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Real Time Optimization (RTO), or On-Line Optimization, is the continuous reevaluation 
and alteration of operating conditions of a process so that the economic productivity of 
the process is m i m i z e d  subject to operational constraints. The purpose of this paper is 
to review the available literature in the area of real time optimization, with particular 
attention to the methodologies being used at present. The general components which 
make up a real time optimizer, the process model, objective function, optimization 
algorithm, data reconciliation and gross error detection, are also reviewed. Finally 
implementation of real time optimizers is covered including user intelfacing and on-going 
maintenance of the system. 

Introduction 
The terms On-Line Optimization and Real Time Optimization (RTO) are used to 
indicate the continuous reevaluation and alteration of operating conditions of a 
process so that the economic productivity of the process is maximized subject to 
operational constraints [ 11. Optimization of process operations is of considerable 
interest in industry due to increasing global competition and tightening product 
requirements [2,  31. On-line optimization is an appealing concept because it is at the 
level of the control hierarchy at which business decisions are integrated into the 
operation. Advances in the speed and power of computers at lower costs are making 
on-line optimization a more cost effective method of improving plant performance. 

Latour [4] lists the benefits from steady-state optimization as: 
Improved product yields and/or quality. 
Reduced energy consumption and operating costs. 
Increased capacity of equipment, stream factors. 
Less maintenance cost and better maintenance of instrumentation. 
More efficient engineers and operators as a tool for process troubleshooting 
and operation. 
Tighter, lower cost process designs if new plant designs include a real time 
optimizer. 

Components of a Real Time Optimizer 
A general structure for real time optimization based on the one shown in Hanmandlu 
et al. [ 5 ]  is given in Figure 1. This structure is also similar to those presented in 
several other papers [ 1,3,6- 121. 

*Author for correspondence. 
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Figure I .  General stmcture for u model bused real time optimization. 
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The general steps taken in one cycle of the real time optimizer shown in Figure 1 
are : 
1) Steady-State Detection: Th~s detects when the process is dose enough to steady- 

state to allow the real time optimizer to model the process with reasonable 
accuracy. When the plant is determined to be at steady-state, data from the 
process is passed onto the optimizer. 

2 )  Data Reconcifiation and Gross Error Detection: All measured data are subject to 
error. Data reconciliation adjusts the measured variables (e.g. energy, mass, etc.) 
and, if possible, estimates any unmeasured variables for the process so that they 
satisfy the balance constraints. Gross error detection takes suitable corrective 
actions to rectify any gross errors found in the process data [13]. This adjusted 
data from the plant is then passed onto the next step. 

3) Parameter Estimation: The process of updating the model parameters to the 
adjusted process data available. These model parameters are then used in the 
process model for the optimization of the set points. 

4) Process Model: The model of the process which represents the effects of changes 
made to the process by the optimization algorithm while it is iterating to an 
optimum solution. 

5 )  Optimization: The optimization algorithm used to determine the optimum set 
points for the process given an objective function and process constraints. 

6) Updating of Process Set Poinrs: The optimum set points for the process found by 
the optimizer are returned to the plant. Once the plant has returned to steady-state, 
another cycle of the real time optimizer is performed to keep the plant operating at 
its optimum. 

Some of the above steps are further .detailed in the following subsections. 

DATA RECONCILIATION 8 
GROSS ERROR DETECTION 

Process Model 
The process model used in real time optimization must represent changes in the 
manipulated variables of the process given the updated set points calculated by the 
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optimization algorithm. The model approximates the effect of these variables on the 
dependent variables, which are usually those that are constraints or those that have a 
significant economic impact, such as yields, material balance or utility usage. In 
virtually all practical cases, the model is based on steady-state (rather than dynamic) 
relationships and is non-linear [3]. The choice of measurements to be used for 
matching the model parameters to the plant operations must be made carefully to 
avoid an infeasible problem. Bailey et al. [6] chose their variables so that each piece 
of equipment had enough associated specifications for the available degrees of 
freedom. Development of process models for optimization is covered in detail by 
Edgar and Himmelblau ([14], Chapter 2). 

Fatora and Ayala [7] discuss the application of open equation-based models. 
Instead of posing an equation in its closed-form, for example Equation (1) below, the 
equation should be formulated in its open residual format as shown in Equation (2). 

A simultaneous equation solving and optimization package will manipulate the 
unknowns such that the residual terms, R,  are driven to zero. This method gives the 
same results as the closed-form equation. The advantage of open-form equations is 
that the model equations are completely separate from the convergence algorithm 
unlike the closed-form models which have a tailored solution algorithm built into the 
model. Such models are easily modified to account for process changes in the plant 
since the convergence scheme is separated from the model. The maintenance staff 
need not recode the convergence scheme each time the model is changed. The open 
equation-based approach to process simulation, while less robust with respect to 
finding a solution than closed-form equations models, has been used successfully in 
industry for several years. For these reasons, open-form equations are the most 
commonly used in real time optimization appIications. 

Two papers by Forbes et al. [8, 91 give some criteria for helping choose a model 
adequate for real time optimization. The quality of the model has a large effect on the 
success of the real time optimization system. They give a point-wise model adequacy 
criterion as the ability of the model to have an optimum that coincides with the true 
plant optimum. Analytical methods for checking the point-wise model adequacy were 
developed using reduced space optimization theory, and from these more practical 
numerical methods were developed for use on industrial problems [9]. 

Bailey et al. [6] briefly cover some modeling issues affecting their non-linear 
optimization of a hydrocracker fractionation plant. They found that large equation- 
based models are sensitive to scaling. However choosing appropriate units avoided 
numerical problems, even if the resulting units were unusual (e.g. terd per day). 
Numerical stability of the model can also be a problem and care should be taken to 
avoid division as an operator. Also, during the optimization, bounds must be placed 
on certain variables to prevent the solution from moving too far from the starting 
point. This is because it takes a finite amount of time to move the plant to a new 
operating point, therefore the setpoints should not be moved a great deal on each run 
of the optimizer. They suggest choosing bounds on the variables to reflect the 
allowable change in 1 to 3 hours. The maximum change should depend on the length 
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of time it would take the control system to take the maximum step and bring the plant 
back to steady-state. 

A common method for more rapidly computing the optimum is an “inside-out” 
algorithm first proposed by Boston and Britt [15] to solve a single stage flash 
algorithm. In this method the major iterations deal with updating the parameters for 
the simplified models and matching their properties with a rigorous model. Therefore, 
since the more computationally expensive model is only evaluated in the outer loop, 
considerably less effort is required than with a conventional procedure. However, 
Biegler et al. [16] and Forbes et al. [9] point out that when this method is applied to 
optimization problems, this approach based on simplified models can converge to a 
solution that may not necessarily correspond to the optimum predicted when only 
rigorous methods are used. They give two observations to help avoid this problem 
when the “inside-out” type of algorithm is used: 

(a) A necessary condition for an appropriate simplified model for optimization is that 
it recognizes the rigorous model optimum as a Karush-Kuhn-Tucker (KKT) point, 
that is an optimal point. 

(b) A sufficient condition for an appropriate simplified model is that it matches all the 
gradients of the rigorous model at all points of interest. 

Several papers cover the use of commercially available process simulation packages 
used as the process model, although there is no evidence to date of this method being 
used in industry. Two types of simulation packages are available. The first are open- 
form, equation oriented or simultaneous process simulation packages, for example, 
SPEEDUP and MASSBAL. Although these simulators are more flexible, they 
generally require a high level of expertise to learn and use, have poor user interfaces, 
and are not widely used in industry. The second type is the closed-form or sequential 
modular process simulation packages, such as, ASPENPLUS, PRO11 and HYSIM. 
These packages are widely used in industry due to their proven reliability and ease of 
use, however, they are less efficient with respect to speed and computer power 
required [ 171. In addition they require special techniques and insights to develop and 
change the optimization strategies for on-line operation due to the sequential modular 
architecture . 

Gallier and Kisala [ 171 used ASPEN, a sequential modular package, in their study 
of real time optimization. They cover two methods where the simulator is treated as a 
“black-box” and as an infeasible path optimization using the Sequential Quadratic 
Programming (SQP) method. It was found that the latter is preferable as the 
constraints at each iteration need not be satisfied. This allows the optimization of the 
process model to be completed in as few as five simulation time equivalents. 
Macchietto et al. [ 1 11 used the equation-based SPEEDUP process simulation package 
as the process model and also to perform the data reconciliation, gross error detection 
and optimization steps. Dynamic real time optimization is also possible using the 
SPEEDUP package. Shewchuk and Morton [12] outline the use of SACDA’s 
MASSBAL process simulation packages as the model in their optimizer package. 
This package is also capable of both steady-state and dynamic optimization. 
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Objective Function 
The objective function is derived from the plant model, and is to be either maximized 
or minimized through changes in the independent variables. The objective function 
for real time optimization normally represents the economic model of the process, 
usually limited to variable effects and ignoring fixed costs such as labour, overheads, 
etc. A typical objective function given in Darby and White [3] is: 

Objective = Product value - Feed costs - Utility costs (3) 
+ Other variable economic effects 

Bailey et al. [6]  cover objective function development in detail. Feed and product 
prices must be chosen carefully since different values are often associated with the 
same material. For example the product might have a contract price, spot market price 
and also be an intermediate stream sent to another part of the plant for further 
processing. The case of a stream being an intermediate stream and a product is 
particularly difficult to determine an accurate value for an inter-process stream, as 
many planning models only consider feeds and finished products. One remedy for this 
problem is to include a simple model of the finishing process in the objective function 
thereby giving an approximate value to the inter-process stream. 

Since the optimizer will be estimating derivatives of the objective function with 
respect to operating variables, it is important that the objective function be 
continuous. Discontinuities arising from streams with multiple prices should be 
treated specially (e.g. the stream has a contractual price and a spot price). Often an 
average price for the stream is not acceptable, and the discontinuity caused needs to 
be handled by a method such as an integer programming technique. 

Bailey et al. [6] also show how they developed their objective function for the real 
time optimization of a hydrocracker fractionation plant in some detail. Edgar and 
Himmelblau ([ 141, Chapter 3) cover the development of objective functions including 
methods for measuring profitability and cost estimations. 

Optimization Algorithm 
The optimization algorithm uses the process model and the objective function to solve 
for the new optimum set points for the plant. The important considerations in 
choosing an optimizing algorithm are computational requirements, number of 
objective function evaluations and robustness. The general form of the constrained 
optimization problem [7] using the process model and the objective function is: 

min (or max) F (z, p )  = 0 

subject to f(z, p )  = 0 
z 

z ,  I Z I Z ,  

(4) 

where F(z,p) = the objective function; 

Az,p) = the vector of n equality constraints (from the process model); 
p = fixed variables or parameters (e.g. fouling factors, cost coefficients, 

etc.) 
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Changes in these variables will change the optimum values of z, where: z = the 
process variables which can be varied to optimize F. The number of these variables 
must be greater than n. 

zp z, = the lower and upper bounds on the variables z respectively (which give 
the inequality constraints on the model). 

Methods on how to solve the above constrained optimization problem are covered 
in several texts [14,18,19]. A great deal of literature is available on optimization 
algorithms, and generally is considered to be a mature area of mathematics. 

Presently, the most common type of algorithm reported in the literature for 
solving this type of problem are Sequential (or Successive) Quadratic Programming 
(SQP) techniques. The SQP method approximates the objective function by a 
quadratic function, and the constraints by linear functions, so that quadratic 
programming can be used recursively to find a search direction minimizing the 
objective function. At each outer iteration (or quadratic program solution) the SQP 
method constructs these approximations using information about the values of the 
variables and their derivatives with respect to the decision variables [ 12,14,19,20,2 11. 
Edgar and Himmelblau ([14], p357) provide a table of the sources of computer codes 
for SQP methods. Lucia and Xu I201 provide an extensive review of the SQP 
algorithms available, particularly with respect to chemical processes and large-scale 
problems. Fatora and Ayala report the use of an SQP algorithm in their real time 
optimization with over 36,000 variables and 3 1,OOO equations. 

Bailey et al. [6] use the MINOS routine developed by Stanford. MINOS is a 
sequential quadratic programming technique which also makes use of the Simplex 
method and a projected Lagrangian algorithm. The MINOS method is detailed by 
Murtagh and Saunders [22], and has been shown to solve large problems of around 
5000 variables and 4500 equality constraints successfully. 

The DICOPT routine is discussed in a paper by Kocis and Grossman [23]. 
DICOPT is an outer-approximation/equality relaxation algorithm specifically 
designed for process systems involving mixed-integer nonlinear programming 
(MINLP) due to nonlinearities in the models. The algorithm was tested successfully 
using problems of up to 528 variables and 1171 constraints, including 74 binary 
variables. 

Data Reconciliation and Gross Error Detection 
The key features of the process data problem are as follows: 
1) All measurements are subject to errors. Random errors are assumed to be 

nonnally distributed and have zero mean. Gross errors are caused by non-random 
events such as instrument biases, malfunctioning measuring devices, inaccurate or 
incomplete process models and process leaks [13,24,25]. Figure 2 gives an 
illustration of the probabilities involved for random and gross errors. 

2) Not all process variables are measured for reasons of cost, inconvenience or 
technical infeasibility. 

3) There is data redundancy in the sense that there are more measurements (or data) 
available than needed if the measurements were not subject to errors. This is also 
referred to as spatial redundancy [24,26,27]. 
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4) Since most process data are being sampled continuously and regularly at great 
frequencies, there is also data redundancy if the process conditions are truly at 
steady-state. This is usually referred to as temporal redundancy. 

region for 1 m r n  

\ I reaion 
region for 

I\ I grosserrors 

Figure 2. Error probability distribution for process measurements [13]. 

The adjustment of measured variables for random errors and, if possible, the 
estimation of unmeasured variables so that they satisfy the balance constraints is 
known as the data reconciliation problem. Detection of the presence of any gross 
errors so that suitable corrective actions can be taken is known as the gross error 
detection problem [28]. Collectively, these two problems are sometimes called data 
rectification [29]. The objectives of data rectification are to improve confidence in the 
measurements, estimate unmeasured streams, identify meter faults and to identify 
process losses [30]. A simplified view of the three basic steps to data rectification is 
shown in Figure 3. The first step, variable classification, involves determining which 
variables are observable and/or redundant [25]. In practice, steps two and three are 
often used iteratively to reconcile the data and remove gross errors. 

Measurements Model 

- 
VARIABLE Undeterminable 

CLASSIFICATION 

GROSS ERROR 
DETECTION 

r 
DATA 

RECONCILIATION 

4 
Estimates 

~~ ~ 

Figure 3. General steps for processing measurement data [ZS]. 
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There is very little literature available comparing different methods of data 
reconciliation and gross error detection. Mah [24] provides probably the best review 
in this area to date covering several methods. However, development of better 
nonlinear and dynamic data reconciliation and gross error detection methods is still an 
on-going area of research. 

I Lineal; Steady-State Data Reconciliation 
The simplest case is linear, steady-state data reconciliation. This is covered by Mah 
([24], 9-1-2) and Crowe et al. [31]. The basic model used for the data reconciliation in 
the absence of gross errors [24] is: 

y = D x + ~  ( 5 )  

where y = (s x 1) vector of measured variables; 
D = (s x p) measurement matrix which relates y to x (generally the measured 

x = (p x 1) vector of state variables; 
E = (s x 1) vector of random measurement errors. 

variables will not be the same as the state variables); 

The linear constraints given by stoichiometric constraint, energy, mass and other 
balances [24] are generalized into the form: 

A,x + A,u = c (6)  

where A, = (n x p) matrix of coefficients of known constants; 
A, = (n x m) matrix of coefficients of known constants; 

u = (rn x 1) vector of parameters not directly related to the measurements 
through the basic model equation; 

c = (n x 1) vector of known constants. 

The data reconciliation problem is then the least squares estimation of x and u subject 
to the constraints equation. Crowe et al. [31] use a projection matrix to obtain a 
reduced set of balance equations, and also include a statistical test for the removal of 
gross errors. Mah ([24], 9-1-3) also covers the decomposition and solution of these 
equations in detail. 

II Nonlineal; Steady-State Optimization 
Nonlinear, steady-state data reconciliation is the extension of the above method to 
include nonlinear constraints. These occur when variables are measured indirectly by 
other physical properties, e.g. concentration by density, pH or thermal conductivity. 
Bilinear constraints occur when variables appear in two balances, e.g. temperatures 
measured along with concentrations will appear in both energy and component 
material balances. Bilinear constraints also occur when a stream is split into two or 
more streams of the same temperature and composition. No general analytical 
solution is available to bilinear and nonlinear data reconciliation problems. Nonlinear 
constraints also make it more difficult to determine whether unmeasured variables 
may be estimated, and how to decompose a problem with missing measurements 

Crowe [32] handles the nonlinear constraints by extending the method outlined in 
Crowe et al. [31] by applying two successive projection matrices to the equations 

([24], 9-1-4). 
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defining conservation laws and other constraints. Also, no restrictions are placed on 
the location of measurements, nor upon what is measured in any one stream. The 
construction of the projection matrices is direct and each requires the inversion of a 
matrix that is also needed for subsequent steps in the solution. 

A paper by Serth et al. [33] adds details on the choice of regression variables used 
in nonlinear data reconciliation by defining primary and secondary variables. Total 
flow and component flows are examples of primary and secondary flows 
respectively. Since material balances are linear in secondary variables, they can be 
exploited to develop a particularly efficient data reconciliation procedure [32]. 
However, they do not yield maximum likelihood estimates for the true values of 
primary measured variables. This in turn could affect the error detection procedure, 
tending to increase the number of Type I errors (Definition of Type I error is given in 
the Gross Error Detection section). 

Data reconciliation using process simulation software has been addressed in two 
papers, both of which used equation based simulation packages. Macchietto et al. 
[ 1 I ]  used both SPEEDUP and a package using simplified process models called 
DEBIL. SPEEDUP was found to be slower and use more computational resources, 
but was more flexible. Stephenson and Scewchuk [34] detail the methodology by 
which MASSBAL solves the data reconciliation problem. Applications to a pulp mill 
screening and cleaning system are described. 

Takiyama et al. [35] outline the use of SEBDARM (Sensor Based Data 
Reconciliation Method). The method is based on the direct use of measurement 
variables rather than using balanced variables (conventional method). This has the 
advantage of having the reconciled data not being influenced by the number of 
reduced balance equations. Their method, however, has only been tested on pilot 
plants to date. 

III Dynamic Data Reconciliation 
This is relatively new area of research in the field of data reconciliation. In many 
practical situations the process conditions are continuously undergoing changes and 
steady-state is never truly reached. Generally the data reconciliation problem in this 
case is reduced to a discrete Kalman filter for a quasisteady-state problem [36]. 

Darouach and Zasadzinski [36] develop a new dynamic algorithm based on 
steady-state reconciliation leading to a recursive scheme useful for real time 
processing of data. The method was shown to reduce computational problems 
associated with discrete Kalman filters, especially for singularities and round off error 
situations. Rollins and Devanatham [37] refine the method proposed by Darouch and 
Zasadzinski [ 361 to reduce the computational time required, while preserving its 
properties of unbiased estimation. Liebman et al. [25] use nonlinear programming to 
help solve systems in highly nonlinear regions where the Kalman filter method may 
be inaccurate. The method given was found to be a more robust means for reconciling 
dynamic data, especially in the presence of inequality constraints. The method is 
demonstrated on a reactor example. 

IV Gross Error Detection 
Gross errors in the data invalidate the statistical basis of reconciliation due to their 
non-normality. One gross error present in a constrained least squares reconciliation 
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will cause a series of small adjustments to other measured variables. For these 
reasons, gross errors need to be identified and removed before data reconciliation is 
carried out. The most common techniques for detecting gross errors are based on 
statistical hypothesis testing of the observed or measured data. For any gross error 
detection method to work, there must be at least two alternative ways of estimating 
the value of a variables, for instance, measured and reconciled values (1241, 9-2). 
Crowe [38] and Mah [24] give detailed accounts of typical statistical gross error 
detection algorithms. 

Two measures of the effectiveness of a gross error detection scheme are the terms 
Type I and Type I1 errors made by the detection scheme. Type I errors refer to 
wrongly identifying truly random errors to be gross errors. Type I1 errors refer to 
wrongly finding truly gross errors to be random errors [38]. In devising the tests for a 
gross error, the probability of a correct detection must be balanced against the 
probability of mispredictions. 

The Maximum Power (MP) test for Gross Errors is detailed in two papers by 
Crowe [39,40]. The maximum power test has the greatest probability of detecting the 
presence of a gross error without increasing the probability of Type I error than any 
other test would on a linear combination of the measurements. Crowe [39] only deals 
with the linear case, while Crowe [40] extends the method to the bilinear case and 
retests the original constraints used. 

The Generalized Likelihood Ratio (GLR) approach is detailed by Narasimhan and 
Mah [41] and Mah ([24], 9-2-5). The previously discussed methods only deal with 
gross errors from measurement or sensor biases. The GLR approach provides a 
framework for identifying any type of gross errors that can be mathematically 
modeled. This can be very useful for identifying other process losses such as a leak. 
The method and examples of its use are detailed reasonably fully by Narasimhan and 
Mah [41]. Narasimhan [42] shows that the Maximum Power Test detailed above is 
equivalent to the GLR approach for simple steady-state models. 

V Combined Data Reconciliation and Gross Error Detection Methods 
Two papers by Narasimhan and Harikumar [43,44] give details of incorporating 
bounds into data reconciliation. Most approaches to data reconciliation do not impose 
inequality constraints because the solution can no longer be obtained analytically, and 
the statistical analysis of the measurement residuals for gross error detection is 
difficult. This leads to an iterative cycle of data reconciliation and gross error 
detection phases to complete the data rectification. Narasimhan and Harikumar [43] 
develop the algorithm for solving the data reconciliation problem with bounds and 
produce the constraint and measurement residuals. In the second paper [MI, the gross 
error detection procedures are detailed and the whole method is compared to existing 
methods. Their results indicate that their method performed better than currently 
available methods. 

Tjoa and Biegler [ 131 develop a simultaneous data reconciliation and gross error 
detection method. They minimize an objective function that is constructed using 
maximum likelihood principles to construct a new distribution function. This 
distribution takes into account both contributions from random and gross errors. This 
method gives unbiased estimates in the presence of gross errors. Therefore 
simultaneously a gross error detection test can be constructed based on the new 
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distribution functions without the assumption of linearity of constraints. This method 
is particularly effective for nonlinear problems. 

Terry and Himmelblau [29] detail the use of Artificial Neural Networks (ANN) 
for data reconciliation and gross error detection. The ANN is “trained” or “learns” to 
perform the data rectification based on a given model and constraints. The method is 
still being researched and the results look promising compared to models built from 
first principles. 

Methods of Real Time Optimization 
( i )  Global or Centralized Approach to Real Erne Optimization 
This is the most common approach found in the literature. It involves optimizing the 
plant as a whole using one objective function, subject to constraints, and a model of 
the entire plant. 

Several examples in the literature use very similar techniques of taking a rigorous 
steady-state model of the process which is then optimized using a nonlinear objective 
function and constraints. In all the cases listed below, the model appeared to be 
developed specifically for the real time optimization implementation. Examples of 
this general form were performed on the following plants: 

Hydrocracker fractionation plant [6]. The optimization algorithm was canied out 
using MINOS 5.1 on nonlinear mass and energy balances models and nonlinear 
constraints. Comparison is made to a rank-null space decomposition SQP 
(Sequential Quadratic Programming) optimization technique. The problem 
involved 2836 equations, 2891 variables and 10 degrees of freedom. Modeling 
issues were found to be problems with scaling of the problem, numerical stability, 
particularly when using the division operator, and minimizing the number of 
relinearizations of the model constraints required to find the optimum. Bounds 
were placed on the maximum amount any variable could be changed in a run of 
the real time optimizer to prevent large set point changes destabilizing the plant. 
Objective function development was also covered in detail. 
Olefins plant [7]. Rigorous, fundamental chemical engineering models were 
developed for the olefins plant. All of the models were written in the open 
equation form and were optimized using an SQP algorithm. The resulting 
complex nonlinear optimization problem contained over 36,000 variables and 
3 1 ,OOO equations, and approximately 20 minutes is taken to complete a full cycle 
of the real time optimizer on an unspecified “minicomputer”. The real time 
optimizer was commissioned in February 1991, and took a total of three weeks to 
fully implement. The payback was less than one year. The observed benefits from 
installing the real time optimizer were: 
- Improvements of 5% to 10% of the value added by the process. 
- Consistently holding the process at production targets. 
- Decreased product variability. 
- Optimal handling of utility versus yield trade-off. 
- Many perceived bottlenecks were eliminated. 
- Energy savings. 
- Increased productivity by trending unit performance and monitoring of key 

parameters. 
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- More accurate off-line planning. 
Olefins plant [ 101. This reference gave very few specifics on what methods they 
actually used in the real time optimization. They do however outline a very 
generalized method. The model was based on a set of modular blocks of 
successive plant sections. The advanced local control techniques used in the plant 
were also detailed in the paper. 
Hot acid leaching and strong acid leaching residue treatment plant in a zinc 
refinery [45]. The purpose of this real time optimization was to show the 
effectiveness of the robust parameter estimation method as outlined in Krishnan et 
al. [46] and the development of the rigorous steady-state model required. 
However, the reference mentions very little about the optimization itself. 
Ammonia process [47]. A rigorous plant model built from first principles was 
used for the ammonia unit handling 1600 t/day. They found that statistical 
regression type models were found to have significant disadvantages to the 
rigorous model approach. The model was performed i n  Exxon Chemical’s 
Equation Manager and Solver (EMS) package using 5500 equations with 160 tear 
streams taking two person years’ effort to set up. 
Packed-bed immobilized-cell reactor [48]. Used a recursive least squares 
algorithm and high pass filtering of the data to estimate the parameters in the 
discrete-time dynamic model which was optimized by a full Newton optimization 
algorithm using the objective function’s curvature information. The process was 
relatively small compared to most of the other plants listed, although did involve 
very noisy process data. 
Refinery power plant [21]. The MESA nonlinear simulator was selected to model 
the power plant unit as it was specifically developed for power plants. Mobil’s 
proprietary SQP optimization technology, MOPT, was used as the optimization 
algorithm. They ran the real time optimization algorithm every 30 minutes, but 
have the option of execution on demand. The system averages 20 updates to the 
plant per day. From an audit of the on-line power plant optimizer, savings of 
approximately $2.1 milliodyear or a 3% saving in fuel consumption were found. 
Pulp refining process [49]. They found that the model based control technique 
was dependent on three main factors: 
1) Robust, mechanistic models which accurately describe the effects of process 

2) Tuned parameters for the refiner models so that the equations accurately 

3) Optimization and control techniques which allow the refiner models to be 

They found the weaknesses of their optimization system were maintaining the 
flow of information to the model and ensuring the correct information is 
available. Maintenance of the system was found to require a dedicated effort from 
both the mill and vendor. 

conditions over a wide range of operating conditions. 

represent the real process. 

applied in a systematic fashion. 

Jang et al. [ 11 took a two-phase approach to the global real time optimization method. 
The problem of plant operation is based on the idea of a moving time horizon. The 
method uses the present measurements and the measurements taken during the past 
period of time together with a partial knowledge of the plants physical and chemical 
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principles governing the plant to give an optimal time plan for the manipulation of the 
set points for a future period of time. The plant is modeled by either a steady-state or 
dynamic model depending on how stable the plant is. The two phase approach is 
summarized in Figure 4. The identification phase of the method is only carried out 
when the process has been significantly disturbed from the previous steady-state. 

Primary Outputs Plant Optimization 
Variables b 

easurements 
COMPARE THE ACTUAL 
MEASUREMENTS WITH 

THE MODEL PREDICTION 

EXECUTE 
IDENTIFICATION 

PHASE 

EXECUTE OFTlMlZATlON 
PHASE Updated Model 4 

Figure 4. Two-phase approach to on-line optimization [ I ] .  

Gallier and Kisala [ 171 try to use process simulators as the process model using the 
SQP optimization algorithm to solve for the optimum. Their steps to create the real 
time optimizer, given the model of the plant, were to: 

1) identify the objective function. 
2) identify the degrees of freedom for the optimization. 
3) identify the constraints. 

They found the SQP method was very efficient at finding the optimum of the 
ammonia synthesis example they tested. However, they did not extend the method to 
a real plant situation nor mention the use of data reconciliation or gross error 
detection in their method. 

Macchietto et al. [ 111 also used a process simulator in developing a real time 
optimization application. They used an equation based simulator, SPEEDUP, a data 
screening program called DEBIL and the SPEEDUP External Data Interface (EDI) as 
a communication mechanism. Figure 5 gives an outline of plant/control/simulator 
system. SPEEDUP has an advantage of having both successive quadratic 
programming (SQP) and MINOS optimization routines built into the simulator. They 
conclude that the SPEEDUP flowsheet optimizing package, using the built in external 
data interface, can be used successfully on-line with a plant control system. Only case 
studies are presented in the paper, and no evidence of an industrial application of this 
method of real time optimization was given. 
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CONTROL SYSTEM 

REAL-TIME DATABASE 

INTERFACE INTERFACE 

Figure 5. Integrated plant/controL!simulatoor system [ I  I ] .  

( i i)  Distributed Approach to Real Time Optimization 
The distributed approach breaks down the overall optimization into several local 
optimizations which are coordinated by a unit optimizationlcoordination model. 
Figure 6 contrasts the distributed approach to the centralized or global approach [3]. 
The aim of the distributed approach is to decompose the large scale plant into 
subsystems thereby reducing the complexity of the original optimization problem 
[SO]. The distributed approach is also sometimes referred to as modular or 
hierarchical optimization. Distributed real time optimization has been likened to a 
“bottom-up” implementation of optimization as opposed to the “top-down’’ 
centralized approach. 

GLOBAL UNIT w n M m n m  MODEL 

DlSTRlBUTED OPnWaAllON 

UNIT w n M i a n m  I COORMNATION MODEL 

I + I 4  I C  I +  I +  

Figure 6. Centralized vs. distributed optimization [3]. 
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BUSINESS 
ENVIRONMENT 

LayDTERM 
O W D  

Figure 7. Overall proces control systems structure 131. 

Darby and White [3] give a proposed overall control systems structure to deal 
with the distributed real time optimization shown in Figure 7. Some short examples 
are given to illustrate that the distributed approach will lead to the same answer as the 
global approach, but very little detail on implementation of the method is given. 

Arkun and Stephanopoulos [50] give a very detailed method of how to perform 
optimization on a plant decomposed into its subsystems with functional uniformity 
and common objectives in terms of economics and operation. The subsystems are not 
independent of each other so interconnections between the subsystems are defined. 
Local optimizing controllers are designed for each subsystem, S ,  of the plant. If the 
plant has N subsystems, then the sub-problem: S,, i = 1, ...& is subject to the system 
constraints, as given by: 

(7) 
7 min li = (xt,m,u,di) - ki ui + A, eji y ,  

' i  m n  

where di = vector of disturbances entering the subsystem Si; 
li = sub-Langrangian for a subsystem i; 
mi = vector of manipulated variables; 
Qi = incidence matrix denoting the interconnection among the subsystems; 
ui = vector of interconnection points; 
xi = vector of state variables; 
y ,  = vector of output variables; 
hi = Lagrange multipliers for the interconnection constraints; 
@;= subobjective function. 

The coordinator or overall optimizing problem for the plant attempts to satisfy the 
interaction between the subsystems by satisfying: 

N 

j=  1 
Ui = c Q, y j  
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By performing this decomposition, and by properly formulating the subsystem 
control objectives, the selection of the controlled and manipulated variables can be 
made in a decentralized fashion. The method also deals with the sequencing of the set 
point changes using “Sequencing Trees” to ensure plant safety and bottlenecking are 
considered. The best route selected should also try to reduce the number of setpoint 
changes made and select the smoother and faster routes with respect to plant 
operation. 

There is no agreement in the literature on whether distributed is better than global 
real time optimization or not. Darby and White [3] claim the following advantages 
for the distributed approach: 

The distributed optimization can be carried out more frequently than the global 
approach as the method only has to wait for steady-state in each subsystem rather 
than the plant as a whole. 
The local optimizers can model the subsystem more accurately and completely 
than a global optimizer can as the individual model dimensionalities will be less 
restricted than the global model. Also different models can have different 
optimization levels. 
Local optimizers permit the incorporation of on-line adaptation or on-line 
parameter estimation more easily. 
Local optimizers are easier to maintain as they are less complex and hence easier 
to understand than a large global optimizer. 
If problems are occurring in the modeling, the local optimizer causing the 
problem can be taken off-line while the rest of the optimizers continue to 
function. A global optimizer would have to be completely turned off to be 
restructured. 

Bailey et al. [ 6 ] ,  however, point out two major difficulties with the distributed 
approach: 

The constraint information being passed between local unit optimizers to prevent 
conflicts is not as effective as that in a global approach. 
It is possible to get inconsistencies in the update of the parameters when only 
parts of the process are considered in the local optimizers. 

Unfortunately no actual case studies using the distributed approach were available to 
help determine which approach gives better results. 

(iii) Direct Methods (Model free approaches) 
The real time optimization is performed directly on the process without explicitly 
using any model. Direct methods are discussed by Arkun and Stephanopoulos [51] 
who conclude that the method is too slow and simplistic for on-line optimization. The 
method is an evolutionary operation, sometimes called an on-line hill-climbing 
gradient search, where after each trial of set point changes, the objective function is 
measured at steady-state and its sensitivity is used to readjust the setpoint. Large 
numbers of set point changes and on-line sensitivity measurements are required to 
observe the behaviour of the objective function, especially when process noise is 
present. The method is also slow to reach the optimum as it has to wait for steady- 
state after each set point change. In early attempts at real time optimization, this 
method was used and criticized for its slowness. 
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Implementation 
Two papers by Latour [4,52] cover many of the issues relating to real time 
optimization from a business objective point of view. Tables 1 and 2 list some of 
these points. 

Table 1. Requirements for on-line optimization [4]. 

Select proper independent variables. 
Formulate model requirements. 
Formulate business objective functions. 
Select optimization algorithms appropriate to the nature of the problem (process 
and business). Always guarantee a feasible solution. Handle partial equipment 
failures. 
Specify sensor inputs and manual inputs. 
Difine human interface for objectives, defaults,economic parameters, physical 
limits, laboratory analyses. The system must inform people what it is doing and 
why. 
Specify the interface with regulatory controls, consider timing, move limits, 
output seuencing, process dynamics, stability and interactions. 
Specify computer hardware and software. 
Consider procedures for maintaining model fidelity, process and economic. 

All process models are only approximations of real process behaviour. Therefore 
as operating conditions in the units shift with time, the model coefficients will require 
updating. Also new constraints may need to be added or old ones deleted at some 
point. Whether some model maintenance should be carried out manually or 
automatically is an important decision to be made in the implementation of the 
optimizer. Ongoing long term maintenance of the on-line optimizer must be carried 
out after implementation. There have been many cases of initial successes which later 
floundered due to an inadequate number of trained personnel assigned to the long 
term maintenance of the optimizer. This often results in the real time optimizer falling 
into disuse. 

The complexity of the process model also determines the sophistication of the 
maintenance required. Not all variables and constraints can be included in the process 
model. The art of optimization modeling is to select the variables that have the most 

Table 2. What on-line optimizers will not do [4].  

Determine business objectives of the plant. 
Specify the process and economic models. 
Select criteria for finding and defining the plant optimum. 
Select the best set of independent variables. 
Specify mechanical or safety limits 
Determine market requirements for product quality. 
Verify product values, fuel and feed costs, and production rate limits. 
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significant effect on the economics and important constraints, while eliminating those 
of lesser significance [31. 

It is difficult to convey to operators what the optimizer is doing and why. 
Generally, if the operator does not understand the results, the optimizer will be turned 
off at the first excuse. Simplicity and modularity in the interface to the operators will 
enhance understanding [3]. Campbell [53] and Hanmandlu et al. [ 5 ]  both cover 
features of on-line optimization software. Figure 8 shows how an on-line optimizer 
interacts with other parts of the plant. Good training and documentation at both the 
user and system level are required to get the best results out of the optimizer. 

~ ~ 

PROCESS 
CONTROL 

S O W A R E  

PRODUCTION 
STATUS b SUPERVISOR 

OPERATOR 

Figure 8. Interaction of optimizing program in the plant system [5,53]. 

The real time optimizer needs to be able to operate without some available process 
measurements. If the optimization is disabled every time a single input is off-line, 
then it will not be in use very much in a large plant. Methods for getting around this 
problem include estimating the missing input or being able to switch off that portion 
of the optimizer affected by the loss of the input [3]. 

Conclusions and Future Areas of Research 
A review in the area of real time optimization has been presented. At present, real 
time optimization is not a well researched or documented field. Most of the 
development in real time optimization has been carried out by industry, and 
consequently most information is not easily accessible for study. Some areas of real 
time optimization, such as the optimization algorithm, data reconciliation and gross 
error detection do receive significant attention in the literature. Other areas including 
implementation, on going maintenance of a real time optimizer and model 
development (specifically for real time optimization) have very few references 
available. Questions addressing the issues of how close to the constraints should a real 
time optimizer be allowed to change the process set points, and what effect does the 
real time optimizer have on the stability of the process control system have not been 
addressed in the literature to date. 
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Companies using real time optimization in their processes are tending to move 
away from developing the optimizer themselves towards using vendor provided 
software. Extension of process simulation packages to include real time optimization 
would enable a lower level of expertise to create and maintain a real time optimizer, 
and also help to provide user friendly graphical interfaces for the software. The use of 
similar models in the real time optimizer to those used by the process engineer would 
also have benefits in both the understanding and maintenance of the plant process 
models. This may involve simplifying the rigorous design models for use in a real 
time optimizer. With the rapidly decreasing cost of computer power, real time 
optimization is becoming a more attractive method of reducing processing costs. 
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