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Inverted decoupling: a neglected technique 

Harold L. Wade 
Wade Associates, Inc., I0700 Richmond. Suite 205, Houston. TX 77¢t42, USA 

A b s t r a c t  

In a conventional decoupling control scheme, process inputs (signals to valves or set points to lower level flow 
controllers) are produced as a time-weighted combination of process controller outputs. A lesser "known techmque, here 
called "'inverted deconpling", produces the process input signals by combining one controller output with the other process 
input signals. Where this technique is applicable, it has several advantages over conventional deco~Jpling. These advar, tages 
as well as potential problems are addressed in this paper. Simulation results, related to distillation column applications, are 
also presented. © 1997 ISA. Published by Elsevier Science Ltd. 
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1. Int roduct ion 

Currently, the leading edge of advance0 process 
control technology is some form of model predictive 
control. This computationally intensive strategy in- 
corporates feedback, feedforward, decoupling, con- 
straint control and optimization in one comprehen- 
sive package. Its use is generally for applications 
where the process size, complexity and potential 
economic benefits justify the expenditure and techni- 
cal support requirements. 

There are yet many applications, however, which 
still rely on more conventional control strategies 
which can be implemented by configuration of func- 
tion blocks of contemporary distributed control sys- 
tems. Many of the benefits of advanced process 
control can thus be obtained by utilizing advanced 
regulatory control strategies [l] such as cascade, 
feedforward and override. 

Decoupling is an advanced regulatory control 
strategy which is applicable to processes with multi- 
ple inputs, each of which affects multiple output 
variables. The process inputs may be signals to the 
final actuators or set points to lower level flow 

controllers. [f each controller output is connected to 
a single process input, the control loops will interact 
with each other. The amount of interaction may be 
anywhere from mildly annoying to severe, depending 
upon the process characteristics and the tuning of the 
controllers themselves. 

Several years ago ant ,  mber  of papers [2-4] ex- 
plored various aspects of decoupling. A similar treat- 
ment is given in textb~oks [5-10] for undergraduate 
and graduate level chemicag engineering process con- 
trol courses. In general, these works describe decou- 
piing as a technique in which the process inputs are 
derived by a time-weighted combination of feedback 
controller outputs. In thi:~ paper, this is called "con- 
ventional'" decoupling. Two forms of conventional 
decoupling, described subsequently, have been called 
"'ideal" and "'simplified" [2]. 

An alternative means of  decoupling, called in this 
paper "'inverted" decoupling, clerives a process in- 
put as a time-weighted combination of one feedback 
controller output and the other process inputs. This 
achieves the same goal as ideal conventional de, cou- 
pling while offering additional advantages. Inverted 
decoupling has rarely been mentioned in the litera- 
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ture; where it has been mentioned, the usual treat- 
ment is to emphasize potential prob!ems without a 
full recounting of its advantages [3,8]. 

The purpose of this paper is to describe inverted 
decoupling, set forth its advantages and explore the 
potential problems. It is hoped that this technique 
will receive wider recognition and use, particularly 
by installations that wish to achieve benefits from 
advanced regulatory control without implementing a 
large scale model predictive control package. 

2. Conventional decoupling 

For review, we will first present the general con- 
cepts of conventional decoupling, using Fig. 1 as our 
guide. For simplicity, we limit our discussion to two 
input, two output processes. While not the most 
general case, this will cover a significant portion of 
the applications of interest. The techniques can be 
extended in a straight forward manner to applications 
with a greater number of inputs and outputs. 

We assume that the process transfer functions, 
Po, are known and can be represented by a simple 
transfer function, such as a first order lag and dead 
time. This is consistent with actual practice; in fact, 
many times decoupling is implemented without any 
dynamic compensation terms. 

The following equations relate the process out- 
puts, x i, to the process inputs, m i (the symbols 
represent transforms of the signals): 

x t = P~m~ + Pi2m2 

X2 = P21m t + P22m 2 (1) 

while the following equations relate the process in- 
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Fig. 1. Ideal conventional decoupling. 

puts mj to the controller outputs c k through trans- 
forms of decoupling elements Dj~: 

m~ = D~c~ + D~2c 2 

m2 __. D 2 , c  ! + D22c2  . (2) 

Combine Eqs (1) and (2) to eliminate m t and m2: 

x t = ( P i ] D l i  + P i 2 D 2 1 ) c l  

+ ( PJJ D J2 + P~2 D22) c2 
(3) 

x 2 = ( P 2 1 D l l  + P22D21)cl 

+ ( P21DI2 + P22 D22 )c2 • 

From here, there are two approaches which are 
generally used for the determination of the decou- 
piing elements. The first produces complicated trans- 
fer functions for the decoupling elements but yields a 
desirable "apparent" process control loop. The other 
approach produces simple transfer functions but re- 
sults in a less-than-desirable apparent process. These 
decoupling approaches, termed the "ideal" and 
"'simplified", respectively [2], are outlined in the 
following development. 

2.1. Ideal  conventional  decoupl ing 

We want the apparent process to be the same with 
decoupling as it would be if there were no decou- 
piing and the other controller were in the manual 
mode. in other words, we want the apparent process 
equations to be: 

X I = P I I C l  

X2 = P22c2  . ( 4 )  

Equating coefficier~ts between Eqs (3) and (4) gives 
four equations in four unknowns which can be solved 
simultaneously for the Dus: 

Pll P22 
D I |  = 

P l l  P22 - P12 ]921 

- PI 2 P22 
DI2  = 

Pll P22 - PI2P21 

_pliP21 (5) 
D21 = 

P I I  P22 - e l 2  P21 

Pt, P22 
D22 = 

P,1 P22 - PL2 P21 
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Fig. 2. Simplified conventional decoupfing. 
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Note that while the decoupling elements themselves 
are relatively complicated, this technique has the 
advantage of constancy of the apparent process, 

2.2. Simplified com, entioival decoupling: 

Returning to Eqs (3), if we arbitrarily assign 
Dll = D22 = 1, we can solve for Dt_~ arid D_,j which 
will make the off-diagonal eleme~lts vanish: 

O i 2  = - -  
Pl l  

D2i  --- _ ~  
P22 

This yields the struture shown in Fig. 2. Substituting 
the values for D~e and Dz~ into Eqs (3) yields the 
apparent process equations: 

Pll P'-'. - Pl-~ P-,I 
---~ C I xt p~, 

Pll P.'2 - Pl-" P21 (7) 

X2 = P I  1 c2 " 

Here the process loops are decoupled with rather 
simple-to-implement v,4,ecoupling elements; if the pro- 
cess is modeled by first order lag plus dead t~me 
elements, 

K r~,, 
#e , (8) 

P'J = T is + ! 

then each decoupling element is comprised of, at the 
most, a steady state gain plus lead-lag and dead time 
elements. In particular cases, either or both of the 
dynamic terms may not be required. 

Notice, however, that the apparent process differs 
very decidedly from the process when no decoupling 
is applied and only one controller at a time is in the 
automatic mode. This implie.~ that the controller 
tuning would reqaire changing for different modes of 
operation; furthermore, the response of the loops, 
with and without deeoup!ing, would differ, presenv- 
ing a confusing response for the process operator. 

Another disadvantage to conventional decoupling 
is c~ommon to both the ideal and the simplified 
approaches. Conventional decoupling assumes that 
all computed process input signals retain their in- 
tegrity, that is, become the actual process input 
signals. For example, if the computed process input 
is the set point to a lower level flow controller, it is 
assumed that the flow rate will actually match the set 
point. If an abnormality occurs in the flow loop. such 
as the valve going to a limit or the flow controller 
itself being switched to manual, then both of the 
primary loops are affected. These disadvantages mo- 
tivate us to explore an alternative method of decou- 
p|ing. 

3. h ~ v e ~  d e c o u p ~ a g  

If each process input is viewed merely as a distur- 
bance to the other process output, then compensatioq 
~0r that disturbance can be designed using a feed- 
forward approach, as shown in Fig. 3. The required 
compensation elements are the same as those given 
by Eqs (6) for the simplified conventional decoupler. 
Note the signal direction through the decoupling 
elements, and the location of the summing junction, 
as compared with the simplified decoupling. 

Fig. 3. inverted decoupling. 

X 1 



6 Inverted decoupling: H.L. Wade 

Equations representing the decoupling circuit are: 

ml = cl + Dt2m2 (9) 

m 2 = c  2 + 0 2 1 m i .  

When these equations are substitmed into Eqs ( l )  
and the decoupling element relationships, given by 
Eqs (6) are used, the resulting equations can be 
reduced to identically the same apparent process 
equations as given by Eqs (4). That is, the decou- 
piing circuit was constructed by using the same 
elements as were used in the simplified conventional 
decoupling, but the apparent process is the same as 
was achieved with ideal conventional decoupling. 
Thus, one advantages of inverted decoupling is: 

The apparent process seen by each controller, when 
decoupling is implemented, is the same as if  there 
were no decoupling and the alternate controller 
were in the manual mode. 

If the process inputs are implemented as cascaded set 
points to lower level flow controllers, as is often the 
case, then the input signals to tim decoupling ele- 
ments can be derived directly ti'om the flow transmit- 
ter outputs, as shown in Fig. 4. With this implemen- 
tation, another ,avantage of inverted decoupling is: 

Each decoupled control loop is immune to abnormal- 
ities (e.g. valve at a limF. or secondary controller in 
manual) in the secondary of  the opposite control 
loop. 

In many distributed control systems, the PID func- 
tion block often has provi~;ons for an auxiliary input, 
called the "feedforward" input. This input is 
summed with the output of the PID portion of the 

n l I  

I I 

~ i l l ' ' /  ! 
M,~ ] |  r - ' - ' - " n  I 

I I 
I I 
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Fig. 4. Implementation of  inverted decoupling. 

X 1 

X 2 

block in the figures above, the feedback controllers 
and the subsequent summing junction may be incor- 
porated into the same function block. Hence, 

Inverted decoupling can often be implemented with 
in a DCS using a Pit')function block with feedfor- 
ward input. This will automatically provide such 
features as initialization and bumpless transfer be- 
tween manual and automatic. 

With these ad,,antages for inverted decoupling, there 
are yet some open ended questions to be addressed. 
These are: 

( l )  Realizability: are the decoupling elements re- 
alizable? (An element is realizable if it does not 
require future values of its input to determine its 
output.) 

(2) Stability: the inverted decoupling configura- 
tion creates an inner loop, c I to n h to c, (through 
O21) to m 2 to c I (through Di,).  Will this loop be 
stable? 

(3) Robustness: how sensitive is the inverted de- 
coupling technique to model mis-match? 

3.1. Realizability 

A decoupling element is realizable if it only 
requires present and past values of its input to com- 
pute its output. Mathematically this implies that there 
cannot be a term of the form e +r~~ in the transfer 
function, where T d > O. It will be shown, however, 
that inverted decoupling can always be configured so 
that all the decoupling elements are realizable. 

(1) If Tdl 1 _~<Tdl 2 and Td22<Td2 l, then both 
Pi2/Pil and P21/P22 are realizable. In this case, the 
decoupling configuration shown by Fig. 3 meets the 
criterion for realizability. 

(2) If neither P12/Pjl nor P2J/P22 are realizable, 
then their inverses, Pll/P12 and P22/P21, are both 
realizable. Then the alternative decoupling configura- 
tion shown in Fig. 5 meets the criterion for realiz- 
ability. Note that the role of the controllers have 
been reversed. The apparent process equations now 
a r e :  

x I --- P l 2 C 2  
(lo) 

X 2 ---~ P21Cl  • 

These indicate that the control system is now con- 
trolling through the "off-diagonai" elements. 
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Fig. 5. Alternative inverted de.coupling. 

(3) If Tj, L= Tdl - , and Td22 = Td2,, then both ele- 
ments from each of  the pairs {(Pp_/PI~), (P21/P22)} 
and {(Pll/PI2), (P,2/P~I)} are realizable, and the 
choice of decoupling configuration can be made, 
based on stability considerations described in the 
next section. 

(4) If there is one non-realizable element in each 
of  the pairs {(Pi2/Pll), (P~_I/P,_2)} and {(Pti/Pj2), 
(P22/P2~)}, then an additional time delay can be 
inserted in the decoupling configuration to force the 
yon-realizable element  into realizability. An example 
will illustrate this technique. 

Suppose that T,~I~ > Tdl 2 and Td21 > Td,_~ _. Then 
from the first pair, P~2/P~ is non-realizable; from 
the second pair, PpJP2~ is non-realizable. The time 
delay to be inserted is the smaller of T~  - Td~ z and 
Ta2 ~ - Td22. Suppose further that T~2 ~ - T,122 > T ~  - 
7"~2; that is, P22/P~ is "more  non-realizable" than 
Pi2/P~. An additional time delay of  the amount 
T, = T0~ ~ - Ta~: can be inserted in series with P~ as 
shown in Fig. 6. This effectively increases the time 
delay through both process elements P~ and P21. 

• , ~  X, I 

! ~  x 2 

Fig. 6. Inverted decoupling with artificial t ime delay added to 

force realizability. 

The design of the decoupler element.., can now con- 
sider the modified process transfer functions: 

P{~ = P~e -r, '  

The elemenl Pj2/P'~ contains no dead time, so both 
it and its inverse, P'~I/PB2, are realizable. The ele- 
ment  P21/P22 from the original first pair was realiz- 
able; adding the dead time did not make it non-real- 
izable, due to our supposition that 

In other words, P'~/P,_~ is realizab!e. Thus the 
proper choice for decoupling components to ensure 
realizability is: 

PI2 
D I 2  = - -  _ _  

/ 'i, 
, ( 1 3 )  

P21 
D21 = - -  

P22 

Equations describing the apparent processes, as seen 
by the controllers, are: 

xl = PIle- r, ,q (14) 
X,  = P ~ , ¢ ' ,  . 

Note that realizability was achieved at the expense of 
creating an additional time delay in one of the 
decoupted loops. Furthermore, the advantage of be- 
ing able to derive the input to decoupling element 
D2~ from the secondary loop flow transmitter, as was 
shown in Fig. 4, was lost. (Decoupling element D~: 
can still be driven from its secondary loop flow 
transmitter, however.) But because of the require- 
ment  for realizability, and the adverse time delay 
relationships through the process, there is no other 
choice. 

This section has shown that. by inserting an addi- 
tional time delay, if necessaD', it is always possible 
to choose re~,dizable decoupling elements. It is not 
claimed that this selection of decoupling elements 
will be stabk, however. 

3.2. Stabilit3" 

For this section, assume that the realizability 
question has been addressed and the process transfer 
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c~ ~ n~ 

Fig. 7. Equivalent feedback loop created by inverted decoupler. 

functions have been modified if necessary or the 
transfer functions and variables renumbered so that 
we can consider the inverted decoupling configura- 
tion in its standard form as shown by Fig. 3, with the 
decoupling elements given by Eqs (6). The inner 
loop, c I to m I to c 2 (through D21) to m 2 to c l 
(through Dl2). can be represented by the feedback 
diagram shown in Fig. 7. 

The loop equation is given by 

mi(s  ) 1 

ci(s)  1 el2 e21 

PttPI2 

for i = either 1 or 2. (15) 

If each P,j has been modeled as a first order lag 
plus dead time, then the loop equation is: 

m , ( s )  i 
~ =  , (16)  
c i (s)  K ( T t t s + I ) ( T , , s +  1) - " :  

I -  ~" e 
(Tics + l)(T2ts + 1) 

where 

K n K c l  
K =  

Kit K22 ( 1 7 )  

Td----- Tdl2 -- Toll 4- Td21 - TO22" 

The question of stability then rests on the location of 
zeros of the function 

g(Ti,s+ l)(T,2s + I) 
! -  ( T , 2 s + l ) ( T c t s +  1) e-rd '  (18) 

Thus we seek solutions to the equation 

r(r, ts+ l)(r 2s + l) 
e - r ~ ' =  1. (19) 

(T,2s+ l)(T2,s + 1) 

Solutions to this equation provide upper and lower 
limits which the value K, given by process parame- 
ters as stated in Eqs (17), must meet in order for the 
inverted decoup!er to be stable. 

Note that we are not investigating stability in 

order to find the setting limits for a tuning parame- 
ter; instead, we are trying to determine limits which 
the parameter K, given strictly by process data, must 
meet in order for the inverted decoupling to be 
stable. If K falls outside these limits, then we con- 
clude that inverted decoupling is not stable. 

The reason for both upper and lower limits on K 
is that K may be either positive or negative. If there 
is an odd number of like signs of the process param- 
eters K~: (Shinskey [10] calls this "negative cou- 
pling"), then K will be negative; an even number of 
like signs will produce a positive value for K. Note 
the " ' + "  sign by the return signal at the summing 
junction shown in Fig. 7. If K is negative, then the 
loop experiences negative feedback, hence the phase 
lag through the dynamic elements of the transfer 
function will be 180 °. The solution to Eqs (! 7) will 
provide a lower (negative) limit for K. If K is 
positive, the loop experiences positive feedback and 
the phase lag will be either 0 ° or 360 °. Solving Eqs 
(17) for both 0 ° and 360 ° phase shift will provide 
two upper limits for K; the real upper limit must be 
the lower of these. 

We proceed by seeking values of to which satisfy 
the following the transcendental equation: 

atan( toT,2 ) +atan( toTc,) - atan( toTi, ) 

- a t a n (  toT,: ) + toTo = n~r. (20) 

If K < 0, then use n = !. Call the solution to j. If 
K > 0, then solve this equation twice, both for n - 0 
and n = 2. This will give two values for to, too and 
toc. By the usual consideration that at the solution 
the magnitude of both sides of Eq. (19) must be 
equal, we can use these values of to and solve for 
the limits to be imposed on K. 

If K < 0, then 

¢I : 2  I + to~T,~)(l + to, T~,) 

KL = - 2 ~ to~T~) I+to,  r : , )( i  + :_ " 
(21) 

If K > 0, then 

"~ "~ 2 2 (1 + to~T,~)(I + tooT~,) 

Ko0= - (l +to0 r?,)(l +to r 2) (22) 
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and 

_ / ( 1  + + 
Kt'2 = V ( I  +oJ~Tl2,)(1 + ~T~2 ) (23) 

The actual upper limit for K is the lower value of 
Kuo and Ku2. In summary, then, the process gains 
must be such that K meets the following criterion: 

K L _< K <  min(Ku0, Ku2). (24) 

The method outlined above gives rigorous limits of 
stability and involve solving a transcendental equa- 
tion. A short cut which yields a good approximation 
to these limits can be made in many circumstances. 
If T d is greater than 0, to and Ta will be approxi- 
mately related by oJ,, = nTr/Tj, where n = i for K < 
0 or n = 0 or 2 for K > 0. If n = 0, then ~o = 0, so 
that by inspection, KL, o = 1. In fact, Kuo is approxi- 
mately 1 for any value of T d. If Ta is small relative 
to the T~js, then ~o is large, and K L and Ku2 can be 
approximated by: 

TI2T21 
K L TilT2, 

TI2 T21 (25) 
Ku2  -~ 

T, IT,.2 

Hence. if T d is small ar zero. the approximate 
stability limits are: 

ToT, , ( T , , T , , )  
" " < K < m i n  1 " " . ( 2 6 )  

TItT22 ' TILT22 

in this section, we have determined limits that the 
process conditions must meet in order for inverted 
decoupling to be feasible, i.e. stable. These limits are 
stated rigorously by Eqs (20)-(24), or approximately 
by Eq. (26). Since the decoupling loop transfer func- 
tion [see Eq. (15)] is the same as for decoupling 
elements D, I and D22 for ideal conventional decou- 
piing [see Eqs (5)] then we conclude that identical 
stability limits would also apply to ideal conven- 
tional decoupling. 

conventional ideM decoupling requires complicated 
decoupling dements, ideal decoupling has usually 
been given no further consideration. Inverted decou- 
pfing. a form of ideal decoupling, removes the sec- 
ond of these objections. Because of the advantages 
offered by inverted decoupling, the first objection 
warrants further consideration. 

The conclusion that ideal decoupling is sensitive 
to modeling errors has been based on a simulation 
[2-4] or theoretical study [13] of a dual composition 
control of a distillation tower, using a conventional 
reflux-and-boilup control strategy, h is well known 
that with this strategy, the control loops are closely 
coupled [11] as indicated by the relative gain number 
being quite large (say, 20. or larger as the product 
purity requirements are increased). The relative gain, 
A. and K [see Eqs (17)] are related by: 

A - i  

A 

so that if A is large, K approaches the upper stability 
limit given by Eq. (26). Thus there is little margin 
for error, and in this case, the conclusion is correct. 

This conclusion may not necessarily hold true in 
other cases such as dual composition control of a 
distillation column using a material balance (distil- 
iate-and-boilup) control strategy. Here, it is usually 
true that 0 < A < I. so that K < 0. If the dynamics 
are not adverse, then K will be well within the 
limits stated by Eq. (26), thus providing tolerance for 
modeling error. 

This is not meant to imply that inverted decou- 
piing is only applicable to dual composition, material 
balance distillation control strategies. We do claim, 
however, that the technique should not be discarded 
based solely upon the observation of its behavior on 
dual composition, reflux-and-boilup distillation con- 
trol. 

4 .  S u m m a ~  

3.3. Robustness 

It has been widely reported in the literature that 
"'ideal decoupling is sensitive to modeling errors" 
[2-4,8,12,13]. Because of this, and the fact that 

Inverted decoupling has been shown to be a form 
of ideal decoupling which can be implemented with 
simple decoupling elements. It has advantages over 
both ideal and simplified conventional decoupling in 
that it is tolerant of faults in the lower level control 
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loops. It has an advantage over the traditional simpli- 
fied decoupling in that the feedback loop behavior, 
hence the tuning of the controllers, is constant re- 
gardless of  the mode of  the companion control loop. 
Inverted decoupling shares with conventional decou- 
piing the sensitivity to modeling errors near the 
stability limits; if there is a comfo~tabie margin of 
safety to the stability limits, then modeling errors do 
not appear to be a problem. 
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