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DYNAMIC MATRIX CONTROL — A COMPUTER CONTROL ALGORITHM

C. R. Cutler

B. L. Ramaker
Shell OIl Company
Houston, Texas

ABSTRACT

The Dynamic Matrix Control (DMC) Algorithm
is a control technology that has been used
successfully in process computer applications
in Shell for the last six years. The general
development of the DMC Algorithm to incorporate
feedforward and multivariable control is covered
in this paper. The DMC Algorithm evolved from
a technique of representing process dynamics
with a set of numerical coefficients. The
numerical technique, in conjunction with a
least square formulation to minimize the inte-
gral of the error/time curve, make it possible
to solve complex control problems on a digital
computer which are not :olvable with traditional
PID control concepts. The incorporation of the
process dynamics into the synthesis of the
design of the DMC, make it possible to maintain
an awareness of deadtime and unusual dynamic
behavior.

DYNAMIC MATRIX CONTROL DEVELOPMENT

The Dynamic Matrix Control (DMC) Algorithm
is a control technology that has been used
successfully in process computer applications
in Shell for the last six years. The general
development of the DMC Algorithm to incorporate
feedforward and multivariable control will be
covered in this paper. A subsequent paper will
expand the scope of the algorithm to address
the problem of constrained multivariable con-
trol. The need for the expanded algorithm
evolved from the application to a catalytic
cracking unit of a non-linear steady state opti-
mization which characteristically drives the
process to a number of constraints.

The DMC Algorithm evolved from a technique
of representing process dynamics with a set
of numerical coefficients. The numerical
technique, in conjunction with a least square
formulation to minimize the integral of the
error/time curve, make it possible to solve
complex control problems on a digital computer
which are not solvable with traditional PID
control concepts. The incorporation of the
process dynamics into the synthesis of the
design of the DMC, make it possible to maintain
an awareness of deadtime and unusual dynamic
behavior. An awareness of deadtime alone
prevents the controller from overcompensating
which can only be obtained in the PID controiler
by suppressing the integral action with the
corresponding degradation of the control.
Examples of unusual dynamic response to a step
change are illustrated in Figure 1. The first
curve is characteristic of a system which is out
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FIG. 1 UNUSUAL DYNAMIC BEHAVIOR

of material balance. The second curve is the
response of a furnace transfer temperature to
a soot blowing operation on a large preheater.
Note in both illustrations, the response curve
cannot be adequately described by a first or
second order differential equation typically
used in control analysis.

Any system which can be described or
approximated by a system of Tinear differential
equations can utilize the Dynamic Matrix Control
technique which is based upon the numerical
representation of the system dynamics. Two
properties of linear systems makes the numeri-
cal representation possible. The first of
these principles is the preservation of the
scale factor. It is illustrated in Figure 2
where the response of the output variable 0 is
shown for a change in the input variable I.
The solid Tine represents the response of the
output variable to a unit change in the input
variable and the dashed line illustrates the
response for a two-unit change in the input
variable. Note the response of the two-unit
change has twice the amplitude of the one-unit
change. For a linear system, the response of
the output variable for any size change in the
jnput variable may be obtained by multiplying
the scalar value of the input variable times
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FIG. 2  PRESERVATION OF SCALE FACTOR

the unit response curve for the output variable.
Further note on Figure 2 that the unit response
curve can be approximated by a set of numbers
if the curve is broken into discrete intervals
of time. The two-unit response curve in Figure
2 can be obtained by multiplying the set of
numbers for the unit response by 2. The second
characteristic of a linear system is the prin-
ciple of superposition. This principle is
illustrated in Figure 3 where the response of
the output variable is shown for a unit change
in two input variables. Also, the response

of the output variable to a simuTtaneous unit
change in both input variables is shown. The
response for this curve was obtained by summing
the responses for the unit response curves for
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FIGURE 3  PRINCIPLE OF SUPERPOSITION

the input variables. Mathematically these
concepts are given by:

8 07 45, 2l ALT) 40 bTWAR T i
6§02 = ag Al +bpa IF] 2 aaoa00
603 = a3aly+b3alp+...... (1)
60i = ajaly +bjalp+......

where the § 0y are the changes in the output
variable from its initial value to its value
at time interval i and the a Ij are the
changes in the input variables“from thejr
initial value at time equal to zero. The aj
and bj are the numerical coefficients referred
to in the preceding paragraphs. Figure 4
illustrates the response of the outiet temper-
ature of a preheat furnace to a step change in
the fuel to the furnace and to a step change
in the inlet temperature of the feed to the
furnace.

The fuel coefficients shown in Figure 4
are an illustrative example of the a; and the
inlet temperature coefficients are ii]ustrative
of the bj. The input variables can be manipu-
lated control variables or measured distur-
bances. For example, in the furnace control
problem to be described in this paper, the
fuel is a manipulated input variable, the
inlet feed temperature is a measured distur-
bance, and the controlled variable is the
furnace transfer temperature.

bi
1.0 ai INLET
( FUEL  TEMp.
COEF. COEF.

.014 0.0

FUEL STEP CHANG
.086  .240
214 L340
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st 736 .590
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.904  .640
INLET TEMPERATURE
STEP CHANGE .949  .653
.986  .658
0

TIME
FIG. 4  FURNACE RESPONSE, FUEL, TEMPERATURE
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The change in the controlled variable from
time equal to zero to some future time that will
result from changes in the manipulated input
can be represented by the following equations:

1

501=a1AI] (2)
] 2

6§ 02 = a2 a I]+ aj a I]

1 2 3
6§ 03 = a3z a I]+ as A I] +a) A I] + ..

1 2 3
6§05 = aj a I]+ aj-1 A I]+ aj-2 A I]+ .

where movement of manipulated variable Iy is
considered for three intervals of time into

the future with the superscripts 0y I1 repre-
senting the time interval. The a 71 is the
step change in the manipulated input variable
from its value at the end of the first time
interval and3the beginning of the second.
Similarly a °;1 is the change in the manipulated
input variable from its value at the end of the
second time interval and the beginning of the
third. Further, note the same set of coeffi-
cients is used for each column. The coeffi-
cients in each column are shifted down one

time interval for each successive column to
correspond with the first time interval which
the future inputs can impact on the output var-
jable.

FEED FORWARD DMC
Feedforward control is accomplished by

moving the measured disturbance input variables
in equation set (1) to the Teft hand side.
For example, if input I2 is a disturbance input,
equation set (1) becomes:

6§01 +byalz = ayaly

§ 02 +bpalz = a2 aly

§03+b3 alz = a3 aly

5§04 +bgalp = ag Al (3)

§05 +bs alp = a5 aly
§ 0p +bgalp = agaly

60 +bjaly = ajaly

Combining equation set (2) with set (3)
yields the general form of the equations used
to do feedforward predictive control of a
variable 0.

1
ayjal
1

§ 01 +bya Ip

un

2
6 02 +bpa Ip=apa I:+ aj A I]

6 03 + b3 a I,

ag A I]+ as A I2 + ai A 13
3ISES TR Zint MLl A

1 2
6 05 +bjalp=aja I]+ aj.] A I]+ aj_2 A I?

The desired response of the system is deter-
mined by subtracting the predicted response of
the system from the setpoint, which is deter-
mined from the past history of inputs to the
system. With the desired output response § 0
known, the measured input disturbances a I
known, and the numerical coefficients aj and
bj known, all the information is available

to solve equation set (4) for the set of time
dependent moves in the manipulated input
variable.

DMC SOLUTION TECHNIQUE

The set of equations is over-determined
which prevents direct solution, but can be
solved using a least square criterion. Such a
solution produces a projected set of moves in
the manipulated variable that minimizes the
error in the output variable from its setpoint.
The obvious difficulty with the use of the least
square method to calculate the movement of the
manipulated variable is the unconstrained
nature of the solution. The method without
constraint will yield very large changes in
the manipulated variable that would not be
physically realizable:

One technique for suppressing the change
in the manipulated variable is to multiply by
a number greater than one, the main diagonal
elements of the square matrix that evolves from
the least square formulation. The effectiveness
of such a multiplier is illustrated in Figure §
where a square wave change in setpoint was made.
The unconstrained least square reduction in
the error resulted in a total change in the
absolute value of the manipulated input variable
of 37.57 taken over 10 intervals of time. With
a multiplier of 1.005 the total change was
4.91 and with 1.010 the change was 3.42. The
multiplier effectively adds another row to
the original data for the input variable for
each interval in which it is allowed to move.
A1l elements in the row are zero except for the
specific input variable which has a coefficient
related to the size of the multiplier. As can
be seen from Figure 5, the suppression of the
manipulated input variable moved by an order
of magnitude did not significantly impair the
reduction in the projected error.

The matrix of coefficients which describe
the dynamics of the system is the basis for
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calculations are summed
fuel moves and the current fuel move is imple-
mented. The pattern is repeated at each suc-
cessive interval of time.

with newly calculated

Feedforward control is im
measuring the change in the fe
ture between time intervals,
the numerical coefficient for the effect of
the inlet temperature on the outlet, and
summing this response of the outlet temperature
into the vector of predicted values for the
output variable.

plemented by
ed inlet tempera-
multiplying by

The description of the technique for the
DMC was given in some detail to foster under-
standing. The actual calculations involved

TIME

FIG. 5 MOVE SUPPRESSION FUEL TO FURNACE
the DMC Algorithm. For the furnace control
problem the response of the output variable was
considered for 30 intervals of time and the
movement of the fuel gas was considered for 10
intervals. Thirty intervals of time represents
about 4 1/2 time constants for the response of
the outlet temperature to a change in the fuel.
At the tenth time interval, the outlet temper-
ature has three time constants to settle from
the last change in the fuel. This choice of
time intervals results in a matrix with 10
columns and 30 rows. To initialize the algor-
ithm, the measured outlet temperature is

stored into the 30 element vector that repre-
sents predicted values of the output variable.
This assumes the system is at steady state,

but is not a ..ecessary criterion. An error is
then calculated from the projected value of the
output variable and the setpoint for the 30
intervals of time. This vector of errors
becomes the right hand side for the 10 by 30
matrix. The least square solution of this set
of equations yields the best set of fuel moves
to eliminate the projected errors for 30 time
intervals. The projected set of fuel moves is
used to calculate the outlet temperature change
for the forthcoming 30 intervals of time, and
the temperature changes are then added intg

the 30 element vector for the predicted value
of the dependent variable. The first fuel

move is implemented and the entire vector of
predicted output variable values is shifted
forward one interval of time. At the start of
the next interval of time the predicted value
of the output variable is compared with the
measured value. The error in the projection

is used to adjust all 30 values in the predicted
output variable vector. This adjustment in

the prediction provides the feedback to compen-
sate for unmeasured disturbances and errors in
the dynamic prediction. At the next interval
the set of errors between the setpoint and the
predicted values of the output variable is used
to solve for another set of 10 fuel moves.

The nine remaining fuel moves from the previous

in the technique are at least two orders of
magnitude less than would be required by the
outlined procedure. The first simplification is
to recognize that the matrix of coefficients
representing the dynamics are fixed and only
the right hand side changes from one time
interval to the next. Furthermore, the square
matrix that results from the formulation of
the least square procedure does not change,
which also means the inverse matrix does not
change. The errors between the projected
vector of the output variable and the setpoint
appear in the caluclation of the right hand
side for the least square formulation. The
right hand side of the formulation is the
transpose matrix of the matrix given in equa-
tion set (2) times the vector of projected
errors in the output variable from its setpoint.
Consequently, the inverse matrix times the
trenspose of the original matrix times the
error vector gives the projected set of moves
in the manipulated input variable. Since the
inverse matrix and the transpose are also con-
stant, the calculation is reduced to the multi-
plication of a constant matrix times the pro-
Jjected error vector. The preceding description
of the DMC calculations can be expressed con-
veniently in the following matrix notation:

>

>
- (ATA)-1 AT g . (5)
where the A matrix is the matrix of coefficients
describing the dynamics [the aj of equation set
(2)1, E is the vector of projected errors, and
the I is the vector of %rojected moves in the
input variable. The (ATA)-TAT is the constant
matrix referred to above. As a further simpli-
fication it can be shown that only the first
row of the constant matrix and the error vector
are needed to solve the control problem. This
calculation yields the control move to make at
the present interval of time. The other contro}
moves in the input variable are imbedded in
the first row of the constant matrix, in the
successive updating of the error vector, and
by the coupling of time intervals from adding
in the projected response from the fuel moves
in each ipterval of time. Since the calculation
of (ATA)-1AT can be done offline in the furnace
control discussed earlier, the actual real
time calculations for the DMC Algorithm are
reduced to the multiplication of the 30 elements
in the first row of the constant matrix times
the projected error vector.
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FIG. 8 DYNAMIC MATRIX CONTROL OF FURNACE
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A comparison can be made between Figures 6,
7, and 8 to illustrate the merit of the DMC
control relative to conventional contro] tech-
niques. Displayed in each of these figures is
the response of the outlet temperature of the
preheat furnace to a disturbance in the inlet
feed temperature. Each figure represents real
data taken off the operating unit. In Figure 6
the performance of the units standard analog
temperature controller is illustrated. The
temperature controller is cascaded to a flow
controller on the fuel and the temperature con-
troller's settings were established after years
of experience by the operating personnel. In
Figure 7, the temperature control is being
accomplished via the computer using a PID
algorithm with Tead/lag compensation on the
feed inlet temperature. The computer output is
directed to the flow controller on the fuel.
In Figure 8, the DMC is on the temperature
control with feedforward control of the inlet
temperature. The fuel is on flow control
which is reset by the computer. As can be seen
from this comparison, the DMC is substantially
better than either of the conventional methods
of control. A further example which displays
the robustness of the DMC is shown in Figure 9.
The set point for the outlet temperature of
the furnace in this case was being reset by
another controller within the computer. The
DMC algorithm effectively handled a large
temperature disturbance while having a load
change imposed on it by the outer control loop
of the temperature controller. Fuel moves to
handle the disturbance are also shown.
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MULTIVARIABLE DMC

In equation set (1), both input variables
may be manipulated. %n fact, any_number of
manipulated input variables that influence the
output variable may be included, e.g.

5§ 07 =ay A I: + by & I; (6)
1 2 1 2
6 0o =ap A I1 + a1 a I1 + bo A I2 +by A 12
1 2 1 2
603=a3AI_|+ a21311+..b31312+b21312

0 I.I A 12 + b; A I1 +b A 12
] . + - %o Yy t-
§ Uy =aj A ] aj-1 1 i 2 i-1 2

where the subscript on I represents a different
variable, the superscript on I indicates the
time period in which the input is changed, and
the aj, and bj are the numerical coefficients
associated with Iy, I, respectively.

To incorporate the control of more than
one output variable in the DMC Algorithm, the
matrix of coefficients is expanded below to
illustrate the case of two manipulated inputs
and two outputs:

1 1
§ O'I.I = a] A I] + b] A I2 (7)
g 1 2 1 2
§ 02 = 62 A I_I + a-| A I_I + b2 A 12 + b-l A 12
. 1 2 1 2
6 03" =aza I1 + ag b 11 +bga I2 +by Al
2
: 1 2 ]
8 O'I = a4 A I_I taj A I_I +eos b'l A IZ + b'l-] Al
> 1 1
6§ 01° =cya I] + dya 12
2 1 2 1 2
5 02 =Cpy & I_I +Cy 8 I] ‘*'dzA 12 +d'| A 12
1 2 1 2
§ 032 =C3 A I_I + Co A I_I + d3 A 12 + dz A 12
0 2 _ 2 1 2
§ S C.i A I] + C.i_] A I] +.. d'l A 12 + d‘l-] A 12

The superscript on the output variables indi-
cates a different variable. The number of
input and output variables is unlimited in this
formulation. The only constraint is that the
number of manipulated input variables be equal
to or greater than the number of output vari-
ables and that the system of equations be
overspecified. The multivariable problem is
solved in the same manner as illustrated for
the furnace example. The matrix of coefficient
in the last equation set is defined as:

aj by (8)
ap aj by by
a3 az A b3 bz by

A=aj aj_1] aj-2 ««» bj bj.1 bij.p ...
c] dj
c2 ] d2 d
€3 ¢2 Q d3 d2 dj

Cj Cj1 Cj.2 ees di dj.1 di.2 ...

The vector I of moves in the manipulated vari-
ables for the multivariable problem is solved
the same way as with the single variable problem
and is given by:

- (ATA)-1 AT E = ; (9)

where E is the vector of project errors in the
outputs.

The first application in Shell of the
multivariable control was on a catalytic crack-
ing unit. The algorithm has worked well except
under conditions when one or more of the mani-
pulated variables became constrained as a
result of being integrated with a real time
optimization of the process. The next paper
will describe the optimization of the catalytic
cracking unit and the enhancements to the
algorithm which allow the projected moves in
the input variables to be constrained in time.

SUMMARY

The DMC algorithm described in this paper
has permitted the on-line computer solution of
multivariable control problems. Dynamic data
taken from the process can be directly inserted
to configure the controller. The controller
calculates moves for the present time and a
number of future time periods. This feature
always for the correct compensation for pro-
cesses with dead time. Feedback has been
incorporated into the control algorithm to
compensate for unmeasured disturbances and
dynamic model errors. Feedforward is simply
configured into the controller by the addition
of the dynamic data for measured disturbances.
This technique has been successfully applied to
control problems within Shell for the last six
years.

NOMENCLATURE

ajsbj,ci.dj = Numerical Coefficients Describing
Process Dynamics

A = Matrix of Coefficients Describing
Process Dynamics
E = Vector of Projected Errors in Time
I = Vector of Projected Moves in the
Input Variable
4 1j = Changes in the Input Variables
8 04 = Changes in the Output Variables
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