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Appendix I. Phase-margin Tuning Formula

If the wultimate gain Kd and period td are

determined using a relay with cascade integratqr,
the corresponding point on the Nyquist curve will
be the intersection on the imaginery axis at a
frequency of 2/td and magnitude of -l/Kd. It is
then straight forward to use this informatign,
following Astrom and Hagglund (1984), to derive
the following tuning formula to satisfy a phase
margin specification of em:

Proportional Gain K = Kd sin om

td (1 - cos sm)

Integral Time T. =
m sin 6

Derivative Time 'l‘d = Ti /4

Appendix II. Weighting On Setpoint

In the dominant pole design of Hagglund and Astrom
(1985), a new tuning parameter °'b', which can Pe
interpreted as a weighting factor on setpoint in
the proportional term, has been introduced to
modify the setpoint response independent of the
load recovery response. This technique can be
applied to the controller tuned by the
Ziegler-Nichols formula which has been found to.be
near optimum for a step load change but producing
an excessive overshoot for a step setpoint change.
Using the symbol of Fig. 1 the PID controller

becomes:

1 dy
u=K[(by . -y + ;_.f e dt - T, ™ ]
i

It has been found experimentally that a small 'p'
of 0.3 - 0.6 will reduce the large overshoog in
setpoint response when the loop gain is high.
Empirical formulae for computing 'b' are proposed
in Hang and Astrom (1988).
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Abstract. PID controller design based
procedure by Rivera and co-workers has bee

models. PID tuning parameters for processes up to second-order with first-order
numerator dynamics and dead time will be given with only one tuning parameter (closed-

loop time constant) . In order to

obtain the PID formulation, dead time is

approximated by either a first-order Padé or a first-order Taylor series expansion
depending on whether a PI or PID controller is desired. Various industrial PID
implementations which require different PID settings will also be examined in this

paper.

Several examples including a first-order plus dead time, second-order plus dead time
and inverse response, an industrial level control problem, and a nonlinear
distillation column model will be used to compare the performance of IMC-PID
controller design with more traditional tuning rules, eg, Ziegler-Nichols, Cohen-Coon,

and frequency response maximum peak criterion.

Model mismatches in process gain, dead

time, and time constant will also be introduced to compare the robustness of various

controller design methods.

1. INTRODUCTION

Although many advance control concepts have been
introduced within the last twenty years, the vast
majority of the controllers in chemical industry
are still of the PID type. From a maintenance and
reliability point of view, most plants prefer the
commercially available control vendor hardware.
Thus, properly tuned PID controllers are still an
important factor for successful plant operation.

There are many controller tuning methods proposed

in the literature. Perhaps the most well-known
ones are the Ziegler-Nichols rules in 1942 and the
Cohen-Coon rules in 1953. Ziegler-Nichols uses

critical gain and frequency information to
determine P, I, and/or D parameters based on
quarter decay criterion. Later extensions include
Higglund and Astrom (1985) and Hwang and Chang
(1987). Cohen-Coon utilizes a first-order plus
dead time model with quarter decay criterion to
determine the tuning paramecters.

Later extensions were made to higher-order models,
with a variety of performance criteria (eg, IAE,
ITAE, ISE, maximum peak, phase margin, etc) by
Gallier and Otto (1968), Smith (1972), Fertik
(1975), Weber and Bhalodia (1979), Huang and Chao
(1982), Ralston and co-workers (1985), Tan and
Weber (1985), Harris and Mellichamp (1985), and,
Patwardhan and co-workers (1987). Yuwana and
Seborg proposed a closed-loop method to find the
first-order plus dead time model in 1982 and was
extended by Jutan and Rodriguez (1984).

Rivera and co-workers introduced a PID controller
design method based on Internal Model Control in
1986. One tuning parameter and first-order
closed-loop response makes this method very
attractive to an industrial user. The flexibility
of this tuning method gives the user a convenient
way to find a compromise between performance and
robustness.

In this paper, the IMC-PID design by Rivera and

co-workers will be extended to cover a wider range
of process models. After a brief review of IMG-
PID design in Section 2, wvarious industrial PID
implementations will be discussed in Section 3. A
summary table of all the IMC-PID tuning rules will
be presented in Section 4. The performance and
robustness of this tuning method will be examined
via simulation of several numerical examples.

2. REVIEW OF IMC-PID CONTROLLER DESIGN

The Internal Model Control (IMC) was introduced by
Garcia and Morari in 1982, By using a control
Structure as Figure 1, it provides a
straightforward, two-step controller design
procedure as follows:

Step 1. Factor the model
GM = Gyt G- (1)

Such that Gy, contains all the dead
times and right half plane Zeros;
consequently Gy. is stable and does
not involve predictors.

Step 2. Define the IMC controller by

-1
GMc = Gy-f (2)

where f is a user-specified low pass
filter.

A common selection for the filter which is
suitable for the chemical industry is a first-
order filter with filter time constant selected to
be the desired closed-loop time constant. For
systems with an integrator, the closed-loop system
needs to satisfy the property of zero offset for
ramp inputs, For this case, a proper selection
for the filter is
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(27¢qL - GI:H-(O)) S+ 1
f = (3)
(TCL S + 1)2

where 751, a user-specified parameter, corresponds
to closed-loop speed of response. Figures 2 and 3
show how IMC structure can be put into the
conventional feedback control structure through
cancellation of two dashed line paths involving
Gy. The relation between the feedback controller
and the IMC controller is

GIMc
- (4)

1-GimMc GM

In a subsequent paper (Rivera, Morari, and
Skogestad, 1986), the authors use above Eqns 1, 2,
and 4 to derive PID controller settings for some
simple process models mostly without dead time and
also gave "improved" PI controller settings for a
first-order process with dead time.

In this paper, the above work will be extended to
include up to a second order process with dead
time. Different industrial PID implementations
which result in different PID tuning parameters
will also be given.

3. PID CONTROLLER IMPLEMENTATION

There is no industrial standards for PID
controller implementation, thus different
controller vendor may provide different PID
algorithms.

Gerry (1987) gave a good comparison of different
PID algorithms. The most common PID algorithms
that control vendors provide are as follows: (in
Laplace transformation)

1 7psS
PID(1): Gg =Ko (L + —)(L + — ) (5)
T1S p S + 1
DG
1 1+ 7pS
PID(2): Gg =Kg (1L + — ) (— ) (6)
1S D S+ 1
DG
1 DS
PID(3): Gg =Ko (L + — + — ) 7
T1S 7p S + 1
DG

where Kg = Controller proportional gain (dimension
less)

71 = Reset time (units of time)
7p = Derivative time (units of time)
DG = Derivative gain

Moore Products uses PID form Eqn 5, Honeywell uses
Eqn 6, and Bailey uses PID form Eqn 7. Most of
the control vendors have derivative action acting
only on the measurement signal to prevent
derivative kick when a set point change is made.
Some vendors also provide an option to let
proportlonal actlon act only on the measurement
signal. This will provide a smoother set point
response.

4. IMC-PID TUNING RULES

With the above industrial PID implementation, the
IMC-PID tuning rules can be extended to many

process models commonly used in the chemical
industry. The derivation of the PID parameters is
straightforward:

(1) Approximatg’dead time by either a first-
order Pade or a first-order Taylor
series.

(2) Select f as:

1
f =

7oL S + 1

for first and second order processes, or
as Eqn 3 for processes with an
integrator.

(3) Use Eqns 1, 2, and 4 to find the feedback
controller Gg.

(4) Compare with Eqns 5-7 and equate the
coefficients to find the relationship
between PID parameters and model
parameters.

The PID tuning rules for commonly used process
models in chemical industry is given in Table 1.
This derivation is not new; a portion of the
tuning rules has already been given in Smith and

co-workers (1975) by using a direct controller

synthesis method. For first-order processes with
dead time and processes with an integrator and
dead time, both PI and PID settings are given.
PID form, Eqns 5 and 6, do not result in a real
solution for a second-order underdamped process.

Some process models result in two sets of PID
parameters, but the noise filtering characteristic

will be different. Most control vendors do not
allow the user to select derivative gain (DG) with
few exceptions (eg, Moore Products). If

derivative gain is set at a constant (eg, 10) by
the control vendor, then the solution with larger
rp will result in a better noise filtering
characteristic. Simulation results show that a
desired closed-loop response can be achieved even
though the derivative gain is fixed by the vendor.

5. SIMULATION RESULTS

In this section, simulation results for four
numerical examples are presented.

Example 1 - first-order plus dead time process
(see notation in Figure 1).

e-3S
Gp=6Gp = __
3s + 1

Figure 4 shows the load response for IMC-PI
settings with rgp=3, Ziegler-Nichols, and Cohen-
Coon tuning methods. Notice that IMC-PI gives a
smooth closed-loop response for both process
output and manipulated variable changes. On the
contrary, ‘the Ziegler-Nichols method gives a
sluggish response for this large dead time process
and Cohen-Coon results in an overshoot oscillatory
closed-loop ‘response. In order to test the
robustness of the tuning rules, model mismatches
in process galn and dead time are presented in
Figures 5 and 6. Both figures clearly show the
superior closed-loop behavior of the PI settings
based on IMC under severe model mismatch
conditions.

In a separate simulation (not shown), two
different first-order with dead time processes
with the same cross-over frequency are used to

illustrate the different closed-loop behavior of
Ziegler-Nichols and IMC-PID tuning methods. These
two processes are:

! ' ‘6s
CP = GL= —e
2s + 1
" " -4.1358
Gp=6, =2 """
208 + 1

Comparing set point response, Ziegler-Nichols PI
’
gives a very sluggish response on Gp but overshoot

on Gp; but the IMC-PI with same selected rgp
gives very similar closed-loop responses for these
two vastly different cases. This indicates that
IMC-PID method is suitable for a much wider dead
time/lag ratio range for set point respomnses. For
load responses since IMC-PID retains the open-loop
load response into the closed-loop, the response

for G, is slow compared to Ziegler-Nichols no
matter how fast rgp is chosen. This might be the
less desirable property of IMC-PID method for lag
dominant processes.

Example 2 - second-order nonminimum phase system
with dead time.

(-28 + 1)e-4S

(58 + 1)(3S + 1)

(2}
]
]

Table 1 shows that no PI setting can be derived
from the IMC method so a PID controller is
required. In the simulation, PID algorithm 1
(Eqn 5) 1is used for controller implementation.
IMC-PID method is compared with classical
frequency response maximum peak criterion method.
The PI setting for maximum peak criterion method
is chosen as follows: (Buckley, 1964)

(1) Find P-only controller setting so that
closed-loop maximum peak is at 2 db.

(2) Set reset time at 5.0 divided by the
resonant frequency.

(3) Find K¢ in the PI controller with reset
time in step 2 so that the closed-loop
maximum peak is at 2 db again.

Figure 7 shows the comparison for load response
between IMC-PID and the maximum peak method. The
maximum peak method results in very sluggish
response but the IMC-PID again gives smooth load
rejection performance. The process gain and dead
time mismatches are shown in Figures 8 and §
respectively. Notice again that IMC-PID tuning
rules is much more robust than the maximum peak
criterion method.

Example 3 - level control system (process with
integrator)

The IMC-PID tuning rules has been applied to a
industrial level control system with great
success. The process fluid from a reactor is
pumped through a flasher into a separator. Water
in the process fluid is removed through the vapor
phase. The process fluid is pumped out to a
downstream process. The separator level is
controlled by the positive displacement pump speed
which is located upstream of the flasher. By
using material balance equation, this level system
can easily be modeled as:

Kpe0S
s

where
Maximum flow (1b/min)

Level span(ft) x Density(lb/ft3) x cross
sectional area(ft<)

Parameters in the model are all readily available
and dead time can easily be obtained by open-loop
pulse test. For this system, the model is

1.35e-48
Gp = -G, =

S

Figure 10 shows the IMC-PI response for a
downstream pump speed step increase of 1%. Three
different rgp, are used, they are 4, 8, and
12 minutes. Smaller rgp gives a faster return to
the level set point but with more overshoot on the
manipulated variable. On the other hand, larger
7cL results in :slower response but with smoother
movement in the manipulated variable. Figures 11
and 12 show the disturbance responses with process
gain and dead time mismatches respectively. These
figures clearly show that although the larger rgp
sacrifices performance, it can tolerate more model
mismatch. The user should choose rgp so that it
satisfies the performance requirement but still
allows some model mismatch. 7cL=8 minutes was
used in the plant.

Example 4 - nonlinear distillation column model.

A nonlinear distillation column model is used to
demonstrate IMC-PID tuning rules under severe
model mismatch condition. The column is a typical
purge fractionation column with nine trays and
feed is introduced on tray six. The base case
condition is:

Overhead composition = 99.7 & light component
Bottom composition = 8.22 % light component
Feed composition = 90 % light component

Feed flow = 100.0 1b mole/min

Reflux flow = 250.6 1b mole/min

Boilup flow = 340.0 1lb mole/min

Distillate flow = 89.4 1lb mole/min

Bottom flow = 10.6 1b mole/min

Measurement dead time = 10 minutes

Process noise is simulated by adding white noise
with a standard deviation of 1.0 1lb mole/min in
the column feed and another white noise with a
standard deviation of 3.0 1b mole/min in the
boilup flow rate. The composition of the overhead
which is of most importance is controlled by
reflux flow. A typical disturbance to the column

is a feed composition change. In order to find
the overhead composition tuning parameters, a
open-loop test is performed. Reflux flow is

perturbed by a pseudo-random binary sequence with
a magnitude of 5 1b mole/min. The time response
of overhead composition is recorded. Then, an
identification routine is used to find an
approximate first-order plus dead time model as
follows:

1.06e-108
GM -
23.18 + 1

(Assume reflux flow span of 0-500 1b mole/min and
overhead composition span of 0-1).

IMC-PI setting is calculated by selecting rgp=20
min, ie, Kg=0.73 and 71=20 min. Figure 13 shows
the closed-loop response of the above PI settings
with feed composition step changes as follows:




t < 200 min, feed composition = 90
t < 400 min, feed composition = 92
t < 600 min, feed composition = 90
t < 800 min, feed composition = 88
t <1000 min, feed composition = 90
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The disturbance rejection capability is quite good
even for this highly nonlinear distillation
column.

6. CONCLUSIONS

A simple and robust PID tuning method suitable for
industrial application is presented. The IMC-PID
design procedure by Rivera and co-workers has been
extended to cover a wider range of process models.
A complete list of the PID tuning rules for most
commonly used process models in the chemical
industry is given. Only one tuning parameter
needs to be specified by the user which determines
the closed-loop speed of response.

The model parameters can be obtained from first
principle (ex 3) or system identification (ex 4).
Simulation results show that this method with
proper choice of rgp is very robust even under
severe model mismatch conditions. A safe first
trial for selecting rgp is to set it equal to the
open-loop dominant time constant. Then the on-
line adjustment of this parameter for the
performance requirement is trivial because the
user can anticipate the direction the controller
will perform.

This PID tuning method can easily be connected to
a on-line system identification routine to control
processes with time-varying parameters.
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TABLE 1. IMC-PID TUNING RULES
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TABLE 1. IMC-PID TUNING RULES (CONT'D)
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F1g.1. Internal mode! control structure.

F1g.2. Relationship between IMC structure to feedback control structure

F1g.3. Feedbeck control structure
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ADAPTIVE PID CONTROL -
A POLE PLACEMENT ALGORITHM WITH A SINGLE CONTROLLER TUNING PARAMETER

P.J.Vermeer, A.J.Morris and S.L.Shah

Department of Chemical Engineering
University of Alberta

Edmonton

Alberta. Canada

Abstract. Two approaches to the design of self-tuning PI and PID control strategies
are considered. These are based upon a generalized minimum variance control law and a
pole-placement control law. The two designs are analysed, using Root Locus techniques,
with respect to their stability and transient performance. The control performance of
the pole placement design is studied in the presence of model-plant mismatch,
Simulation studies using both transfer function representations and 3 detailed
mechanistic model of a binary distillation column demonstrate the capabilities of the

pole-placement based design.

Keywords. Self-tuning control, adaptive control, pole placement, Self-tuning PID.

INTRODUCTION

Many process control problems can be adequately
and routinely solved by conventional PID control
strategies. The overriding reason that the PID
controller is so widely accepted is its simple
structure which has proved to be very robust with
respect to many commonly met process control
problems. Eg. unknown process disturbances,
process non-linearities, changing process
conditions, etc., provided that such occurrences
are not too severe, The large number of PID
control loops on typical process plant, however,
precludes their 'optimal' tuning to account for
all possible process disturbances or time varying
process changes. Tuning of the PID settings is
quite a subjective procedure, relying heavily on
the knowledge and skill of the control engineer or
even plant operator. Although some tuning
guidelines are available (eg. Cohen and Coon and
Ziegler-Nichols methods) the process of controller
tuning can still be time consuming with the result
that many plant control loops are often poorly
tuned and full potential of the control system is
not achieved, .

The fact, however, that PI(D) controllers are so
flexible and efficient for many applications would
tend to indicate that most process control systems
have dynamics which are particularly suited to
this type of control. It can be shown that PI(D)
controller structures arise naturally from a
realistic description of the anticipated process
disturbances and an assumption of dominant first
(PI) or second (PID) order process dynamics.
Allowing controller integral action to arise from
a suitable model of the disturbance process
results in a well conditioned parameter estimation
algorithm and the natural removal of offsets.,

Previous work in the area of adaptive and self-
tuning PI/PID control has been presented by, for
example, Astrom and Hagglund (1984), Hetthessy et
al (1983), Cameron and Seborg (1983), Song et al
(1984) and Gawthrop (1986). This paper, in
contrast, concentrates on the analysis of two
different forms of self-tuning (STu) PI/PID
algorithm - one based on a generalized minimum
variance (GMV) approach and the other based upon a
pole-placement (PP) technique. The controller is
based on an explicit scheme in that the parameter

P J Vermeer is at present with Polysar, Sarnia,
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estimator identifies model parameters which are
then used to calculate the P, I, and D
coefficients of the controller, A pole-placement
algorithm is recommended which incorporates a
single controller 'tuning knob' that is directly
related to transient response peak overshoot of a
second order system. In the general case of
model-plant mismatch this 'tuning knob' becomes
just that, and allows operator (or automatic)
adjustment of the controller gain (ie. pole
position) to achieve a desired transient
performance.,

SYSTEM MODELS AND CONTROLLER DESIGN

There are a number of ways of deriving a self-
tuning control law with the structure of a PID
controller. Two approaches that are analyzed and
compared in the paper are described below.

1. Process Model and Disturbance Representation

Consider a discrete time, SISO plant, that can be
represented by:

Az Dy(t) = z78B(z"N)u(t) + x(t) (1)

The signal x(t) models the disturbances and noise
acting on the process and can be represented as:

x(t) = c(z"Ne(t) (2)

For the most common types of noise and process
disturbances encountered in practice, x(t) is
nonstationary. A more appropriate model for the
noise term is therefore (Box and Jenkins, 1970;
MacGregor et al, 1975; Tuffs and Clarke, 1985):

ax(t) = c(z-Ne(t) (3)

where A is the differencing operator (1-2'1).
Combining eqn. (3) with egn. (1) gives the CARIMA
model of the plant as:

Az Dy(e) =28z ue) + cz ety ()

The design of control strategies (adaptive or
otherwise) based on this representation leads to
systems with inherent integral action. However,
in a deterministic framework a more general and
natural way of removing offset is to use the
internal model principle of Francis and Wonmham
(1976), eg. Song et al (1984). The advantage of
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