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Abstract

In this paper will first be given a review of
older methods and applications of extremum control.
It will then be discussed how adaptive control could
be applied within this field. This will require the
introduction of a parametric model for the system,
and the use of system identification to find the best
parameter values. One way of modelling such a non-
linear dynamic system is to separate the dynamics and
the nonlinearity into two blocks. It is shown how the
order between the two blocks will have a large influ-
ence on the behaviour of the model.

1. INTRODUCTION

In most control problems, the task of the regu-
lator is to keep some variable at a constant value,
or to make it follow a reference signal. In general,
the system is then assumed to be linear, and it is
possible, in principle, to drive the output to any
prescribed value. With such problems, the ordinary
PID-regulator can often do a good job. In an extremum
control problem on the other hand, the static re-
sponse curve relating the output to the input has at
least one extremum point. It is thus a nonlinear
dynamical system. The task of an extremum controller
is then to keep the output as close to its extremal
value as possible,

There are several examples of practical systems
that exhibit this type of behaviour. Control of the
air/fuel-ratio for optimal combustion has e.g. been
studied on many different plants. Usually, the air
flow is then controlled to its optimum setting for
the current fuel flow. The optimum may vary e.g. with
the fuel quality. Autogeneous ore-grinding is another
example, where filling degree in the mill is the in-
put and grinding efficiency is the output. For a
water-turbine or a windmill with adjustable blade
angles, it is desirable to extract maximum power by
a proper setting of the blade angles. This is also an
extremal control problem. The paper (l) shows that
such problems have been around for a long time. As a
matter of fact, Leblanc uses one of the most well-
known methods, which is based on adding a perturba-
tion signal to the input and observing its effect on
the output.

Extremum control problems started to become more
popular after the publication of the famous paper (2).
One reason for this was probably improvements in
computing technology that made possible the implemen-
tation of more and more complicated controllers.

Towards the end of the 50's a couple of commercial
optimalizers became available: the Opcon and Quarie
controllers. The interest in extremum control seems
to have reached a maximum about then and some years
thereafter. The number of published papers was higher
than ever since, many of them containing optimistic
reports of practical applicatioms. Since then the
publication rate has decreased, especially in the
western countries. Nevertheless, some research has
continued, and concepts like system identification
and adaptive control have been introduced into this
area.

In the past decades, computer technology has
developed enormously. This is one reason why it might
be rewarding to reconsider extremum control problems.
It is now possible to implement rather complex control
algorithms in low cost microcomputers, as has already
been shown with adaptive control. It should then be
possible to benefit from inserting more ideas from
adaptive control and identification into the extremum
control area., Moreover, with today’s competition for
market shares and increasing system complexity, even
small gains in efficiency may be very valuable.

Several survey papers of different kinds have
already been published. General surveys of adaptive
and self-optimizing control systems that also include
extremum control are e.g. (3), (4), and (5). More
specialized surveys of extremum control systems are
e.g. (6), (7), and (8). Several basic principles were
discussed in detail already in 2.

The rest of this survey will be organized as
follows. In Section 2 different models will be dis-
cussed. Section3 is a systematic treatment of proposed
schemes for extremum control. A collection of possible
practical applications of the theory is discussed in
Section 4. Most of these have been tried in practise,
and the results are described in the existing litera-
ture. Section 5 contains a list of ideas for the use
of adaptivity in extremum control problems and final-
ly, a couple of concluding remarks are given.

2. MODELS

As already mentioned, extremum control systems
have one major characteristic in common. In the ab-
sense of disturbances, the steady-state relation bet-
ween input and output should be a function with an
extremum. The object of control is to stay as close
to this extremum as possible despite the influence
from dynamics, noise or drifts. In order to use opti-
mal control theory, this desire must be translated
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into a formal loss function. There are several ways
of doing this. One possibility is to use a system
model to estimate the slope. The control law can then
be designed to keep the slope as close to zero as
possible, e.g. with its variance as a measure, It is
also possible to use simpler control laws that do not
include any system model. But then again it is usual-
ly referred to some model for the analysis of per-
formance.

The problem of tuning a regulator for a linear
system by minimization of a nonlinear criterion may
have the above characteristic, It was the main con-
cern of early extremum control Systems, but will not
be considered in this survey. There are several
reasons for this. For one thing, there are many other
methods for tuning regulators, like e.g. stochastic
adaptive or model reference methods. It would lead
too far to cover all these procedures as well in a
single paper. Furthermore, the extremum control pro-
blems treated here will be assumed to have unknown
nonlinearities, whereas a nonlinear criterion speci-
fied by the designer is of course known to him, This
knowledge should then be used in the design. Another
special feature of the regulator tuning problem for
linear systems is that the basic control loop is
linear, but an artificial nonlinearity is added in
an outer loop. This is in contrast with the extremum
Systems considered in thig survey, where the non-
linearity is assumed to be inherent in the system to
be controlled.

Static Systems

A common assumption in the literature is that
there is no dynamics in the system. In practice, thig
condition can be fulfilled by using a sufficiently
large sampling interval. But the result may be a slow
optimization, In many cases, however, static models
may be adequate, and stochastic approximation methods
can then be used for optimization to handle noisy
measurements. In (9) is given an account for some of

Dynamics

It is not at all clear what is the best and most
natural way of modeling a nonlinear dynamic system.
To be able to use system identification it is of
course desirable to have a model which is linear in
its unknown parameters. Any a priori knowledge about
the process should then be utilised in the choice of
regressors. In this way it may be possible to handle
quite complicated, but partially known nonlinear
Systems. Gallman/Narendra (10) consider general non-
linear systems. Based on approximation theory they
discuss some series expansion representations of the
output, which are valid in a closed interval of time
[0,T]. The presentation includes the Volterra, Wiener
and Uryson series.

It is, however, difficult to find model struc-
tures that are general enough, and still allow calcu-
lations to be done. One attempt is to separate the
linear and nonlinear parts into two blocks in series.
There are then two possibilities: the nonlinear part

Uryson series, An output nonlinearity can be viewed
48 a special case of the Volterra series. This choice

will have a large influence on the behaviour of the
model as can be seen from the following example,

Example. Consider a first order linear system
with white equation noise, and a nonlinearity in the
form of a squaring device. Then with the nonlinearity
at the input of the linear part according to Fig., 1
the overall system is
y(t+l) = ay(t) + bu(t)2 + e(t)

where e(t) is a white noise process.

L flu)

Fig. 1 System with input nonlinearity,

Suppose a stationary solution exists (la] < 1). Ex-
pected values then are

b-Eu2

l1-a

Ey =

If the goal is to minimize Ey (and b>0) the best per—
formance is thus achieved by putting u(t)=0! Further-
more, if |a|> 1 no stationary solution exists,

Now turn to the other case with an output non-
linearity according to Fig. 2, The equations are

x(t+1) = ax(t) + bu(t) + e(t)
y(t) = x(t)2,

For a=b=1 this is the problem considered in (ll).

e T T

[
—y2
a f(x) =L

Fig. 2 System with output nonlinearity.

It is shown that because of the nonlinear measurement
this is a dual control pProblem in the sense of Feld~
baum (lg). The conditional distribution of the state
x is discrete, the possible values being x = & x].
The conditional mean of x can then be calculated. Tt
is shown that it is not optimal in the long run to
have u(t) = -x(t). These results would probably not
change much if a = 1~ g< 1. Even if a ig slightly
greater than one, a stationary solution still seems
possible, o

There are thus significant differences between
the two cases in spite of their identical static re-
Sponse curves. In the first case with the nonlineari-
ty at the input, the optimal control is constant, and
thus contains no feedback. The solution to the second
problem includes feedback and therefore seems more
attractive. It is, however, more difficult to compute,
because it has a dual nature even with known
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parameters.

Maybe an output nonlinearity is in general more
important than an input nonlinearity for a good de-
secription of a nonlinear system. The only possible
effect of a known nonlinearity at the input is to re-
strict thepossible input values for the linear part.
The nonlinear control problem can then be transformed
to linear control with positive inputs, If the range
of the nonlinearity is the whole of the real axis,
then a change of control variable will reduce the
problem into a linear one.

Most of the control algorithms described in the
literature have been derived for the static case.
Much work has been done to analyse the effect of
dynamics on such algorithms. Their behaviour can
often be improved by slight modifications of the al-
gorithms to compensate for the dynamics. In an abso-
lute majority of these studies the nonlinearity has
been applied at the input, giving a so called Hammer-~
stein model. The linear part is frequently of first
order with a known time constant.

Only very few papers discuss what happens when
there is an output nonlinearity. In some of those
papers it is assumed that the intermediate signal is
measured. Others assume that it can be reconstructed
because no disturbances enter between the input and
the intermediate signal. In such cases the problems
with an output nonlinearity are circumvented. But
more research is needed to find out how to handle
systems where the intermediate signal is not avail-
able.

Noise and Drift

It may be important in practical systems to

take noise and drift into account when designing a
regulator. Noise is then usually modelled as white
and additive, and is applied at the system output as
measurement noise. Other possibilities are to apply
it in between the linear and nonlinear parts, or at
the input. It is important to note that noise at the
input of the nonlinearity is equivalent to a hori-
zontal drift of the nonlinearity. This gives a dif-
ficult control problem, which is dual in the sense
of Feldbaum. It was shown in (lZ) that a perturba-
tion signal at the input is required to follow the
moving optimum.

Most existing control algorithms are primarily
designed for deterministic systems. System noise is
then usually handled by analysing its effect on the
closed loop system. One way to reduce the effects of
noise is of course filtering, which has been found
useful and necessary in several schemes.

Time-varying system parameters are usually
modelled as first order dynamics driven by white
noise. This gives a possibility for tracking the
drift. For the nonlinearity such a parameter model
can be applied either to the horizontal and vertical
positions of the optimum, or to the three parameters
of an approximating second order polynomial.

3. CLASSIFICATION OF ALGORITHMS

Surprisingly few new ideas for extremum control
have emerged since the 60’s. Most of the work has
been concerned with analysing the behaviour of known
algorithms or slight modifications. Different

difficulties are then considered like e.g. measure-

ment noise, input or output dynamics or drift. This

is why the old survey paper (8) can still be recom-

mended as a very good introduction to the field. The
classification used in this report will follow (g),

even though newer modifications will of course also

be reviewed.

The first type of systems to be discussed are
perturbation sysiems. The effect at the output from
a known signal added to the input is then used to
derive information about the slope of the nonlineari-
ty. In a so called switching system the input is
driven at a constant speed until the extremum is
passed. The direction of input drift is then reversed
according to some fixed rule. Self-diiving sysiems
use no preset changes in the input. The measurements
are used directly to determine the input.

There is also a fourth class of methods that is not
described in (8), and seems to have been developed
later on. It is based on using a parameterized model
in combining parameter identification and extremum
control.

A separate classification is given in (6) Rules
of thumb are supplied for when to use different meth-
ods, and it is shown how to perform certain design
calculations.

PERTURBATION METHODS

Already in 1922 Leblanc suggested an application
of a perturbation scheme. This may then be the oldest
extremum control method, and has also been quite
popular. Several applications have been proposed, see
e.g. (2), (14), (15), or (16).

The task of an extremum controller is to keep
the gradient of the nonlinearity at zero. The problem
is thus reduced to an ordinary control problem if the
gradient is measured. This can most often not be done
directly. A perturbation method may then provide the
necessary information. The basic idea is to add a
periodic test signal to the control signal, and ob-
serve its effect at the output. This is illustrated
in Figure 3 for a static nonlinearity. The output and
the test signal can e.g. be multiplied and averaged
over a number of full periods. The resulting signal
is then taken as a substitute for the true gradient,
and may e.g. be used in an integral controller as the
measured signal that should be kept close to zero.

yd

D

—
u

Fig. 3 Effect of an input test signal
at the output of a static nonlinearity.
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Modifications

Dynamics. The basic perturbation method (based
on correlating the test signal and the output) may
have to be modified if the system contains dynamics.
The dynamics will then introduce a phase lag O in
the test signal component of the output. The result
of correlation will be multiplied by a factor cosO.
This gives a sign error in the correlation signal if
0> 90°. The overall system may then become unstable.
This situation is avoided if a corresponding phase
lag is introduced to the test signal before correla-
tion. Such a feature has been found possible and
necessary to include in several of the practical ap-
plications reported.

Another way to handle the dynamical effects is
to use a perturbation signal of sufficiently low
frequency. The phase lag O will then be small, so
that the dynamics can be neglected. This may, how-
ever, give a long response time for the overall sys-—
tem,

The control law. In most of the schemes treated
in the literature, the input is made proportional to
the integral of the correlation signal. A possible
improvement would be to use more sophisticated con-
trol algorithms based on the same measured signal.
One step in this direction was reported in a7n. A
discrete time model is used with prediction of future
disturbances. The correlation signal is taken as the
measured error, and minimum variance control is used
to keep the process (a gas furnace) at its optimum
despite the disturbances.

With the perturbation signal technique, the
correlating device must be given a certain amount of
time to produce an accurate slope signal. During this
time the control signal could be kept constant, so
that the total input is varied with the test signal
only. The system may then be regarded as a sampled
data system where the correlating time is the sam-
pling period.

The test signal. The most commonly used test
signal form has been the sinusoid. It is relatively
easy to generate using analogue technique, and fre-
quency analysis methods are well suited for examin-
ing the effects of such a test signal theoretically.
But other test signal forms may also be used, as
€.8. a square wave. This is especially easy to gene-
rate in a digital computer, and was discussed in
e.g. (lg).

Several inputs. The perturbation method seems
to be well suited for generalization to more than
one input. In order to apply a gradient method in the
search for an extremum, the partial derivatives of
the static response curve with respect to the differ-
ent imputs are needed. It is possible to obtain this
information by using the correlation method above
with perturbation signals of separate frequencies
for each input.

Price/Rippin (19) applied this technique to the
optimization of a chemical reactor with two inputs.
Sinusoidal test signals were used, and the best fre-
quency relation was 1:1.5. An analogue six-input
extremum—seeking computer with square test signals
is described in (20) with a frequency separation of
1:1.05 between each channel. The frequency differ-
ence should not be made too small, since the corre-
lation time must be increased in order to separate
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the effects from different test signals.

For the particular case of only two inputs an-
other method is possible. Two test signals of the
same frequency, but with a 90° phase difference can
be used. But then a phase lag in the output due to
e.g. dynamics will introduce a cross-coupling in the
slope signals, see Qp.

Analysis

As with most control systems, theoretical anal-
ysis is a valuable complement to practical experi-
ments in finding out how perturbation systems work.
Such analysis has been carried out to study e.g.
stability questions, possible periodic solutions and
the influence of different design parameters.

A thorough experimental investigation of a
specific system was reported in (14). The effects of
measurement noise and drift of the extremum point
were studied in (21). Eveleigh (22) considered the
problem of automatic regulator adjustment for a lin-
ear system but the analysis applies to more general
extremum control systems. The same type of results
were also obtained in (16) with good agreements to
the results of practicdf—experiments on a gas furnace,
maximizing dioxide contents of the flue gas. The sta-
bility properties and the loss with different choices
of the design parameters was examined in (23) for a
special system and a design procedure was given for
choosing the parameters,

SWITCHING METHODS

Another basic idea for extremum control is the
following. The input is driven at constant speed in
the same direction until no further improvement is
registered. The drift direction is then reversed.
Different algorithms of this type can be described
in terms of their specific conditions for altering
the direction of input changes. The control law is
thus a set of switching conditions. This principle
can be mechanized in two ways. The input may be
changed continuously or in discrete steps. The second
method seems to be quite popular in the Russian 1i-
terature. Such systems will be called stepping sys-—
tems.

Continuous Sweep

The paper (24) is a good reference on the con-
tinuous sweep method. They consider a static, quad-
ratic nonlinearity with first order dynamics at both
input and output. The sweep direction is reversed
when the output has decreased from its maximum value
by a fixed amount A. The design parameters are then
the sweep rate and the value of A. Tsien/Serdengecti
gave design charts and formulae for the input, the
output and the so called hunting loss for different
values of the design parameters and system time con-
stants. A large portion of the monograph (2) is also
devoted to an analysis of the continuous sweep method
in the presence of dynamics.

If the output is disturbed by noise the above
method may give excessive switching unless the value
of A is sufficiently increased. This higher A-value
will on the other hand increase the hunting loss. It
is thus necessary to compromize in choosing A. Fil-
tering is another possibility for reducing the noise
sensitivity. The problem is then that more dynamics
is introduced into the system, and the hunting




loss will again increase.

Modifications. Unnecessary switching may also
be caused by input dynamics. Consider e.g. a maximum-
seeking system. After the maximum is passed and the
input has been reversed, the input to the nonlineari-
ty will continue to increase for a while due to the
input dynamics. The output value at the instant of
switching is then taken as the new maximum value,
and with large enough dynamic lag this will cause the
extra switching. As suggested in (25) this phenomenon
is avoided by waltlng for a while before starting to
find the new maximum value.

The switching conditions may be chosen in many
ways. The output may e.g. be measured only at dis-
crete instants. The difference between successive
measurements can then be used as an indicator. This
was tried in (26) for the control of fuel consump-—
tion in a tunnel furnace. Two methods using such dif-
ferences were analysed in (EZ). It was found advan-
tageous to keep the input constant for a short while
before each reversal of direction.

Several authors have suggested methods relying
on differentiation of the output. Naturally, noise
will then be a severe problem that has to be handled
by proper filtering. Perret /Rouxel (28) consider a
static quadratic nonlinearity with a time delay fol-
lowed by first order dynamics. Phase-plane trajec-
tories are calculated for each of the two directions
of input drift. From these, switching conditions are
derived which employ the second derivative of the
output. This algorithm was applied to the maximiza-
tion of produced reactive power in an alternator.
Hamza (29) describes a very similar method which is
claimed to handle arbitrary initial conditions better.
It is not clear how these systems can cope with high-
er order dynamics, non-quadratic nonlinearities or
time-variations.

When aiming at an extremum point it seems natural to
try making the derivative of the output zero. This
leads to using the derivative to determine when to
reverse the sweeping direction. Such a method was in-
vestigated in (30) for two systems with first order
dynamics before and after the nonlinearity respect-
ively. A threshold was introduced, so that switching
did not occur until the derlvatlve was less than -A
after passage of the maximum. For the case of output
dynamics it was found best to put A= 0, but with
input dynamics A should be a small positive number.

A somewhat different technique was described in
(31). The problem was to get maximum power from a
solar cell on board a satellite. The current/voltage
characteristic will change with the distance to the
sun, and may look as in Figure 4. The extracted power
can then be maximized using a continuous sweep method,
where the current and voltage are decreased alter-
natively so that

Iw=i1kT

o B [1]
VB L] k'Va
Then Py= Pg. This is a special application, but the

same technique could be used for other systems where
a product of two related measurable factors is to be
optimized, see (§§).

Stepping Methods

Consider the static system
= f(u) + e [2]

where £(-) has a single local maximum but is other-
wise arbitrary. To begin with, assume that the dig-
turbance e= 0. For this system, the input u should be
adjusted to give maximal output y. This can be
achieved by stepwise changes of u according to the
algorithm

Au = Aun

n+1 sign(Ay ). [3]

The closed-loop system will then end up with the in-
put oscillating a few steps around the maximum.

There are two design parameters to choose in
such a system: the stepplng period and the steplength
Au,. A large steplength is desired in order to find
the maximum quickly, but on the other hand this will
imply a large loss in the steady state because of
large deviations from the optimum. A variable step-
length might then be useful. This will, however, com-
plicate the algorithm, and it is not selfev1dent what
criterion to use for the changes of steplength.

At first sight it may seem obvious that the
stepplng period should be kept as small as possible
in order to speed up the system. But when dynamics
are included in the model this may no longer be true.
The easiest way to handle dynamics is to simply wait
for the steady state between each input change. But
as this may result in too slow a system, several
other methods have been proposed, and some of them
will be discussed below.

The influence of noise. Measurement noise will
introduce a risk of stepping in the wrong direction
when using the control law [3]. The steady state dev-
iations from the optimum will then be increased. The
stochastic distribution of the resultlng random walk
was analysed for different cases in (32), (33), and
(34).

Smlrnova/Tay (35) suggested a modified method to
handle noisy systems better. Several measurements of
the output are made for each input value. After each
measurement a decision is taken either to stay and
continue measuring or to move in either direction.
The same basic idea has been used in (36) in a more
complicated system that can also handle ¢ dynamics.

Dynamics. For a dynamical system the effect of
the last input change on the output may be completely

|

|

f

s I
Fig. 4 Current/voltage-characteristic
for a solar cell.
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hidden in the responses to earlier input changes.
Xirokostas and Henderson (37) found that no control
at all may be better than using [3], even in the case
of a drifting optimum. This basic algorithm thus
needs modifying to handle dynamics.

For the case of known ali-pole output dynamics
Kazakevich (38) suggested that a sufficient number of
measurements should be made for each new input value,
so that the steady state output could be predicted
and used in [3] instead of the current output. This
approach was also extended to cover cases with a time
delay, measurement noise or drift in the extremum,
see e.g. (36), (39), or (40).

A different method was suggested in (37). An un-
known nonlinearity with first order output dynamics
and measurement noise is considered. The optimum is
assumed to drift around both vertically and horizont-
ally. The dynamics are handled by using a weighted
sum of old output differences instead of just the last
one in the following way:

Aun+1

= Au_ sign(wo by + Wy Ayn_1 + ..4). [4]

It was shown that the effect of first order dynmamics
can be completely eliminated using only w, and w, with
w, =0 for k> 1. The vertical drift of the optimum is
tgen also well compensated for by much the same choice
of w, whereas the measurement noise will impair con-
trol. Simulations were used to show that [4] may give
significantly better control than [3]. Further im-
provements were gained by using a variable steplength.

Galkin (41) analysed the effects of input dynam-
ics in a noise-free system with a constant minimum,
The control law used is based essentially on [3], but
with a threshold k against switching

Aun+1 = -Aun sign(Ayn— k). [5]

It was examined how the design parameters should be
chosen to avoid extra switching due to the dynamics,

SELF-DRIVING SYSTEMS

The previously discussed methods employ some form
of forced input changes, like a perturbation signal or
a predetermined rate of input change. In a self-driv-
ing system no such restrictions are imposed on the
control signal. Instead, at every instant the avail-
able information is used to produce a control signpal
that will drive the system towards an optimum, Con-
sider once more the static system

y = £f(u).

The first derivative of the output could then be used
to drive the input via an integrator so that

t

u(t) = [ y(t) de. (6]
?hig system would have to be started manually, since
y=u=0 is always a stationary point. But if started

in the correct direction with us# 0 it will find a
point where f'(u)=0.

Blackman (8) discusses several problems with this
type of system. As described above, it will e.g. con-
tinue in the same direction until =0 and then stop.
So if started in the wrong direction it will continue.
This problem can be handled by measuring 0 as well.

Then f'(u) = y/u can be used in the control law in-
stead of just y. Dynamics will introduce further prob-
lems. As explained by Blackman the system may then
stick at other points on the curve y=£f(u).

Self-driving systems seem to have been paid
very little attention to in the literature. Only the
paper (42) will be mentioned here. They compensate
for the dynamics by taking the measured input through
a filter to get the signal u*. This filter should be
a good guess of the system dynamics, and a possible
control law is then
= k- y/at, (71
However, to avoid the use of an accurate and there-
for expensive divider, a modified control law is
suggested. The sign of u was taken from [7] according
to

sign(u) = sign (y - 0%). [8]
In calculating a proper amplitude of u, [7] was used
wvith 0¥ =G to give

a=y |key| .

This modified algorithm was tested on two simulated
examples and was found to work well.

MODEL ORIENTED METHODS

In the schemes discussed so far, little informa-
tion is collected about the system. Only the output,
and maybe the slope of the nonlinearity at the current
working point are used. Essentially no information is
saved for later use. For the methods treated in this
section, the control action is calculated from a
model obtained by some kind of system identification.
The position of the extremum may e.g. be one parameter
in the model. The input may then be chosen as the
estimated extremum position. In the simplest case the
estimation may reduce to the determination of a single
parameter from a couple of noise-free measurements.

There are two main groups within this class of
methods. For methods in the first group, each control
action is preceded by an identification phase. During
this phase, the input must be varied deliberately or
by noise to produce good parameter estimates. Based
on the estimates a control step is then taken, and
the cycle is repeated. With this type of scheme, the
parameters identified are often allowed to depend on
the current working point, as e.g. slope and curva-
ture. Little information, if any, is therefore ex-
changed between cycles.

For the second group of methods no separate
identification phase exists. The parameters are con-
tinuously updated, and control steps are taken based
on the current estimates. Since more old data are
saved in the estimates, this method will be better
only if the model parameters do not change very much
with changing working points. To emsure identify-
ability of the parameters, it may be necessary to
superimpose a perturbation on the control signal in
this scheme also.

With a low noise level, the first and second
derivatives of a static nonlinearity can be deter-
mined approximately using only two search steps. This
is the essence of the control law suggested in (43),
(44).
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hu = 1. [y(u+a) —y(u-a)] * a [10]
2 [y(u+a) +y(u-a) - 2y(u)]

where y(u) is the output with input u. Such a scheme
was included in the comparlson in (45) The same idea
was elaborated further in (46) with known dynamics
included before and after the nonlinearity. Linear or
exponential drifts of the extremum can also be detec-—
ted and compensated for.

Higher noise levels can be tolerated if several
measurements are made to determine the next control
action. Least squares identification is used in (QZ)
to find the parameters of

7 = au+ pu’ [11]

where y and u denote deviations from the mean values
(within one cycle). The input u must then be perturb-
ed, either deliberately or by noise. The optimum is
characterized by a= 0, and is approached by making
input changes proportional to a.

Clarke/Godfrey (48), (49) estimate the slope and
curvature by correlating a 3-level test signal u and
its square u? with the output. Output dynamics with
finite memory will then not influence the result, and
for a quadratic nonlinearity the optimum can be reach-
ed in one step. It is, however, necessary to ascertain
that the estimate of the second derivative does not
become too small., This can be done e.g. using a fixed
limit or a first order filter on the estimate,

Roberts (50) seems to be the first ome to suggest
a scheme of the second type, where more and more in-
formation is gathered about the system. He considers
a static system, but includes noise and drift in the
model. Several parameters are unknown, including the
curvature, position of the optimum, noise level and
drift parameters. It is shown that even for known
parameters a perturbation signal is needed to follow
horizontal drift of the extremum. An optimal perturb-
ation amplitude can be chosen to minimize the mean
square deviation from the extremum. When the parameter
estimates are correct, a number of signals will have
zero mean value. The deviations from zero of these
mean values are used to drive the parameter estimates.
The input is chosen as the estimated position of the
optimum with a superimposed perturbation signal.

Keviczky/Haber exploited the idea of self-tuning
extremum control (51). They suggested least squares
or stochastic approximation identification to find the
parameters of a Hammerstein model. The input was then
chosen at each step as if the parameter estimates were
correct. With this method parameter drift can be
handled by a simple modification of the estimation
algorithm.

Bamberger/Isermann (52) developed a program pack-
age employing a gradient method for optimizing a
Hammerstein model. The parameters of both linear and
nonlinear parts can be identified using either the
instrumental variable or correlation methods. In the
latter case, the final scheme is closely related to
that of (48), (49) buth with parameters that are in-
dependent of the working point. A successful applica-
tion to power optimization of a turbine is also re-
ported.
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Identification

Model identification is an important part of
these model oriented methods. An increasing interest
in the identification problem for certain nonlinear
systems has been noted in recent years. A survey of
this area was given in (53) . Some material can also
be found in the survey (EE) on identification in
Russia. The correlation technique has been reviewed
in e.g. (55). It seems to be quite useful for non—
linear identification, see e.g. (56),(57).

Most of the work has been done for Hammerstein
models, starting with (58), see also (59). Some
variants of equation error least squares identifica-
tion have been discussed in (60), (61), (EZ), and
(63). In all of the papers mentioned above it is
assumed that the input is white Gaussian noise, and
this is in some cases of importance for the results
to hold., This might be a restriction when using the
schemes as part of an extremum controller.

COMPARISONS

Many of the papers describing individual methods
contain a comparison between the suggested algorithm
and some other scheme. In e.g. (64) an improved step-—
ping method is compared to an ordinary perturbation
method. But such comparisons do not give an overall
picture. With the large number of existing methods
for extremum control it would be expected (and wanted)
to find several papers comparing different schemes
under shifting circumstances. A few algorithms for
static optimization with noisy measurements were com-
pared in (65). Also in (45) was used a static, noisy
system to evaluate the performance of three extremum-
seeking regulators. But no complete comparison of all
kinds of methods has been found.

4. APPLICATIONS

Quite a few practical applications of extremum
control algorithms have been reported in the litera-
ture. Combustion processes seem to have been a major
concern in earlier work, but later on several other
problem areas have been entered. A selection of
tested or suggested applications are listed below in
order to give a general feel for the wide range of
possible applications.

The most common way to optimize a combustion
process is to control the air/fuel-ratio through the
air flow. Using different measured variables this
has been tried in e.g. (2) for an internal combustion
englne, (25) and (64) for a steam generating plant
and in (16) on a gas furnace. Draper/Li (2) also
varied the ignition tim'ng. The two control variables
were alternatively switched to the peakholding regu-
lator. Vasu (lﬁ) varied the fuel flow in a flight
propulsion system to maximize a certain pressure in-
dicating performance. Several practical experiments
were undertaken to find out the influence on the per~
formance of several design parameters in a perturba-
tion scheme.

In certain grinding mills the grinding efficien-
cy will vary with the filling degree of the mill,
which can be controlled through the incoming flow of
raw material. The optimal point in maximizing effi-
ciency may depend on the quality and composition of
this raw material. This type of application was




reported in (66) for a cement mill and in (gz) for
autogeneous ore grinding.

In (15) and (19) the water-gas shift reactor was
considered, where E;Hrogene and carbon dioxide ig
produced from carbon monoxide and steam. The first
authors maximized the amount of carbon monoxide con-~
verted, and used the steam as control variable. Their
work was extended in (19) to include the temperature
as a second control va;zhble.

account for what extremum control methods have been
used in these applications. As seen from Table 1, no
application using self-driving systems has been found.
Also, reports of Practical work with model-oriented
methods are rare, indicating that more research is
needed in that area,

Table 1. Extremum control methods in the
applications.

P ~ Perturbation C ~ Continuous sweep

S - Stepping M - Model oriented
Application Reference Methods
Area P C s M
Combustion pro- 2 X
cesses 14 X

16 b4

25 X

64 X X
Chemical proc. 15 x
=" - 19 X
Solar cell 31 X
Turbine power 52 X
Grinding 66 X X
=" - 67 X
Antenna adjust. 69 X

Still more applications have been suggested,
Examples are control of blade angles in water turbines
or wind mills for Power generation, and contro] of
distillation columns to yield maximum production. An

combustor, see (70). This can be done by feeding cer-
tain additive particles into the bed. To keep down

the cost of additive Particles, it is then desirable
to solve the extremum control problem of controlling

tive control to this area. Some suggestions are given
below, which all make use of a system model with un~
known parameters. They should not be regarded as ready
to apply methods, but rather as a list of ideas and
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candidates for further analysis, needing both simula-
tions and theoretical work to be done.

Any a priori knowledge about the system should
of course be used ip setting up a model, This is es-
pecially true for nonlinear systems. It may e.g. pro-~
vide possibilities for choosing a model structure
that allows a good description of the nonlinear phe-
nomena, and still is linear in its unknown parameters
to simplify parameter identification, With no such a
priori knowledge available, more general nonlinear
models have to be used. A possible approximation is

Input Nonlinearity Models

With the nonlinearity at the input, the model is
of Hammerstein type. The combined pParameter estima-
tion and extremum control problem for thig model was
discussed in (51) and (ég). A basic model with output

Yy and input u is
A7l y = B(ghH) v+e [12]

where q_1 is the backwards shift operator, e is a
disturbance and

v(E) = a + Bu(t) + yu(e)2, [13]

A slight generalization is to uge different B-polyno-
mials for the different terms in v(t), but this will
not influence the results stated below.

measurements, so that identifiability is lost when
the parameters have converged to any value. To over—
come that problem there are several possible ways,
which should be tried out and compared.,

meters, Similar to minimum variance control, the ex-
pected value of the next output is then equated to
the calculated optimum. This gives a control law that
is nonlinear inp the measurements, and the identifica-
tion problems are avoided. But some of the optimality
is sacrificed, sipce the output will not be kept at
the optimum as much as possible,

Addition of a perturbation signal. A straight~
forward way to assure parameter identifiability is to
add a perturbation signal. Such a signal must be suf-
ficiently rich, as €.8. a pseudo random ternary sig-
nal. This method was used in (Eg). Convergence to the




true parameter values can then be achieved by letting
the perturbation amplitude tend to zero slowly enough.
A disadvantage with this method is that there are two
new parameters to choose, the perturbation frequency
and amplitude.

Exponential forgetting. The gain in the parameter
estimation can be kept away from zero using an expo-
nential forgetting factor. The same thing is achieved
if a constant matrix is added each time the covariance
matrix is updated. Since the parameter estimates (and
thus the input) will then not converge, identifiabili-
ty is improved, i.e. the estimates can be expected to
stay around the true values. If the forgetting factor
is allowed to tend to one slowly enough (or the added
matrix to zero), there is a hope that the parameters
will converge to the true values. However, simulations
have indicated that the parameter estimates may behave
unsatisfactorily. After periods of staying almost con-
stant they can suddenly make large jumps. Further
tests are needed to evaluate this method.

Multlstep dynamic programming. The problem of
mlnlmlzlng the expected value of a loss function can
in principle be solved using dynamic programming. The
practical difficulties however, are often so great
that a common approximation is to make a one-step mi-
nimization only. In the case discussed here, where the
mean output is to be minimized, this approximation
leads to the certainty equivalence control law with
the identifiability problems mentioned before. By
taking the dynamic programming a few steps further, a
better control law may result. If the system model
contains dynamics, then this improved input will con-
tain feedback from the measurements, which promotes
identifiability. This type of control has been dis-
cussed and analysed in (Zé).

Output Nonlinearity Models

With the nonlinearity at the output, the extremum
control problem is in general much more difficult to
solve. However, a special case is when the intermedi-
ate signal between the linear and nonlinear parts can
be measured. One way to solve the problem is then to
use a self-tuning regulator for the linear part with
a reference value calculated from the optimum of the
estimated nonlinear part As in the case with an input
nonlinearity, this requlres for identifiability that
the intermediate signal is sufficiently rich, by noise
or deliberate perturbat1ons. There are also other pos-
sible solution methods in this case. The minimization
of a loss function such as the expected value of the
output could e.g. be a useful route to follow, provid-
ed that the system equations are written in a suitable
form. Again, these are just suggestions that remain to
be tested analytically and by simulation.

Known system parameters. As shown in the example
of the models section, a dual control problem in the
sense of Feldbaum (12) arises when the intermediate
signal is not measured. For known system parameters
simple examples have been treated in (11), (71), and
(74). In (71) a first order integrator system is re-~
written so that the least squares method can be used
to estimate the state. The system is

x(t+l) = x(t) + u(t) + w(t) [15]
y(8) = x(6)% + e(t) [16]

and the expected value of the output y is to be mini-
mized. Inserting [15] into [16] we get
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= y(t) + U(t)2 + 2x(t) u(t) +
+ 2v(t) [x(t) +u(t)] + v(£)2 + fe(t+l) [17]

y(t+1)

which can be used for least squares estimation, re-
garding the last row as a noise term. A certalnty
equivalence control can be obtained by mlnlmlzlng
E[y(t+1)|t). It was shown by simulation in (71) that
the dual control law derived from minimizing

Ely(t+2) +y(t+1) |t] gave significantly better results.
An obvious alternative that was not tried is to use
an extended Kalman filter to estimate x from [15]-
[16] directly.

Unknown parameters. When the parameters are un-
known 1t i1s difficult, if at all possible, to rewrite
a system like [15]~[16] to make the least squares
method directly applicable. Some kind of approximate
nonlinear estimation technique is then needed, as
e.g. the extended Kalman filter. It is an open ques-
tion if it is advantageous to first rewrite the equa-
tions (like [17]), or if the original equations should
be used. A comparison between these two alternatives
for a known parameter case, as e.g. the example above,
might give some indications. There is a large number
of possible combinations of nonlinear estimation
methods, rewriting equations and ways of calculating
the control law. It would be desirable to have these
possibilities more closely examined, as the output
nonlinearity model in some respects seems to give
better control laws than the input nonlinearity model.
An extension to also include a second linear block at
the output of the nonlinearity should only cause
minor additional difficulties.

6. CONCLUDING REMARKS

For some reason most of the research on extremum
control has been done in Russia and eastern Europe.
It can be mentioned, that out of the papers studied
for this survey, counting only the ones available in
translation, almost 2/3 are from these countries.
Most of this work has been published in 'Automation
and Remote Control', 'Cybernetics', or the German
journal 'Messen, Steuern, Regeln' with a few papers
in the IEEE Transactions on Automatic Control. The
early IFAC world conferences are also good sources
for further references.

Although quite a few practical applications have
been reported, in particular with the perturbation
method, most of these have concerned pilot plants or
laboratory processes. The field of extremum control
still needs further development in order to make the
technique easy to apply and well suited for routine
use in commercial processes. It is believed that the
prerequisites for such a development are now at hand.
This has been a main reason for carrying out this sur-—
vey.

First of all, there has been and is a rapid pro-
gress in computer technology with powerful micropro-
cessors now appearing at very low cost. It is even
becoming economically feasible to replace ordinmary
analogue PID-controllers by digital versions imple-
mented in microprocessors. This also adds to the pos-—
sible flexibility of the controller. The increased
computing capacity could then instead be used to im-—
plement more complicated control algorithms, such as
e.g. extremum controllers.

Secondly, the theory development in disciplines




like-optimization, identification and adaptive con-
trol has been substantial. It should then be possible
to bring extremum control forward using ideas from
these neighbouring areas. A few suggestiong based on
some specialized modelg were given in the Previous
section. Hopefully thig survey can help promoting

such a progress by pPresenting the status of extremum
control to researchers of these other fields,
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