PROCESS CONTROL

Consider IMC Tuning

f to Improve
' Controller Performance

Internal-model-control tuning rules have a number of
advantages for maximizing PID controller performance.
They minimize disturbance propagation and use only one tuning
parameter. Plus, needed process models can be developed easily.

I-LUNG CHIEN AND P. S. FRUEHAUF, DU PONT (0.

extensions that make it a practical
tool for operating a chemical proc-
ess. For example, it has automatic
and manual switching, set-point
tracking, external reset feedback,
and emergency manual modes.
Many controller tuning methods
have been proposed in the litera-
ture. Perhaps the most well known
are the Ziegler-Nichols and the Co-
hen—Coon rules. Ziegler—Nichols
uses critical gain and frequency in-
formation in order to determine the
P I, and/or D parameters based on
quarter-decay criterion. Gohen—
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Coon utilizes a first-order-plus-
deadtime model with quarter-decay
criterion to determine the tuning
parameters. Later extensions were
made to higher-order models with a
variety of performance criteria such
as integral of the absolute value of
the error, integral of the time-
weighted absolute error, integral of
the square error, maximum peak,
and phase margin.

Rivera and co-workers (1) intro-
duced a PID controller design
mecthod based on internal model
control (IMC) in 1986 that is attrac-
tive to industrial users because it has
only one tuning parameter. The pa-
rameter relates directly to the
closed-loop speed of response and
to the robustness of the control loop;
the larger the tuning parameter, the
greater the robustness. Moreover,
the closed-loop load response exhib-
its no oscillation or overshoot. Ex-
perience indicates that this mini-
mizes controller interactions and en-
hances overall process disturbance
rejection.
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In this article, the IMC—-PID tun-
ing rules will be discussed in the
context of industrial applications.

IMC-PID tuning method

The IMC—PID tuning method was
first introduced by Rivera et al. (1)
and was later extended to cover a
wider range of process models by
Chien (2). The idea is to use
straightforward, two-step IMC con-
troller design to obtain conventional
PID controller tuning constants.
Figure 1 shows the typical IMC con-
trol structure. The simple G,y con-
troller design procedure is as follows
(3).

Step 1. Factor the model

Gy = GuiGy- (1)
such that G+ contains all of the
deadtimes and right half-plane ze-
ros; consequently, Gy~ is stable and
does not involve predictors.

Step 2. Define the IMC controller
as

G = GyYYf (2)
where [ is a user-specified low-pass
filter.

Figures 2 and 3 show how the IMC
structure can be put into the con-
ventional feedback control structure
by canceling the two dashed-line
paths involving G,,. The relationship
between the feedback controller (G,,)
and the IMC controller (Gy) is

G = Gd(l GGy ()
Thus, by knowing the process
model, the feedback controller (G,.)
can be calculated by using Egs. 1-3.
The process model need not exactly
match the process. The controller
performs quite well even under se-
vere model mismatch conditions (2).

The IMC-PID tuning rules are
derived for the common vendor im-
plementations of the PID algorithm.
The Laplace transforms of the algo-
rithms are as follows. For PID(1),
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Figure 1. Internal model control structure.
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Figure 3. Feedback control structure. :
For PID(2), ler design is as follows. Fivst, HPP,',A‘,:,
imate the deadtime by cither a “'s
Ge= K. |1 + — order Padé or a first-ovder Taylor
S ries. Second, select [ as
I+ 7,8 g ) . (7)
(1/DG)S + 1 : S = Ubad + 1) 228
for first- and second-order proct
oras
For PID(3),
i _ -Gt S @
(r(; = 1\(; / = (T(ZL S -+ l)'—’
I T . ator
L+ 'r,—S + (r/DG)S + 1 ©)  for processes with an integrd

where K¢ is the controller propor-
tional gain (dimensionless), 7, is the
reset time, 7, is the derivative time,
and DG is the derivative gain.

The procedure for obtaining PID
tuning rules from the IMC control-

Third, use Eqs. 1-3 to finc al
back controller, G. Finally, com}j l
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:I:ﬂ“re 4. Open-loop unit step response of
® process in Eq. 9.
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ess models in the chemical in-
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'““me(t f%, T is a user-specified pa-
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P speed of response. A smaller
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§ ‘l‘i\r Tre Further refinement of ¢,

. degerps " e
t.let‘l,]eb(.llbcd previously. For more

st‘c’ " on the IMC~PID tuning rules,
Chien (2).

tal based on the propertics of

Figure 5. Strategy for distillation column
Time-constant-dominant

processes

For processes with large time con-
stants vs. deadtime, the IMCG-PID
tuning rules give slow load response
because IMC design retains the
open-loop load response into the
closed loop. Thus, if the open-loop
load response is slow, the closed-
loop response will be slow no matter
how small a 7, is chosen. One way to
improve the tuning rules in this sit-
uation is to approximate the model
as an integrator plus deadtime.

A numerical example will be used
here to illustrate the idea. The La-
place transfer function of the exam-
ple is

&

508 + 1

G = G = )

Notice that the process and the dis-
turbance dynamic are assumed to be
the same, and the time constant is
dominant with a deadtime-to-time-

hottom level control.

constant ratio of 0.02. Figure 4
shows the open-loop unit step re-
sponse of this process. The bottom
part of the figure represents the
first 20 min of the overall dynamic
response. The process dynamic ini-
tial response is very similar to the re-
sponse of a process with an integra-
tor and deadtime. For this example,
the approximate model emphasized
on the initial response is

0.018¢-%
N

Controller design based on this ap-
proximate model is intuitively sound
because the closed-loop operation
will always keep the process variable
near the initial response operating

Gy (10)

© region.

Simulation results show that tun-
ing rules based on the integrator-
plus-deadtime model, Eq. 10, gives
much superior closed-loop load re-
sponses than the tuning rules based
on the first-order-plus-deadtime
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model, Eq. 9, for nominal and model
mismatch conditions.

Removing a small amount of
low hoiling component

The first example is a difficult
control loop that uses the steam flow
rate to control a distillation column
bottom level. The overall control
strategy for this column is shown in
Figure 5. The distillation column is
the final unit operation in a chemi-
cal process, and the purpose of the
column is to separate a small
amount of a low boiling material

need for the time-consuming trial-
namic response of real plant data in
Figure 6. The resulting dynamic
simulation can be seen in Figure 7.
Notice that the closed-loop response
is very similar to real plant response
(Figure 6). Because the deadtime
found by simulation is 7.4 min, the
process model is
0.28_7““’.
N

Table 1. IMC=PID tuning rules.

From Table 1, the PI tuning co¥
stants for T, = 8 min are K = 0 J
and 7, = 23 min. A simulal‘?d
closed-loop response to a load dis
turbance using these tuning co%
stants is illustrated in Figure 8. Thc'
actual plant response using the n¢"
tuning constants is shown in Figu'* |
9. Again, notice the similarities ”‘
the responses. The benefits of thY
technique are that it eliminates the

7

from the final product. The feed PID(1) PID(2) ;
rate is controlled by an upstream Process Model KK, 7y Ty KK, 7
distillation column base level. The ¥ 4
final product flow rate is controlled i 4 4 5 & :

by the overhead condenser receiver T ) el i
level. Reflux flow to the column is Kot T T 0 T T i
under flow control with a conserva- TS+ 1 ) 2 0

tive high flow setpoint to ensure Taty Tat g

product purity. Using bottom flow

to control the bottom level is not ef- Koes 8 3 ¥ i 8 i
fective because this flow is only a e 5 5 7 2

small portion of the feed flow (only z

about 1.3%). Bottom flow is main- P T+ 4

tained at a constant ratio to the col- L 4
umn feed rate. KizsS + 1) T T 15 Yot ¥ T &y 1

The performance of the bottom | mS+ NrS+1) | 7+ 8 o+ 0 2
level control loop was so poor that it K(rS + T)e s . & A s T :
required constant operator attention | = TS+ 1) | et 0
during start-up and normal opera- 4
tion. One of the authors (Chien) was K S+ N 7 i = T 3]
asked to improve the control per- 7§ + WS+ 1 A
formance. Upon arrival at the plant, K= 755 + l)e= o % 0 % P
the control performance was inves- S+ NS+ 1) |7 + 15+ 0 e S e ey
tigated and found to be very cyclic as
shown in Figure 6. A

The process model for the level =7 + N ki L b (£l T T‘
system, which was derived from a S+ NS+ 1) (et Tt To t Ty k0 |7 T+ 0 J
material balance equation, is: K75 + N 5 e i £ =

S A
where K, is the steam flow span Ke * 21q + O 21 + 0 = T+ 0 |2+
times the steam latent heat divided § {re + 6)? (g + 0)? i
by the latent heat of process fluid Ke-vs 0 0 0 0 ol 5
times the level span times the den- AT Irg + 9 27 + 7 2 g + 7 Ziat g
sity times the cross-sectional area 5 P o i
and 0 is the process deadtime. (m + E) ('ru + (E)

K, is readily available from proc- s ; * : i
ess information (in this case, K, = Ke ™ il 9 ) (1] 2
0.2/min), and 6 usually can be ob- s 2 2 5 A 105 !
tained by an open-loop pulse test. In fos Bt 0
this case, the deadtime is alterna- ‘,T“ 3 E) (T“ Y {
tively obtained by using closed-loop Koo e pig g = B grg + 9
simulation. The computer simula- 5{-;+ i e % o 2 Ee T j
tion used the same controller tuning ; 5 -5 I
constants as the plant and adjusted Ke ** i y Irq + 0 ok AT 3 /l‘:
the process deadtime to fit the dy- Sz$ + 1) (ra + 0)? (re )L

,RM;RL
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The materials being separated are a
mixture of three isomers and a small
amount of other heavy components.
The feed to the column is the bot-
tom product of a topping column
that removes water and other lighter
components. The separation re-
quires a large number of theoretical
stages because the relative volatili-
ties are near one and a high-purity
product is required. The column has
about 60 theoretical stages. At de-
sign production rates, there is very
little excess separation capability. In
other words, the design has a very
low safety margin. This makes tight
control very important in maintain-
ing product quality.

The control strategy is illustrated
in Figure 10. The control objective is
to keep the distillate composition
nearly pure in the lightest isomer
while maintaining it at a very low
level in the tails stream. Good com-
position control is important be-
cause the distillate is a product sold
to outside customers.

The heat to the column is fixed
because the heat source is a dedi-
cated paracymene (i.¢., a heat-trans-
fer fluid) vapor boiler that runs best
at a fixed rate. The feed is set to fix
the overall production rate for this
portion of the process. The column
vacuum is controlled at a fixed value
by manipulating the vapor flow to
the vacuum jet. Base level is con-
trolled by manipulating the tails
flow rate. The overhead condensate
tank level is controlled by manipu-
lating reflux flow. Composition con-
trol is accomplished by controlling
the middle-column temperature.
This loop manipulates the distillate
flow rate. Middle-column tempera-
ture is used for composition control
rather than an analyzer on the distil-
late stream because the temperature
measurment is more reliable, much
cheaper, and correlates very well
with top composition. Proper loca-
tion of the temperature sensor is
very important. We use the steady-
state model to determine the opti-
mum location. A feedforward con-
trol loop changes reflux flow in re-
sponse to distillate flow rate
changes. This effectively eliminates
the condensate tank level loop dy-
namics from the middle-column
temperature loop. There is no in-

41\'\\_
dnd-error tuning procedure and  plied to the middle-column temper-
lha§ a set of tuning constants can be  ature control of a high-purity distil-
tasily developed in which we can  lation column using the tuning
ave a great deal of confidence. The  method for time-constant-dominant
.| Plant has had no problems with this  processes. This work originated with
| ontrol loop since this tuning the control strategy definition of a
g thange, project to combine the refining of
; : . - two different products into an exist-
| Highepur jon ¢ . , )
; gh purity distillation column ing process. The column of interest
IMC-PID tuning rules can be ap- is 10 ft in diameter and 110 ft high.
/ PID(3)
/ K"(p T To
5 e
Tq + O
/
f i () e ] 70
& 2 ¢ R 2T+ 0
0
, To + E
55 Ty =1 T+ 1T S T U A B )
Tq + 0 Tt T~ T
A - Wr = T M o T
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T ) 7,0 70 TiT2
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centive for dual composition control
in this column; energy savings are
not possible because of the need for
a fixed heat input. In addition, the
light isomer concentration in the col-
umn bottom can vary as long as the
average stays below the specifica-
tion.

For this example, the process
model was developed using an
open-loop step test on the process.
The first step was to bring the proc-
ess to a steady-state condition. After
some trial and error, it was found

Figure 6. Column bottom level response with existing controller

that a sustained distillate rate of 7.9
thousand pounds/hr (MPPH), with
everything else held constant, re-
sulted in keeping the middle-col-
umn temperature very steady. In
addition, 0.5 MPPH deviations
above and below this equilibrium
value would cause the temperature
to move up or down at a reasonable
and controlled rate. Of course, some
deadtime between change and re-
sponse was observed. After learning
how the process responded, it was
easy to bring the column to a steady

Figure 7. Simulation response with existing controller tuning par
ameters for a step load disturhance.

state at the desired Lcmpcr:lll”"‘:
The open-loop tests were then f’f"'lt‘
ducted as shown in Figure 11. rh
distillate rate was varied up “"()
down as shown. Irom this opcn-l"‘?t
test and the carlier response, it ¥
observed that the response 1_”‘"1
closcly resembled that of an ints
grating process with deadtime. 4
though it was believed that the pre %
ess would ultimately steady ”“If,;q
deadtime first-order model form “‘,‘;;‘
not selected to describe the ]>1‘_‘":L".‘,
because the closed-loop load dist!
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Figure 8. Simulation response with INC-PID tuning parameters for

a step load disturbance.

fo¥
Figure 9. Column bottom level response with IMC-PID luning‘piw

indicates the point at which the funing parameter changes are made.

38

77

q‘"
, ] ) l,R“(.h
CHEMICAL ENGINEERING



N\

—_— N e

Disturbance rejection
Can be significantly
improved for long
lime-constant-to-
deadtime processes
by assuming they are
deadtime-plus-
integrator forms.

bance response would be very slow,
¢ process did not follow a first-or-
“er form because of its nonlinear na-
Ure, and the controller always kept
:I:f Process in the region w}xcrc the
tia] response characterized the
p]'f)‘(icss dynamics.
i he Laplace transfer function
“0(1(:1 and parameters calculated
om (he step tests are

temperature  0.01e¢ **
distillate S
Ay/AL
R, 2
Au
here is the time (in minutes), Ay

0 U are in percentage of scale,
the (lll‘sullulc span is I5. h/I‘l’l:l;l,';y‘lI(l
Qad':,'“I’C"ill.gll'c-sp:m is 30°C. I'he
I‘I.Slv .“"C’ which is thg time from the
iy M?I{ change Ullll! lhcyl,(tn;lpcrf\-
Whi, ])gglxns to move, 1s 5.5 min. K,
; Is the _(‘h:}ngc in temperature
(:}1;111],.)?!' unit time .(ll\'l(l(?(l by the
g 8¢ in distillate flow (Au), works
'l‘m be 0.01.
lo p‘Q next step was to go Lo closed-
Y i\t“}“pm:ulurc‘conlml. A conser-
g o Selection of 7, = 30 min was
“n \( [”“‘)Wing‘ the guidelines out-
illg “Previously. PI controller tun-
the (ONstants were caleulated using
Wag O'mulas in ‘Table 1. The loop
Wag o ](f" closed and stable (tonl_ml
I lk.)h'c"\’(‘(l. A 20% step reduction
g .()'l[(tul rate to the column was
‘li(ng(\l-“»'_(?(l. The closed-loop re-
‘-'kl) \'(}' IS illustrated in Figure 12, As
Oy, ¢, the response exhibited no

“Is) .
S\ P . v
~2100L The maximum deviation

(,l N
"R 199,

REFLUX

COOLANT

CONDENSER

VACUUM

JET
_(?ﬁ—’ COLUMN
MIDDLE
FEED TEMP. DISTILLATE
={ ==
FT,
o
O e
-
HEAT INPUT
REBOILER
Figure 10. Control strategy for the high-purity distillation column.
| distillat ition.*
Tahle 2. Column distillate composition.
Light Intermediate
Date Time . Component Component
118 12:30 A.M. 99.604 =
3:00 A M. 99.709 0.027
5:00 A.M. 99.599 0.038
118 7:00 A.M. 99.57 0.04
9:00 A.M. 99.60 0.035
11:00 A.M. 99,601 0031
1:00 PM. 99.591 0.026
3:00 P.M. 99.631 0.031
5:00 P.M. 99.630 0.031
7:00 PM. 99.600 0.033
9:00 P.M. 99.620 0.033
11:00 P.M. 99.609 0.038
119 1:00 AN, 99,641 0.037
3:00 A.M. 99.622 0.035
5:00 A.M. 99.627 0.033
7:00 A.M. 99.67 0.031
9:00 A.M. 99.69 =
11:00 A:M. 99.65 0.038
1:00 PM. 99.67 0.037
3:00 P.M. 99.62 0.038
5:00 P.M. 99.627 0.043
7:00 PM. 9.64 0.043
* Light component mean, 99.628; standard deviation, 0.0336, Heavy component composition is below detect-
able limits.
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e s in middle temperature was found t0
16025 | .-5,5-:;'-:;;;{: be only 0.5°C.
16920 - i 1 To achieve even better control and
o A E i - 80 to further evaluate the IMC-PID
169.10 E ! : T technique, derivative action \\"?‘s
T“W" E i 2oy added to this control loop. We fCl‘
. 169.00 FRRRSTES ; § that the additional control actio?
:‘:‘“"5 AN RE LI R L e ks 5 would allow us to achieve better col”
B 168.90 gaE trol, so we selected a smaller 7. ©
£ 10055 k 90 min. The response to the sam®
%156-80— Loan feed rate disturbance is shown 1V
16875 £ Figure 13. Again, no overshool wds
16370 observed in the response. The malh
168.65 L 60 difference is that the maximum ten"”
s perature deviation was smalle!
e (0.8°C). Because of the improve!
ey o o 15 T TR performance, the tuning was leftd
TIME (minutes) ——> these values. :
The manipulated variable (-

Figure 11. Open-loop step tests (real data). distillate flow) response for Pl and
PID control is shown in Figure
“which illustrates an important 2

S, 3 . . ¢
pect of using derivative action. Not*

:::::_ the much larger variability in l’.:
distillate flow when PID ('(mll‘(’l. 3

168.8 -] used. This shows that control wit!
1 168.7-] derivative action does not (lzuﬂl’c?

Thige the noise in the temperature lllf'";‘

= urement nearly as well as the PECE:

E 1685 troller, If the distillate was the !CL

Z 1684 to a downstream unit ()pcl‘ﬂ.””ll‘(‘.

E e PID control might not 1)(3.(1(‘.51.1’?" )il
i becausce of l.I}c a(l'(l‘cd \’zll‘l'dl')llll)"l'

2 . the distillate low. The magnitud€,

1681 - P oS0 0, the noise in the manipulated var®

i : : : | : | ble 1s a (‘up(:lion Qf' the ﬁ"c(lfl""‘](]'z.

0 20 40 60 80 100 120 130 and magnitude of the noise 1 =
TIME (minutes) ——> measurement and the tuning %

stants. This illustrates one usPC“ ~)¢‘

Figure 12. Middle temperature closed-loop response to a 20% feed rate reduction, PI, the performance vs. (lislurh.nll",'
7o = 30 min (real data). dampening trade-off that on¢ B
ten faced with in industry. we hl

qi0 li.cvc th.is is one reason why (1<"('";:l,

108 tive action is not applied more ” <10

The last of the closed-loop tests e

168.8 be reported is the response 0

I 1887 controls to a step change slo].>|"“%‘,|.\~

i | the ('.()lun.m feed flow, .\Vhi(ih ih;“, l(l‘“

byl severe disturbance. Figure 19 : [

& 1685 trates the middle-column l(‘”’PC(,u

E 1684 ture and distillate flow respons© P

§ o 4-min loss of feed flow. 'l‘h(f_"]]"’s

é mum temperature deyiatl? i

168.2 1.8°C. The distillate flow stops (:l al

168.1 - PID Tet=20 min. pletely and is then reestablishe
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Umn temperature control shuts off

the distillate flow before the top

Composition goes out of specifica-

llqn. This example shows that the

Middle-column temperature control

15 50 responsive and the overall con-

ol structure so flexible that the

fC_Cd to the column can be stopped

Without operator intervention (i.e.,

Al controllers remain in automatic).

{\l times, the feed to the column is
Tequently stopped because down-
Sream equipment is plugged. This
'esponsive and flexible control
Sructure allows the column feed to
e stopped and started with no de-
ay,

. As you recall, the control objective
5 to control composition of the dis-
Wlate seream. Table 2 contains al-
Most two days of laboratory samples
'om the actual operation of the col-
(u?‘\“_l under PID 'cf_)nl.l:ol. 'l‘l}ct mean
Stillate composition is 99.628 with
“ Standard deviation of 0.0336.
n‘}é‘tﬂl‘l)', the control objective is being

by conclusion

s iht IMC-PID Luni'ng.rul'c:s' are a

‘)\'[cfl‘]mr industrial criteria. The no-

“li'[: 1001 character helps Lo mini-

"lé- disturbance propagation. I'he
$ reduce the tuning process to
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the selection of one tuning parame-
ter as opposed to three. In addition,
the single parameter is directly re-
lated to the closed-loop speed of re-
sponse and robustness. Process
models can be developed directly
from open-loop tests or combina-
tions of tests and first-principle
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Figure 15. Closed-loop response to a 4-min loss of feed flow, PID, 7o, = 20 min (real data).

equations. Disturbance rejection can
be significantly improved for long
time-constant-to-deadtime processes
by assuming they are deadtime-plus-
integrator forms. Finally, the rules
are being successfully applied to in-
dustrial processes. The first exam-
ple given illustrated how the appli-
cation of the rules quickly led to
high-quality tuning parameters for a
troublesome level control loop. The
sccond illustrated how the rules
were applied to obtain very respon-
sive tuning for control of composi-
tion for a high-purity distillation col-
umn.=
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