is involved in the calcula-
tion of ω90.

The correct choice of tuning method depends on the
process control objective as well as the plant deadtime-
to-time constant ratio, D/τ. The WS scheme was recom-
mended when the response to setpoint changes is of
greatest concern. For purely regulatory applications,
DS-d gave the best overall results for lag-dominant
processes (D/τ < 0.35). IMC improved PI is better-suited
for the regulation of delay-dominant systems (D/τ >
0.35). When setpoint-following and disturbance rejection
are of roughly equal importance (as for slave loops in a
cascade structure), SIMC should be used if D/τ is small
and IMC improved PI should be used if D/τ is large.

A secondary objective of this research was to evaluate
the utility of the following robustness metrics: gain
margin, phase margin, Ms (peak magnitude of the
sensitivity function), and relative delay margin. Robust-
ness was defined by the maximum joint perturbation
in gain, time constant, and deadtime of the true process
for which the digital control loop remained stable. The
relative delay margin was found to provide the most
accurate prediction of the comparative robustness of PI
controllers tuned for the same level of performance. Ms
is a better reflection of control effort than robustness,
at least in regulatory applications.

Future work will focus upon the analysis of
PID tuning rules. The implications of these results
upon the selection of appropriate benchmarks for the
assessment of PI(D) control loops should also be con-
sidered.
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Appendix: Derivation of Bounds for the Wang
and Shao8 Integral Time

Since tan(x) > x in the open interval x ∈ (0, π/2), we
have

for ω90 ∈ (0, π/(2D)). The symbol ω90 denotes the
frequency at which the phase lag of the open-loop
process equals -90°, i.e.,

Substitution of eq A.2 into eq A.1 gives

Hence, the integral time is bounded below by the process
time constant for all D, τ > 0.

To derive an upper bound for τI, we first observe that
the function

is positive in (0, π/2). Thus, for ω90 ∈ (0, π/(2D)),

tan(Dω90) > Dω90 (A.1)

φ(ω90) ) -tan-1(τω90) - Dω90 ) - π
2

w tan(π2 - Dω90) ) τω90 w tan(Dω90) ) 1
τω90

(A.2)

ω90
2τD < 1 w 1 + τ2ω90

2 > ω90
2τD(1 + τ2ω90

2)

w 1 + 2τ2ω90
2 > ω90

2τ2 + ω90
2τD(1 + τ2ω90

2)

w τI )
1 + 2τ2ω90

2

ω90
2[τ + D(1 + τ2ω90

2)]
> τ (A.3)

f(x) ≡ x
tan(x)

+ 4x2

π2
- 1 (A.4)

I



Nomenclature

d ) load disturbance
D ) process deadtime
DS-d ) direct synthesis for disturbance rejection
FOPDT ) first-order-plus-deadtime
GM ) gain margin
G(s) ) Process transfer function
GC(s) ) controller transfer function
IMC ) internal model control
ISE ) integral of the squared error
K ) process steady-state gain
KC ) proportional gain
Ms ) peak magnitude of sensitivity function
PI ) proportional-integral
PID ) proportional-integral-derivative
PM ) phase margin
Q ) IMC form of feedback controller
r ) setpoint
RDM ) relative delay margin
s ) Laplace transform variable
sup ) supremum
S(s) ) sensitivity function
SIMC ) Skogestad IMC
SIMC1 ) SIMC using integral expression (eq 12)
SIMC2 ) SIMC using integral expression (eq 13)
U ) manipulated variable
WS ) Wang-Shao
Y ) controlled variable

Greek Symbols

R ) tuning parameter in WS strategy
δ ) correlated parameter estimation error
ε ) tuning parameter in IMC improved PI strategy
λ ) tuning parameter in SIMC strategy
σe

2 ) control error variance
σe,MV

2 ) minimum error variance achievable with PI control
σ∆U

2 ) variance of adjustments in manipulated variable
σ∆U,MV

2 ) variance of control moves exhibited by minimum
variance PI controller

τ ) process time constant
τc ) tuning parameter in DS-d strategy
τF ) approximate IMC filter time constant
τI ) integral time
ω ) angular frequency

ωcg ) gain crossover frequency
ω90 ) frequency at which plant phase angle equals -90°

Subscripts

max ) maximum value for which closed loop remains
stable

M ) nominal value
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Dω90

tan(Dω90)
+

4D2ω90
2

π2
> 1

w Dτω90
2 +

4D2ω90
2

π2
> 1, using eq A.2

w 1 + τ2ω90
2 < (Dτ + 4D2

π2 )ω90
2(1 + τ2ω90

2)

w 1 + τ2ω90
2 < Dτω90

2(1 + τ2ω90
2) +

4D2

π2
ω90

2(1 + τ2ω90
2) +

4Dω90
2

π2
τ

w 1 + 2τ2ω90
2 < τω90

2[τ + D(1 + τ2ω90
2)] +

4D
π2

ω90
2[τ + D(1 + τ2ω90

2)]

w τI )
1 + 2τ2ω90

2

ω90
2[τ + D(1 + τ2ω90

2)]
< τ + 4D

π2
(A.5)

J PAGE EST: 10


