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A b s t r a c t - - A  method for the automatic tuning of P1D 
controllers in a closed loop, based on the estimation of a 
parametric 'black-box' transfer function model, is proposed. 
The system is excited by generating limit cycle oscillations at 
two different frequencies, which are approximately the 
crossover frequency and the critical frequency for the 
feedback loop. A discrete parametric transfer function model 
is estimated from the experimental data. Important 
parameters concerning the estimation, such as the prefilter 
cut-off frequency and the sampling interval, are determined 
automatically from the experimental data. The PID 
parameters are determined from a constrained optimization 
in the frequency domain. The constraints are classical control 
system properties, such as the maximum amplitudes of the 
sensitivity and the complementary sensitivity functions. 
Given these constraints, the PID parameters are determined 
such that the low frequency amplitude characteristic for the 
controller is maximized. Simulation experiments show that 
the tuning procedure has low sensitivity to disturbances and 
noise during the tuning experiment. 

1. Introduction 
METHODS FOR the automatic tuning of PID controllers, based 
on knowledge of the process transfer function at one or more 
frequencies, have been proposed by several authors. Some of 
these methods determine the process transfer function at a 
single frequency only (A, strt~m and H~igglund, 1984a, b; 
Schei, 1991, 1992). Other methods are based on the 
estimation of parametric transfer function models. 

The PID parameters can be determined from the transfer 
function estimates in a number of ways. Analytical methods 
for the computation of the PID parameters from the 
estimated transfer function models are, however, limited to 
very simple models, typically first-order models for PI control 
and second-order models for PID control (Gawthrop and 
Nomikos, 1990). For general transfer function models the 
computation of the PID parameters involves some numerical 
search routine. Methods for determination of the control 
parameters based on the minimization of quadratic 
performance objectives in the time domain are presented by 
Nishikawa et al. (1984), Radke and Isermann (1987), 
Isermann (1989), and by Vega et al. (1991). A drawback with 
these methods is that it is not trivial to relate the choice of 
parameters in such performance objectives to classical 
control loop characteristics, such as the gain and phase 
margins, etc. Hence, the determination of the robustness of 
these controllers is not straightforward. 
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The robustness can be specified more explicitly by 
performing the optimization in the frequency domain. A 
method for designing H= optimal PID controllers is 
presented by Grimble (1990). The optimization problem is 
based on the minimization of the H= norm of the sensitivity 
and complementary sensitivity functions multiplied by 
frequency dependent weights. However, a serious difficulty 
with such methods is to specify the weights automatically. An 
alternative frequency domain approach is presented by Prada 
et al. (1990). In this method the PID parameters are 
determined such that the system obtains specified values for 
the gain and phase margins. The relationship between the 
derivative and integral times is fixed in order to obtain a 
unique solution. 

The proposed procedure below for automatic tuning of 
PID controllers has the following properties. 
• A perturbation signal is generated automatically such that 

the system is excited mainly in the frequency range that is 
most important for the determination of control system 
performance. Input and output data from this experiment 
are stored. The rest of the computations are performed 
off-line. 

• A discrete parametric transfer function model is estimated 
from the experimental data. Appropriate values for the 
prefilter parameters and the sampling interval during 
parameter estimation are determined automatically. It is 
assumed that the experimental data are stored with a 
relatively high sampling frequency. These data are then 
filtered and decimated prior to the transfer function 
estimation. 

• The PID parameters are determined from a constrained 
optimization in the frequency domain. The constraints are 
maximum amplitudes of the sensitivity and the com- 
plementary sensitivity functions for the feedback loop. 
Given these constraints, the PID parameters are 
determined such that the low frequency controller 
amplitude characteristic is maximized. 
The paper is organized as follows. Section 2, which 

contains the main contribution in this paper, presents 
excitation methods for closed-loop systems based on the 
generation of limit cycle oscillations at approximately the 
crossover frequency and the critical frequency for the 
feedback loop. These excitation methods have not been 
published before. The choice of the various parameters 
concerning the transfer function estimation is presented in 
Section 3. These choices are based on the average oscillation 
frequencies during the excitation experiment. The optimiza- 
tion method for determination of the PID parameters is 
presented in Section 4. This method also seems to be new. 
Simulation experiments are shown in Section 5. 

2. Generation o f  the perturbation signal 
It is assumed that a stable (and conservative) controller is 

established prior to the tuning, and that the purpose of the 
tuning is to improve the performance of the control system. 
For processes that are open-loop stable, conservative 
controllers might often be established by simple transient 
response experiments. 
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The most important frequency range for control system 
performance is usually between the crossover frequency 
(gain equal one) and the critical frequency (phase equal 
-180 ° ) for the loop transfer function. Methods for generating 
limit cycle oscillations at these two frequencies are described 
below. It is assumed that the process and the controller are 
continuous time systems. 

In the first method the system is excited by connecting a 
relay function and a linear filter in a feedback path from the 
measurement to the reference signal for the controller as 
shown in Fig. 1. Mr(s)  is the closed-loop transfer function 
from the controller reference, r, to the measurement,  y. For 
most systems a limit cycle will be generated due to the 
nonlinear characteristic of the relay. The linear filter d ( s )  is 
used to influence the frequency of the limit cycle oscillation. 
The reference signal will vary in steps between r e -  zXr and 
r~ + Ar, where ,.'kr is the amplitude of the relay function. 

We assume that there is generated a stable limit cycle in 
the system. The oscillation frequency, w~c, is approximately 
determined by 

/_d( jwlc)M~(jw,~ ) ~ - 180 °. (1) 

This follows from a describing function approximation of the 
relay characteristic. 

Firstly, we assume that the controller has one degree of 
freedom. The process input is then 

u( s )  = C(s)(r(s) - y ( s ) ) ,  (2) 

where C ( s )  is the transfer function for the controller. The 
closed-loop transfer function Mr(s) is then equal to the 
complementary sensitivity function, M ( s ) .  

G ( s ) C ( s )  
Mr(s)  = m ( s )  - 1 + G ( s ) C ( s )  ' (3) 

where G ( s )  is the transfer function for the process. 
With d(s )  = 1 we see from equation (1) that, if a stable 

limit cycle exists in the system, the phase of Mr(joJ) is 
approximately -180  ° at the oscillation frequency. Hence, this 
frequency is approximately equal to the critical frequency for 
the loop transfer function. 

With d ( s )  = l / s  we see from equation (1) that, if a stable 
limit cycle exists, the phase of M r ( #o )  is approximately - 9 0  ° 
at this oscillation frequency. It can be seen from a Nichols 
diagram (Schei, 1992) that this frequency is between the 
crossover frequency and the critical frequency for the loop 
transfer function. 

The second excitation scheme is shown in Fig. 2. We 
assume that a stable limit cycle is generated in this system. 
From the describing function approximation of the relay 
characteristic we now find that the oscillation frequency, 0)~c, 
is approximately determined by 

±(2Mr(jto,,. ) 1 )~  90 °. (4) 

The transfer function on the left-hand side of equation (4) is 

2G(j°)L~)C(J°)t':) 1 
2M~(jwl~) - l - 1 + G(jtol,:)C(jtol,:) 

G(j tol ,:)C(jwl~ ) - I 

- G ( j w t ~ ) C ( j w ~ , . )  + 1 " (5) 

From equations (4) and (5) we have that 

G(jwt~)C( jwt , : )  - 1 1 - k j  
G(jtol,:)C(jtol,:) + 1 - k j  ~ G(Jt°k:)C(Jt°lC) ~ l + k j '  (6) 

r0 

FIG. 1. Block diagram showing the relay feedback path from 
the process measurement,  y, to the reference signal for the 
controller, r. A limit cycle oscillation with frequency equal to 
the critical frequency "is approximately generated if d ( s )  = 1. 

FIG. 2. Block diagram for generation of a limit cycle 
oscillation at the crossover frequency. 

where k is some real positive number. From equation (6) we 
see that 

]G(jwlc)C( jwlc) l  ~ 1. (7) 

The frequency of the limit cycle oscillation, 0)~c, generated by 
the scheme in Fig. 2, is approximately equal to the crossover 
frequency. 

A suitable perturbation signal can now be generated by 
letting the system oscillate for a predetermined number of 
periods at the various oscillation frequencies as described 
above. The major part of the excitation energy is then 
distributed in the frequency range between the crossover 
frequency and the critical frequency for the loop transfer 
function. Also, this will usually be so after the control 
parameters are adjusted to the new values. It should be 
noticed that the critical frequency is independent of 
variations in the proportional gain for the controller. 

Most processes encountered in the process industry have 
smooth transfer functions that can be determined quite 
accurately in a narrow frequency range from knowledge of 
the transfer function at two distinct frequencies in this range. 
Hence, it is assumed to be sufficient that the system is excited 
by generating limit cycle oscillations at two different 
frequencies, the critical frequency and the crossover 
frequency are chosen. 

It is assumed above that the controller has one degree of 
freedom. However, in a PID controller the derivative action 
is normally applied to the measurement signal only, not to 
the reference signal. The PID controller has then two 
degrees of freedom, and the control law can be expressed as 

u(s  ) = Cr(S )r(s  ) -- Cy(s )y(s  ). (8) 

The closedqoop transfer function from r to y is now 

G ( s ) C r ( s )  
Mr(s)  - (9) 

1 + G(s )C , . ( s )  

and the complementary sensitivity is 

M ( s )  = Mr(s)  Cy(s)  (10) 
Cr(S) ' 

Hence, we can generate limit cycle oscillations at the 
critical frequency and the crossover frequency by including 
the filter C~(s ) /Cr ( s )  at the output from Mr(s)  in Figs 1 and 
2. 

Some theoretical questions regarding the existence and 
uniqueness of relay oscillations and the accuracy o f  the 
describing function approximation are analysed by Astr/Sm 
and H~igglund (1984a) and Tsypkin (1984). 

3. Trans fer  f unc t ion  es t imat ion 
The proposed tuning method is based on the identification 

of a parametric black-box transfer function model. Important 
results concerning the variance and the bias distributions of 
transfer function estimates are presented by Ljung (1985) 
and by Wahlberg and Ljung (1986). It is of prime importance 
to know the frequency range where we want the transfer 
function model to resemble the real system. In the previous 
section it was shown how this frequency range could be 
approximately determined and excited by the nonlinear 
feedback paths shown in Figs 1 and 2. The sampling 
frequency and the prefilter characteristics can then be chosen 
automatically based on average oscillation periods. It is 
assumed that the raw experimental data are stored with a 
relatively high sampling frequency. These data are then 
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prefiitered and decimated prior to the transfer function 
estimation. 

The simple ARX model structure is used for estimation of 
the process transfer function. Wahlberg and Ljung (1986) 
have found that this model structure can lead to 
approximately the same results as more advanced structures, 
if the data are properly filtered prior to the parameter 
estimation. The ARX model structure tends to emphasize 
high frequencies in the fit between the transfer function 
model and the real system. Hence, it is important to combine 
this model structure with a low-pass filter. The filter is chosen 
to be a fourth-order Butterworth filter with a cut-off 
frequency twice the estimated critical frequency. This 
estimate is based on the average oscillation period for the 
scheme in Fig. 1 with d(s) = 1. The sampling frequency is set 
to 15 times the estimated critical frequency. 

The choice of model order is a compromise between 
variance and bias considerations. The variance of the 
estimated transfer function model increases with increasing 
model order. On the other hand, the bias in the transfer 
function estimate will decrease with increasing model order, 
since more parameters give more flexibility to adjust the 
model to the true system. A second-order model seems to be 
a reasonable compromise between these conflicting objec- 
tives. If we approximately regard the excitation signal to 
consist of two single frequencies, we know t.hat the data are 
sufficiently informative with respect to a second-order model 
(Ljung, 1987). The model is also flexible enough to fit exactly 
to the real system at these two frequencies. Hence, we can 
assume that the bias will be low around the two oscillation 
frequencies when the model is of second-order and most of 
the excitation energy is concentrated around these two 
frequencies. 

A second-order ARX model with input u and output y is 
stated as 

y(t) = - a  l y ( t -  T ) -  a2y ( t -  2T) + b l u ( t -  kT) 

+ b2u( t -  (k + 1)T) + e(t). (11) 

A time delay, kT, where T is the sampling interval, is 
included in the model, k will be a small integer if the 
sampling interval is chosen as above. The prediction error 
parameter estimate of 0 = [at, a2, bl, b2] "r, which minimizes 
the mean square of the prediction errors, is computed with 
the well-known least squares method. The parameter k is 
determined by computing 0 with k varying from one up to a 
maximum possible value. The set of k and 0 that give the 
smallest value of Akaike's Information Criterion is chosen as 
the estimated model. 

The process transfer function estimate is determined from 
the model in equation (11) and the estimates of k and 0. 

bl + b2 e-joT .e-£JoT 
G(eJ°T' O' [¢) = 1 + dle-J°T+ ~2 e-2joT ' (12) 

b = [a,a2f,,[,2l T. 

The PID parameters are determined under the assumption 
that the controller and the process are continuous time 
systems. (~(e j'°r,/),/~) is then used as an estimate of the 
continuous time frequency response for the process. 

4. Determination of the PID parameters 
The transfer function for the feedback part of the 

controller is expressed as 

Cy(s) = Kp(1 + ~is -~ 1 + (-~dN)sl' (13) 

where Kp is the proportional gain, T~ is the integral time, and 
Ta is the derivative time. It is assumed that the derivative 
part is filtered by a first-order filter with time constant Td/N f. 
The parameters Kp, Ti and Ta are determined from a 
constrained optimization in the frequency domain. The 

constraints define certain stability margins that we want to 
impose on the system. 

In process control applications we often want the highest 
possible attenuation of low-frequency disturbances, while 
maintaining certain stabilty margins. Hence, we choose to 
maximize the low-frequency amplitude characteristic for the 
controller. Since the integral term is dominating at low 
frequencies, the objective function is chosen to be 
f(Kp, Ti)=Ti/Kp. By minimizing f we maximize the 
asymptotic amplitude characteristic of Cy(#o) at frequencies 
below 1/Ti. 

The performance and robustness of a control system is 
often stated in terms of the sensitivity function, N(jto), and 
the complementary sensitivity function, M(jto). By using the 
estimated model G ( e J ~  we get 

1 
N(jto) = ] + ~(d,oT)Cy(jto ) , 

(14) 
G ( eJ'r)C.:(jto ) 

M(jto) = 1 + t~(d~r)Cy(jto) " 

The peak values of IN(jto)l and ]M(jto)] are chosen as 
constraints in the optimization. Hence, we require that 
IN(jto)l-np<-O, and IM(j to) l -rap-<0 for all to. The value 
of np is usually chosen to be in the range 1.3-3.0. mp is 
usually between 1.0 and 1.6. It has to be at least 1.0 in order 
to impose a reasonble constraint at low frequencies. 

If we prefer to specify the constraints in terms of minimum 
values of gain and phase margins for the feedback loop, we 
can easily find the corresponding values of np and mp from 
equation (14). 

The total optimization problem is stated as 

minimize f(Kp, Ti) = Ti/K p 

subject to gl(toi) = IM(jtoi)] - m p  < 0 
(15) 

g2(toi) : IN(jtoi)[ - n o < 0 

Kp < gp. max, 

where the frequencies to~ are chosen as a set of frequencies in 
the relevant frequency range. A constraint on the 
proportional gain is included in order to limit the 
high-frequency amplification in the controller. Without this 
constraint, first or second-order minimum phase processes 
would lead to virtually unlimited bandwidth. 

The controller design method above is quite natural from a 
simple loop-shaping argument. Usually we want the 
sensitivity to be as small as possible at frequencies below the 
bandwidth of the system, while limiting the peak amplitude 
values of the sensitivity and the complementary sensitivity 
functions. This is approximately obtained by equation (15). 
1/T~ is usually close to the bandwidth of the system, and we 
see from equation (14) that the sensitivity is approximately 
minimized at frequencies below 1/T i. 

The parameters np and mp determine the trade-off 
between robustness and performance in different frequency 
domains. It is well known that the amplitude of the 
complementary sensitivity function determines the stability 
robustness of the system against multiplicative norm- 
bounded perturbations (Doyle and Stein, 1981). Small values 
of np and mp give large stability margins. It can be seen from 
a Nichols diagram that the gain margin will be determined by 
np and the phase margin by rap, if these parameters are given 
reasonable values. However, small values of np and mp 
generally increase the sensitivity at low frequencies. This is 
mathematically expressed by Bode's Integral Theorem 
(Bode, 1945), which states that the integral f~ In (N(jto)) do) 
is a constant. 

The solution of equation (15) is based on a sequential 
quadratic programming method. In this method, a quadratic 
programming subproblem is solved at each iteration. 
Extensive simulation experiments indicate that the optimiza- 
tion procedure will usually converge to the optimal solution 
if we are able to specify an initial feasible solution. It is seen 
easily from a Nichols diagram that, for stable processes with 
at most one integration, we can always find a feasible 
proportional controller by choosing the proportional constant 
sufficiently small. It is assumed that n p >  1 and mp > 1. The 
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same is true for stable processes with at most two 
integrations, if we include a sufficiently long derivative time 
in the controller. 

An important advantage with this frequency domain 
approach is that it is easy to choose reasonable values for the 
parameters that have to be specified by the user. The 
parameters that have to be specified are n v and rap, or 
alternatively, minimum allowable gain margin and phase 
margin. 

5, Simulation experiments 
The auto-tuning method will be demonstrated with the 

following simulation model: 

G(s) (1 - 10s) e ")~' (16) 
(1 + 60s)(1 + 20s)(1 + 20s) 

Conservative control parameters were first obtained from a 
simple pulse response experiment, The constraints were set 
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FIG. 4. Nichols plot for the estimated loop transfer function ( ) and for the true system ( - - ) .  The constraints g~ = 0 ( . . )  and 
g2 = 0 ( - .) are also shown. The two oscillation frequencies are marked with circles in the diagram. 
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FIG. 5. Above: output measurement ( ) and reference signal ( - - ) .  The simulation starts with a load disturbance, and there is 
a step in the reference signal after 600 s. Below: process input. 

to n p = l . 4  and m p = l . 1 ,  and the parameters for a PI 
controller were determined to Kp = 0.46 and T~ = 65.4 s. 

The system is now excited in closed loop. The reference 
signal and the process input and output responses during the 
tuning are shown in Fig. 3. The reference signal perturbation 
is generated by the schemes in Figs 1 and 2, with two 
oscillation periods at approximately the critical frequency 
and one oscillation period at approximately the crossover 
frequency. The first relay switch occurs when the 

measurement has reached 50 per cent of the first step in the 
reference signal. 

The experimental data are prefiltered and decimated, and 
the transfer function estimate is based on the ARX model in 
equation (11): 

0.0830 + 0.0048e -i ' ' ls e_3J,,,l 5 
t~(ei"ls) = 1 - 1.3895e - ) ~  + 0.4773e -2~'1s 

(17) 
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Fro. 6. Above: output measurement ( ) and reference signal ( - - )  during closed-loop tuning. The noise and disturbance are 
shown with the dotted line. Below: process input. 
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The parameters for a PID controller are determined under 
the constraints np = 2.0 and mp= 1.3. The parameter Nf in 
equation (13) is set to 5.0. The new PID parameters are 
Kp = 1.64, Ti = 68.9 s and Td = 20.5 s. 

Nichols plots for the estimated and the true system are 
shown in Fig. 4. We see that the estimated model fits very 
well to the true system for all important frequencies. 

The system is simulated in Fig. 5. The derivative action is 
not applied to the reference signal: 

The same tuning experiment is repeated with process 
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FIG. 8, Above: output measurement ( ) and reference signal ( - - ) .  The simulation starts with a load disturbance and there is a 
step in the reference signal after 600 s. Below: process input. 
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disturbance and measurement noise acting on the system. 
The process disturbance is generated by filtering discrete 
white noise with sampling interval 1 s and standard deviation 
50% through a second-order Butterworth low-pass filter with 
a cut-off frequency of 0.010 rad/s. The disturbance sequence 
is added to the process output. The measurement noise is 
white with standard deviation 1% filtered through a first 
order low-pass filter with a cut-off frequency of 0.10 rad/s. 

The tuning experiment is shown in Fig. 6. The oscillation 
periods are highly irregular due to the process disturbance. 
The transfer function estimate is now 

0.2831 - 0.2797e -j~23 - 2 j ~ 2 3  
0 (e j~23) = 1 - 1.9469e -i~23 + 0.9364e-Zj~23 e 

(19) 

The parameters for a PID controller are computed under the 
same constraints as above, that is, np = 2.0 and mp = 1.3. The 
new PID parameters are Kp = 1.75, T~ = 134s and Td = 11.8s. 

Nichols plots for the estimated and the true system are 
shown in Fig. 7. We see that the estimated model fits 
reasonably well to the true system in the most important 
frequency range, but the low-frequency part of the model is 
very inaccurate. 

The system is simulated in Fig. 8. The longer integral time 
compared with Fig. 5 makes the response to the load 
disturbance slightly more sluggish. We see that the 
performance of the control system is reasonably good, even if 
the identified parametric model is very different from the 
true system. The reason is that the amplitude and the phase 
of the estimated model is relatively accurate in the most 
important frequency range between the crossover frequency 
and the critical frequency for the feedback system. 

6. Conclusions 
Simulation experiments show that the presented tuning 

method has low sensitivity to disturbances and noise during 
the tuning experiment. The main reason for the good 
performance is that the identification experiment and the 
parameters concerning the transfer function estimation are 
chosen with the intention to obtain an accurate transfer 
function estimate in a narrow frequency range. This 
frequency range is determined automatically from the 
closed-loop excitation experiment. 

Extensive simulation experiments also indicate that the 
constrained optimization method for determining the PID 
parameters gives very good performance and robustness. It is 
an important advantage with this method that the trade-off 
between robustness and performance is determined explicitly 
through the choice of constraints. The trade-off between 
performance in different frequency domains is also 
determined through the choice of sensitivity constraint, rip. A 
small value of np will lead to low sensitivity in the frequency 
domain around the bandwidth of the feedback loop. A 
higher value of np increases the amplification of disturbances 

around the bandwidth, but the sensitivity at low frequencies 
will decrease. 

A disadvantage with auto-tuning methods based on off-line 
identification is that they are not suitable for adaption to 
continuous changes in the process. Hence, these process 
variations should be considered when choosing the 
constraints n o and mp. 
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