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ABSTRACT

The economically optimal setpoint of a process
will shift when unknown disturbances in the form of
changes of the feed properties or the operating char-
acteristics and intentional changes of the production
specifications occur. Currently utilized techniques
for optimizing control are either model based and
suffer consequently from the unavoidable model inac-
curacies or use a steady state gradient search on the
real system which makes them very slow. A new method
is presented where a linear dynamic system model is
continuously updated on line using the instrumental
variable technique and forms the basis of the optimiz-
ing control strategy. The complexity of the algorithm
is reduced by a new decomposition approach suited to
the natural structure of industrial plants (inter-
connected subsystems).

INTRODUCTION

Increasing energy and raw material costs have
forced the modern engineer to make better use of the
available capacity of existing plants without much
additional investment. Aside from methods which
involve modifications in the process itself, as for
example, energy integration schemes, other ways are
being sought to exploit the available degrees of free-
dom and increase optimality. For instance, by con-
tinuously maintaining the plant at its optimum despite
changing environmental conditions it is possible to
achieve an important performance improvement.

Converter catalyst deactivation, heat exchanger
equipment fouling, ambient temperature drifts and
change in feedstock guality offer a few examples of
the disturbances which can have a lasting economic
impact on the operation. Continuous tracking and
driving the process to its best operating conditions
when such changes occur are termed optimizing control.

REQUIREMENTS OF AN OPTIMIZING CONTROLLER

To be applicable in an industrial environment in
a non-trivial situation any optimizing control scheme
has to satisfy the following requirements:

1. It should operate on-line:

i.e. it should not be model dependent but
determine the best operating conditions through direct
experiments on the plant.

2. It should be fast:
An optimizing controller whose adaptation time

constant is slower than or comparable to the period of
important process disturbances will be continuously
hunting after an optimum without ever reaching it.

3. It should be able to deal with noisy measurements:

The desire to keep the required process pertur-
bations at a minimum to avoid unnecessary plant upsets
results in small signal to noise ratios.

4. It should be able to deal with multivariate, large
scale systems:

Given the great complexity, large dimensionality
and inherent interaction between units that character-
ize modern chemical plants, a unit by unit optimizing
controller will prove insufficient for our purposes.
Hence, adequate handling of multivariable systems
while at the same time providing for division and
coordination of tasks is a mandatory requirement of an
industrially successful scheme.

To present a method robust enough to take all
these factors into consideration and consequently
applicable in an industrial environment is the subject
of this paper. We shall now examine currently used
approaches to optimizing control and point out their
basic disadvantages as well as their useful features.

PRESENT APPROACHES TO OPTIMIZING CONTROL

0ff-line Methods

Many techniques reported in the literature rely
on the model prediction of optimal inputs. Key
measurements are fed to a simulator or model and a
search is performed off-line, making them fast but
inaccurate (Webb, EE.EL" 1978, Prett & Gillette, 1979) .

) edss
feds

On-line Methods

1.° Methods using a continuously varying pertur-
bation signal: Probably the oldest method is due to

Draper and Li (1951) using a ramp shaped perturbation
signal to determine the gradient of the objective
function. More recent technigues use sinusoidal
inputs (Box and Chanmugan, 1962; Kotnour et El' 1966) .
These methods are generally noise sensitive and essen-
tially limited to one dimensional searches. Exten-
sions even to two dimensions encounter complex stabil-
ity problems (White, et al., 1968) and no applica-
tions have been reported.
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2. Direct search methods: Multivariate systems
have been handled by implementing either gradient or
pattern-type search methods from optimization theory
directly on the plant. Being essentially steady-state

procedures, measurements should be taken only when the
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process is allowed to settle after each change in the
manipulated variables which makes the controller very
slow.

3. Methods to handle measurement noise: In stochas-
tic approximation the numerical on~line computed
gradient is filtered and used to determine input moves.
Although the scheme can be shown to converge in
probability to the plant optimum (Saridis, 1974) dis-
couraging application results have made it necessary
to reduce it to a trial and error technique with the
noise level limiting the achievable optimality
(Ahlgren and Stevens, 1966). If replications of
measurements are averaged better results are obtained
(Luecke, 1970) at the expense of slowing the procedure.

4, Optimizing control using dynamic model identifica-
tion: Desiring speed on one hand and accuracy on the
other the most promising approach appears to be the
recursive identification of a dynamic model of the
system as proposed by Bamberger and Isermann (1978).
Instead of using only the steady state information,
parameters in a simple dynamic input-output model are
estimated on the basis of the transient response. 1In
a second step the steady state version of the model is
used in an off-line optimization routine which deter-
mines how the manipulated variables should be varied
to improve the economic performance. Then the proce-
dure is repeated with a process identification at the
new operating point followed by an optimization step
and so on until the economically optimal point is
reached. The appealing features are the speed and the
noise insensitivity typical for most dynamic identi-
fication schemes.

NEW OPTIMIZING CONTROL TECHNIQUE

Our goal is the development of an on-line opti-
mizing control method for structured processing
systems consisting of interactive subsystems. An
example would be a refinery consisting of several sub-
sections run by different groups of operating person-—
nel. The optimizing control scheme should find the
optimal operating conditions for the integrated
system while taking maximum advantage of the sub-
section structure. Because of the advantages dis-
cussed above the optimizing control will proceed via
the identification of a dynamic model. After the
identification step the model is used in an optimiza-
tion routine. It is natural to carry out the identi-
fication in a decentralized and the optimization in a
centralized fashion as shown in Fig. 1. With the
necessary coordination each subsystem is identified
separately. The optimizer is supplied with the sub-
system models and chooses changes in the inputs to the
system such that the economic objective is improved.

Model Description
Each subsystem; (i=1,...s) will be described by
the discrete input-output model

Az Dy, (0 = 2 i, (z R+ (2 D (k)

+ v, (k) (1)
i

where ¥y R*L is the measured subsystem output, m. Rmi
the noise free measured subsystem input and uy tﬁe
noise corrupted interconnection input arising from

neighboring subsystems. Aj;,Bj and Cj are polynomial
mgtrices of order p; in the backward shift operator

zZ ~. Py and T; are assumed known, Vi is a vector of
stationary noise in general correlated with other sub-

system noise vectors Vi, JAL.

We obtai
state part of (1) for z=1 as SLujLbefsleady

A,y, =B,m, + C.u,
1y1 .

ii i‘i i=1,..s (2)

or in integrated form by making the appropriate sub-
stitutions for u,

Ay = Bm (3)
Optimization Schemes

In its general form the optimization problem can
be stated as

min P(y(m),m) (4)
m

where all the equality constraints are included im-
plicitly in y(m) and the absence of inequality
constraints is assumed in this work. There are numer-
ous techniques available to solve problem (4).
Considering that the model of the process is known
through identification the gradient can be computed as
easily as the steady-state objective. Therefore
gradient methods are prefered over direct or pattern
searches since they exhibit faster convergence rates
and more efficient algorithms. At iteration i any
direction

i i
q = -S VmP|i (5)
is a direction of descent if Si is positive definite.
Because the current gradient is always available it is
best to choose a fixed step size p such that the new
improved operating point is

i+l i
m =m

i
+ ug (6)
For S'=I we have the familiar steepest descent search.
A variable metric update for which s! approximates the
inverse Hessian can also be obtained (Avriel, 1976).

Identification of Interconnected Systems

Many reviews of identification techniques for
giscrete systems have been presented, e.g. Eykhoff and
Astrom (1971) and Eykhoff's book (1974) and compara-
tive studies have evaluated the merits of the differ-
ent methods (Isermann gE_gi., 1974, sbderstrom et al.,
1978) . Except in very special circumstances the
linear least squares (LS) approach is known to yield
biased estimates. The instrumental variable (IV)
method corrects this flaw while preserving the simpli-
city. This was the main reason for choosing it here,
though it is known that the estimates are not effi-
cient. However, in simulation studies of IV the
observed parameter variances were found not to be sig-
nificantly different from their minimum achievable
values, the Cramer-Rao lower bonds (Rowe, 1970) .
Assume for simplicity in notation (1) to describe a
SISO system (neglecting the subscripts) and define

(y(K) ¥ (k+1) . ..y (N+k=1)) T

v (k) =
v (k) = (v(K) ,v(k+1) ... v(N+k=1)) T
(k) = (m(k) ,m(k+1) , .+ o -m(N+k=1)) T
- _ r 1-n))
¢N(y,m) = (YN(O),YN( l)-..YN(l na) ,MN(O),...MN( nb)
T
0= (al.... an ’ bl"' b )

a Ty

Then the system model (1) can be rewritten as
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YN(l) = QN(y,m)O + vN(l) (n

«nd the IV estimate is

8 = (Zy by, (7o) 1 2y a) (8)

Wong and Polak (1967) suggest different choices
for the IV matrix Zy in order to guarantee unbiased
estimates and Smets (1970) discusses their implemen—
tation. An IV selection that reduces estimation
variance requires a knowledge of the noise statistics.
If this is avoided the "bootstrap method" has been
found to yield good results:

ZN = ¢N(x,m)

where x(k) = alx(k-1)+...+anax(k—na)+blm(k—l)+...
...+bnbm(k—nb) (9)

thus instead of the measured outputs, the model pre-
dicted outputs are used in Z, where A, B, now employ
the most recent estimates which are continuously
updated as a result of the Jdentification.

Only a few results on the identification of com—
posite systems have been reported in the literature
(e.g. Wismer, et al., 1970, Arafeh & Sage, 1974) . In
them the estimation problem is converted to a deter-
ministic optimization problem without due regard to
the statistical properties of the estimates. In this
paper a simple scheme within the IV framework is
presented requiring a minimum of coordination effort
among subsystems.

The main difficulty in applying the IV technique
directly to individual subsystem identification con~
gists in having a noisy signal as an input to the
model. Under these circumstances the IV method was
gshown to yield biased estimated (Garcia, Morari, 1980).
The bias can be eliminated by introducing a coordina-
tor which supplies the local estimator with the
instrumental variables of the neighboring subsystems.
This suggests a coordination structure as indicated
in Fig. 2 for the special case of two subsystems.
Each individual estimator uses all its available
measurementsplusthe information from the coordinator
which is basically a transfer of instrumental
variables.

summary of New Technique
After specifying pboth the optimization and

jdentification schemes to be used by our controller,
we proceed to analyze potential difficulties to be
encountered when implemented on a process. specifi-
cally, measures to prevent divergence of the IV
algorithm are discussed together with the proper
selection of tuning parameters for the procedure.

Tuning parameters.
1. Sampling time (TSAM)

gince the convergence rate of the identification
actually depends on the amount of data processed per
unit time it is desirable to use small sampling times.
Foster and Hansen (1979) in an application paper
suggest a value of less than one-third the time con-
stant of the system (usually we have a rough estimate
of the settling times of the process). However, we

suggest a much shorter sampling period since faster
parameter convergence is desired between input moves
(i.e. TSAM < 1/80) .

2. Initial LS iterations (ILSQ)

Wwhen there is no previous information about para=
meter values, the LS algorithm should be used initial-
ly. Once fair estimates are obtained the IV recursion
can be started and used subsequently for all itera-
tions. Smets (1970) suggests an ILSQ of 10m where m
is the total nunber of parameters, although proper
selection really depends on the parameter rate of
convergence.

3, TIterations between input moves ( IMOVE)

The input should be changed as soon as good
estimates are obtained, although too frequent pertur-
pbations have no effect on the optimization. A value
for this parameter actually depends on practical
considerations and thus on the specific problem. In
any case, enough iterations should be allowed for
convergence of the estimates.

4. TForgetting factor (XLAM)

For continuous adaptation of the parameters
recent data points have to be weighted more than old
ones. A simple way of achieving this is by defining at
the Nth iteration

T T

T
= +
Zyiitee = VNN Zge1 41 (2o)
T T
= A + +
Zys1YNel 2yt zy4p Y D) (11)
where 0<A 1 is the forgetting factor and Zy1’
¢N+1’ YN+1 are the vectors containing the lates%
samples. In this work the recursive form of the IV

algorithm (Eykhoff, 1974) with A <1 was used.

The following remarks result from our Own exper-
ience with simulation cases and other published results
(e.g. Smets, 1970, Eykhoff, 1974) .

(i) A<l always increases the variance of the estimates.

(ii) For a fixed noise level, as A is decreased, faster
parameter convergence 1is achieved.

(iii)For fixed A, higher noise levels slow down the
convergence.

Thus there ghould he an optimal value for the forget-

ting factor but it can only be determined experimentally

for each different problem. A reasonable initial guess

is XLAM = 0.95

pivergence of the Recursive Algorithm

Through our simulation studiles we have found that
certain conditions make the IV algorithm yield unbound-
ed estimates. It is certain that if the information
matrix ZN¢ is singular the estimate O will diverge.
According to the analysis in s&derstrom (1974) the
following equivalence holds for the noise free boot-
strap estimator:

T AT
ZN¢N = DMD (12)
where: M is a square matrix of delayed inputs which
is pos. def. iff the my(k) sequences are persistently

exciting (Eykhoff, 1973), D is.a matrix of true system
parameters for the model above and D is a matrix of
same structure put for the model parameters. Then

it follows that either

(1) M singular and ﬁ, D of full rank, oY

(ii) M non-singular, and D or D of defficient rank

imply singularity of the information matrix.
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case (i) can occur close to the optimum where the
decrease in the gradient brings about a decrease in
the input moves. An increase in u(6) was found to
have a positive effect without causing significant
oscillations at the optimum.

Case (ii) can occur when some parameters vanish.

This can happen when the objective functionis equal to
one of the output variables. Then at the optimum the
output is at its extremum and the input gain becomes
zero. By choosing the initial covariance small
enough this can be avoided (Albert and Sittler, 1965)
but it slows down the identification significantly.
We found it preferable to switch off the identifica-
tion of the autoregressive part of the model close to
the optimum.

EXAMPLE

In order to demonstrate the basic features of
the proposed optimizing control algorithm, a simple
reactor system shown in Fig. 3 was simulated on the
digital computer. It is assumed that the concentra-
tion transients are dominant and that instant temper-
ature response is obtained. The reaction is

A+B]—<\-k£ 2B

with rate A = -k+AB+k_B2
The physical and design constants of the system are

a = 0.5
Tl = 30 min
12 = 25 min
E4+/R = 17786 E-/R = 23523 °K

30

Ay = 9.73x1022, A_ = 3.1x10 2/gmoles-sec

with an overall time constant of approximately 40 min.

We desire to find the temperatures T1l and T2
which maximize the concentration of B at the second
reactor. The important disturbance for optimization
is Cpor the feed concentration of A which has a
significant effect on the optimum as shown in the
following table.

gmoles gmoles} ° ”
CAO{ T ] Csz{ 2 J Tl( K) T2( K)
0.1 0.0731 315. 309.
0.06 0.0420 317. 312.
0.20 0.1536 312. 306.

For the identification each tank is modelled as a
first order system with two inputs. A 0.5 minute
sampling time is used throughout. For the optimiza-
tion a maximum step size (STMX) of 1 degree is speci-
fied. The LS algorithm is run during the first 40
iterations and the search is started after 80.

During these, PRBS of 1° of amplitude in each temper-
ature are employed. All the following runs start at
(T1,T2) = (308,299)K for Cpo = 0.10. Figs. 4 and 5
show the results when the measurements are noise free,
XLAM=0.9, IMOVE=15. Convergence is achieved after
about four system time constants which is about the
time necessary for a system to reach a new steady
state after a step change. Because of divergence,
the identification of the autoregressive part of the
model was interrupted in the vicinity of the optimum.
An increase of the measurement noise requires XLAM to

be increased. When XLAM is increased the parameter
adaptation is slowed down and IMOVE has to be increas-
ed. It was observed, for example, that in the noise
free case with IMOVE=15 and XLAM=0.95 the optimum was
not found and the optimization algorithm seemed to be
lost. The excellent performance in the presence of
significant measurement noise can be seen in Fig. 6.
XLAM and IMOVE had to be increased which brought about
an increase in the search time. Fig. 7 shows the
tracking of a shifting optimum caused by changes in
the feed concentration at times of 600, 1500 and 2700
minutes. Again the response of the optimizing con-
troller is seen to be very fast. 1In all examples a
steepest descent search was used. The variable metric
techniques were found to perform very poorly in the
presence of noise. For comparison with Fig. 4 and 5,
the performance of a SIMPLEX pattern search was tested
under the same conditions with IMOVE=15 (Fig. 8). The
convergence is much slower and persistent oscillations
at the optimum appear. For noisy observations very
poor results were obtained.
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Fig. 2.

A decomposition approach to the IV identi-
fication of large interconnected systems.
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search for the optimum (no noise, XLAM=0.9,

IMOVE=15) .
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