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This article considers high-purity distillation columns with large recycle (and thus internal)
flow rates. A singular perturbation analysis is employed to document a well-known observation
for such columns, namely, the existence of fast and slow dynamics associated with internal and
external flows, respectively. A nonlinear low-order model of the slow column dynamics, suitable
for analysis and nonlinear feedback controller synthesis, is also derived. A two-tiered controller
design procedure, which incorporates such a nonlinear controller, is finally proposed, and its
performance and robustness characteristics are evaluated through simulations.

1. Introduction

High-purity distillation columns exhibit distinct static
and dynamic characteristics that make them especially
challenging to control (see, e.g., refs 1-3). The behavior
of such columns is intrinsically nonlinear; as a result,
linear control methods often become inadequate, neces-
sitating either logarithmic variable transformations,
which tend to “tame” the nonlinearity,1,4,5 or inherently
nonlinear control strategies.6,7 Such columns also typi-
cally exhibit two distinctly different time constants:8-11

(i) a large and dominant time constant with respect to
external flow rates and a (ii) a small time constant with
respect to internal flow rates. From a static perspective,
they exhibit severe ill-conditioning in the form of
different magnitudes of gains in different input direc-
tions.12

The above features have justifiably generated vigor-
ous interest in control strategies for high-purity distil-
lation columns based on low-order models that capture
the essential control-relevant dynamics of the column.
To this end, the approach in refs 5 and 10 involves the
derivation of empirical one- or two-dimensional linear
models of the dominant dynamics and their use within
a robust linear controller design framework. Aiming at
nonlinear controller designs, approaches based on the
derivation of low-order nonlinear models have also been
followed, either using compartmentalized modeling for
different sections of the column13 or using traveling-
wave models.14,15

This paper focuses on high-purity distillation columns
with large liquid/vapor recycle flow rates, generally
considered as especially difficult to control.3 Our objec-
tive is 3-fold:

1. To provide a rigorous justification of the two-time-
scale behavior exhibited by such columns based on an
analysis of a detailed tray-by-tray material balance
model.

2. To develop an explicit nonlinear low-order model
of the slow input/output column dynamics, suitable for
analysis and controller design.

3. To illustrate how such a model can be used in a
two-tiered controller design procedure that accounts
rationally for the nonlinear two-time-scale dynamics of
the column.

The focus throughout the paper is on a simple
distillation column with three components, to highlight
the inherent time-scale separation and the proposed
model reduction and controller design method; the same
approach can be used however in more complex col-
umns. We begin with a brief description of the column
considered and its detailed tray-by-tray material bal-
ance model. We subsequently describe a modeling
framework based on singular perturbations, which
allows documenting in a transparent way the time-scale
separation present in the dynamics of such columns,
where a fast dynamics corresponds to the individual
stages in the column, while a slow dynamics corresponds
to the overall column behavior. Within this singular
perturbation framework, we outline a nonlinear model
reduction procedure, which leads to a low-order non-
linear model of the overall column dynamics suitable
for analysis and nonlinear feedback control. A simula-
tion study is finally used to illustrate the efficacy of the
proposed controller design framework.

2. Process Description and Model

Consider a distillation column with N trays (num-
bered from top to bottom), to which a saturated liquid
feed containing a mixture of three components with
mole fractions x1f, x2f of components 1 and 2, respec-
tively, is fed at (molar) flow rate F on tray Nf. The heavy
component 3 is the desired product and is removed at
the bottom from the reboiler at flow rate B, while the
lighter components 1 and 2 are removed at the top from
the condenser at flow rate D. For simplicity, it is
assumed that (i) the light components 1 and 2 have
constant relative volatilities R1 and R2, respectively, with
respect to the heavy component 3, (ii) the liquid and
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vapor streams leaving each tray are in equilibrium, (iii)
vapor holdup on each tray is negligible, (iv) all compo-
nents have the same density, heat capacity, and latent
heats of vaporization, and (v) there is constant molar
holdup and overflow on each tray. Thus, the vapor flow
rate from each tray is equal to the vapor boilup VB from
the reboiler; the liquid flow rate from each tray in the
enriching section is equal to the liquid recycle R from
the condenser, while the liquid flow rate in the stripping
section is equal to R + F.

Under the above assumptions a standard dynamic
model of the column is easily obtained, given by the
following ODE system:

In the above model, MC, x1,D, and x2,D are the molar
liquid holdup and mole fractions of components 1 and
2 in the condenser, Mi, x1,i, and x2,i are the liquid holdup
and mole fractions of 1 and 2 in tray i, while MR, x1,B,
and x2,B are the corresponding holdup and mole fractions
in the reboiler. Moreover, in the equations for the feed
tray, i ) Nf, the terms F(x1,i-1 - x1,i) and F(x2,i-1 - x2,i)
are replaced with F(x1f - x1,i) and F(x2f - x2,i), respec-
tively. Under the constant relative volatility assump-
tion, the phase equilibrium relationships are given by

where y1,i and y2,i are the mole fractions of 1 and 2,
respectively, in the vapor stream leaving tray i.

We consider the case where large vapor boilup VB and
liquid recycle R are used compared to the feed, distillate,
and bottom product flow rates, to attain a high purity
of the desired component 3 in the bottom product. High
reflux flow rates are often used for high-purity separa-
tion of close-boiling mixtures. For the column, the key
output to be controlled is the bottom product purity, that
is, x3,B ) 1 - x1,B - x2,B, besides the two holdups MC
and MR in the condenser and the reboiler, which behave
as integrators. There are four flow rates, D, B, VB, and
R, that can be manipulated to control the process, in

the presence of disturbances in the feed flow rate F and
composition x1f and x2f.

3. Singular Perturbation Modeling

In this section we outline a modeling framework,
based on singular perturbations, which allows docu-
mentation of the time-scale separation induced by the
large recycle flow rates in the column. To this end, note
that a large liquid recycle R implies an equally large
vapor boilup VB at the nominal steady state. On the
other hand, the feed flow rate F, the distillate flow rate
D, and the bottom product flow rate B are of the same
order of magnitude. Thus, defining the small parameter
ε ) (Dnom/Rnom) and κ1 ) (VBnom/Rnom) ) O(1), where the
subscript “nom” refers to nominal steady-state values
and O(‚) is the standard order of magnitude notation,
the terms involving the large parameter (1/ε) can be
isolated in the model

In the above representation of the process model, Rh and
Vh denote scaled manipulated input variables:

Thus, the process model has the general form

where

is the vector of state variables, us ) [D B]T is the vector
of manipulated inputs corresponding to small flow rates,
and ul ) [Rh Vh ]T is the vector of manipulated inputs
corresponding to large flow rates, while f(x) is a smooth
vector field and gs(x) and gl(x) are smooth matrices with
the following description:

ṀC ) VB - R - D

x̆1,D )
VB

MC
(y1,1 - x1,D)

x̆2,D )
VB

MC
(y2,1 - x2,D) }condenser

x̆1,i ) 1
Mi

[VB(y1,i+1 - y1,i) + R(x1,i-1 - x1,i)]

x̆2,i ) 1
Mi

[VB(y2,i+1 - y2,i) + R(x2,i-1 - x2,i)] }tray i < Nf

x̆1,i ) 1
Mi

[VB(y1,i+1 - y1,i) + R(x1,i-1 - x1,i) + F(x1,i-1 - x1,i)]

x̆2,i ) 1
Mi

[VB(y2,i+1 - y2,i) + R(x2,i-1 - x2,i) + F(x2,i-1 - x2,i)] }tray i g Nf

ṀR ) R + F - VB - B

x̆1,B ) 1
MR

[R(x1,N - x1,B) - VB(y1,B - x1,B) + F(x1,N - x1,B)]

x̆2,B ) 1
MR

[R(x2,N - x2,B) - VB(y2,B - x2,B) + F(x2,N - x2,B)] }reboiler (1)

y1,i )
R1x1,i

1 + (R1 - 1)x1,i + (R2 - 1)x2,i
(2)

y2,i )
R2x2,i

1 + (R1 - 1)x1,i + (R2- 1)x2,i

ṀC )
Dnom

ε
(κ1Vh - Rh ) - D

x̆1,D )
Dnomκ1Vh

εMC
(y1,1 - x1,D)

x̆2,D )
Dnomκ1Vh

εMC
(y2,1 - x2,D) }condenser

x̆1,i )
Dnom

εMi
[κ1Vh (y1,i+1 - y1,i) + Rh (x1,i-1 - x1,i)]

x̆2,i )
Dnom

εMi
[κ1Vh (y2,i+1 - y2,i) + Rh (x2,i-1 - x2,i)] }tray i < Nf

x̆1,i )
Dnom

εMi
[κ1Vh (y1,i+1 - y1,i) + Rh (x1,i-1 - x1,i)] + F

Mi
(x1,i-1 - x1,i)

x̆2,i )
Dnom

εMi
[κ1Vh (y2,i+1 - y2,i) + Rh (x2,i-1 - x2,i)] + F

Mi
(x2,i-1 - x2,i) }tray i g Nf

ṀR )
Dnom

ε
(Rh - κ1Vh ) - B + F

x̆1,B )
Dnom

εMR
[Rh (x1,N - x1,B) - κ1Vh (y1,B - x1,B)] + F

MR
(x1,N - x1,B)

x̆2,B )
Dnom

εMR[Rh (x2,N - x2,B) - κ1Vh (y2,B - x2,B) + F
MR

(x2,N - x2,B) }reboiler

(3)

Rh ) R
Rnom

, Vh )
VB

VBnom
(4)

x̆ ) f(x) + gs(x)us + 1
ε
gl(x)ul (5)

x ) [MC x1,D x2,D ‚‚‚ x1,i x2,i ‚‚‚ MR x1,B

x2,B]T ∈ Rn
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Note that the above model exhibits stiffness owing to
the presence of the small parameter ε (or equivalently
the large parameter 1/ε). This can also be seen by
considering the limit as the recycle flow rate becomes
infinitely large, that is, ε f 0, in which case we observe
a discontinuous or singular perturbation in the model.
This is indicative of the fact that the large recycle flow
rate induces a time scale separation between the
dynamics of the individual trays (fast, owing to the large
“internal” flow rates) and the dynamics of the overall
column (slow, owing to the small feed and product flow
rates).

Stiff models such as the one above are not particularly
suitable for the synthesis of model-based controllers. For
example, standard inversion-type or optimization-type
controllers designed on the basis of such stiff models
are inherently ill-conditioned: they contain the large
parameters of the model, which act as “high gains” and
amplify the effect of even small modeling or measure-
ment errors, with detrimental consequences on stability
and performance (see, e.g., refs 16-18). The rational
paradigm for addressing the control of such two-time-
scale systems involves (i) the derivation of separate
(nonstiff) systems that describe the dynamics in the fast
and slow time scale and (ii) the design of separate fast
and slow controllers on the basis of these systems, to
stabilize the fast dynamics, if they are unstable, and to
achieve desired closed-loop performance objectives in the
slow time scale (see, for example, ref 18). However, a
complication for the system of eq 5 arises from the fact
that the small parameter ε appears in all of the state
equations. This implies that although there exist two
time scales in the dynamics of such systems, there is
no explicit separation between fast and slow state
variables; all the state variables exhibit fast transients
followed by slower dynamics. This should be contrasted
with standard singularly perturbed systems of the form

with a nonsingular (∂G(ú,η,u,0)/∂η), for which the states
η are the fast ones and the states ú are the slow ones.
The next section addresses the model reduction and
controller design problems for the system of eq 5. The
procedure followed is conceptually similar to the one
used for standard singularly perturbed systems, albeit
technically more complicated.

4. Nonlinear Model Reduction and Control

We begin with the derivation of a description of the
fast dynamics of the process. To this end, let us define
the fast time scale τ ) (t/ε), which is in the order of
magnitude of the residence time in the individual stages
of the column with the large internal flow rates. In this
time scale the system of eq 5 takes the form

Considering the limit ε f 0, we obtain the following

ú̇ ) F(ú,η,u,ε)
(6)

εη̆ ) G(ú,η,u,ε)

dx
dτ

) εf(x) + εgs(x)us + gl(x)ul (7)
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description of the fast dynamics of the system:

Note that the inputs us have no effect on the fast
dynamics; only the inputs ul corresponding to the large
flow rates have an effect and can be used for control in
this fast time scale. A natural control objective in this
time scale is the stabilization of the liquid holdups in
the condenser and the reboiler which behave like
integrators. This is easily achieved by using simple
proportional controllers for the inputs ul ) [Rh Vh ]T:

The above relations are equivalent to standard propor-
tional control laws

with the proportional gains Kc1 ) RnomKh c1 and Kc2 )
VBnomKh c2.

We turn now to the slow time scale t to obtain a
description of the slow dynamics. In particular, multi-
plying eq 5 by ε and considering the limit ε f 0, it is
evident that the following algebraic constraints have to
be satisfied in the slow dynamics:

The above constraints essentially denote the (quasi)
steady-state condition for the fast dynamics described
in eq 8. With the above observation, referring back to
the system description in eq 5 and considering the limit
ε f 0 in the slow time scale t, it follows that the term
(gl(x)ul)/ε is indeterminate. Defining this finite but
unknown term as the additional variables z ) limεf0
(gl(x)ul)/ε, we obtain the following description of the slow
dynamics of the system of eq 5:

where b(x) is a diagonal matrix given by

Equation 11 is a differential algebraic equation (DAE)
system with nontrivial index,16 due to the fact that the
algebraic equations 0 ) gl(x)ul in eq 11 are singular with
respect to the “algebraic” variables z.

Note that the number of constraints in eq 10 is the
same as the dimension of the state (or “differential”)
variables x. This would imply that there is no slow
dynamics, or equivalently no time-scale multiplicity, in
the column. However, the constraints in eq 10 are not
linearly independent. In particular, one can obtain the
last three components (corresponding to the reboiler)
as linear combinations of the others. More specifically,
labeling the components of the constraints in eq 10 as
C0, C1, C2 (condenser), i1, i2 (tray i), and R0, R1, R2
(reboiler) for simplicity of notation, it can be easily
verified that

Thus, defining ĝl(x)ul as the vector field consisting of
the first n - 3 components of gl(x)ul that are linearly
independent, and correspondingly ẑ as the vector of
algebraic variables consisting of the first n - 3 compo-
nents of z, the slow dynamics are described by the DAE
system:

with the differential variables x ∈Rn and the algebraic
variables ẑ ∈ Rp (p ) n - 3), where b̂(x) is a sparse
matrix of dimension n × p and has the form given Chart
1. For the DAE system in eq 13, the index is defined as
the number of times the algebraic equations 0 ) ĝl(x)ul

have to be differentiated to be able to obtain expressions
for z̆, that is, reduce the DAE into an equivalent ODE.
However, note that the algebraic equations involve the
manipulated inputs ul and, thus, the index may depend

dx
dτ

) gl(x)ul (8)

Rh ) 1 - Kh c1(MCnom - MC)
(9)

Vh ) 1 - Kh c2(MRnom - MR)

R ) Rnom - Kc1(MCnom - MC)

VB ) VBnom - Kc2(MRnom - MR)

x̆ ) f(x) + gs(x)us + b(x)z
(11)

0 ) gl(x)ul

R0 ) -C0

R1 ) (x1,B - x1,D)C0 - C1 - ∑
i)1

N

i1 (12)

R2 ) (x2,B - x2,D)C0 - C2 - ∑
i)1

N

i2

x̆ ) f(x) + gs(x)us + b̂(x)ẑ
(13)

0 ) ĝl(x)ul
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on the control law for ul. More specifically, the first
constraint, that is, 0 ) κ1Vh - Rh , does not involve any of
the differential variables x and hence the index of this
DAE system is not well-defined since any differentiation
of this constraint will not involve the algebraic variables
z. A well-defined index of the above DAE system exists
only if these inputs ul vary according to a feedback
control law ul ) ul(x). In particular, under the propor-
tional feedback control in eq 9, one differentiation of the
constraints 0 ) ĝl(x)ul(x) yields a set of algebraic
equations that can be solved for ẑ in terms of x and us:

That is, the DAE system in eq 13 has an index νd )
2 (another differentiation would yield the expression for
z̆). Thus, 0 ) ĝl(x)ul(x) are the only constraints in the
differential variables x and the slow dynamics in the
column is consequently of order n - p ) 3, while the
fast dynamics is of dimension n - 3.

An explicit ODE description of order three of this slow
column dynamics can be obtained in transformed coor-
dinates by incorporating the constraints ĝl(x)ul(x) in
these coordinates. More specifically, considering the
nonlinear coordinate change,

in the new coordinates ú and η, the states η ) ĝl(x)ul(x)
≡ 0 and can be eliminated. The following nonlinear ODE
model of order three is then obtained, in terms of the
state variables ú ) [MR x1,B x2,B]T,

where fh(x) is a vector field consisting of the last three
components of f(x) and bh(x) and gjs(x) are matrices
consisting of the last three rows of b̂(x) and gs(x),
respectively. This is precisely the model of the nonlinear
slow dynamics induced by the large recycle flow rates
in the column; this model can be used efficiently for
analysis and controller design purposes.

Note that, in this slow time scale, only the inputs
corresponding to the small flow rates us ) [D B]T are
available to control the slow dynamics. The two outputs
to be controlled in this slow time scale are the bottom
product purity, that is, y1 ) (1 - x1,B - x2,B) and y2 )
MR + MC; the latter output, that is, the total holdup in
the reboiler and the condenser, must be stabilized in
the slow time scale too, as it is not affected by the
internal flow rates in the column and behaves as an
integrator.

Remark 1. An important feature of the slow column
dynamics is that its dimension (three) is constant,
irrespective of the total number of trays in the column.
In a more general column with c components, the
dimension of the slow dynamics of the overall column
will be c (c + 1, if energy balances are also included).

Remark 2. The proposed two-tiered controller design
framework, with the natural separation of the different
flow rates according to their magnitude, and their use
as manipulated inputs in the appropriate time scale
(small flow rates in the slow time scale, large flow rates
in the fast time scale) leads to inherently well-condi-
tioned controllers, avoiding excessive variations in the
order of magnitude of the manipulated flow rates.

Remark 3. In the previous discussion, we addressed
only the control of the product composition at the
bottom. Often, it is desired to control product composi-
tion in both the distillate and the bottom product,
leading to three outputs to be controlled in the slow time
scale. However, there are only two manipulated inputs
D and B that can be directly manipulated in the slow
time scale. This can be overcome through a more general

Chart 1

ẑ ) R(x) + â(x)us

[ú
η ]) T(x) ) [MR

x1,B
x2,B

ĝl(x)ul(x)
] (14)

ú̇ ) (fh(x) + bh(x)R(x))x)T-1(ú,0) + (gjs(x) +
bh(x)â(x))x)T-1(ú,0) (15)
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composite controller design approach. More specifically,
the setpoints for the condenser/reboiler holdups used
in the fast proportional control can be treated as
additional manipulated input variables in the slow time

scale, leading to a cascaded control configuration where
the slow control law decides the variation for these
setpoints while the fast controllers track these slowly
varying setpoints in the fast time scale using the liquid
recycle and vapor boilup flow rates. However, in this
case, the DAE system of eq 13 that describes the slow
dynamics of the column is nonregular19 since the
algebraic constraints explicitly involve the setpoints for

Figure 1. Profile for bottom product purity obtained starting from
slightly perturbed initial conditions, depicting the two-time-scale
behavior.

Figure 2. Closed-loop input-output profiles under controller designed on the basis of the detailed model, in the nominal case.

Table 1. Description of Column Variables and Their
Nominal Values

variable description value

B bottom product flow rate (mol/min) 50.0
D distillate flow rate (mol/min) 50.0
F feed flow rate (mol/min) 100.0
Kc1 proportional controller gain (min-1) 20.0
Kc2 proportional controller gain (min-1) 20.0
MC condenser liquid holdup (mol) 180.0
Mi liquid holdup on tray i (mol) 175.0
MR reboiler liquid holdup (mol) 200.0
N total no. of trays 15
Nf feed tray 8
R liquid recycle flow rate (mol/min) 1000.0
VB vapor boilup flow rate (mol/min) 1050.0
R1 relative volatility of component 1 1.5
R2 relative volatility of component 2 1.3
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the reboiler/condenser holdups, which are manipulated
inputs. Thus, a feedback regularization is required for
the derivation of state-space realizations and controller
design (see ref 19).

5. Simulation Study

In this section we focus on a specific column with large
internal flow rates, and we illustrate the application and
efficacy of the proposed controller design framework.
The nominal values of the process variables at steady
state for the column considered, as well as the gains of
the proportional level controllers employed, are given
in Table 1.

Initially, we simulated the column model of eq 1 with
the above parameters, starting from an initial condition
slightly perturbed from the nominal steady state to
illustrate the two-time-scale behavior. In these simula-
tions we implemented the proportional controllers for
the holdups MR and MC in the fast time scale, to ensure
the stability of these holdups in the fast time scale,
which is necessary for a meaningful simulation run.
Figure 1 shows the profile for the bottom product purity

x3,B from t ) 0 to t ) 100 min, and a zoom-in view of
the first few minutes. Clearly, the plot shows a fast
initial transient within the first few seconds followed
by a slow transient to the final steady-state value over
a longer time period, demonstrating thus the two-time-
scale behavior of the column.

For this column with the two-time-scale dynamics, we
applied the proposed nonlinear controller design frame-
work and studied its performance and robustness
through simulations of the detailed model of eq 1. In
particular, for the slow time scale, a nonlinear input/
output linearizing controller was designed on the basis
of the state-space realization in eq 15 to control the two
outputs y1 and y2 using the inputs us. The relative orders
of the two outputs are r1 ) 1 and r2 ) 1. Thus, the
controller was designed to enforce first-order decoupled
responses of the form

The resulting input/output linearizing controller was
coupled with an external linear controller with integral

Figure 3. Closed-loop input-output profiles under controller designed on the basis of the detailed model, in the presence of 1% error in
R1.

yi + γi1

dyi

dt
) vi, i ) 1, 2 (16)
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action to enforce the response:

in the nominal closed-loop system and asymptotically
reject the effects of (constant) errors in the process
parameters and disturbances in the feed composition,
that is, x1f, x2f; y1sp and y2sp denote the setpoints for the
respective outputs. The controller was tuned with the
parameters γ11 ) 20 min and γ21 ) 20 min.

The performance of the proposed controller was
compared with that of an analogous input/output lin-
earizing controller designed on the basis of the detailed
stiff model in eq 1 under the same proportional control
for ul in eq 9 (such an approach does not account for
the two-time-scale nature of the process). On the basis
of the model in eq 1, the relative orders of the two
outputs are r1 ) 2 and r2 ) 1. Thus, the controller was
designed to enforce the closed-loop input/output re-
sponses:

and tuned with the parameters â11 ) 30 min, â12 ) 255
min2, and â21 ) 20 min. In all simulation runs, the
detailed model in eq 1 was used to simulate the process.

Figure 2 shows the closed-loop profiles for the inputs
and the controlled outputs under the latter controller,
designed without accounting for the time-scale multi-
plicity, for a 2.5% increase in the setpoint for bottom
product purity at t ) 15 min. In this nominal case,
without any modeling errors, the controller yields the
requested input/output responses. However, this con-
troller is highly sensitive to small modeling errors since
the feedback control law for D and B involve the large
flow rates R and VB, which magnify the effects of these
small modeling errors. Figure 3 shows the closed-loop
input/output profiles in the presence of a small, 1%,
error in R1, without any setpoint changes. Clearly, the
effect of this small modeling error is highly magnified

Figure 4. Closed-loop input-output profiles under controller designed on the basis of a reduced-order model for slow column dynamics,
in the nominal case.

yi + γi1

dyi

dt
) yisp, i ) 1, 2 (17)

y1 + â11

dy1

dt
+ â12

d2y1

dt2
) y1sp (18)

y2 + â21

dy2

dt
) y2sp
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and the controller evaluates very large control action
for D and B which consequently leads to closed-loop
instability.

Figure 4 shows the performance of the proposed
controller designed on the basis of the reduced-order
model for the slow column dynamics, for a 2.5% increase
in y1sp at t ) 15 min. Clearly, the controller yields
excellent tracking in the nominal case. Figure 5 shows
the performance of the controller for the same setpoint
change, in the presence of 5% error in R1, -5% and 10%
unmeasured step disturbances in the feed composition
x1f and x2f. Clearly, the controller is not very sensitive
to these modeling errors and disturbances (the calcu-
lated control action is close to that in the nominal case)
and yields excellent performance in tracking the set-
point change and rejecting the effects of these errors
and disturbances. Figure 6 shows the closed-loop input-
output profiles for the same setpoint change and errors/
disturbances and a 10% (measured) increase in the feed
flow rate Fo at t ) 15 min. Again, the controller yields
excellent performance. The simulation runs clearly
demonstrate the excellent performance and robustness
characteristics of the proposed input/output linearizing
controller designed on the basis of the reduced model
for the slow column dynamics, as opposed to the

controller designed on the basis of the overall model,
which is highly sensitive to small modeling errors that
are always present.

6. Conclusions

In this article, we addressed the nonlinear model
reduction and control for high-purity distillation col-
umns with large recycle (and thus internal flow rates)
compared to feed and product flow rates. The presence
of large internal flow rates leads to a time-scale separa-
tion in the dynamics of such columns, where the
individual stages have a fast dynamics in a time scale
of the order of the residence times of these stages, while
the overall column has a slow dynamics of very low
order. A singular perturbation analysis of the detailed
tray-by-tray model of the column led to a rigorous
documentation of these well-known observations. This
analysis also led to an explicit nonlinear low-order
model for the slow input/output column dynamics and
a natural separation of the manipulated inputs into the
large liquid and vapor recycle flow rates which should
be used to control the fast dynamics in the individual
stages, and the small product flow rates which should
be used to address control objectives for the overall

Figure 5. Closed-loop input-output profiles under controller designed on the basis of a reduced-order model for slow column dynamics,
in the presence of modeling errors in R1, R2 and disturbances in x1f, x2f.
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column in the slow time scale. This two-tiered controller
design framework, with a nonlinear controller designed
on the basis of the derived low-order model of the slow
column dynamics, was shown through simulations to
have excellent performance and robustness character-
istics.

The proposed model reduction and controller design
method was illustrated on a rather simplified high-
purity distillation column with three components. How-
ever, the same time-scale separation arises in more
complex high-purity columns with possibly nonideal
liquid-/vapor-phase behavior and significant thermal
effects. The proposed approach is applicable to such
complex industrial columns as well. A similar time-scale
separation will also arise in high-purity reactive distil-
lation columns with large recycle and internal flow
rates, where the interaction between the simultaneous
reaction and distillation is known to lead to highly
nonlinear behavior in the column. Finally, this time-
scale separation is analogous to the one present in
reaction-separation networks with large material re-
cycle; a similar model reduction and control framework
has been proposed for such systems too,20 leading to a
controller design framework which naturally reconciles
“distributed” control in individual units in the fast time

scale with “supervisory” control of the entire network
in the slow time scale.
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