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Abstract

An efficient algorithm is developed to alleviate the computational burden associated with nonlinear model predictive control
(NMPC). The new algorithm extends an existing algorithm for solutions of dynamic sensitivity from autonomous to non-autono-
mous differential equations using the Taylor series and automatic differentiation (AD). A formulation is then presented to recast the
NMPC problem as a standard nonlinear programming problem by using the Taylor series and AD. The efficiency of the new algo-
rithm is compared with other approaches via an evaporation case study. The comparison shows that the new algorithm can reduce
computational time by two orders of magnitude.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last two decades, linear model predictive control
has been well recognized by industry due to its intuitive-
ness and capability to handle multivariable constraints.
However, the extension to nonlinear model based predic-
tive control (NMPC) has not been so successful although
a significant amount of research effort has been put into
this area. One of themain obstacles, which blocks NMPC
techniques to become widely applicable, is the computa-
tional burden associated with the requirement to solve
a set of nonlinear differential equations and a nonlinear
dynamic optimization problem in real-time.

The objective of NMPC is to determine a set of future
control moves in order to minimize a cost function
based on a desired output trajectory over a prediction
horizon. The computation involved in solving the opti-
mization problem at every sampling time can become
so intensive, particularly for high-dimensional systems,
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that it could make on-line applications almost impossi-
ble [1]. There exist a number of strategies for tracking
the optimal control problem through nonlinear pro-
gramming (NLP) [2]: successive linearization, direct
single and multiple shooting methods, and others. To
efficiently solve the NLP problem derived, all these ap-
proaches require intensive computation of derivatives.
In a typical situation, calculating dynamic sensitivity
could take more than 70% of the total computation time
for NLP. Hence, dynamic sensitivity calculation is the
computational bottleneck of solving a dynamic optimi-
zation problem. There are three ways to calculate sensi-
tivity of a dynamic system [3]: perturbations, sensitivity
equations and adjoint equations. In a perturbation
approach finite differences are used to approximate
derivatives. Hence it needs at least applying N perturba-
tions to the dynamic system to get the solution of a
N-parameter sensitivity problem [3]. Alternatively, sensi-
tivity can also be obtained by simultaneously solving the
original ordinary differential equations (ODE) together
with nN sensitivity equations, where n is the number
of states [4]. Finally, sensitivity can be calculated by
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solving n adjoint equations (in reverse direction). A
number of efficient solvers have been developed to tackle
the dynamic sensitivity problem, for example, the
CVODES package [5]. Recently, automatic differentia-
tion (AD) techniques have been applied to solve dy-
namic optimization problems [6]. In previous work [7],
a first-order approximation is introduced to simplify
the dynamic sensitivity equation by using AD so that
the computation efficiency is improved. A similar ap-
proach has been proposed in [8] without using AD.
However, due to the first-order approximation, the sen-
sitivity obtained may not be accurate enough in some
cases, particularly for NMPC with process constraints.
In most published work using AD for dynamic optimi-
zation, AD has only been used to generate low (first
and/or second) order derivatives, therefore efficiency of
these approaches is not satisfactory.

In this work, the advantages of AD techniques have
been intensively utilized to improve the efficiency of
NMPC. More specifically, an existing algorithm to solve
ODE and sensitivity using high-order Taylor series and
AD for autonomous systems is extended to non-autono-
mous systems. An approach to estimate and control the
error due to truncation of the Taylor series is also pro-
vided. Then, based on this algorithm, the NMPC prob-
lem has been re-formulated as a NLP problem so that
it can be efficiently solved by any modern NLP solvers.
The paper is organized as follows. After a brief overview
of AD, its principles to solve autonomous ODE�s and to
calculate dynamic sensitivity are explained in Section 2.
Section 3 extends the techniques to non-autonomous sys-
tems. Then, a formulation of NMPC using AD is pro-
posed in Section 4, where the issues of error analysis
and control are also addressed. A case study is presented
in Section 5 to show the usage and efficiency of the new
algorithm. Finally, the paper is concluded in Section 6.
2. Automatic differentiation

AD is a class of computational techniques for evalu-
ating derivatives of functions defined in computer pro-
grams [9]. It is superior to other two approaches:
symbolic differentiation and finite difference approxima-
tion. To compute derivatives symbolically using com-
puter algebra software such as Mathematica or Maple,
an enormous expression growth normally occurs due
to a repeated evaluation of common sub-expressions.
On the other hand, with finite difference approximation,
accuracy of derivatives is restricted because of cancella-
tion and truncation errors, particularly, for high-order
derivatives. Automatic differentiation techniques over-
come these drawbacks by systematically applying the
chain rule to functions defined by arbitrary computer
programs. A computer program is equivalent to a com-
putational graph consisting of a sequence of elementary
operations whose derivatives are well known. Hence, by
numerically applying the chain rule to these arithmetic
sequences, not only can AD deliver truncation-error free
derivatives but it also avoids code growth.

2.1. Taylor series by AD

Consider a d-time continuously differentiable func-
tion, f : Rn ! Rm. Let xðtÞ 2 Rn be given by the trun-
cated Taylor series: x(t) = x[0] + x[1]t + � � � + x[d]t

d, with
coefficients x½i� ¼ ði!Þ�1ðoixðtÞ=otiÞjt¼0 2 Rn. Then, zðtÞ ¼
fðxðtÞÞ 2 Rm can be expressed by a Taylor expansion:
zðtÞ ¼ z½0� þ z½1�t þ � � � þ z½d�td þ Oðtdþ1Þ where z½j� ¼
ðj!Þ�1ðojzðtÞ=otjÞjt¼0 2 Rm. From the chain rule, z[j] is
uniquely determined by the coefficient vectors, x[i] with
i 6 j, i.e.

z½j� � z½j�ðx½0�; x½1�; . . . ; x½j�Þ ð1Þ

Nevertheless, inherently, functions z[j] are also d-time
continuously differentiable and their derivatives satisfy
the identity [10]:

oz½j�

ox½i�
¼ oz½j�i�

ox½0�
:¼ A½j�i� � A½j�i�ðx½0�; x½1�; . . . ; x½j�i�Þ ð2Þ

where, A½j� 2 Rn�n, j = 0, . . .,d are also the Taylor co-
efficients of the Jacobian path, i.e. f 0ðxðtÞÞ ¼ A0þ
A1t þ � � � þ Ad td þ Oðtdþ1Þ.

AD techniques provide an efficient way to calculate
these coefficient vectors, z[j] and matrices, A[i] [11]. For
example, with the software package, ADOL-C [12], by
using the forward mode of AD, all Taylor coefficient
vectors for a given degree, d can be calculated simulta-
neously, whilst the matrices, A[i] can be obtained by
using the reverse mode of AD. The run time and mem-
ory requirement associated with these calculations grow
only in a order of d2.

2.2. Autonomous differential equation

When the above approach is applied to an autono-
mous differential equation, i.e. _x ¼ fðxðtÞÞ, since
x[k + 1] = z[k]/(k + 1), all Taylor coefficients of x(t) up
to any order can be iteratively obtained from x[0] =
x(0) by using (1) [13]. Moreover, the sensitivity of Taylor
coefficients against the initial value x[0] can also be effi-
ciently obtained by matrix accumulation from (2):

B½k� :¼
dx½k�

dx½0�
¼ 1

k
dz½k�1�

dx½0�
¼ 1

k

Xk�1

j¼0

oz½k�1�

ox½j�

dx½j�

dx½0�

¼ 1

k

Xk�1

j¼0

A½k�j�1�B½j� ð3Þ

where B½k� 2 Rn�n, k = 0, . . .,d are the Taylor coefficients
of the solution to the sensitivity equations, _B ¼ f 0ðxÞB,
B[0] = B(0) = I.
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3. Non-autonomous systems

Although the above algorithm is very efficient, to
make it applicable for NMPC, the algorithm has to be
extended to solving dynamic sensitivity of non-autono-
mous state space systems:

_xðtÞ ¼ fðxðtÞ; uðtÞÞ; xð0Þ ¼ x½0�

yðtÞ ¼ gðxðtÞ; uðtÞÞ; 0 6 t 6 h
ð4Þ

where, uðtÞ 2 Rm is the control input and yðtÞ 2 Rp the
output. It is a normal practice, for example in [14], to
convert the system (4) to autonomous by augmenting it
with _u ¼ 0 so that the results described in the previous
section can be directly used. However, the augmented
system hasm extra differential equations, hence the algo-
rithm is not efficient particularly when m is large. In this
work, an efficient approach is to be described as follows.

Using normalized time, s = t/h, the right-hand-side of
the state equation becomes z(x(s),u(s)) :¼ hf(x(s),u(s))
and the solution interval is 06s61. Assume u(s) =
u[0] + u[1]s + � � � + u[r]s

r, r 6 d and all its coefficients,
u[k], k = 1, . . ., r are known. Let v ¼ uT½0� � � �

�
uT½r��

T.

Using AD, the Taylor coefficients of x(s) and y(s) can
be iteratively determined from x[0] and v.

x½kþ1� ¼
1

k þ 1
z½k�ðx½0�; . . . ; x½k�; vÞ; k ¼ 0; . . . ; d � 1 ð5Þ

y½k� ¼ y½k�ðx½0�; . . . ; x½k�; vÞ; k ¼ 0; . . . ; d ð6Þ

Then, by applying AD to (5) and (6), the partial
derivatives are obtained and partitioned as follows:

A½k� ¼ A½k� j A½k�v
� �

:¼ oz½k�
ox½0�
j oz½k�

ov

� �
; k ¼ 0; . . . ; d � 1

ð7Þ

C½k� ¼ C½k�x j C½k�v
� �

:¼ oy½k�
ox½0�
j oy½k�

ov

� �
; k ¼ 0; . . . ; d ð8Þ

The total derivatives are accumulated from these par-
tial derivatives as follows:

B½k� ¼ B½k�x j B½k�v
� �

:¼ dx½k�
dx½0�
j dx½k�

dv

� �

¼ 1

k
A½k�1� þ

Xk�1

j¼1

A½k�j�1�xB½j�

 !
; k ¼ 1; . . . ; d ð9Þ

D½k� ¼ D½k�x j D½k�v
� �

:¼ dy½k�
dx½0�
j dy½k�

dv

� �

¼ C½k� þ
Xk
j¼1

C½k�j�xB½j�; k ¼ 0; . . . ; d ð10Þ

Note, B½0� ¼ I j 0½ �. In summary, the solutions of system
(4) at t = h are

xðhÞ ¼
Xd
i¼0

x½i�; yðhÞ ¼
Xd
i¼0

y½i� ð11Þ

whilst their sensitivities to initial value, x[0] and input
coefficients, v are
BxðhÞ :¼
dxðhÞ
dx½0�

¼
Xd
i¼0

B½i�x ¼ Iþ
Xd
i¼1

B½i�x ð12Þ

BvðhÞ :¼
dxðhÞ
dv

¼
Xd
i¼0

B½i�v ¼
Xd
i¼1

B½i�v ð13Þ

DxðhÞ :¼
dyðhÞ
dx½0�

¼
Xd
i¼0

D½i�x ð14Þ

DvðhÞ :¼
dyðhÞ
dv

¼
Xd
i¼0

D½i�v ð15Þ
4. Nonlinear model predictive control

4.1. Formulation

For nonlinear system (4), at current sampling time,
t = t0, consider the general optimal control problem:

min
u

J ¼ wðxðtP Þ; uðtP ÞÞ þ
Z tP

t0

uðxðtÞ; uðtÞÞdt

s:t: _x ¼ fðxðtÞ; uðtÞÞ; xðt0Þ ¼ x½0� ð16Þ
nðxðtÞ; uðtÞÞ 6 0

fðxðtP Þ; uðtP ÞÞ 6 0

where n 2 Rq and f 2 Rs are trajectory and terminal
constraints, respectively. The prediction horizon [t0, tP]
is divided into P intervals, t0, t1, . . ., tP with ti+1 = ti + hi
and

PP�1
i¼0 hi ¼ tP � t0. Assume the optimal solution to

(16) is uðtÞ ¼
Pr

i¼0u½i�ðtkÞðt � tkÞi for tk 6 t 6 tk+1,
k = 0, . . .,P � 1. Then, only the solution in the first
interval is to be implemented and whole procedure will
be repeated at next sampling instance. Note that the
combination of the terminal performance index w and
the terminal constraints f is imposed so that the mini-
mized performance index in the receding sequence de-
creases monotonously. Hence, closed-loop stability
under such moving horizon control is ensured [15].

It is well known that the above Bolza form can be
converted into the Mayer form [16]. For problem (16),
augment system (4) by defining

_�xðtÞ ¼ uðxðtÞ; uðtÞÞ; �xðt0Þ ¼ 0

y1ðtÞ ¼ nðxðtÞ; uðtÞÞ
y2ðtÞ ¼ fðxðtÞ; uðtÞÞ
�yðtÞ ¼ wðxðtÞ; uðtÞÞ þ �xðtÞ

~xðtÞ ¼
x

�x

" #
; ~f ¼

f

u

" #
; ~x½0� ¼

x½0�

0

" #

y ¼
y1

y2

�y

2
64

3
75; g ¼

n

f

wþ �x

2
64

3
75
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Then, the optimal control problem can be recast as

min
uðtÞ

J ¼ �yðtP Þ ð17Þ

s:t: _~xðtÞ ¼ ~fð~xðtÞ; uðtÞÞ; ~xðt0Þ ¼ ~x½0�

yðtÞ ¼ gð~xðtÞ; uðtÞÞ
y1ðtÞ 6 0 y2ðtP Þ 6 0

Let u[0](k), . . .,u[r](k) be input coefficients at t = tk and
v 2 Rm�ðrþ1Þ�P be defined as:

v :¼ vT0 � � � vTP�1

� �T ð18Þ

where vk :¼ uT½0�ðkÞ � � � uT½r�ðkÞ
� �T

. For given vk,
~xðk þ 1Þ :¼ ~xðtkþ1Þ and y(k): = y(tk) are iteratively deter-
mined from ~xðkÞ using (11). Hence, (17) can be repre-
sented in discrete form

min
v

J ¼ �yðP Þ ð19Þ

s:t: ~xðk þ 1Þ ¼ fkð~xðkÞ; vkÞ; ~xð0Þ ¼ ~x½0�

yðkÞ ¼ gkð~xðkÞ; vkÞ 0 6 k 6 P � 1

y1ðkÞ 6 0; y2ðP Þ 6 0

Problem (19) is a standard NLP problem with
P · m · (r + 1) degrees of freedom. The first-order
derivatives of J and constraints can be easily obtained
by using (14) and (15) repeatedly. More specifically, de-

fine dyðkÞ
dv

¼ dyðkÞ
dv0

� � � dyðkÞ
dvP�1

h i
Then,

dyðkÞ
dvj

¼

0 k 6 j

Dvðjþ 1Þ k ¼ jþ 1

D~xðkÞB~xðk � 1Þ � � �B~xðjþ 2ÞBvðjþ 1Þ
k > jþ 1

8>>>><
>>>>:

Hence, derivatives of J and constraints are obtained as

dJ
dv

¼ dyðP Þ
dv

� �
qþsþ1

;
dy2ðP Þ
dv

¼ dyðP Þ
dv

� �
qþ1:qþs

;

dy1ðkÞ
dvj

¼ dyðkÞ
dv

� �
1:qþ1

where [ Æ ]k stands for the kth row of a matrix, and [ Æ ]a:b
stands for rows of a matrix from ath to bth.

For MPC with moving horizon, M < P, i.e.
uk = uM�1, k =M, . . .,P � 1, the derivative against
vM�1 is a summation of derivatives against vk, k =
M � 1, . . .,P � 1, i.e. d=dvM�1 ¼

PP�1
k¼M�1d=dvk.

With more advanced AD programming, the second-
order derivatives are also readily to be obtained [17].
Hence, using AD, the nonlinear model predictive con-
trol problem can be efficiently solved by any modern
NLP software.

4.2. Error analysis and control

By using AD, the Taylor coefficients, x[i] and B[i] ob-
tained using the above method are exact [11]. However,
the ODE solution and sensitivity obtained at t = h are
only approximations due to truncation of the Taylor
series. Assume xðhÞ ¼

Pd
k¼0x½k�h

k þ eðh; dÞ and the ra-
dius of convergence is r. Then,

eðh; dÞ � Cðh=rÞdþ1 ð20Þ

where C is constant. For a sufficiently large d,

r � rd :¼
kx½d�1�k1
kx½d�k1

ð21Þ

Since e(h,d � 1) � e(h,d)(rd/h) � e(h,d) + kx[d]k1, it
leads to an estimation of the truncation error:

eðh; dÞ ¼ hkx½d�k21
kx½d�1�k1 � hkx½d�k1

ð22Þ

For a given error tolerance, d, if d 6 e(h,d + 1), either
reducing h or increase d can control the error to the re-
quired level. Using (22), the required adjustment in step
(h1 = h/c, c > 1) or in order (d1 = d + p, p > 0) to satisfy
the error level can be derived:

c ¼ hkx½d�k1ðkx½d�k1 þ dÞ
kx½d�1�k1

ð23Þ

p ¼ lnðd=eðh; dÞÞ
lnðhkx½d�k1=kx½d�1�k1Þ

ð24Þ

The judgement of which to be adjusted is based on
the comparison of the number of operations to be in-
creased. When reducing h by a factor of c, to reach
the original step, h, the computation will increase of c
times. On the other hand, if increasing d to d + p, com-
putation will increase a factor of (1 + p/d)2. Hence, after
rounding to their nearest upper integers, if c > = (1 + p/
d)2, order will be increased by p. Otherwise, the step will
be decreased by a factor of c.

The above error is the local error at each step. These
errors will be propagated into the final cost function.
The propagation can be estimated by using the sensitiv-
ity matrix, Bx(k) at each step, i.e. the global error at step
k, eg(k) is

egðkÞ ¼ eðhk; dkÞ þ kBxðkÞki1egðk � 1Þ ð25Þ

where k Æ ki1 is the induced infinity norm of a matrix.
For a given process, assume b P kBx(k)ki1, k =
1, . . .,P. Then, at the end of prediction horizon, the glo-
bal error is estimated as

egðP Þ 6 eðhP ; dP Þ þ beðhP�1; dP�1Þ þ � � � þ bP�1eðh1; d1Þ

Assume all local errors are controlled at the same level, d
and the desired global error level is dg. Then, the local
error should be controlled at level

d ¼ dgðb� 1Þ
bP � 1

ð26Þ
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5. Case study

5.1. Evaporator

The NMPC formulation described so far is applied to
the evaporation process of Newell and Lee [18], shown
in Fig. 1. The process variables are listed in Table 1
and model equations are given in Appendix A.

5.2. Nonlinear model predictive control

The control objective of the case study is to track set-
point changes of X2 from 25% to 15% and P2 from
50.5 kPa to 70 kPa when disturbances, F1, X1, T1 and
T200 are varying within ±20% of their nominal values.
The control system is configured with three manipulated
variables, F2, P100 and F200 and three measurements, L2,
steam
F100

P100
T100

separator
P2, L2

product
F2, X2, T2

feed
F1, X1, T1

condensate
F5

cooling
water

F200, T200

evaporator

condensate

T201

condenser
F4, T3

F3

Fig. 1. Evaporator system.

Table 1
Variables and values

Variables Description Value Units

F1 Feed flowrate 10 kg/min
F2 Product flowrate 2 kg/min
F3 Circulating flowrate 50 kg/min
F4 Vapor flowrate 8 kg/min
F5 Condensate flowrate 8 kg/min
X1 Feed composition 5 %
X2 Product composition 25 %
T1 Feed temperature 40 �C
T2 Product temperature 84.6 �C
T3 Vapor temperature 80.6 �C
L2 Separator level 1 m
P2 Operating pressure 50.5 kPa
F100 Steam flowrate 9.3 kg/min
T100 Steam temperature 119.9 �C
P100 Steam pressure 194.7 kPa
Q100 Heat duty 339 kW
F200 Cooling water flowrate 208 kg/min
T200 Inlet C.W. temperature 25 �C
T201 Outlet C.W. temperature 46.1 �C
Q200 Condenser duty 307.9 kW
X2 and P2. All manipulated variables are subject to a
first-order lag with a time constant equal to 0.5 min
and saturation constraints, 0 6 F2 6 4, 0 6 P100 6 400
and 0 6 F200 6 400. All disturbances are unmea-
sured and simulated as random signals changing every
5 min and passing through a 0.2 min first-order lag.

The NMPC is designed with cost function:
J ¼

R P
0
ðy� rÞTW ðy� rÞdt, where y ¼ L2 X 2 P 2½ �T

and r ¼ 1 15 70½ �T. Design parameters are: sampling
period, h = 1 min, P = 10 min, input horizonM = 5 min
and W = diag[100,1,1]. By using piecewise constant
input, the result NLP problem has 3 · M = 15 degrees
of freedom.

To fully use the advantage of the above sensitivity
algorithm, the NLP problem is solved as a nonlinear
least square problem [7] using the solver lsqnonlin

in MATLAB Optimization Toolbox. To solve the prob-
lem, total 30 · 15 = 450 sensitivity variables have to
calculated in addition to original three states. The sensi-
tivity algorithm is implemented in C using ADOL-C and
interfaced to MATLAB via a mex wrap. Simulation re-
sults with the above configuration are shown in Fig. 2. It
can be seen from Fig. 2 that measured outputs follow
the setpoints quite well (a)–(c) in spite of the exis-
tence of severe unmeasured disturbances (g)–(j). This
is achieved without violating the input constraints
(d)–(f).

5.3. Sensitivity algorithm comparison

To demonstrate the efficiency of the new algorithm to
calculate sensitivity, the algorithm is implemented in
two AD approaches: operation overloading by using
ADOL-C, and source transformation, by using a preli-
minary AD program (STTAD) developed by the author,
both in C. These two programs, both implemented with
error control described in Section 4.2, are compared
with one of the most advanced dynamic sensitivity solv-
ers, CVODES [5]. The comparison is based on the for-
ward mode of CVODES, which simultaneously solves
the dynamic sensitivity with the original ODE. At each
step, three states and 18 sensitivity variables (three states
against three initial values and three input values) are
integrated, and then the sensitivity of the whole predic-
tion horizon are obtained by accumulating these step-
wise sensitivity variables. All tests are done in a
Windows XP PC with an Intel Pentium-4 processor run-
ning at 2.5 GHz.

Firstly, the computing times of these programs used
in the above NMPC simulation are compared and
shown in the first part of Table 2. It is shown that using
the AD algorithm, the computation time is reduced by
two orders of magnitude (from 7.08 to 0.08), whilst
the ratio of the sensitivity computation time over total
optimization time is reduced from over 40% to less than
a percent. Hence, the original computation bottleneck
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Fig. 2. Simulation result. (a)–(c) Measured outputs with setpoints. (d)–(f) Manipulated variables. (g)–(j) Disturbances.

Table 2
Computational time and accuracy comparison

Tolerance STTAD ADOL-C CVODES

Time, s T/Total, % Time, s T/Total, % Time, s T/Total, %

NMPC

1e�6 0.08 0.83 2.062 17.36 7.079 42.35

STTAD ADOL-C CVODES

Actual order Time, ms Error Time, ms Error Time, ms Error

Simulation, P = 100 and M = 1

1e�6 6 0.359 1.25e�7 7.344 1.25e�7 35.94 4.09e�5
1e�8 7 0.391 3.57e�9 8.437 3.57e�9 51.65 7.65e�7
1e�11 9 0.531 1.92e�12 11.72 1.92e�12 95.31 4.53e�9

Simulation, P = 100 and M = 10

1e�6 6 0.453 6.96e�8 8.125 6.96e�8 34.37 4.57e�5
1e�8 8 0.531 1.74e�9 8.750 1.74e�9 53.12 9.09e�7
1e�11 10 0.641 2.13e�13 11.72 2.13e�13 98.44 4.5326e�9

Simulation, P = 100 and M = 100

1e�6 6 3.281 6.96e�8 12.50 6.96e�8 42.19 4.09e�5
1e�8 8 3.281 1.74e�9 12.50 1.74e�9 59.37 7.56e�7
1e�11 10 3.437 1.85e�13 14.063 1.85e�13 107.8 4.53e�9
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does not exist when using the algorithm proposed in the
work. ADOL-C is a program for general AD computa-
tion. For a specific problem, operation overloading can
introduce a significant amount of computation over-
heads, hence reducing the efficiency. The comparison
shows that for online application, source transformation
is more attractive than operation overloading.

To compare computation time associated with accu-
racy, a reference solution is produced by using
CVODES program and setting the error tolerance to
the spacing of floating point number of double preci-
sion, i.e. d = 2�52 = 2.2204 · 10�16. Then, with three
tolerance settings, (1e�6, 1e�8 and 1e�11), computa-
tion time and accuracy of three programs are compared
in the second part of Table 2. The table shows that AD
programs perform better than CVODES in both effi-
ciency and accuracy. Particularly, STTAD consistently
reduces computing time about two orders of magnitude
comparing with CVODES. It can be seen that the order
of Taylor series plays an important role in error control.
Increase the order by a few number, the error would be
reduced by a number of orders of magnitude without
increasing too much computation time. However, using
traditional approaches, like CVODES, significant com-
putation time may have to be traded off for a reduction
in computation error.
6. Conclusion

A new algorithm to calculate non-autonomous dy-
namic sensitivity using AD based Taylor coefficients
has been proposed. Based on the new algorithm, a
NMPC formulation has been presented. Approaches
for computational error analysis and control are also
discussed. Due to the high-order Taylor series used,
the new approach is very efficient and accurate. The fea-
sibility of the new algorithm is demonstrated via an
evaporator case study, whilst its efficiency and accuracy
are verified through the comparison with CVODES, a
state-of-the-art software package for solving dynamic
sensitivity problems. The case study shows that the typ-
ical computation bottleneck in solving dynamic opti-
mization problems could be removed by using the
proposed dynamic sensitivity algorithm. Hence, the ap-
proach described in this work is much suitable for online
application such as NMPC.
Appendix A. Model equations

dL2

dt
¼ F 1 � F 4 � F 2

20
ð27Þ

dX 2

dt
¼ F 1X 1 � F 2X 2

20
ð28Þ
dP 2

dt
¼ F 4 � F 5

4
ð29Þ

T 2 ¼ 0.5616P 2 þ 0.3126X 2 þ 48.43 ð30Þ
T 3 ¼ 0.507P 2 þ 55.0 ð31Þ

F 4 ¼
Q100 � 0.07F 1ðT 2 � T 1Þ

38.5
ð32Þ

T 100 ¼ 0.1538P 100 þ 90.0 ð33Þ
Q100 ¼ 0.16ðF 1 þ F 3ÞðT 100 � T 2Þ ð34Þ
F 100 ¼ Q100=36.6 ð35Þ

Q200 ¼
0.9576F 200ðT 3 � T 200Þ

0.14F 200 þ 6.84
ð36Þ

T 201 ¼ T 200 þ
13.68ðT 3 � T 200Þ
0.14F 200 þ 6.84

ð37Þ

F 5 ¼
Q200

38.5
ð38Þ
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