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- Controller TUning
from Simple Process Models

C. L. SMITH, A, B, CORRIPIO
Louisiana State University, and
J. MARTIN Jr, Exxon Chemical

What? Another controller tuning article? Yes, but this
time the quarter decay and root locus plots have been
sheived in favor of a little algebra, The authors have
developed a tuning method which requires only a
knowledge of the two dominant poles of a process, re-
ducing the mysteries of controller tuning to a few simple
calculations applied to a mathematical model.

CONTROLLER TUNING is still a black art in
spite of all the technical articles dealing with the
subject that have been published in the past thirty
odd years. The pioheer article by Ziegler and
Nichols in 1942 (Ref. 1) presented procedures and
formulas to tune a controller for a quarter-decay
ratio closed-loop response. Lopez, et al (Ref. 2)
published correlations to tune a controller for
minimum time integrals of selected error functions
during step disturbances. Rovira and co-workers
(Ref. 3), continuing the work of Lopez, developed
similar correlations for step changes in setpoints,
and found them to produce more stable responses.

Other cookhook approaches have been presentéd in
numerous textbooks and articles. The fact that

" none of these seems to have gamed widespread ac-

ceptance indicates that, as in the case of razor
blades, the best solutlon has not yet been found.

A quarter- decay response is an elegant basis for a

~ treatise, but it is far too underdamped to be ac-

cepted by plant operators. Minimum error integral
correlations may be easy to develop with search
techniques and FORTRAN programs, but no one
seems to be convinced that these methods produce
the “best” settings for a specific process; in fact,
there seems to be little agreement on the definition
of best controller settings.

This article presents an approach to controller
tuning which was derived from simple algebraic
synthesis. The results agree with current indus-
trial practice and have produced acceptable con-
troller parameters in two industrial processes with
which the authors have been involved. Settings
obtained with the correlations are not intendedto—.
be accirate to three significant figires, but as an
order of magnitude approximation. Anyone who
has ever been involved in the control of an indus-
trial process knows that this is all that could be
expected. ' :
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Sticky Note
Comment from Sigurd Skogestad 22 Dec. 2023: This is a very interesting paper which it seems I have overlooked. It actually provides the "missing link" to lambda-tuning. In my SIMC-paper from 2003 I referred the book from Smith and Corripio (1985) which has the same rules as in the 1975-paper, but in 1985 they switched to using tauc (closed-loop time constant) as the tuning parameter rather than lambda=1/tauc. 

In addition to using lambda = 1/tauc (the inverse of the closed-loop time constant) as the tuning paper, this 1975-paper is interesting because it refers back to Dahlin (1968) as (1) the source for the symbol lambda and (2) as the source of the "direct synthesis" approach where one starts be specifying a desired closed-loop setpoint response. See Equation (9), C/R = lambda*exp(-t0*s)/(s+lambda), which in my notation would read, y/ys=exp(-theta*s)/(tauc*s+1) where tauc=1/lambda.
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Figure 1. Typical feedback control loop. Given
the plant transfer function G(s), the tuning prob-
lem is to find the appropriate controller transfer
function Gs) that results in the desired closed-
loop response C(s)/R(s). -

Developing process models _
A typical feedback control loop is-shown in Figure
1. The block labeled “Plant” includes the gains
and lags associated with the control valve, the
process itself, and the sensor and transmitter,
Since the signals between these individual com-
ponents are not usually available in the control
room, the entire process portion of the loop must
be combined as a single function for controller
design purposes. The controller output signal,
M(s), is the input to this combined block; the
transmitter output signal, C(s), is the block’s out-
put. The controller design problem consists of se-
lecting controller modes and tuning the controller
parameters to the specified process.

In order to adapt the controller, the dynamic char-
acteristics of the process must be measured in some

manner. All but the crudest trial-and-error tuning -

methods involve the determination of dynamic
plant characteristics, be it with the loop open or

closed. Control engineers the world over are famil- -

iar with the techniques used to determine dead-
times, process lags and control responses; these
methods range from fiddling with controller ad-
justments and observing plant responses to more
sophisticated techniques, such as_pulse testing
(Ref. 4). Dynamic process values are then used in
various tuning algorithms to determine controller
settings.

The three techniques previously cited for.controller
tuning—Ziegler-Nichols, Lopez and Rovira—are
based on the open-loop process reaction curve (Ref.
5); this curve, based on measured plant dynamics,
represents the time response of a transmitter out..
put to a step change in controller output. Simple
linear models have been fitted to these process re-
action curves for first-order lag, second-order lag
and underdamped processes:

First-order lag plus deadtime (FOPDT)

Controller P_la_nt
£s) [N Cls)
Ke—tos
GO} = T 1 (@

Second-order lag plus deadtime (SOPDT).
Ketos
(rs + Dirss ¥ 1) @)

G(s) =

Underdamped system

Ke—t 0°

G(s) = 7282 + 27¢s + 1 . (9)

To attempt to fit models higher than second-order
to the process reaction curve is to try to extract
more information than the curve can supply. More
sophisticated techniques for determining plant
characteristics, such as pulse testing, are required
to obtain higher order models. In Equations 1-3,
the deadtime value, ¢,, includes the effects of all
the small time constants that are not accounted for
in the model.

Inside the controllers

Over 70 percent of the feedback controllers in-
stalled in industry are the standard proportional-
integral (PI) or two-mode controller supplied off
the shelf by various instrument manufacturers.
Practically all PI controllers can be represented by
the transfer function:

Gils) = K(1 + 7 (4)

~which can be rearranged in the form of a lead lag

with the pole -at the origin:

1+ TiS
G(s) = K. 1T o

i
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The .integral or reset mode, represented by reset
time T, cannot in general be turned off.

The balance of the feedback controllers are, for all
practical purposes, of the proportional-integral-
derivative (PID) type, commonly known as three-
mode controllers. These controllers can be repre-
sented by the transfer function:

1+T[S[Tds+1]

Ge(s) = K. T;s aTys + 1 (6)

The derivative mode of the controller usually con-
sists of a lead lag circuit with the lag set at one-
tenth (a 0.1) of the lead. Most PID controllers have
a provision for turning the derivative time off
(T4=0), in which case the controller is reduced to a
PI or two-mode controller. Both PI and PID con-
trollers have adjustment knobs for setting gains
and time constants; these controls are used to tune
each individual c_ontroller for its specific task. -

Synthesizing the controller

Designing a controller with the synthesis method
consists of determining the controller transfer
function that is required to produce a specified
closed-loop response. Synthesis can be carried out
with the aid of such tools as root locus and fre-
quency response plots; but if the plant can be rep-
resented by low order models, it is possible to
synthesize the controller directly from the closed-
loop transfer function. For the system represented
in Figure 1, the transfer function becomes:

C(s) _
R(s)

Ge(s) G(s) (7)
1+ Gu(5)G(s)

The synthesis equation is obtained by solvmg for
the controller transfer function G.(s):

C(s)/ R(s) ]

— C()/R(5) ®)

1
Gc(s) = G(S) [1

Equation 8 is the basic equation from which the
controller can be designed. The term G(s) repre-
sents the model of the plant dynamics, while the
term C(s)/ R(s) is the desired closed-loop response.
When specifying the desired closed-loop response,
- care” must be taken to insure that the resulting

controller is physically realizable. This means that

it cannot contain positive deadtime terms or pure
differentiation terms (more zeros than poles) and
that the gain must be finite. For example, it is not
poss1b1e for the output to track the setpoint at-all
times, i.e., C(s) = R(s), because this would require
an 1nf1n1te controller gain.
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NOMENCLATURE

transmitter signal

process transfer function

controller transfer function

steady state gain

controller gain

controller output signal

setpoint signal

LaPlace transform varlable

time )

deadtime or transportation lag
derivative time

integral or reset time

damping ratio for second-order process
tuning parameter

time constant of the plant

time constants of the factored form of the
second order transfer function
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Dahlin (Ref. 6) and Higham (Ref. 7), working on
the synthesis of digital control algorithms, speci-
fied the following form of the closed-loop response:

C(s) _ he'os (9)
R(s) s+ A

where ¢, is the deadtime of the plant, and X is a
tuning parameter which specifies the characteris-
tics of the closed-loop response. Note that the
steady-state gain of the loop, obtained by setting
§=0, is unity, insuring the absence of offset.

Substitution of Equation 9 into Equation 8, for a
process with no deadtime (t,=0), results in the fol-
lowing synthesis equation:

1A
Gls) 5 -(10)

By applying Equation 10 to a few typical process
loops, we can check its validity against industrial
practice.

Ge(s) =

Flow control—One characteristic of a flow control-
ler is that the response of the flow to a change in
valve position is-instantaneous; i.e., the lag is es-
sentially zero and the plant can be represented as a
pure gain:

G(s) = K (11)
Substituting Equation 11 into Equation 10 pro-
duces a pure integral controller:
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Gdls) = 3= | (12)

In practice, pure integral controllers are not avail-
able off the shelf for industrial use. As a conse-
quence, flow controllers are PI controllers with a
very small gain and a very short reset time. Equa-
tion 5, the PI transfer function, indicates that as
the reset time 7 approaches zero, the transfer
functioni approaches that of a pure integral con-
troller: the gain K, must also be small because of
the presence of 7} in the denominator. Other fast
loops which use integral controllers include speed
control of centrifugal compressers by integrating
governors.

First-order lag—When a process can be repre-
sented by a pure first-order lag, or when the domi-
nant pole is far from the other poles; the plant
transfer function is:

69 = 57 (1)

Substituting Equation 13 into Equation 10:

‘NI + 718) .
~ I (14)

Ge(s) =

Comparing Equation 14 (plant transfer function)
to Equation 5 (PI controller transfer function), and
relating the dynamic and steady-state terms to
each other, the following tuning parameters result:

T,' =T KC = ';\(_T (15)

This is ore of the most important results of the
contioller synthesis method: It says that the reset
time T should be set equal to the dominant, time
constant of the plant 7; and that the controller
gain K. can be adjusted to obtain the desired speed
of response for the closed loop, since it includes the

closed-loop tuning parameter A. This is the ap-’

proach used by the authors to tune the temperature

‘controllers on two industrial systems—a stirred

tank reactor and a furnace—with excellent results.

The choice of controller modes is consistent with
the widespread use of PI controllers in industry.
Most level controllers and concentration controllers
in stirred tanks with long residence times, as well
as most gas pressure controllers, can be represented
by first-order lags.

Second-order lag—When the plant can be repre-
sented by two dominant poles far from the rest of
the poles, the transfer function is:

K
(1i8 + ID(1e8 + 1) (16)

G(s) =

Substituting Equation 16 into Equation 10;

G(.(S) = T)\{_ (‘rll'9 + I)S(TES + 1) (17)

Comparing the plant transfer function in Equatiopn
17 to the PID controller transfer function in Equaq-
tion 6 results in the following tuning parameters:

Ti-7nn Ty=71, K. =% (18)
In this case, the reset time 7' is set equal to the
longest time constant r,, the derivative time T, is
set equal o the next longest time constant r,, ang
the gain is adjusted to obtain the desired speed of
response in the closed loop. The lag in the deriva-
tive lead-lag term is not predicted, but it is re.
quired to keep the controller realizable.

The choice of modes is consistent with industrial
use of PID controllers in temperature control
loops, where the lag of the temperature bulb and
the thermowell is significant when compared to
the process lag. ' :

Compensating for deadtime

Some processes have dynamics represented by
many interacting lags in series and true transpor-
tation lags. To fit a reaction curve to these higher
order processes, a deadtime term must be included
in the transfer function, as shown in Equations
1-3. When this happens, controller realizability
requires a deadtinye term in the desired closed-
loop response, as shown in Equation 9. Substi-
tuting Equation 9 into Equation 8, to synthesize
a controller with a deadtime term, results in:

1 De~tor
G(s) s + N1 — e ')

The deadtime term in the numerator is cancelled
by the corresponding term in G(s) when the equa-
tion is simplified, and will disappear from the con-
. troller . transfer function. The deadtime term
(1—e~*¢*) in the denominator; however, represents
the deadtime compensator recommended by Smith
(Ref. 8); this term, better known as the Smith
Predictor, is difficult and expensive to obtain with

Ge(s) = (19)

~ . analog components but is rather simple to imple-

ment on a digital computer. The Dahlin controller
(Ref. 6), a computerized equivalent of a PI con-
troller with built-in deadtime compensation, has
been successfully applied to the digital control 0
papermachines, known to include significant

/

- deadtime.
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Figure 2. Tuning parameter correlations for a Pl con-
troller set for both a one percent and a five percent
overshoot.

Because of the difficulty in implementing a dead-
time term with analog equipment, the denominator
term must be approximated by a first-order Taylor
series expansion:

e tos = ] — t8 (20)

Substituting the approxifnation into Equation 19
and simplifying results in:

1 Aeto’
G.(s) = GG) \tDs . (21)

For a first-order lag plus deadtime (FOPDT) ap-
proximation of the plant, Equation 1 is substituted
into Equation 21 and the resulting expression is
compared with Equation 5, the transfer function
for a PI controller; this comparison yields the tun-
ing formulas for a PI controller with deadtime
compensation:

AT (22)

Ti=.7' Kc=m

For a second-order lag plus deadtime (SOPDT)
approximation, Equation 2 is substituted into -

Equation 21, and the result is compared with
Equation 6 to obtain tuning formulas for a PID
controller with deadtime compensation:

}\T[

To=1 Ke=pn—t1y

T[ =T (23)

The effect of deadtime t, in Equations 22 and 23
is a reduction in the controller gain K, for the same
value of the tuning parameter A. These tuning
formulas cannot be used when the process is under-
damped because complex values for r,, 74, T; and
T, would result.

Tuning for 5 percent overshoot

All of the tuning formulas allow for adjustment of
the controller gain to meet any specified control
loop performance criteria. To illustrate, Figure 2
shows the value of tuning parameter A used with
Equation 22 to tune a PI controller for 5 percent
overshoot. A comparative curve for 1 percent
overshoot is also shown.

Figure 3 illustrates a graphical correlation of A with
the parameters for the SOPDT model to tune a PID

5
. /6.0
Al 7 /)30
/
/
P, 20 4,
3 | —
Pl line ~, 2
g Y 5
. 7 175 &
21 4 g
v/, S
4 15 @
I~ 1.0
0 | | |
0 3 4

2

/%
Figure 3. In a PID controller, the value of the tuning
parameter \ varies with the damping ratio of the plant
model. As the damping ratio increases, the model ap-

proaches first-order and the PID controller approaches
the PI contrqller (T,—>0).
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Figure 4. Closed-loop response curves for Ziegler-
Nichols, Rovira’s Minimum IAE and Synthesis tuning
methods indicate that a synthesized controller, set to
five percent overshoot, produces a response very close
to the IAE method, while the Ziegler-Nichols response is
oscillatory. Parameters of this second-order plant
model are 7 = 3.7 min., t, = 0.25 min., and K = 1.

controller for 5 percent overshoot. These values are
to be used with Equation 23 for tuning the con-
troller. The parameters of the second-order lag are
given in terms of the time constant and the damp-
ing ratio {:

T =172
(24)
Tt )
$ =27

The correlations shown in Figures 2 and 3 were ob-
tained by digital simulation of a control loop, with
the plant represented as a second-order lag plus
deadtime. Parameters for the FOPDT model were
obtained from the process reaction curve using the
two-point method advocated by Smith (Ref. 5).

How well does it work?

A comparison of synthesis tuning of a PI controller
with the Ziegler-Nichols technique and with
Rovira’s minimum IAE (integral of the absolute
value of the error) tuning method is shown in
Figure 4. Response of the synthesized controller is
very close to the minimum IAE response, while the

Ziegler-Nichols parameters produce a highly oscil-
latory response. If the Ziegler-Nichols gain is re-
duced to obtain 5 percent overshoot, the response is
sluggish, with a rise time much longer than for
the controller synthesis method. This is because
the Ziegler-Nichols reset time is less than half the
time constant and does not properly compensate
for it.

The controller synthesis technique is more than
just another tuning method. It provides a simple
guideline for controller tuning which requires only
a knowledge of the magnitude of the dominant
poles. Controller synthesis views the reset time as
a compensator for the dominant pole of the plant
and the derivative time as a compensator for the
next largest time constant. Synthesizing the reset
and derivative time constants reduces controller
tuning at the process site to proportional gain
adjustments. The gain is adjusted to balance over-
shoot against rise time according to the needs of
each specific control problem; it could not be
simpler.
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