
International Journal of Control
Vol. 78, No. 13, 10 September 2005, 1045–1062

Time-domain performance limitations arising from decentralized

architectures and their relationship to the RGA

GRAHAM C. GOODWIN*{, MARIO E. SALGADOz and EDUARDO I. SILVAz

{School of Electrical Engineering and Computer Science, University of Newcastle, NSW 2308, Australia
zDepartment of Electronic Engineering Universidad Técnica Federico Santa Marı́a,
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Predominantly, control theory deals with centralized (unrestricted) architectures. However, in

practice, decentralized architectures are often preferred. The reasons for this preference are

manyfold and include ease of understanding, maintainability, cabling issues and others. The

aim of the current paper is to gain insight into the fundamental performance limitations

that arise from the use of a decentralized architecture. These fundamental limitations can

guide the design of decentralized controllers and offer insight into the performance loss

incurred by the use of a restricted architecture. An interesting feature of the results is that

they depend, inter-alia, on the relative gain array (RGA). This gives new insight into this

standard tool for assessing input–output pairings in decentralized control architectures.

1. Introduction

Practical control systems often utilize restricted control

architectures. The reason for this choice are manyfold

and include familiarity, ease of design, intuitive

appeal and tuning issues. For this reason, there has

been ongoing interest in the design of decentralized

control systems (see for example Bristol (1966), Mayne

(1973), Güçlü and Özgüler (1986), Bryant and Yeung

(1994), Hovd and Skogestad (1994), Sourlas and

Manousiousthakis (1995), Savkin and Petersen (1998),

Goodwin et al. (1999), Yuz and Goodwin (2003),

Salgado and Conley (2004)). This line of work owes

much to the insights provided by Bristol (1966)

regarding the RGA.
Unfortunately, there are relatively few systematic

design procedures for decentralized control systems.

One reason is that these design problems are typically

non-convex (Sourlas and Manousiousthakis 1995).

Nonetheless, several design strategies have been pro-

posed. For example, in Sourlas and Manousiousthakis

(1995), an ‘1 model matching approach is used, and

a numerical procedure is considered to obtain the

associated optimal controller. The complexity of this

approach, motivates several alternatives including

the introduction of a weighting function to make the

problem convex (Goodwin et al. 1999). However this

approach does not guarantee a stabilizing solution, since

the weighting factor depends explicitly upon an unknown

parameter. Moreover, this feature also makes it unclear

how one can achieve a good fit in some given frequency

range.
Other approximations to the problem of decentralized

synthesis include time-varying controllers that minimize

a quadratic design criterion (Savkin and Petersen 1998),

and sequential loop closure (Mayne 1973, Güçlü and

Özgüler 1986, Bryant and Yeung 1994, Hovd and

Skogestad 1994).
One issue of importance is that of integrity (Campo

and Morari 1994), i.e., whether a system retains stability

when one or more controllers are taken out of service.

Necessary and sufficient conditions for integrity have

been given in Gündes and Kabuli (2001). This, and

other properties, have also been explored in a recent

PhD thesis (Kariwala 2004).*Corresponding author. Email: eegcg@ee.newcastle.edu.au
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The topic of performance bounds and benchmarks
has been extensively studied in the case of centralized
designs (see Chen et al. (2000), Toker et al. (2002),
Chen et al. (2003), Su et al. (2003), Silva and Salgado
(2005) and the references therein). However, there has
been little prior work on extending these results to the
decentralized case. Some advances in the case of a
minimum variance benchmark have been reported in
Kariwala (2004), but these lead to a loose performance
bound due to simplifying assumptions.
In Yuz and Goodwin (2003), an optimal Youla

parameter is found for a diagonal model of the process
and, based on an associated linear approximation, a
convex minimization problem is formulated yielding a
correcting term that minimizes a quadratic measure of
the achieved (real) sensitivity. This approach was used
to develop a means of numerically assessing decentra-
lized performance. However, this approach does not
show how the associated measure is related to intrinsic
system properties such as open loop poles, zeros,
delays, etc. More recent work in Salgado and Conley
(2004) uses a, so called, participation matrix to asses
decentralized performance. The result is linked to intrin-
sic system properties, but is not directly related to mea-
surable performance attributes such as overshoot, rise
time and others.
Our goal in the current paper is to gain insight into

the extra performance loss that results from the use of
a decentralized architecture. Thus, our goal is to study
fundamental performance limitations for decentralized
control systems. Our results extend known results
on fundamental performance limitations for feedback
systems (see for example Bode (1945), Freudenberg
and Looze (1985, 1988), Åström (1991), Chen (1995,
2000), Åström (1997), Seron et al. (1997), Sung and
Hara (1998)), allowing the explicit consideration of the
restricted structure in a decentralized design.
Specifically, we develop a particular measure of

decentralized performance which has the dual features
of (a) being related to intrinsic system properties
such as delays, non-minimum phase zeros, etc. and
(b) being directly related to measurable performance
attributes such as rise time, etc.
An interesting observation is that our result depends,

inter alia, on the well known RGA (Bristol 1966). Thus,
the result gives further insight into and credibility for,
this commonly used tool for evaluating input–output
pairings in decentralized control systems. Not surpris-
ingly, the results presented here show that, whilst the
RGA certainly plays a key role, it is not the only issue
of importance.
Here we restrict attention to open-loop stable, square

multivariable linear systems. We develop the results in
a continuous-time context but anticipate that similar
results hold, mutatis mutandis, in the discrete-time case.

2. Preliminaries

Consider the p� p linear feedback control loop shown
in figure 1. In this figure, GðsÞ and CdðsÞ denote a p� p
stable plant and a p� p diagonal controller, respectively.

Since our ultimate goal is to design a decentralized
controller, we also define a nominal diagonal plant
model; i.e.

GoðsÞ ¼ diagfG11ðsÞ,G22ðsÞ, . . . ,GppðsÞg, ð1Þ

where

½GðsÞ�ij ¼ GijðsÞ ð2Þ

and we also define the additive error transfer function as

G�ðsÞ ¼ GðsÞ �GoðsÞ: ð3Þ

The following technical assumptions will be used
throughout the paper.

Assumption 1: Gð0Þ and Goð0Þ are non-singular.

Note that this assumption is quite standard and is neces-
sary to be able to track arbitrary step references with no
steady state error.

Typically, the design of CdðsÞ will be based entirely
on GoðsÞ. We thus add the following restriction.

Assumption 2: The controller CdðsÞ belongs to the class
C of controllers, which is defined as the class of all
diagonal, proper and stabilizing controllers for GoðsÞ.

We then have the following.

Lemma 1 (Decentralized closed loop sensitivity): For
any stable plant GðsÞ we have the following:

(i) The class C of controllers can be parameterized as

CdðsÞ ¼ ½I�QdðsÞGoðsÞ�
�1QdðsÞ, ð4Þ

where QdðsÞ is any stable proper diagonal transfer
function.

(ii) The achieved sensitivity function SðsÞ when CdðsÞ, as
in (4), is utilized in the feedback loop of figure 1 is

SðsÞ ¼ SoðsÞSDðsÞ ð5Þ

y
C (s) G (s)

−+

e ur

Figure 1. Multivariable control loop.
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where

SoðsÞ ¼ I�GoðsÞQdðsÞ ð6Þ

SDðsÞ ¼ ½IþG�ðsÞQdðsÞ�
�1: ð7Þ

Proof:

(i) This is the standard Youla parametrization for the
nominal system (Goodwin et al. 2001).

(ii) This results from using the definition of the
sensitivity for the control loop of figure 1, i.e.

SðsÞ ¼ ½IþGðsÞCdðsÞ�
�1,

followed by the substitution of CdðsÞ as given in (4). œ

Without loosing too much generality, we will further
assume the following:

Assumption 3 : QdðsÞ is rational, i.e. it has no pure time
delays in any of its elements.

This supposition implies that the delay in each element of
the nominal complementary sensitivity, ToðsÞ, is simply
the delay of the corresponding diagonal element in
GoðsÞ.
We next observe that all of the well known perfor-

mance limitations for linear MIMO systems apply to
the current situation, since these results typically hold
irrespective of the nature of the controller (subject
only to the closed loop stability constraint). These per-
formance limits can be expressed either in the time or
frequency domains. As a prelude, we state the following
result which holds for a SISO loop:

Lemma 2 (SISO cheap control performance bound and
a fundamental limitation): Consider any open loop
stable SISO plant without zeros on the imaginary axis
written in the form

GoðsÞ ¼ BpðsÞ ~GGoðsÞe
�s�, ð8Þ

where � is the pure time delay of the plant, ~GGoðsÞ is
a proper, stable and minimum-phase (MP) transfer
function, and Bp(s) is a Blashke product of the form

BpðsÞ ¼
Ynz
‘¼1

�sþ z‘

sþ z‘
, ð9Þ

where fz‘g‘¼1,..., nz denotes the set of non-minimum phase
(NMP) zeros of Go(s).
Assume that this plant is under feedback control achiev-

ing zero steady state error for step references. Denote the
closed loop error for unit step references by e(t).

(i) The energy of e(t) is bounded below by

inf

ð1
0

e2ðtÞ dt ¼ � þ 2
Xnz
‘¼1

1

z‘
: ð10Þ

(ii) Denote by fpjgj¼1,..., np and by fzkgk¼1,..., nc , nc� nz,
the sets of poles and zeros of the complementary
sensitivity function To(s), respectively. Then

ð1
0

eðtÞ dt ¼ lim
s!0

SoðsÞ

s

� �
¼ � �

Xnp
j¼1

1

pj
þ
Xnc
k¼1

1

zk
: ð11Þ

(iii) The (idealized) controller that achieves the minimum
bound (10) is such that

ð1
0

eðtÞ dt ¼ � þ 2
Xnz
‘¼1

1

z‘
: ð12Þ

Proof:

(i) See Goodwin et al. (2003).
(ii) The closed loop error satisfies

EðsÞ ¼
SoðsÞ

s
¼

ð1
0

eðtÞe�stdt ð13Þ

and since the closed loop has zero steady state
error for step references, it follows that

ð1
0

eðtÞ dt ¼ lim
s!0

SoðsÞ

s

� �
: ð14Þ

Also, since Go(s) is stable, all admissible comple-
mentary sensitivity functions that achieve zero
steady state error for step references can be written
in the form (recall Assumption 3)

ToðsÞ ¼ BpðsÞDðsÞe
�s�, ð15Þ

where

DðsÞ ¼

Qnz
‘¼1ðsþ z‘Þ

Qnc
k¼nzþ1

ðs� zkÞQnp
j¼1ðs� pjÞ

�

Qnp
j¼1ð�pjÞQnz

‘¼1 z‘
Qnc

k¼nzþ1
ð�zkÞ

ð16Þ

and np � nc þ rdfGoðsÞg (rdfg denotes relative
degree). Therefore,

lim
s!0

SoðsÞ

s

� �
¼ lim

s!0

1� BpðsÞDðsÞe
�s�

s

� �
: ð17Þ
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Using L’Hôpital’s rule and the definitions of Bp(s)
and D(s), it is straightforward to establish that

lim
s!0

SoðsÞ

s

� �
¼ � �

Xnp
j¼1

1

pj
þ
Xnc
k¼1

1

zk
ð18Þ

which proves the result.
(iii) It is a standard result (Goodwin et al. 2003) that

the closed loop whose error satisfies (10) is such
that the associated Youla parameter is rational.

In addition, the zeros of the optimal complemen-
tary sensitivity are the non-minimum phase zeros
of the plant (then nc ¼ nz) and has np poles,

where np ¼ nz þ rdfGoðsÞg. The location of those
poles is as follows: rdfGoðsÞg of them are at
s!�1 and the other nz, at s ¼ �z‘ for all ‘.
This implies, according to (11), that

ð1
0

eðtÞdt ¼ � �
Xnz
‘¼1

1

ð�z‘Þ
þ
Xnz
‘¼1

1

z‘
¼ � þ 2

Xnz
‘¼1

1

z‘
: ð19Þ

œ

Remark 1: Note that, if in a general control loop,
To(s) has as zeros only the non-minimum phase zeros
of the plant, then nc¼ nz and part (ii) of the previous
lemma reduces to

ð1
0

eðtÞdt ¼ � �
Xnp
j¼1

1

pj
þ
Xnz
‘¼1

1

z‘
: ð20Þ

This case is consistent with most nominal design
procedures, e.g. H2 optimization problems.

3. Main result: time domain limits

in decentralized control

In this section inescapable time-domain performance

limitations that arise from the use of a decentralized
architecture, are examined. These constraints are evalu-
ated with reference to the equivalent measures when

a centralized architecture is used. A common factor
shared by both architectures is the RGA.
We first review some ideas in decentralized control.

The RGA of a transfer matrix GðsÞ is defined as
(Skogestad and Postlethwaite 1996, Albertos and

Sala 2004)

, ¼ GðsÞ � ½G�1ðsÞ�T , �ij ¼ GijðsÞ � ½G
�1
ðsÞ�ji, ð21Þ

where � denote element by element multiplication.

When s¼ 0 is considered, we have the original defini-

tion of the RGA introduced in Bristol (1966). The more

general case, i.e. when s ¼ j!, ! 2 R, leads to the idea

of Dynamic Relative Gain Array (DRGA). In this

paper, only the RGA for s¼ 0 will be considered.
The RGA is a useful tool for assessing input–output

pairings when a complete decentralized control

strategy has to be designed. Standard rules state that

input–output pairs associated with negative, or large

RGA terms, should be avoided and those with RGA

terms near 1 should be preferred.
Negative elements in the RGA arise when the d.c.

gain of the elements GijðsÞ are significantly larger than

detfGðsÞg, evaluated at d.c. In turn, negative RGA

elements are usually accompanied by positive RGA

elements larger than 1. This is due to a property of the

RGA matrix, namely that the elements in every row

(and in every column) add to 1. We refer to this type

of plant as poorly conditioned.
The reasons to avoid input–output pairings associated

with negative RGA terms are stated in the following

lemma adapted from Morari and Zafiriou (1989),

Campo and Morari (1994), Skogestad and Postlethwaite

(1996), Albertos and Sala (2004).

Lemma 3 (Negative RGA elements and closed loop

stability): Suppose that GðsÞ is a stable and proper

transfer function that has non-singular DC gain. Define

GoðsÞ ¼ diagfGiiðsÞg. If �ii < 0 for some i and a stabiliz-

ing decentralized controller CdðsÞ ¼ diagfCiiðsÞg, with

integration in each channel, is designed for GoðsÞ, then

(i) The real loop (i.e. the loop that considers GðsÞ and

CdðsÞ) will either be unstable or, if in the real loop

the ith loop is opened (i.e. controller CiiðsÞ is taken

out of service and the plant input ui is kept bounded),

then the resulting loop will be unstable.
(ii) If GðsÞ has dimension 2� 2, then the real loop will

always be unstable.

Proof: The proof follows along the same lines as in the

proof of Theorem 10.4 in Skogestad and Postlethwaite

(1996). œ

Lemma 3 states that it is unadvisable to consider a

nominal diagonal model whose entries are associated

with one or more negative RGA elements. If one

insists on considering such nominal models, then in

the best case, the loop may be made stable, but if,

due to maintenance or saturation, one loop associated

with negative RGA elements goes out of service, then

the resulting loop will be unstable. This means that

the real loop will lack integrity (Campo and Morari

1994).
For the reasons given above, in the sequel it will be

assumed that the nominal diagonal model has been
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selected avoiding input–output pairings associated with
negative RGA elements.
We next note that the following result holds for both

centralized and decentralized designs:

Theorem 1 (Fundamental MIMO limitations for every
control architecture): Consider a MIMO feedback con-
trol loop having stable closed-loop poles located to the left
of �� for some �>0. Also assume that zero steady state
error occurs for reference step inputs in all channels.
Then, for a positive unit reference on the rth channel,
the loop (vector) error and (vector) output, denoted
respectively by erðtÞ and yrðtÞ, satisfy the following:

(i) For any plant zero zo with left directions h1
T , . . . ,

h�z

T , satisfying <fzog > ��, we have that

ð1
0

hi
TerðtÞe�zot dt ¼

hir

zo
, i ¼ 1, 2, . . . ,�z, ð22Þ

where hir is the rth element in hi.
(ii) Also, for <fzog > 0,

ð1
0

hi
TyrðtÞe�zot dt ¼ 0, i ¼ 1, 2, . . . ,�z: ð23Þ

Proof: This is a standard result for any stable MIMO
design, see for example Goodwin et al. (2001). œ

Note, in particular, that if there are no MIMO delays or
non-minimum phase zeros, then no significant design
limitations apply to centralized designs. The next
result holds for decentralized designs:

Theorem 2 (Fundamental MIMO limitations in a
decentralized architecture): Consider a stable MIMO
feedback control loop based on a decentralized architec-
ture and subject to Assumptions 1, 2, 3. Assume that
zero steady state error occurs for step references in all
channels, and that a positive unit step reference is applied
on the rth channel. Then, the jth component of the loop
error, erj ðtÞ, satisfies

ð1
0

erj ðtÞ dt ¼
Gjjð0Þ

Grjð0Þ
�rj �j �

Xnj
k¼1

1

pjk
þ
Xmj

‘¼1

1

zj‘

( )
, ð24Þ

where fpjkgk¼1,..., nj and fz
j
‘g‘¼l,...,mj

denotes the sets of poles
and zeros, respectively, of the jth diagonal entry of the
nominal (diagonal) complementary sensibility ToðsÞ.
Also, �rj is the ðr, jÞth element of the RGA matrix, and
�j is the pure delay in GjjðsÞ.

Proof: We note that, to achieve zero steady state error,
we require that

Qdð0Þ ¼ ½Goð0Þ�
�1: ð25Þ

This result implies, upon using (7), that

S�ð0Þ ¼ ½Iþ Gð0Þ �Goð0Þð ÞQdð0Þ�
�1
¼ Goð0ÞG

�1
ð0Þ:

ð26Þ

For a unit step in the rth channel, we have that the
Laplace transform of the control error in that channel
satisfies

ErðsÞ ¼ SðsÞvr
1

s
, ð27Þ

where vr is the null column vector save for a unit element
in the rth row.

Since (25) holds, we have that ErðsÞ converges for all
<fsg > ��, and hence

ð1
0

erj ðtÞ dt ¼ lim
s!0

vj
TErðsÞ ¼ lim

s!0
vj
T SðsÞ

s
vr ð28Þ

¼ lim
s!0

vj
T SoðsÞS�ðsÞ

s
vr: ð29Þ

Now we have that

vj
T SoðsÞ

s
¼ 0 . . . 0

Sojj ðsÞ

s
0 . . . 0

� �
ð30Þ

which implies, jointly with (26), that

ð1
0

erj ðtÞ dt ¼ lim
s!0

Sojj ðsÞ

s

� �
Gjjð0Þ½G

�1
ð0Þ�jr: ð31Þ

The result follows using part (ii) of Lemma 2 and the
definition of the RGA. œ

Remark 2: If all open loop stable zeros are cancelled
in the nominal design and the controller is itself mini-
mum phase then the previous theorem reduces to (see
Remark 1)

ð1
0

erj ðtÞ dt ¼
Gjjð0Þ

Grjð0Þ
�rj �j �

Xn0j
k¼1

1

pjk
þ
Xm0j
‘¼1

1

zj‘

8<
:

9=
;, ð32Þ

where fzj‘g‘¼1,...,m0j is the set of non-minimum phase
zeros of GjjðsÞ and fp

j
kgk¼1,..., n0j

, the set of closed loop
poles for the jth nominal loop.

We see that the RGA plays a key role in the result
of Theorem 2. However, (24) gives additional insight
since it shows that the RGA is only part of the story
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in the quantification of the time domain limitations for

decentralized control architectures. Other factors

which influence the result are the nominal closed loop

bandwidths (i.e. the inverse of the poles p j
1, p

j
2, . . . , p j

nj
),

the nominal closed loop zeros and the time delays in the

diagonal transfer function elements GjjðsÞ. Non-

minimum phase zeros in the diagonal elements of the

nominal model (obviously not cancelled) play central

roles in the third term of (24).
It is interesting to compare of Theorem 2 with the fol-

lowing result for all MIMO designs.

Theorem 3 (Fundamental MIMO limitation in the

genreal MIMO case): Consider a stable full-MIMO

control loop, based on a p� p plant GðsÞ with non singular

DC gain. The controller is assumed to be parameterized

in Youla form, with a rational p� p full MIMO

parameter QðsÞ ¼ ½QijðsÞ�.

(i) Suppose that there is zero steady state error for step

references in all channels. Then, for a step reference

in the rth channel, the jth component of the control

error, denoted by erj ðtÞ, satisfies

ð1
0

erj ðtÞ dt ¼
Xp
i¼1

Gjið0Þ

Grið0Þ
�ri �jri �

Xnjrpi
‘¼1

1

pjri‘
þ
Xnjrzi
k¼1

1

zjrik

0
@

1
A,
ð33Þ

where �ri denotes the ðr, iÞth element of the RGA

matrix for GðsÞ, �rji is the time delay in GjiðsÞQirðsÞ,

fzjrikgk¼1���, njrzi
denote the set of zeros of GjiðsÞQirðsÞ

and fpjri‘g‘¼1..., n
jr
pi

, the set of poles of GjiðsÞQirðsÞ.

In particular, if j¼ r, (33) becomes

ð1
0

ejjðtÞ dt ¼
Xp
i¼1

�ji �jji �
Xnjjpi
‘¼1

1

pjji‘
þ
Xnjjzi
k¼1

1

zjjik

0
@

1
A ð34Þ

(ii) Also, we have

Xp
i¼1

Gjið0Þ

Grið0Þ
�ri ¼

0 if j 6¼ r

1 if j ¼ r:

8<
: ð35Þ

Proof:

(i) Suppose that j 6¼ r. Since the control loop is stable,

E(s) converges for s¼ 0. Therefore,

ErðsÞ ¼ SðsÞ
vr

s
) Er

j ð0Þ ¼

ð1
0

erj ðtÞ dt ¼ lim
s!0

SjrðsÞ
1

s
: ð36Þ

Note that in order to have integration in the loop,
Sjrð0Þ ¼ 0. On the other hand,

SjrðsÞ ¼ �TjrðsÞ

¼ �
Xp
i¼1

GjiðsÞQirðsÞ

¼ �
Xp
i¼1

Qn
jr
zi

k¼1ð�
jr
iksþ 1ÞQn

jr
pi

‘¼1ð�
jr
il sþ 1Þ

Kjr
i e
��jr

i
s,

ð37Þ

where �jril ¼ ð�p
jr
il Þ
�1, �jrik ¼ ð�z

jr
ikÞ
�1 and

Kjr
i ¼ Gjið0ÞQirð0Þ. Note that

Sjrð0Þ ¼ 0,
Xp
i¼1

Kjr
i ¼ 0: ð38Þ

Therefore, using L’Hôpital’s rule it follows that

Er
j ð0Þ ¼ �

Xp
i¼1

Kjr
i lim

s!0

d

ds

Qnjrzi
k¼1ð�

j
iksþ 1ÞQn

jr
pi

‘¼1ð�
jr
il sþ 1Þ

e��
jr
i
s

0
@

1
A

¼
Xp
i¼1

Kjr
i �jri þ

Xnjrpi
l¼1

�jril �
Xnjrzi
k¼1

�jrik

0
@

1
A: ð39Þ

The result follows considering the definitions of
�jrik, �

jr
il and noting that, in order to have zero

steady state error for step references

Qð0Þ ¼ G�1ð0Þ , Qijð0Þ ¼ ½G
�1
ð0Þ�ij

) Kjr
i ¼ Gjið0ÞQirð0Þ ¼

Gjið0Þ

Grið0Þ
�ri: ð40Þ

If j¼ r, the proof is analogous to the previous
one and therefore, omitted. Note that in this case
SjjðsÞ ¼ 1� TjjðsÞ and Sjjð0Þ ¼ 0,

Pp
i¼1 K

jj
i ¼ 1.

(ii) This result is proven as follows:

Xp
i¼1

Gjið0Þ

Grið0Þ
�ri ¼

Xp
i¼1

Gjið0Þ G
�1
ð0Þ

� �
ir

¼ Gj�ð0Þ G
�1
ð0Þ

� �
�r
¼

0 if j 6¼ r

1 if j ¼ r

8><
>: ð41Þ

where Aj� denotes the jth row of A and A�j, the jth
column of A. œ

Remark 3: Theorem 3 applies to all MIMO designs
which stabilize the full MIMO plant GðsÞ. Thus
Theorem 3 also applies to decentralized designs,
as treated in Theorem 2. To use Theorem 3 for the
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evaluation of the accumulated errors in a decentralized
design, it is necessary to interpret the Youla parameter
QðsÞ appropriately. Indeed, let ToðsÞ be a nominal
(diagonal) complementary sensitivity resulting from a
decentralized design. Then the corresponding diagonal
Youla parameter is

QdðsÞ ¼ Go
�1
ðsÞToðsÞ ¼ Go

�1
ðsÞ I� SoðsÞð Þ: ð42Þ

We can then evaluate the corresponding Youla
parameter for use with GðsÞ as follows:

QðsÞ ¼ G�1ðsÞTðsÞ ¼ G�1ðsÞ I� SDðsÞ þGoðsÞQdðsÞSðsÞð Þ,

ð43Þ

where TðsÞ is the achieved complementary sensitivity in
the real loop. If QðsÞ as in equation (43) is utilized in
Theorem 3 then the result reduces to the expression
given in Theorem 2 for the decentralized case.
In view of the above discussion, we will use Theorem 3

only for centralized architectures. When a decentralized
architecture is taken into account, we will use the more
explicit result given in Theorem 2 for this case.

4. Interpretation of the results

This section presents some implications of the results
in decentralized performance evaluation.

4.1. Centralized versus decentralized performance

While Theorems 1 and 3 hold for every linear MIMO
controller, Theorem 2 holds only for decentralized
architectures. The main difference between Theorem 3
and Theorem 2 is that equation (33) implies that, in a
not necessarily decentralized architecture, the accumu-
lated error depends on a linear combination of effects;
in particular, the coefficients of that linear combination
satisfy (35). Hence, a centralized architecture can yield
a lower accumulated error by using the MIMO inter-
action, implicit is this linear combination, in a beneficial
fashion in the design. This is not possible in the decen-
tralized case due to the restricted architecture.
Further insight into the comparison between

centralized and decentralized designs is provided in the
following corollary to Theorems 2 and 3.

Corollary 1 (Comparison between centralized and
decentralized designs): Consider a rational MP plant
GðsÞ (with no delays) having a NMP nominal model
GoðsÞ satisfying the conditions of Theorem 2. Then,

(i) If a centralized architecture is used, then the
accumulated errors can be made arbitrarily small.

(ii) If a decentralized architecture is used and ½ToðsÞ�jj is
such that it has as zeros only the NMP zeros of the
diagonal elements Gjj, then the (absolute value of the)
accumulated errors are bounded from below by

ð1
0

erj ðtÞ dt

����
���� � Gjjð0Þ

Grjð0Þ
�rj �j þ �dom þ

Xm0j
‘¼1

1

zj‘

8<
:

9=
;

������
������, ð44Þ

where the same notation as in Remark 2 has been used
and �dom denotes the dominant time constant of the jth
loop (a real dominant pole is assumed).

Proof:

(i) Since the full MIMO plantGðsÞ is assumedMP, one
can choose the corresponding Youla parameter as

QðsÞ ¼ G�1ðsÞ diag
1

ð�isþ 1Þni

� �
i¼1���p

, ð45Þ

where �i > 0 and ni are appropriate integers such
that QðsÞ proper. In this case,

TðsÞ ¼ diag
1

ð�isþ 1Þni

� �
i¼1���p

, ð46Þ

which implies that erj � 0 for j 6¼ r. For j¼ r it
suffices to use part (ii) of Lemma 2. Letting
�i ! 0 then yields the result.

(ii) Using equation (32) it follows that

ð1
0

erj ðtÞ dt

����
���� ¼ Gjjð0Þ

Grjð0Þ
�rj �j �

Xn0j
k¼1

1

pjk
þ
Xm0j
‘¼1

1

zj‘

8<
:

9=
;

������
������: ð47Þ

Also, the poles of the nominal jth loop cannot be
made arbitrarily fast, due to the robust stability
requirement. It follows that there must be, at
least, one relatively slow dominant pole, which
we denote pdom. The result then follows if one
lets �dom ¼ �ð1=pdomÞ. œ

Remark 4: The last corollary states that it is always
possible, in the centralized control of MP MIMO
plants, to achieve lower accumulated errors than when
using a decentralized design. This is as expected since
GðsÞ is assumed here to have no MIMO zeros and
therefore there are no (important) limitations on the
achievable performance for centralized designs. On the
other hand, decentralized designs need to deal with
the possibility that the nominal model has NMP zeros
and that the nominal closed loop poles cannot be made
arbitarily fast, due to robust stability requirements.
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Next, consider a more general situation when the full
MIMO plant is NMP. Assume first that the RGA has
diagonal elements larger than 1 (which implies that
negative elements exist in the same row and in the
same column). Say that �jj > 1. Assume that a decen-
tralized controller is designed for the given plant.
Then, the error in channel j, when a unit step reference
is applied to that channel, is given by (24) with j¼ r, that
is

ð1
0

ejjðtÞ
���
decent

dt ¼ �jj �j �
Xnj
k¼1

1

pjk
þ
Xmj

‘¼1

1

zj‘

( )

> �j �
Xnj
k¼1

1

pjk
þ
Xmj

‘¼1

1

zj‘

( )
: ð48Þ

We next consider the same plant, but under centralized
control. Also assume for simplicity that all products
GjiðsÞQijðsÞ, i ¼ 1, 2, . . . , p, have the same delays, and
the same poles and zeros as ½ToðsÞ�jj. Then equation (33)
together with (35), for j¼ r, implies that

ð1
0

ejjðtÞ
���
cent

dt ¼ �jj �
Xnjjp
‘¼1

1

pjj‘
þ
Xnjjz
k¼1

1

zjjk

0
@

1
A

¼ �j �
Xnj
k¼1

1

pjk
þ
Xmj

‘¼1

1

zj‘

( )
: ð49Þ

This result establishes that centralized control yields
a lower accumulated error than the decentralized one.
This result relies on the assumption that �jj > 1. If
that is not the case, the centralized design can still deli-
ver smaller accumulated errors in the remaining chan-
nels. To see this assume that all products GjiðsÞQijðsÞ,
i ¼ 1, 2, . . . , p, have the same delays, and the same
poles and zeros. Then using (33) and (35), with j 6¼ r,
yields

ð1
0

erj ðtÞ
���
cent

dt ¼ 0: ð50Þ

The comparison is further highlighted when NMP zeros
are present. Consider a poorly conditioned 2� 2 plant,
with �11 ¼ �22 > 1. It will be assumed that this pairing
defines the nominal diagonal model GoðsÞ used for
decentralized design.
Suppose that the plant has only one NMP MIMO

zero at s¼ z, associated with the canonical left direction
vj

T . Note that this implies that GjjðsÞ has a NMP zero
at s¼ z.
Consider a nominal (decentralized) design that cancels

all stable zeros of the nominal model and has
(very) fast closed loop poles. Under these conditions,

Theorem 2 implies that

ð1
0

ejjðtÞ dt ¼ �jj
1

z
: ð51Þ

On the other hand, consider a centralized design based

on the same criteria as in the decentralized case, i.e.:

fast uncancelled closed loop poles and no uncancelled

stable zeros. Also, assume that QijðsÞ cancels all of the
stable zeros of GjiðsÞ. Under these conditions, according

to Theorem 3, we have that

ð1
0

ejjðtÞ dt ¼
Xp
i¼1

�ji
1

z
¼

1

z
: ð52Þ

Note that in the above we have used the fact that each
row sum of the RGA equals 1.

Since the plant is assumed to be poorly conditioned,

�jj > 1. Then, (51) implies that the long term average

of ejjðtÞ, in the decentralized case, will be large
relative to the centralized case. Note that this average

will be even greater if z is a slow NMP zero. On the

other hand, (52) shows that even for poorly conditioned

plants, it is possible to achieve good performance with
a centralized design, and that this is easier if z is a fast

NMP zero. In conclusion, having �jj > 1 may seriously

deteriorate the achievable performance in the decentra-
lized case, as compared to the centralized case.

If 0 < �jj < 1, then the accumulated error in the jth

channel, when using a decentralized architecture, may

be smaller than for the case of centralized control.
However, the effect in the rest of the channels can be

always made smaller in the centralized architecture due

to the structure of (33) and the constraint (35) for j 6¼ r.

4.2. Bounds on transient times

Accumulated errors, as discussed so far, generate insight

into control loop performance. However, accumulated

errors are not a norm, and a small value does not neces-
sarily mean that the error itself is small. In this section,

lower bounds for the settling time in decentralized con-

trol loops are derived. Also the interdependence of these
bounds with other time-domain performance indicators

is explored. Several cases of interest are discussed and

compared with the centralized case.
To generate a unified treatment of the subject, first

note that the results in Theorems 2 and 3, all take the

generic form

ð1
0

eðtÞ dt ¼ �: ð53Þ
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We thus define a feedback control scalar error function,

eðtÞ ¼ rðtÞ � yðtÞ, with Laplace transform E(s). We

assume that this error is driven by a unit step input,

i.e. rðtÞ ¼ �ðtÞ, and that E(s) can be described by

EðsÞ ¼ ð1� FðsÞÞ
1

s
ð54Þ

with

FðsÞ ¼
XM
i¼1

FiðsÞe
�s�i , ð55Þ

where Fi(s) is stable and strictly proper 8i 2

ð1, 2, . . . ,MÞ. We also assume that Fð0Þ ¼ 1.
With this error definition we consider the accumu-

lated error as in (53).
We next analyse several specific cases.

Case 1: : < 0 In this case, the error must be predomi-

nantly negative, that is, the negative accumulation must

be larger than the positive accumulation. This implies

that y(t) overshoots the reference r(t). We can then

build a lower bound, ea(t), for the error, as shown in

figure 2. This bound is defined by

eaðtÞ ¼
1 0 < t < �min

�" �min 	 t < t2
��"e�ðt�t2Þpd t � t2,

8<
: ð56Þ

where 0 < � < 1, " ¼ �mint eðtÞ, �min ¼ minf�1,
�2, . . . , �Mg and pd ¼ j<{dominant poles of FðsÞgj.

Therefore

� � �min � "ðt2 � �minÞ � �"

ð1
t2

e�pd ðt�t2Þ dt

¼ �min � "ðt2 � �minÞ �
�"

pd
: ð57Þ

If we recall that, in this case, �<0 and making the

assumption that pd ðt2 � �minÞ � 1, we then have

t2 � �min �
j ��þ �minj

"ð1þ �Þ
¼ B1: ð58Þ

The following observations apply

. t� ¼ t2 � �min is the fraction of the settling time that

can be reduced by the designer.
. Inequality (58) provides a lower bound for t�, which

has a direct relation with j�� �minj, i.e. with the

error accumulated in ½�min,1Þ, and an inverse relation

with " and �, i.e. with the size of the overshoot and the

speed of response.
. An alternative formulation for (58) is

" �
j ��þ �minj

ðt2 � �minÞð1þ �Þ
, ð59Þ

where now a lower bound for the overshoot is obtained.
. The results above are valid not only for �<0, but

also for the more general case � < �min.

Assume now that F(s) has a zero located at s ¼ �c,

c>0, with c < jpd j, then an additional constraint on

the error function arises, namely

ð1
0

eðtÞect dt ¼ �
1

c
< 0: ð60Þ

This constraint expresses the fundamental limitation

in Theorem 1, which is independent of the controller

structure.
When the lower bound for the error defined in figure 2

is used in (60) we obtain

�
1

c
�

ð�min

0

ectdt� "

ðt2
�min

ectdt� �"

ð1
t2

e�ðt�t2Þpd ectdt ð61Þ

which leads to

t2 � �min �
1

c
ln

1

"
þ 1

� 	
þ ln

x

�þ x

� 	� 	
¼ B2, ð62Þ

t

 t2τmin

− ε

−ε β

1

Figure 2. Example of admissible error function (solid-thin)

and lower bound (solid-thick) for case 1.
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where x ¼ ðpd=cÞ � 1. Note that, if pd 
 c, then

t2 � �min �
1

c
ln

1

"
þ 1

� 	
: ð63Þ

Since (58) and (62) must be simultaneously satisfied, we

finally have that

t2 � �min � maxfB1;B2g

¼ max
j ��þ �minj

"ð1þ �Þ
;
1

c
ln

1

"
þ 1

� 	
þ ln

x

�þ x

� 	� 	� �
:

ð64Þ

Case 2: : > 0 We next consider the case when the

accumulated error is positive due to a NMP zero in

F(s), located at s¼ c, c>0. Then,

ð1
0

eðtÞe�ct dt ¼
1

c
> 0 ð65Þ

ð1
0

yðtÞe�ct dt ¼ 0: ð66Þ

Equation (66) implies that y(t) must be negative in a

nonzero time interval, that is, there exists undershoot.

In other words, the error e(t) must be larger than 1 in

some nonzero time interval.
In this case, an upper bound eb(t) for the error can be

built, as shown in figure 3. Here,

ebðtÞ ¼

1 0 < t < �min

1þ � �min 	 t < t2

�ð1þ �Þe�ðt�t2Þpd t � t2,

8><
>: ð67Þ

where 0 < � < 1, 1þ � ¼ maxt eðtÞ and pd ¼
j<fdominant poles of FðsÞgj.

Substituting these bounds into (65), and proceeding as
in the derivation of B2 in (62), we obtain

t2 � �min �
1

c
ln

1þ �

�

� 	
þ ln

q� �

q

� 	� 	
¼ B3, ð68Þ

where q ¼ 1þ pd=c. Note that if pd 
 c, then the set-
tling time satisfies

t2 � �min �
1

c
ln

1þ �

�

� 	
: ð69Þ

As in the case when �<0, the accumulated error leads
to an additional constraint for the settling time. This
constraint can be obtained in the same way as for
case 1, that is

ð1
0

eðtÞ dt ¼ � 	 �min þ ð1þ �Þðt2 � �minÞ

þ �ð1þ �Þ

ð1
t2

e�ðt�t2Þpd dt: ð70Þ

Hence, assuming that pdðt2 � �minÞ � 1, we have that

t2 � �min �
�� �min

ð1þ �Þð1þ �Þ
¼ B4: ð71Þ

The above results show that the settling time, t2 � �min,
must satisfy the following constraint

t2 � �min � maxfB3;B4g

¼ max
1

c
ln

1þ �

�

� 	
þ ln

q� �

q

� 	� 	
;

�� �min

ð1þ �Þð1þ �Þ

� �
:

ð72Þ

Note that if small overshoot is specified, i.e. �! 0,
then B4 remains bounded, while B3 diverges. This
suggests that, in this case, pairing has no signi-
ficant influence on the achievable performance of a
decentralized loop.

5. Examples

This section presents several examples which illustrate
the ideas presented in this work.

t

1

tτmin t2

1 + δ

γ(1 + δ)

Figure 3. Example of admissible error function (solid-thin)

and upper bound (solid-thick) for case 2.
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5.1. Example 1

Consider the following MP plant GðsÞ with RGA given
by ,, where

GðsÞ ¼

4

ðsþ 1Þðsþ 4Þ

3

2ðsþ 1Þðsþ 3Þ

2

ðsþ 1Þðsþ 4Þ

3

ðsþ 1Þðsþ 3Þ

2
6664

3
7775;

, ¼
1

3

4 �1

�1 4

� �
: ð73Þ

5.1.1. Decentralized control. With the nominal model
GoðsÞ given by (1), a decentralized controller CdðsÞ is
designed to achieve a nominal complementary sensitiv-
ity given by

ToðsÞ ¼

16

ðsþ 4Þ2
0

0
16

ðsþ 4Þ2

2
664

3
775: ð74Þ

If we now compute the accumulated errors for a unit step
reference at channel 1, we have based on Theorem 2

ð1
0

e11ðtÞ
��
decent

dt ¼
2

3
ð75Þð1

0

e12ðtÞ
��
decent

dt ¼ �
1

3
: ð76Þ

5.1.2. Centralized control. We next consider a centra-
lized design, based on GðsÞ, to achieve a true comple-
mentary sensitivity equal to the nominal one above,
i.e., TðsÞ ¼ ToðsÞ. This latter design uses the Youla-para-
meter:

QðsÞ ¼

48ðsþ 1Þ

9ðsþ 4Þ
�
24ðsþ 1Þ

9ðsþ 4Þ

�
32ðsþ 1Þðsþ 3Þ

9ðsþ 4Þ2
64ðsþ 1Þðsþ 3Þ

9ðsþ 4Þ2

2
664

3
775 ð77Þ

If we now compute the accumulated errors for unit step
reference at channel 1, we have based on Theorem 3 that

ð1
0

e11ðtÞ
��
cent

dt ¼
1

2
ð78Þð1

0

e12ðtÞ
��
cent

dt ¼ 0: ð79Þ

Comparing (75), (76) with (78), (79) we see that, the
centralized design has the potential for better perfor-
mance, since the accumulated errors are smaller than
are achievable in the decentralized case.

5.2. Example 2

Consider the NMP plant

GðsÞ ¼

12 s� 1

12 sþ 1ð Þ 4500 sþ 1ð Þ

12 s� 1

12 sþ 1ð Þ 4500 sþ 1ð Þ

�2

3 4500 sþ 1ð Þ

12 s� 1

12 sþ 1ð Þ 4500 sþ 1ð Þ

2
664

3
775
ð80Þ

whose RGA is given by

, ¼
3 �2
�2 3

� �
: ð81Þ

Note that GðsÞ has two NMP zeros: one at s ¼ 1=60
with left direction h1 ¼ 2�1=2½ �1 1 �T and the other,
at s ¼ 1=12 with left direction ~hh1 ¼ ½ 1 0 �T .

We will consider two design strategies: a decentralized
one and an H2 (sub)optimal centralized one. We use
the term ‘‘real loop’’ to describe the situation when the
controller is applied to the true (non diagonal) plant
model.

5.2.1. Decentralized control. Suppose that the nominal
decentralized design is characterized by

ToðsÞ

¼

�0:15ðs� 0:08333Þ

ðsþ 0:08333Þðsþ 0:15Þ
0

0
�0:15ðs� 0:08333Þ

ðsþ 0:08333Þðsþ 0:15Þ

2
664

3
775
ð82Þ

and that a step reference of unit magnitude is applied to
the first channel in the real loop. Note that the NMP
zero at s ¼ 1=60 is a non canonical one and does not
appear in any of the diagonal elements of the plant.

Figure 4 shows the accumulated error in each channel,
J1(t) and J2(t), where

J1ðtÞ ¼

ðt
0

e11ð�Þ d�, J2ðtÞ ¼

ðt
0

e12ð�Þ d�: ð83Þ

To apply Theorem 2 observe that in the nominal designs
associated with both channels, there is an uncancelled
NMP zero at s¼ 0.08333 and two uncancelled stable
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closed loop poles at s ¼ �0:15 and s ¼ �0:08333.
Therefore, Theorem 2 predicts

J1ð1Þ ¼

ð1
0

e11ðtÞ dt

¼ �11 0þ
1

0:08333
þ

1

0:15
þ

1

0:08333

� �
¼ 92

J2ð1Þ ¼

ð1
0

e12ðtÞ dt ¼
G22ð0Þ

G12ð0Þ
�12

� 0þ
1

0:08333
þ

1

0:15
þ

1

0:08333

� �
¼ �61:33:

ð84Þ

Note that these results are verified by the steady

state values shown in figure 4 based on the simulated

behaviour.
The corresponding closed loop error response is

shown in figure 5, under the same conditions as used

to generate figure 4. We next interpret figure 5 in the

light of the results in x 4.2. Using the notation of figure

3, we choose � � 0:23 and � � 0:0813 (this leads to

je1ðtÞj < 0:1 for t � t2), and from figure 5 we see that

t2 � 210. We next compare this experimental result

with the bound given in (72). Specifically, we note

that the dominant pole of SðsÞ is located at s ¼

�pd ¼ �0:0107. The bounds B3 and B4 are then given

by

B3 ¼
1

0:08333
ln 1�

0:08333�

pd þ 0:08333

� �
1þ �

�

� 	� 	
¼ 19:22

B4 ¼
1

ð1þ �Þð1þ �Þ
92ð Þ ¼ 60:17 ð85Þ

where we have used (24) to evaluate the appropriate

value of �. Hence we see that (72) is indeed satisfied.

Moreover, we see that the bound B4 is the more

restrictive.
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Figure 4. Accumulated integral of the errors for rðtÞ ¼

½1 0��ðtÞ (decentralized case) – Example 2.
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Figure 5. Loop errors for rðtÞ ¼ ½1 0��ðtÞ (decentralized

case) – Example 2.
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5.2.2. Centralized control. Using the results in Silva
and Salgado (2005) it is possible to show that the

stable (and not necessarily proper) Youla parameter

QoptðsÞ that minimizes the 2-norm of the loop error for

any given reference direction is given by

QoptðsÞ ¼ arg min
QðsÞ stable

kEðsÞk22

¼ 	cðsÞGoðsÞð Þ
�1, ð86Þ

where ncðsÞ is an unitary (and with identity DC gain)

zero interactor for GoðsÞ (Silva and Salgado 2005),

given in this case by

In order to obtain a proper controller, QoptðsÞ must be

detuned to obtain a stable and proper parameter

QsuboptðsÞ. This can be done considering, for example,

QsuboptðsÞ ¼ QoptðsÞ

1

�1sþ 1
0

0
1

�2sþ 1

2
64

3
75, ð88Þ

where �1,�2 > 0 for stability. Note that if ð�1,�2Þ !
ð0, 0Þ, QoptðsÞ is recovered.
To compare the responses in this case with the

decentralized one, �1 ¼ 10 and �2 ¼ 2 were selected.

With this choice QsuboptðsÞ is given by

Figure 6 shows the loop errors for a step reference in the

first channel. It can be seen that the centralized case

clearly shows better settling time and smaller amount

of overshoot in the error. Additional simulations

showed that this conclusion also applies for other

reference directions.
Figure 7 shows the accumulated errors J1(t) and J2(t),

defined as above, for the same reference as used to

generate figure 6. The steady state values achieved by

these functionals are smaller than their decentralized

counterparts. (Compare figure 7 with figure 4.)

To verify the result in Theorem 3, J1ð1Þ and J2ð1Þ
can be calculated explicitly. To that end, note that
here we have

G11ðsÞQ11ðsÞ ¼
�0:078462ðsþ 0:06373Þðs� 0:08333Þ

ðsþ 0:1Þðsþ 0:08333Þðsþ 0:01667Þ

G12ðsÞQ21ðsÞ ¼
0:04ðs� 0:08333Þ

ðsþ 0:1Þðsþ 0:01667Þ

G21ðsÞQ11ðsÞ ¼
0:052308ðsþ 0:06373Þ

ðsþ 0:1Þðsþ 0:01667Þ

G22ðsÞQ21ðsÞ ¼
0:04ðs� 0:08333Þ

ðsþ 0:1Þðsþ 0:01667Þ
: ð90Þ

Therefore, Theorem 3 predicts

J1ð1Þ ¼ �11 0þ
1

0:1
þ

1

0:08333
þ

1

0:01667

�

�
1

0:06373
þ

1

0:08333

	

þ�12 0þ
1

0:1
þ

1

0:01667
þ

1

0:08333

� 	
� 70:9

J2ð1Þ ¼
G21ð0Þ

G11ð0Þ
�11 0þ

1

0:1
þ

1

0:01667
�

1

0:06373

� 	

þ
G22ð0Þ

G12ð0Þ
�12 0þ

1

0:01667
þ

1

0:1
þ

1

0:08333

� 	
� �55:38,

which are in agreement with the asymptotic values
shown in figure 7.

5.3. Example 3

The next example illustrates a case where the RGA
(when considered in isolation) does not give the full
picture of the achievable decentralized performance.
(Of course this is known in terms of other considerations
but is further exemplified by the accumulated error
results presented in this paper.)

ncðsÞ ¼

�0:38462ðsþ 0:08333Þðs� 0:04333Þ

ðs� 0:08333Þðs� 0:01667Þ

0:92308s

ðs� 0:01667Þ

�0:92308sðsþ 0:08333Þ

ðs� 0:08333Þðs� 0:01667Þ

�0:38462ðsþ 0:04333Þ

ðs� 0:01667Þ

2
6664

3
7775: ð87Þ

QsuboptðsÞ ¼

�353:0769ðsþ 0:06373Þðsþ 0:0002222Þ

ðsþ 0:1Þðsþ 0:01667Þ

�726:9231ðs� 0:1548Þðsþ 0:0002222Þ

ðsþ 0:5Þðsþ 0:01667Þ

180ðsþ 0:08333Þðsþ 0:0002222Þ

ðsþ 0:1Þðsþ 0:01667Þ

�1350ðsþ 0:0002222Þðsþ 0:08333Þ

ðsþ 0:5Þðsþ 0:01667Þ

2
66664

3
77775: ð89Þ
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Consider the plant

GðsÞ ¼

�10 sþ 1

5 sþ 1ð Þ 6 sþ 1ð Þ

30 sþ 1=2

5 sþ 1ð Þ 6 sþ 1ð Þ

�
1

2

1

5 sþ 1ð Þ 6 sþ 1ð Þ

�2 sþ 1

5 sþ 1ð Þ 6 sþ 1ð Þ

2
6664

3
7775
ð91Þ

whose MIMO zeros are located at s ¼ �0:0750�
0:2385j (i.e. GðsÞ is a minimum phase plant). The
RGA for this plant is given by

, ¼
0:8 0:2
0:2 0:8

� �
: ð92Þ

5.3.1. Decentralized control. The nominal model is
given by

GoðsÞ ¼

�10 sþ 1

5 sþ 1ð Þ 6 sþ 1ð Þ
0

0
�2 sþ 1

5 sþ 1ð Þ 6 sþ 1ð Þ

2
6664

3
7775 ð93Þ

which implies that any nominal stabilizing decentralized

design must have a complementary sensitivity of the
form

ToðsÞ ¼
ð�10sþ 1Þ �TT11ðsÞ 0

0 ð�2sþ 1Þ �TT22ðsÞ

� �
, ð94Þ

where �TT11ðsÞ, �TT22ðsÞ are stable transfer functions with

an appropriate relative degree. Suppose that �TTiiðsÞ has

no zeros. From Theorem 3.2, and assuming that fast

closed loop poles are chosen, we have

ð1
0

e11ðtÞ dt � 10 ��11 ¼ 8,

ð1
0

e21ðtÞ dt 	 10 �
G11ð0Þ

G21ð0Þ
�21 ¼ �4 ð95Þ

ð1
0

e12ðtÞ dt � 2 �
G22ð0Þ

G12ð0Þ
�12 ¼ 0:8,

ð1
0

e22ðtÞ dt � 2 ��22 ¼ 1:6: ð96Þ
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Figure 7. Accumulated integral of the errors for

rðtÞ ¼ ½1 0��ðtÞ (centralized, non optimal case) – Example 2.
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Figure 6. Loop error for rðtÞ ¼ ½1 0��ðtÞ (centralized case) –

Example 2.
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Actually, the results in (95) and (96) represent loose

bounds on the accumulated errors, since these bounds

were calculated assuming that the nominal design can

be made arbitrarily fast. This is clearly unrealistic, due

to the modelling errors that arise when considering the

diagonal nominal model. By way of illustration, note

that in this case, the left multiplicative modelling error

is given by

GDðsÞ ¼ GðsÞG�1o ðsÞ � I ¼

0 �
1

2

60 sþ 1

2 s� 1

1

2

1

10 s� 1
0

2
6664

3
7775:
ð97Þ

The corresponding singular values are sketched in

figure 8. In order to assure robust stability of the real

loop, it is sufficient that

�

 GDðj!ÞToðj!Þ

 �

¼ �



0
1

2
�TT22ðsÞ 60 sþ 1ð Þ

�
1

2
�TT11ðsÞ 0

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
< 1, 8!,

ð98Þ

where �

f�g denotes the largest singular value. (See also

Remark 4.) Therefore, the bandwidth of �TT22ðsÞ should

be selected smaller than about 0:03½rad=s�. Note that

there is no restriction on the bandwidth of �TT11ðsÞ.

Using the last considerations, it is possible to refine

the bounds given in (95), (96) to

ð1
0

e11ðtÞ � 10 ��11 ¼ 8ð1
0

e21ðtÞ 	 10 �
G11ð0Þ

G21ð0Þ
�21 ¼ �4 ð99Þð1

0

e12ðtÞ � ð2þ 33Þ �
G22ð0Þ

G12ð0Þ
�12 ¼ 14,ð1

0

e22ðtÞ � ð2þ 33Þ ��22 ¼ 28: ð100Þ

We thus see that there are severe limitations on the inte-
gral of errors for a decentralized design for this example.
These limitations arise from the non-minimum phase
behaviour of the diagonal elements G11ðsÞ and G22ðsÞ.

5.3.2. Centralized control. Note that, since GðsÞ is
minimum phase, there are no significant performance
limitations based on the use of a centralized MIMO
design. This can be achieved, for example, by choosing

QðsÞ ¼ G�1ðsÞ

1

�1sþ 1
0

0
1

�2sþ 1

2
64

3
75, ð101Þ

where �1,�2 > 0. (See Corollary 1, part (i).) This choice
for QðsÞ implies that

ð1
0

e11ðtÞ dt ¼ �1,

ð1
0

e21ðtÞ dt ¼ 0 ð102Þð1
0

e12ðtÞ dt ¼ 0,

ð1
0

e22ðtÞ dt ¼ �2: ð103Þ

Indeed, e21ðtÞ � e12ðtÞ � 0 for this centralized design.
Comparing the results in (102), (103) with those in

(99), (100) we see that it is always possible to choose
values for �1,�2, in the centralized design, that achieve
lower accumulated errors than in the proposed decentra-
lized design. This is as expected since GðsÞ has no MIMO
NMP zeros and therefore there are no (important) lim-
itations on the achievable performance of the centralized
control of this plant. On the other hand, in the decentra-
lized case, the fact that the nominal model has NMP
zeros imposes restrictions on the design and perfor-
mance, which are revealed using the results presented
in this paper.

5.4. Example 4

The aim of this example is to show how one can use
accumulated errors, as an indicator of performance
of decentralized control loops. In particular, we will
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s 
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B
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Figure 8. Singular values of GDðsÞ – Example 3.
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consider the conditions under which it is possible to

make the accumulated errors as small as possible with

a decentralized control structure.
Consider the NMP 3� 3 plant model given by

GðsÞ ¼

�10ðsþ 0:4Þ

ðsþ 4Þðsþ 1Þ

0:5

ðsþ 1Þ

�1

ðsþ 1Þ

2

ðsþ 2Þ

20ðs� 0:4Þ

ðsþ 4Þðsþ 2Þ

1

ðsþ 2Þ

�2:1

ðsþ 3Þ

3

ðsþ 3Þ

30ðsþ 0:4Þ

ðsþ 4Þðsþ 3Þ

2
666666664

3
777777775
:

ð104Þ

This model has a non-canonical NMP zero at s¼ 0.2295

and a RGA given by

, ¼

2:8571 �1:2857 �0:57143

�2:8571 3:2381 0:61905

1 �0:95238 0:95238

2
664

3
775: ð105Þ

The above array suggests the pairing of the ith input

with the corresponding ith output, if a decentralized

control structure is to be considered. Therefore, a

suitable nominal model is given by the NMP transfer

function

GoðsÞ ¼ diag
�10ðsþ 0:4Þ

ðsþ 4Þðsþ 1Þ
,
20ðs� 0:4Þ

ðsþ 4Þðsþ 2Þ
,
30ðsþ 0:4Þ

ðsþ 4Þðsþ 3Þ

� �
:

ð106Þ

Since CdðsÞ is assumed to belong to the class of all stabi-

lizing controller for GoðsÞ, then it is clear that all nomin-

ally admissible complementary sensitivities are given by

ToðsÞ ¼

T11ðsÞ 0 0

0 ð�sþ 0:4Þ �TT22ðsÞ 0

0 0 T33ðsÞ

2
664

3
775: ð107Þ

In the nominal diagonal case, and without paying atten-

tion to the nominal NMP zero at s¼ 0.4 or to the mag-

nitude of the control action, there is no need to consider

any zeros in T11ðsÞ, �TT22ðsÞ or T33ðsÞ, and the poles of

ToðsÞ may be chosen arbitrarily. Therefore, Theorem 2

allows one to establish the following lower bounds

for the accumulated error, due to a unit step change

in the first channel:

ð1
0

e11ðtÞ dt � �11 0� 0þ 0f g ¼ 0 ð108Þð1
0

e12ðtÞ dt �
G22ð0Þ

G12ð0Þ
�12 0� 0þ

1

0:4

� �
¼ 6:43 ð109Þð1

0

e13ðtÞ dt �
G33ð0Þ

G13ð0Þ
�13 0� 0þ 0f g ¼ 0: ð110Þ

To illustrate (108)–(110), figure 9 shows the error of the
true loop for a step change in the first channel, for the
following choice for ToðsÞ:

ToðsÞ ¼ diag
60000

ðsþ 300Þðsþ 200Þ
,

�
�3000ðs� 0:4Þ

ðsþ 40Þðsþ 30Þ
,

6

ðsþ 3Þðsþ 2Þ

�
: ð111Þ

We have chosen a narrow bandwidth for T33ðsÞ to avoid
stability problems in the real loop. The simulated accu-
mulated errors are 0.024, 6.51 and 0.47 for channels 1, 2
and 3, respectively. These results can be seen to be con-

sistent with the bounds given above.
It is clear that the choice made above for ToðsÞ is

not advisable, since no consideration has been made of
robustness issues, nor consideration of the fundamental
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Figure 9. Loop errors of the proposed decentralized design

for rðtÞ ¼ ½1 0 0��ðt� 1Þ – Example 4.
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limitations imposed by the nominal NMP zero. As a
matter of fact, it is illustrative to note that the response
of the proposed design, although very fast in channels 1
and 3, exhibits unacceptable undershoot in the output of
channel 2. It is therefore reasonable to conjecture that
any suitable norm used to evaluate the performance of
the real loop based on the proposed controller, would
show this performance degradation. As an example,
the two norm of the error, J, in the case of figure 9 is
found to be Jdecent ¼ 6:76, which is considerably greater
then the centralized minimum Jopt cent ¼ 2:82, which can
be evaluated using the results in Chen et al. (2000).

6. Conclusions

This paper has presented a time domain constraint on
the integral of the error in a MIMO system subject to
a decentralized control architecture constraint. This
time domain result can be considered as an additional
cost arising from the use of decentralized control.
Interestingly, the result is related to the well known
RGA, but shows that the RGA is not the only issue of
importance in decentralized performance evaluation.
Thus, the result gives further insight into the use of
this measure to determine input–output pairings in
decentralized systems and its interplay with other key
plant features such as time delays, NMP zeros, etc.
In addition, the results allow one to obtain explicit

bounds for the settling time and undershoot in decentra-
lized architecture control schemes. These bounds can be
used to quantify the performance loss arising from
decentralized control, and to compare it with centralized
designs.
An important conclusion is that, in the centralized

case, the design can take advantage of the plant inter-
actions to achieve better performance than in a decen-
tralized one. Usually, decentralized designs simply
ignore the plant interactions and therefore, do not
attempt to use the interactions in a beneficial fashion.
Future work in this area could include the extension

to the case of open loop unstable systems. Also, further
research is desirable on the issue of evaluation of decen-
tralized performance bounds, considering the structure
restricted minimization of suitable performance indices,
such as the 2-norm of the loop error for step references.
(The centralized case is treated in Chen et al. (2000),
Toker et al. (2002), Su et al. (2003), Silva and Salgado
(2005). A solution to this problem would lead to insight-
fully comparisons between decentralized and centralized
control performance, allowing one to explicitly charac-
terise the cases in which decentralized controllers
are guaranteed to perform poorly, etc. In Sourlas
and Manousiousthakis (1995) some progress has
been made in this direction, but the numerical procedure

proposed, does not provide insight into the nature of
the solution. Another extension of interest would be
the consideration of other control strategies, such as tri-
angular or block diagonal designs. This could provide
insight into how the structure enrichment of the control-
ler may (or may not) lead to better performing control
loops. Preliminary results in this direction have been
reported in Salgado and Conley (2004).
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A. Güçlü and B. Özgüler, ‘‘Diagonal stabilization of linear multi-
variable systems’’, International Journal of Control, 43, pp. 965–980,
1986.

A. Gündes and M. Kabuli, ‘‘Reliable decentralized integral action
controller design’’, IEEE Transactions on Automatic Control, 46,
pp. 296–301, 2001.

M. Hovd and S. Skogestad, ‘‘Sequential design of decentralized
controllers’’, Automatica, 30, pp. 1601–1607, 1994.

V. Kariwala, ‘‘Multi-loop controller design and performance
analysis’’, PhD dissertation, Chemical and Materials Engineering,
University of Alberta (2004).

D. Mayne, ‘‘The design of linear multivariable systems’’, Automatica,
9, pp. 201–207, 1973.

M. Morari and E. Zafiriou, Robust Process Control, Englewood Cliffs,
New Jersey: Prentice Hall Inc., 1989.

M. Salgado and A. Conley, ‘‘MIMO interaction measure and
controller structure selection’’, International Journal of Control,
77, pp. 367–383, 2004.

A.V. Savkin and I.R. Petersen, ‘‘Optimal stabilization of linear systems
via decentralized output feedback’’, IEEE Transactions on
Automatic Control, 43, pp. 292–294, 1998.

M.M. Serón, J.H. Braslavsky and G.C. Goodwin, Fundamental
Limitations in Filtering and Control, London: Springer Verlag, 1997.

E. Silva and M. Salgado, ‘‘Performance bounds for feedback control
of nonminimum-phase MIMO systems with arbitrary delay
structure’’, IEE Proceedings – Control Theory and Applications,
152, pp. 211–219, 2005.

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design, New York: Wiley, 1996.

D. Sourlas and V. Manousiousthakis, ‘‘Best achievable decentralized
performance’’, IEEE Transactions on Automatic Control, 40,
pp. 1858–1871, November 1995.

W. Su, L. Qiu and J. Chen, ‘‘Fundamental performance limitations in
tracking sinusoidal signals’’, IEEE Transactions on Automatic
Control, 48, pp. 1371–1380, 2003.

H. Sung and S. Hara, ‘‘Properties of sensitivity and complementary
sensitivity functions in SISO digital control systems’’, International
Journal of Control, 48, pp. 2429–2439, 1998.

O. Toker, L. Chen and L. Qiu, ‘‘Tracking performance limitations in
LTI multivariable discrete-time systems,’’ IEEE Transactions on
Circuits and Systems–Part I: Fundamental Theory and Applications,
49, pp. 657–670, 2002.

J. Yuz and G. Goodwin, ‘‘Loop performance assessment for decentra-
lied control of stable linear systems’’, European Journal of Control, 9,
pp. 116–130, 2003.

1062 G. C. Goodwin et al.


