‘Single-term’ control of first-

and second-order processes

with dead time

by J. D. HIGHAM

IN THE APPLICATION of computers to the dynamic
control of industrial processes, the next stage of com-
plexity above three-term is to control processes which
include a dead time or transport lag. Three-term
control becomes ineffective on such a process when the
dead time becomes of the same order or greater than
the main time constants of the process.

Since these sorts of process are common in industry
(e.g. in paper manufacture, cement kiln control, cement
cooler control) it is desirable that the algorithm used
should be standard and have such ease of com-
missioning as is available with a three-term controller

where, ~ very often, the proportional, integral and’

derivative terms can be trimmed on-site without resort
to expensive process-identification tests before the
control system is commissioned. However, since dead-
time processes are often the slower processes on a plant,
it is not possible to commission them in quite such a
free manner as with three-term controllers.

I shall here describe a standard form of control
algorithm involving four parameters. Three of them
are based on three process parameters: the gain, the
time constant and the dead time. The fourth parameter,
0, is used to adjust the closed-loop performance at

. commissioning time and will depend on the nature of

the process disturbances. The process parameters
need not be determined very accurately, since O can
be .used to reduce the instability otherwise caused by
mismeasuring them. Therefore, simple step tests, or
calculations, or the experience of the control engineer
on the plant, have been found to be sufficient. This
is useful since one can have immediate, ‘adequate
control of the plant, and then, if required, indulge in
more sophisticated process identification (e.g. by chain
code techniques) with the plant under control.

Controllers of higher order, involving two indepen-

dent parameters (in addition to the three process

. parameters), have been investigated. They involve

more accurate determination of the process parameters
and the type of process disturbances if one is to achieve
even a small improvement over the single-parameter
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algorithm. Also the complexity of the algorithm itself
increases markedly. It is, therefore, difficult to justify
the inclusion of more parameters in a general control
algorithm.
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Control configuration

The control configuration is shown in fig. 1. Note that
the signal ¥Y(z) (a number from the computer) passes
through a first-order sample-and-hold generating a
staircase function X(s) to G(s). The first-order sample-

and-hold is an adequate description of the interface -

between plant and computer where control actuator
movement time is less than the sample period. This has
always been the case in the variety of process appli-
cations that I have dealt with. The controller is designed

so that the overall controlled system response to a unit -

impulse and step change in set point, SP, is as shown in
figs 2 and 3.

The response in each case is governed by the para-
meter Q, so that the closed-loop transfer function of the
system is—
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The associated step response is shown in fig. 3.
Thus the controlled system at the sampling points
follows an exponential curve after the dead time,
of time constant +/, where Q = 1—exp(—T/7’). The
transfer function between W(z) and R(z) for SP(z) = 0
is merely 1 — K(z) and the step response can be deduced
from fig. 3. Our objective is to find the controller D(z)
which will achieve this closed-loop response.

From fig. 1, by block diagram algebra—

R(z) — D(2)G(2)
SP(z) 1+ D(2)G(2)
Therefore from (2)—

K(2) =

[W(z)=0] (2

D _1_ . K@)
@ =% 1-kG)

Substituting for K(z) from (1)—
—(N+1)
Dl = % [ Qs : ] @
G(2) 1-(1—Q)z1— Qz-(¥+),

Thus the control algorithm, D(z), contains the para-
meter Q and the reciprocal of the process transfer
function. Obviously the success with which we achieve
K(2) will depend on how accurately we know G(2).
For a ‘tight’ system (i.e. where rapid and large changes
are made in the control output X), mismeasuring G(z),
especially the dead time, can cause poor control and
ultimately instability. One overcomes this by making
the control less tight (decreasing Q).

©)

Control algorithm for first- or

- second-order process with dead

time an integral number of sample

- periods .
The process transfer function is defined as—
exp(—sNT)
G =G« ————— 5
. G A1) (5)

where G = steady-state process gain, 7' = sampling
interval, = = time constant and /T = dead time (¥ is
an integer). '
For second-order systems we assume that—
Gexp(—sNT) Gexp(—sNT) (é)
(A +sm)(U+575)  (1+79)
where r = 7,+7,. The error in this assumption is small
at low frequencies—and we are concerned with the
response at low frequencies, since high-frequency
closed-loop response is limited by the dead time.
In the z domain G(s) becomes (/)—
G(2) = Z[H(5).G(5)]
. {[1 —exp(—sT)]1Gexp(—sNT)
s(1+7s)

G(S) =

GLz~(N+1)
1-(1-D)z? |
where L = 1 —exp(—T/7)
A graph of L against /T is given in fig. 4. Note Z
[H(s).G(s)] # H(2).G(z) in general. ,
Substituting for G(z) in (4) yields—

M
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Fig. 4 L = 1—exp[—1/(+/T)]
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D) — 1-(1-L)z* Qz-(v+) -
©= [ GLZ““”“] ' [1—(1—Q)2‘1—Qz—(N+”]

1 [ Q/L—zQ(-L)/L }
TG |1=(1-Q)zt— @z

In most cases the control output to be made is a
change in control output; therefore, we require 4.D(z)
and we multiply (8) by (1-z-1). However, there is a
factor (1 —z-1) in the denominator of (8) and this cancels,
leaving—

®

Ap@y =L, [ O/L—zQ(-L)/L ] 5

G [1+Qz'+Qz%....+Qz7 N

Equ. 9 is the general form of the control algorithm.
Its implementation by a standard software scheme (2), -
which enables Q to be a parameter in a single location,
is shown in fig. 11, which refers to the example at the
end of this article.

Note: the correct form for N = 0 (i.e. no dead time)
is—

1 N
4D(2) =G [Q/L—-2z0(1-D)/L] (10)

ie. the discrete form of a proportional-plus-integral
controller with—

. 1-L
propor’_uonal band ~ Q 5 x 100%;

T
reset time ~ 5 seconds

Control algorithm for first- or
second-order process with dead
time a non-integral number of
sample periods

Since the sampling time T is often fixed by hardware,
it is not always possible to arrange that the dead time
is an integral multiple of the sample time. Therefore
let— -

Gls) = Gexp[—sT(N+m')] (1)
A +s7)
where (N+m’)T = dead time and N = an integer such
that 0<m’<1. N
For second-order processes we make the same
approximation as in (6). With modified z transforms (1)
and m’ = 1-min G(z,m), (11) in the z domain becomes—

G(z) = Z[H(5).G(5)] .
A-N+J—-1+L)z* ]
1—(1-L)z?
where L = 1—exp(—T/r), as before, and J =
exp[—(1-m)T|x] = (1-L)*-™". Therefore, we may
write—

= Gz—(¥+) [

Gz~ WD L[(1-M)+ Mz'] (12)'

GO = D
L+J—1 (1-Lyp-m'—(1-L)
where M = 7= Y

Graphs of M against L for various values of m’ are
giveninfig. 5. We see that (12) is identical with (7), except
for the modifying term (1-M)+ Mz~ in the numerator.
Thus (12) describes the sampled process as shown in
fig. 6. For economy of parameters it is convenient (and
justifiable) that we ask for K(z) in this case to be
similarly modified, i.e.—

1-M)+ Mz
K(2) = 774D [Q_[l(_(_ljg)_zj_]] (13)
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' ~ ot



-
o

m'=04

0 i 1 ﬂl':'[)'], 1 1 L L ——
0 01 02 03 O'LL 05 .06 07 08 08 10

F-ig. 5 M = {exp[—(1—m’)T/71—(1—L)}/L where
" L=1—exp(—T/7)

—_

Unit step response

=]

0 1 2 3 b 5 6 7. Sample
- period
(N+m'JT

Fig. 6 How equ. 13 follows an exponential at the
sampling instants: n = 2
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This merely means that we are asking the controlled
process to behave at the sample periods as if it were a

. continuous process with a dead time (N+m)T and ‘

not NT. : ;
Substituting (13) and (12) in (3) for D(z), we have—
[ 1=(1—-L)z? ]
D(z) =
Gz~ N L[(1-M)+ Mz1]
[ @ Q[(1-M)+ Mz']
1-(1-Q)zt— Qz-W[(1-M)+ Mz7] :l
1 [ Q/L—zQU-L)/L |
TG |1- (1-Q)zt— Qz~ND[(1-M) + Mz] ]

14

Once again we require 4.D(z). Therefore, multiplying

(14) by (1-z7%), which cancels with a factor. (1-z7%) in
the denominator, we have—

4AD(2) = ‘
1 : .Q/L—z"1Q(1-L)/L J s
G [1 +Qz14+Qz 2. ...+ Qz ¥+ MQz~(N+) (15)

Note that the correct form for N = 0 is—
1 L—z*Q(1—-L)/L
Ap L. [ y]
G 1+MQz™1
‘Equ. 15willbeseento be identical with equ. 9 except for
the one term in the denominator involving M. If
m’ = 0 then M = 0 and the equations are the same.
Note the overall scaling I/G. In practical applications G
will include all the input and output constants of the
computer-plant interface. ) »

- (16)

Choice of parameter Q

The most suitable value before commissioning the
system may be estimated by a variety of means.

We see in fig. 2 that a unit spike on the set point SP
(equivalent to a negative spike on the output with
SP = 0) causes the controller'to start corrective action,
but only by a fraction Q. This is similar but not equiva-

lent to the effect of digital first-order filters on the
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measured variable R(n) as used on a control system
without dead time, where the filtered value R'(n) used
for control is given by—

R(n) = QRm+(1—- QR (n—1) an

However, we could not achieve the effect shown in

_fig. 2. by, say, designing an optimal dead-time controller

for the process and then adding a filter such as (17).
This is because the control algorithm effectively models

- the process and therefore the filter (17) must be con-
" sidered as part of the process. Where the measured
variable is sampled more frequently than the control”

action, filtering is useful, and an example is given in
the application described at the end of the article.

We see from fig. 3 that the input to the plant X(¢)
from the control system, is shown as overshooting to
correct for a steady change in set point. This is so for
Q>L, and the percentage overshoot is given simply by
(Q/L—1) 100%. In practical applications this will give
an upper bound for O [note also, Q<1 for stability
of (1)].

Where the interest centres on Q/L, and since both .

0 and L depend on 7, it is usually better to consider
the ratio—

, log(1-0)
T/’T e

log (1—L)
which is independent of T"and relates the time constant
of the controlled to the uncontrolled process.

Perhaps the most useful aspect of Q is its use to
‘dampen’ any instability caused by mismeasuring the

process parameters. This has been investigated ex-
tensively, but I can give only a brief indication of the
effect here. Simulations were performed of a process
withG = 1,7 = 1, NT = 1, and with a control algorithm
designed for these parameter values. The. step response
of the closed-loop system was then investigated for
various values of Q in the control algorithm when
each of the process parameters was varied by +25%
in turn. From these simulations, the variation in process
dead time NT was found to have the most effect on
closed-loop performance, and some of the results are
given here. Fig. 7 shows the closed-loop step response
for T = 0125, NT in the process reduced by 25%,
Q = 039 and L = 0-112. The process is indicated
by o, the set point by a continuous line, and the control
output to the process by —. Fig. 7 may be contrasted
with fig. 8, where Q is reduced to 0-21, reducing the
disturbance caused by incorrect dead-time measurement.

The effect of increasing the sample period by a factor
of eight, making it equal to the dead time, was also
investigated. The results are shown in figs 9 and 10,
which correspond to figs 7 and 8 respectively in that Q
has been chosen so-that the r/r" ratio corresponds.
We see that the control is not quite as good, but if one
takes into account actuator wear, the slower sampling
speed is preferable. Since we can only control distur-
bance frequencies with period <2NT anyway, this
leads to the conclusion that it is not worth controlling
more frequently than the dead time of the process,
but that fast measurement scanning is useful for
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Fig. 9 7= 1s. Q = 0'98. L = 0:632. /7" = 4. Process dead tirﬁe, —25%
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Fig. 11 Example of implementation of algotithm by means of standard software scheme

removing the high-frequency components of the
measured variable R. The factors to be taken into
consideration when selecting combinations of control

‘sample period, digital filtering sample period, and

analogue filtering, are dealt with in detail by Goff @.

Note that for @ = 1, algorithm 9 becomes an optimal
controller, i.e. the system responds in a dead beat
manner in N+ 1 sample periods. This may or may not

- be useful depending on the sample period 7. If T is

short compared to =, L will be small and Q/L will be
large and the process very sensitive to process para-
meter variations.

For Q = L, the closed-loop response of K(z) is the
sarne as the open-loop response. This is a useful value
of ‘0 to use as an initial value with which to start com-
missioning, since X, the change in the manipulated
process variable, never overshoots the steady-state
value required to correct for the error.

Example from cement kiln control

As a practical example of the application, consider the
control, via the fuel flow (oil), of the burning-zone

temperature in a cement kiln. The hardware system

gives two sampling frequencies: 1 min and 5 min.
There is an inner control loop comparing the flow with
the set point and actuating the valve. This is a simple
digital equivalent of a proportional-plus-integral con-
troller implemented on the 1 min scan.

The relationship between fuel flow and burning
zone temperature is found by step tests to be—

® —9g

(1420s) (1+20s)

The dynamics of the fuel-flow-control loop are fast
enough to be ignored in (18). The hardware con-
strains us to 5 min or 1 min sampling. Therefore T = 5
min is chosen as the algorithm sample time, while the
measured variable is sampled every minute and filtered
in a discrete equivalent of a first-order filter of time
constant 5 min. Thus the process and filter is—

140

G(s) = 08 (18)

e—Bs

8 20901+ 205)(1+59)

e-—BJ

G(s) =0

~ 08 (19)
-+ (1+45s)

From fig. 4, since 7/T = 45/5 = 9, we have L = 0-1.

Since the dead time is not a discrete number of sample
periods we have dead time = 9 = T(N+m'). So
N = 1 and m’ = 0-8. From fig. 5, for m" = 0-8 and
L=01,M=078.

From (15) we have—

(Q-00:9z7%)
(14+Qz 14078027
It now remains to implement this in the computer
software, choosing Q on some basis until commissioning,
when the single parameter Q may be trimmed to
give the best performance. The implementation of
(20) by a standard block diagrammatic software
scheme (2) is shown in fig. 11. Note that Q is available

in a single location for alteration with the computer -
on-line. The standard procedure for finding the
algorithm is summarized as follows:
exp[—T(N+m’)s]
1+7s
2 choose the control sample period T
3 find L for this 7'and = from fig. 4
4 find M for this L and m’ from fig. 5
5 choose Q and substitute L, M and Q in (15).

AD(z) = 125 0)

‘1 approximate process to G ¢
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