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Abstract: Important results about two-degree-of-freedom PID controllers are surveyed for the 
tutorial purpose, including equivalent transformations, various explanations about the effect of 
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trollers, and an optimal tuning method. 
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I. INTRODUCTION 

The degree of freedom of a control system is de-
fined as the number of closed-loop transfer functions 
that can be adjusted independently [1]. The design of 
control systems is a multi-objective problem, so a 
two-degree-of-freedom (abbreviated as 2DOF) con-
trol system naturally has advantages over a one-
degree-of-freedom (abbreviated as 1DOF) control 
system. This fact was already stated by Horowitz [1], 
but did not attract a general attention from engineers 
for a long time. It was only in 1984, two decades af-
ter Horowitz's work, that a research to exploit the 
advantages of the 2DOF structure for PID control 
systems was made [2]. 

In [2-4], various 2DOF PID controllers were pro-
posed for industrial use and detailed analyses were 
made including equivalent transformations, inter-
relationship with previously proposed “advanced-
type” PID (i.e., the preceded-derivative PID and the 
I-PD) controllers, explanations of the effects of the 
2DOF structure, and a list of optimal parameters. 
Consequently, the results obtained were adopted by 
vendors [5-7], and further studies were made about 
optimal tuning [8-10], methods for digital implemen-
tation with magnitude and/or slope limiters [11], an 
anti-reset-windup method [11], and other topics aris-
ing in industrial applications [12-14].  
 Most of the above researches were published in 
Japanese and have not been translated into English 

yet. The purpose of this article is to survey recent 
results on 2DOF controllers, so that engineers inter-
ested in this topic can easily exploit the results. 
 

2. PRELIMINARIES 

A general form of the 2DOF control system is 
shown in Fig.1, where the controller consists of two 
compensators )(sC  and )(sC f , and the transfer 
function )(sPd  from the disturbance d to the con-
trolled variable y is assumed to be different from the 
transfer function )(sP  from the manipulated vari-
able u to y. )(sC  is called the serial (or main) com-
pensator and )(sC f  the feedforward compensator. 
The closed-loop transfer functions from r to y and d 
to y are, respectively, given by 
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Here, the subscript “2” means that the quantities are 
of the 2DOF control system.  
 It can be shown that the steady-state error to the 
unit step change of the set-point variable, ,r stepε , 
and the steady-state error to the unit step disturbance, 

,d stepε , become zero robustly if 
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(3) imposes conditions on the controller.  The simplest 
case that satisfies these conditions is the one that 

)(sC  includes an integrator and )(sC f  does not. (4) 
requires that the detector is accurate in the steady 
state. When this condition is violated, the steady-state 
error given by  
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arises, provided that (3) and (5) are satisfied. (5) is 
the conditions on the plant, where the first equation 
requires that )(sP  is not of differentiating and the 
second that the disturbance is not integrated more 
times than the manipulated variable. Strictly speaking, 
this statement is correct only when the plant is de-
scribed by the minimum realization of the transfer 
matrix [ ])(),( sPsP d . From the mathematical stand-
point, (3)-(5) are nothing but sufficient conditions 
that make the steady-state errors zero robustly. But 
from the industrial viewpoint they can be regarded as 
necessary. 
 
3. 2DOF PID CONTROLLER AND ASSUMP-

TIONS ON CONTROL SYSTEMS 

A 2DOF PID controller is the controller of Fig.1 
with )(sC  being the conventional PID element and 

)(sC f  being some appropriate element satisfying 
the second criterion in (3). Considering that the major 
advantage of the PID controller lies in its simplicity, 
it was proposed to include only the proportional 
and/or the derivative components in )(sC f  [2-4]. In 
this case, )(sC  and )(sC f  are given by  
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where )(sD  is the approximate derivative given by 
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Note that the minus sign appears in )(sC f  due to 
the reason that will be explained in Section 5. The 
three parameters of )(sC , i.e., the proportional gain 

PK , the integral time IT , and the derivative time DT , 
will be referred to as “basic parameters,” and the two 
parameters of )(sC f , i.e., α  and β , as “2DOF 
parameters.” In the following, these five parameters 
will be treated as adjustable parameters. The τ  in 
the approximate derivative (9) is set as /δTτ D= , 
where δ  is called the derivative gain. It has been a 
traditional practice to use a fixed value of δ . We 
follow this tradition, partly because it has been done 
traditionally because of engineering convenience and 
partly because our numerical experiments indicated 
that the change of δ  does not influence the optimal 
values of the other five parameters drastically, where 
some care must be taken for certain types of plants. 
 In order to simplify the problem, we introduce the 
next two assumptions that are appropriate for many 
practical design problems with some exceptions. 
  

Assumption 1: The detector has sufficient accuracy 
and speed for the given control purpose, i.e., 

 0d1,H m ==)(s . (10) 

Assumption 2: The main disturbance enters at the 
manipulating point, i.e., 

 )()( sPsPd = . (11) 

Under these assumptions, (4) and (5) are satisfied for 
non-differentiating plants. Since (7) and (8) satisfy 
(3) when IT  is finite, the 2DOF PID controller 
makes the steady-state errors to a step reference and a 
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Fig. 1. Two-degree-of-freedom (2DOF) control system. 
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step disturbance robustly 0 if it is used in the PID or 
the PI action. 
 

4. EQUIVALENT FORMS OF 2DOF PID 
CONTROLLERS 

Fig. 2 shows a 2DOF PID control system under As-
sumptions 1 and 2. The controller part is a two-input 
one-output system where the set-point variable r and 
the controlled variable y are the input signals and the 
manipulated variable u is the output signal. Transform-
ing this controller part, Fig. 2 can be changed equiva-
lently to Fig. 3 - Fig. 6. The controllers in these figures 
are nothing but different expressions of the same 
2DOF PID controller. They shall be referred to as fol-
lows:  

Fig. 2 is feedforward type (FF type), because it is 
obtained by adding a feedforward path from y to u to 
the conventional PID. Fig. 3 is feedback type (FB 
type), because it is obtained by adding a feedback 
path from y directly to u to the conventional PID, 
where )(sCb  will be called “feedback compensa-
tor.” Fig. 4 is set-point filter type (Filter type), be-
cause it is obtained by inserting a filter in the set-
point path of the conventional PID controller, where 
F(s) will be called “set-point filter.” Fig. 5 is filter  
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Fig. 2. Feedforward type (FF type) expression of the 
2DOF PID control systems under Assump-
tions 1 and 2. 
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Fig. 3. Feedback type (FB-type) expression of the 
2DOF PID control system. 

and preceded-derivative type, because it is obtained 
by inserting a filter in the set-point path of the pre-
ceded-derivative type PID controller. And finally, Fig. 
6 is component-separated type, because the three 
functional components (i.e., proportional, integral 
and derivative components) are separately built in. 
 The above equivalent transformations give basic 
understanding regarding the effects of the 2DOF 
structure from various viewpoints (see the next sec-
tion). At the same time it is useful for developing an 
efficient algorithm in digital implementation [5, 8, 9, 
11, 12], introducing nonlinear operations on the ma-
nipulated variable such as magnitude limitation, rate 
limitation, directional gain adjustment, etc. [5, 11, 13], 
realizing bumpless switching, implementing an anti-
reset-windup mechanism, managing the feedforward 
signals coming from other systems, utilizing predict-
able disturbances, etc. [5, 8, 9, 11, 12], and convert-
ing the conventional PID controller already built in to 
the 2DOF PID [5, 8, 12, 14]. 
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Fig. 4. Set-point filter type (Filter type) expression of 
the 2DOF PID control system. 
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Fig. 5. Filter and preceded-derivative type expression 
of the 2DOF PID control systems. 
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Fig. 6. Component-separated type expression of the 
2DOF PID control systems. 
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5. EXPLANATIONS ON THE EFFECTS OF 
THE 2DOF STRUCTURE 

The responses of the controlled variable y to the 
unit change of the set-point variable r and to the unit 
step disturbance d are called “set-point response” and 
“disturbance response,” respectively. They have been 
traditionally used as measures of the performance in 
tuning the PID controllers. We will use these re-
sponses in our consideration, too, and see how they 
are improved as a whole by the introduction of the 
2DOF structure. Note that these responses are noth-
ing but the indicial responses of the closed-loop 
transfer functions )(sGyr2  and )(sGyd2  given by 
(1) and (2), respectively. Here, note that Assumptions 
1 and 2 are adopted so that )(sH  of (1) and (2) is 1 
and )(sPd  of (2) is )(sP . The simulation studies 
carried out for this section were made assuming that 
the approximate derivative (9) is nearly ideal, i.e., the 
derivative gain δ  was set to 1000. 
 
5.1. Problem of the conventional PID controller  
 Consider the conventional control system of Fig. 7, 
which has the 1DOF structure, under Assumptions 1 
and 2. The closed-loop transfer function of this con-
trol system from the set-point variable r to the con-
trolled variable y and that from the disturbance d to y 
are, respectively, given by 
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Here, the subscript “1” means that the quantities are 
of the 1DOF control system. These two transfer func-
tions include only one tunable element, i.e., )(sC , so 
they cannot be changed independently. To be con-
crete, the two functions are bound by  

 )()(G)()( sPssPsG yd1yr1 =+ . (14) 

This equation shows explicitly that for a given P(s) 
)(sGyr1  is uniquely determined if )(sGyd1  is cho-

sen, and vice versa. This fact causes the following 
difficulty. Namely, if the disturbance response is op-
timized, the set-point response is often found to be 
poor, and vice versa. For this reason, some of the 
classical researches [15, 16] on the optimal tuning of 
PID controllers gave two tables: one for the “distur-
bance optimal” parameters, and the other for the “set-
point optimal” parameters. 
 Let us see the above fact by a numerical example. 
Suppose the controller )(sC  of Fig. 7 is the PID  
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Fig. 7. Conventional 1DOF PID control system under 
Assumptions 1 and 2. 
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(a) Set-point response. 
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(b) Disturbance response. 
 
Fig. 8. Responses of the conventional 1DOF PID 

control system. 
 

element given by (7) and the plant is 

 0.2ses1
1sP −

+
=)( . (15) 

The disturbance optimal parameters obtained by the 
Chien-Hrones-Reswick (abbreviated as CHR) for-
mula [15] are 

 0.084T0.40,T60K DIP === ,. . (16) 

For the above parameter setting, the closed-loop re-
sponses become as given by the solid lines in Fig. 8. 
They show that the disturbance response is optimal 
but the set-point response suffers from the overshoot 
larger than 50%. On the other hand, the set-point op-
timal parameters by the CHR formula are 

 0.094T1.35,T754K DIP === ,. . (17) 

For this parameter setting, the closed-loop re-
sponses become as given by the dotted lines in Fig. 8. 
Now, the set-point response is fine with a small over-
shoot but the disturbance response deteriorates sub-
stantially. 
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Fig. 9. Conceptual illustration of the effect of the 

2DOF structure. 
 

The situation described above can be illustrated, 
conceptually, as shown in Fig. 9. Only the hatched 
area is realizable by the conventional 1DOF PID con-
troller. So, we cannot optimize the set-point response 
and the disturbance response at once. This situation 
has forced the engineers to choose one of the next 
alternatives: 
(i) to choose one of the Pareto optimal point (on the 

bold line of Fig. 9), or 
(ii) to use the disturbance optimal parameters and 

impose limitation on the change of the set-point 
variable (i.e., to use a rate limiter for r). 

Under the process engineering situation of early 
days, when the set-point variable was not changed 
very often, the second alternative was satisfactory 
enough. Therefore, many of the optimal tuning meth-
ods [17-23] gave only the “disturbance optimal” pa-
rameters. However, the situation has changed in the 
last few decades and the process control systems are 
required to change the set-point variable frequently 
nowadays. The 2DOF PID controller offers a power-
ful means to cope with such a situation. Namely, it 
enables us to make both the set-point response and 
the disturbance response practically optimal at once 
within the linear framework, as explained in the next 
subsection. 
 
5.2. Explanation based on the feedforward type ex-

pression 
 By comparing (1) and (2) with (12) and (13) (note 
that Assumptions 1 and 2 are adopted here), we ob-
tain that the closed-loop transfer functions of the 
2DOF control system are related to those of the 
1DOF control systems, in terms of the FF type com-
pensators, by 
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Fig. 10. Responses of the 2DOF PID control system. 
 
assuming that )(sC  is the same in both control sys-
tems. From this, we can observe that 
(i) the disturbance responses of the two PID control 

systems are the same, and 
(ii) the set-point responses differ by the amount of 

the second term of (18), which can be changed by 
)(sC f . 

 Thus, it is expected that the set-point response is 
improved without deteriorating the disturbance re-
sponse if we use the 2DOF controller and tune 

)(sC f  appropriately.   
 Let us see a numerical example. Consider the 
2DOF system in Fig. 2 and assume )(sP  is given 
by (15). Let the basic parameters PK , IT  and DT  
be as given by (16) (i.e., the disturbance optimal val-
ues of the 1DOF system), and the 2DOF parameters 
α  and β  be 

 0.63β0.60,α == . (20) 

Then, we obtain the responses as shown in Fig. 10. 
Comparing Fig. 10 with Fig. 8, we find that the over-
shoot in the set-point response of the 1DOF system is 
completely suppressed and that the set-point response 
becomes practically optimal (in the sense that it is 
close to the optimal response of the 1DOF system). 
This improvement is from the effect of the second 
term of (18). Actually, the indicial response of the 
second term is shown in Fig. 11 (note that the minus 
sign is included in (8)). This waveform matches al-
most exactly to the overshoot part of the set-point 
response of the 1DOF control system shown in Fig. 8. 
By superposing these two waveforms, the set-point 
response of the 2DOF system becomes as given in 
Fig. 10. 

A: Disturbance optimal 
B: Set-point optimal 
C: Realizable by 2DOF controller 
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Fig. 11. Indicial response of the second term of (18). 
 

As illustrated above, the effect of the 2DOF struc-
ture can be interpreted as a “superposition of a new 
term (to be exact, the second term of (18)) to the set-
point response.” We studied numerically how this 
superposition works for the cases of representative 
test batches (i.e., the integrator, the first-order lag, the 
integrator & first-order lag, and the second-order lag 
all with a pure delay) which appeared in classical 
researches about PID tuning. As a result, we observed 
the following in most cases [10]: 
(i) If a 1DOF PID control system is tuned to opti-

mize the disturbance response, the set-point re-
sponse tends to have a large overshoot, and  

(ii) the overshoot can be suppressed almost com-
pletely without deteriorating the settling time by 
the second term of (18) in the 2DOF PID control 
system (the worst overshoot was 20 %). 

 Based on the above result, we determined to in-
clude the “minus sign” in the standard form of 

)(sC f  (see (8)). At this point, it may be possible to 
say that the effect of 2DOF structure roughly appears 
as “cutting-off the overshoot of the set-point re-
sponse,” though this interpretation does not necessar-
ily apply to all cases. 
 
5.3. Explanation based on the feedback type expres-

sion 
 The formulae of the feedback type compensators 
given in Fig. 3 indicate that the 2DOF control system 
is obtained by moving some portions of the propor-
tional and the derivative components of the conven-
tional PID controller to the feedback path )(sCb  
and the amount of the portions to be moved are given 
by α  and β . This observation offers us another 
explanation about the effect of the 2DOF structure. 
Namely, at the beginning of control action to the step 
change of the set-point variable, the proportional 
component conveys the change as it is and the deriva-
tive component amplifies it by the factor of the de-
rivative gain δ , if they are located in )(sC . This 
naturally causes a large overshoot of the set-point 
response. By moving certain portions of those com-
ponents from )(sC  to )(sCb , the overshoot is sup-
pressed. Fig. 12 illustrates this situation, in which the 
set-point response of the 2DOF system is shown 
where the plant and the basic parameters are the same  

0.0
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Fig. 12. Set-point responses as α β=  changes. 
 
as the previous subsection and the 2DOF parameters 
are changed keeping the relation βα = . This figure 
explicitly shows that the set-point response changes 
from the large-overshoot waveform to the over-
damped one as βα =  increases. 
 The idea to move the proportional and/or the de-
rivative components from )(sC  to )(sCb  existed 
(and practiced) before the proposal of the 2DOF PID 
controller. Namely, the “preceded-derivative” PID, 
which has the structure of Fig. 3 with the following 

)(sC' and )(sCb  

 )()(,)( sDTKsCsT
11KsC' DPb
I

P =






 += , (21) 

was used already in 1970’s [24]. The I-PD controller, 
which has the structure of Fig. 3 with the following  

)(sC'  and )(sCb  

 )},({)(,)( sDT1KsCsT
1KsC' DPb
I

P +==  (22) 

was proposed by Kitamori [25] and claimed to be 
more suitable for parameter adjustment. These “ad-
vanced-type” PID controllers as well as the conven-
tional PID controller can be obtained from the 2DOF 
PID controllers as special cases by choosing 2DOF 
parameters appropriately. Namely, the conventional 
PID controller is obtained by setting 0βα == , the 
preceded-derivative PID by setting 0α = and 1β = , 
and the I-PD by setting 1βα == . 
 
5.4. Explanation based on the set-point filter type 

expression 
 As explained in Subsection 5.1, one of the alterna-
tives to solve the tuning problem of the conventional 
PID controller was to use the disturbance optimal 
parameters and limit the rate of the change in the set-
point variable. Namely, when a step-change of the 
controlled variable y is requested, the set-point vari-
able r is changed as given in Fig. 13 in the actual op-
eration. The set-point filter type expression reveals 
that the same sort of operation is carried out in the 
2DOF PID controller, too. Fig. 14 gives the indicial 
response of the set-point filter )(sF  of Fig. 4,  
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Fig. 13. Conventional “rate-limiting” operation. 
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Fig. 14. Indicial response of the set-point filter F(s). 
 
where the basic parameters and the 2DOF parameters 
are given by (16) and (20), respectively. Comparing 
Fig. 14 with Fig. 13, we can see that the basic strat-
egy to avoid the large overshoot is the same in the 
case of the 2DOF PID method and in the case of the 
operational method for the conventional PID. How-
ever, the two methods sharply differ in that the 2DOF 
PID realizes this strategy within the linear framework 
whereas the operational method for the conventional 
PID implements it as a nonlinear (conditional) opera-
tion. 
 
5.5. Remarks about the effect of the 2DOF structure 
 As explained in Subsection 5.3, the idea of remov-
ing the proportional and/or derivative components 
from the serial path )(sC  to the feedback path 

)(sCb  existed before the proposal of the 2DOF PID 
controller. In addition, as explained in Subsection 5.4, 
the strategy which is employed in the 2DOF PID is 
basically the same with the one used in the classical 
method of operation which has been practiced in ap-
plication of the conventional PID. These facts might 
give an impression that the 2DOF PID does not in-
volve anything novel. But it must be noted that the 
idea of the 2DOF PID controller enables us to view 
the classical contrivances in a unified way, i.e.: 

(i) It was clarified that the conventional PID, the 
preceded-derivative PID, and the I-PD controllers 
are nothing but special cases of one general class 
of controllers (i.e., the 2DOF PID). In other 
words, these 3 controllers were homotopically 
connected by the introduction of the idea of 
2DOF PID structure. 

(ii) It was clarified that the “rate limiting” operation 
rule given in Fig. 13 can be realized within the lin-
ear framework, and essentially has the same sort of 
effect with the preceded-derivative and the I-PD 
structure. Thus, we are given the freedom of trans-

forming the controller equivalently in a various 
fashion and facilitated with many ways of intro-
ducing other necessary nonlinear operations such 
as magnitude limitation, rate limitation, bumpless 
switching, anti-reset windup operation, etc. 

 Some remarks from the modern theoretic point of 
view are to be made. The effect of the 2DOF struc-
ture is obtained by re-allocation of the zeros of the 
transfer function from the set-point variable r to the 
controlled variable y. It must be also noted that the 
2DOF structure is realized by the feedforward 
compensator )(sC f , so is effective only in the range 
where the sensitivity function is small enough. This 
means that it is fruitless to try to adjust minute parts 
of the response waveform by )(sC f . This fact justi-
fies the strategy to use a simple element as )(sC f . 
  

6. OPTIMAL TUNING 

In this section, we study the tuning problem of the 
2DOF PID controllers using the feedforward type 
expression of Fig. 2. We employ the set-point re-
sponse and the disturbance response, defined in the 
previous section, to evaluate the performance of the 
control system as have been traditionally done in the 
tuning of conventional PID controllers.   
 
6.1. Basic strategy 
 The set-point response is nothing but the indicial 
response of the closed-loop transfer function )(sGyr2  
given by (1), and the disturbance response is that of 

)(sGyd2  given by (2), as stated in the previous sec-
tion. Equation (1) tells that the disturbance response 
is completely determined by the serial compensator 

)(sC . On the other hand, equation (2) tells that the 
set-point response depends on both )(sC  and 

)(sC f , so can be still adjusted by )(sC f  even after 
)(sC  is fixed. This observation suggests the next 

tuning method. 
 
Two-step Tuning Method: 

Step 1: Optimize the disturbance response by tun-
ing )(sC  (i.e. by adjusting the basic pa-
rameters PK , IT , and DT ). 

Step 2: Let )(sC  be fixed and optimize the set-
point response by tuning )(sC f  (i.e. by ad-
justing the 2DOF parameters α  and β ). 

 
The above method has advantages that the classical 
result about PID tuning can be utilized in Step 1, that 
the number of parameters to be optimized at once is 
not large (i.e., 3 and 2), and that we can maintain in-
tuitive understanding about what are going on in each 
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step. On the other hand, this method does not neces-
sarily guarantee to give the “overall optimal.”  To be 
concrete, the major characteristics (for instance, 
poles) of the system are determined at the first step, 
and, if that is chosen too extremely, tuning in the sec-
ond step becomes difficult so that we can only attain 
a very poor set-point response. This phenomena are 
actually observed if we remove Assumption 2 of Sec-
tion 3 and apply the two-step tuning method to the 
case where )(sPd  has a longer time constant 
than )(sP . In such a case, we have two alternatives: 
to maintain the two-step strategy and modify the re-
sult appropriately, or to carry out the overall tuning 
(i.e., to optimize the 5 parameters at once). This sort 
of problem is studied in [26]. In the following, we 
use the above two-step tuning method to calculate 
optimal parameters under Assumption 2.  
 
6.2. Frequency Domain Performance Index for PID 

Tuning 
 In this subsection, we explain a tuning method that 
uses a frequency domain performance index. As ex-
plained before, we can use the results of classical 
researches [15-23] for Step 1. However, criteria used 
in those researches are under influence of intuitive 
judgment of the researchers and are not easy to be 
extended to Step 2. So, the following alternative [10] 
will be adopted. Namely, first, such a performance 
index is constructed that the optimized results match 
with the classical “optimal” for the case of the con-
ventional PID control systems. Then, that perform-
ance index will be used for optimization of Steps 1 
and 2.   
 As a general form of the performance index, con-
sider the functional 

[ ] dω
ds

sHdωλsHp;λ,J

2

0
jωs

p

p

∫
∞

=







=
)()()( .  (23)  

Here, )(sH  is the function, such as ssGyd )/(  or 
ssGer )/( , which gives the response of the “error e” to 

a step input in the Laplace domain. Equation (23) can 
be understood as follows. When 1λ =ω)( , the next 
equation can be derived via Parseval’s formula: 

 [ ] { } dttetsHp;1,J
0

2
step

p∫
∞

π= )()( .         (24) 

This type of squared time-weighted integral error has 
been used in many literatures on PID tuning. A dis-
tinctive feature in (23) is introduction of the fre-
quency weight )(ωλ . By using )(ωλ  that has lar-
ger values in the high frequency domain, we can sup-
press the feedback gain in the high frequency range 

and, in most cases of the PID control applications, 
prevent the system to become oscillatory.  By apply-
ing the above type of performance index with various 

)(ωλ  and p to representative test batches, it was 
found [10] that 

 2p,ωωλ 1/4 ==)(  (25) 

makes the conventional PID control systems the “op-
timal” in the classical sense, which implies  

(i) the overshoot is less than 20 %, and  
(ii) the settling time is almost the same with or less 

than that of the “optimal” system tuned by the 
CHR method. 

 We will use the performance index (23) with 
)(ωλ  and p given by (25) for tuning the 2DOF PID 

control system as follows: 
Step 1: Adjust the basic parameters PK , IT  and 

DT  so that [ ]ssGp;λ,J ed2 )/(  is minimized.  
Step 2: Keeping the basic parameters be fixed, ad-

just the 2DOF parameters α and β  so that 
[ ]ssGp;λ,J er2 )/(  is minimized. 
 

Here, ed2G  is the closed-loop transfer function from 
the disturbance d to the error e and er2G  is that from 
the set-point variable r to e, respectively, given by         

)()(),()( sG1sGsGsG yr2er2yd2ed2 −=−= .    (26) 
 
6.3. Optimal parameters 
 The optimal parameters were calculated for the 
next 7 types of test batches assuming that the deriva-
tive element )(sD  is an ideal one (i.e., the deriva-
tive gain δ  is infinite). 

  ( )1 1

LseP s
Ts

−
=

+
, (27) 

  ( )
( )

2 21

LseP s
Ts

−
=

+
,  (28) 

  ( )
( )

3 31

LseP s
Ts

−
=

+
, (29) 

  ( )4

LseP s
s

−
= , (30) 

  ( ) ( )5 1

LseP s
s Ts

−
=

+
, (31) 

  ( )
( )

6 21

LseP s
s Ts

−
=

+
, (32) 
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Table 1. Optimal parameters for ( )
1

LseP s
Ts

−
=

+
. 

/L T  PK  IT /T  DT /T  α  β  
0.1 12.57 0.22 0.04 0.64 0.66
0.2 6.32 0.40 0.08 0.61 0.64
0.4 3.21 0.69 0.16 0.56 0.61
0.8 1.68 1.09 0.30 0.47 0.54

 

Table 2. Optimal parameters for
( )2

( )
1

LseP s
Ts

−
=

+
. 

/L T  PK  IT /T  DT /T  α  β  
0.1 47.58 0.40 0.19 0.66 0.84
0.2 15.18 0.72 0.31 0.64 0.81
0.4 5.52 1.19 0.47 0.60 0.76
0.8 2.34 1.74 0.64 0.52 0.67

 

Table 3. Optimal parameters for 3( )
(1 )

LseP s
Ts

−
=

+
. 

/L T  PK  IT /T  DT /T  α  β  
0.1 12.76 0.98 0.86 0.64 0.79
0.2 6.65 1.44 0.89 0.62 0.77
0.4 3.58 1.93 0.94 0.57 0.73
0.8 1.98 2.43 1.04 0.50 0.65

 

Table 4. Optimal parameters for ( )
LseP s
s

−
= . 

PK L⋅  IT /L  DT /L  α  β  
1.253 2.39 0.414 0.66 0.68 

 

Table 5. Optimal parameters for ( )
(1 )

LseP s
s Ts

−
=

+
. 

/L T  PK  IT /T  DT /T  α  β  
0.1 41.31 0.42 0.22 0.67 0.85
0.2 12.04 0.81 0.38 0.66 0.84
0.4 3.93 1.55 0.62 0.66 0.82
0.8 1.50 2.87 0.90 0.66 0.78

 

Table 6. Optimal parameters for 2( )
(1 )

LseP s
s Ts

−
=

+
. 

/L T  PK  IT /T  DT /T  α  β  
0.1 5.72 1.17 1.30 0.67 0.81 
0.2 2.97 1.95 1.33 0.67 0.80 
0.4 1.60 3.01 1.41 0.67 0.79 
0.8 0.88 4.57 1.55 0.67 0.77 

 

  ( )7 2 21

LseP s
Ts T s

−
=

+ +
. (33) 

Table 7. Optimal parameters for 2 2( )
1

LseP s
Ts T s

−
=

+ +
. 

 
/L T PK  IT /T DT /T  α  β  

0.1 40.69 0.41 0.22 0.66 0.85 
0.2 11.45 0.74 0.40 0.64 0.84 
0.4 3.39 1.17 0.67 0.57 0.80 
0.8 1.06 1.38 1.06 0.35 0.69 

 
 

The results are as listed in Tables 1 - 7, while for-
mulae giving those values are given in [27]. In con-
cern with those numerical results, we can observe the 
following. 

By carrying out simulation study, we could find the 
following. 

(i) Generally, change of the 2DOF parameters α  
and β  are not very large. 

(ii) Sensitivity of the response to the change of 
the controller parameters is not very high at 
the optimal point except the case of the oscil-
latory plant (33). So, Tables 1-6 are expected 
to work fairly well so long as the type of the 
real plant fits one of the test batches (27)-(32). 

(iii) For the oscillatory plant given by (33), sensi-
tivity of the responses to the change of the 
controller parameters was found considerably 
high.  So, it is recommended not to rely upon 
Table 7 for this class of plants, but to carry 
out deliberate tuning. 

(iv) If the derivative gain δ  is finite and de-
creases, the optimal values tend to change as 
follows, where the change is small for the 
cases of the plants (27) and (30) but is signifi-
cant, specifically about the proportional gains, 
for (28), (29), (31), and (32). 
PK becomes smaller, IT  becomes larger, and 

IT  becomes smaller. 
 α  becomes larger, and β  becomes smaller. 
 

7. CONCLUSIONS 

 In this paper, some of the researches on the two-
degree-of-freedom PID controllers were surveyed for 
the tutorial purpose, including the optimal parameter 
values of the controller in the three term (i.e., PID) 
action for 7 classes of test batches. As for the optimal 
parameter values in the case of the PI action, the 
readers are referred to [27]. To determine the optimal 
parameter values for the case of the PD action, we 
cannot extend the method as explained in Section 6 
directly, but need to make a little more consideration, 
because the steady state error, ,d stepε , to the step 
disturbance does not become 0 in this case. Such 
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consideration is made in [28]. If the readers want to 
be more acquainted with theoretical results on the 
PID controller in general, they are referred to [29] 
and [30].  As for the conditions (3)-(5) that guaran-
tee zero steady-state errors, they are referred to [31]. 
 The 2DOF PID controller can solve the problem of 
the conventional PID controller that the optimal tun-
ing for the disturbance response and the one for the 
set-point response are not compatible in most cases 
of practical importance. This problem was not very 
important in the early days of PID application when 
the change of the set-point variable was not required 
very often, but is very important in the modern prac-
tice of process control where the change of the set-
point variable is frequently required. This article is 
intended to be a handy reference for engineers who 
are faced to such a problem.  
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